数控车削加工编程举例

合集下载

数控车削零件工艺分析举例

数控车削零件工艺分析举例
※T0303——切槽刀:刀宽4mm,主轴转速450r/min,进给 速度20mm/min。
※T0404——螺纹刀:刀尖角60°,主轴转速400r/min,进给 速度2mm/r(螺距)。
数控车削加工工艺
※T0505——钻头:钻头直径16mm,主轴转速450r/min。
※T0606——内圆粗车刀:内轮廓粗加工,刀尖圆弧半径 0.8mm,切深1mm,主轴转速500r/min,进给速度100mm/min。 ※T0707——内圆精车刀:内轮廓精加工,刀尖圆弧半径 0.8mm,切深0.4mm,主轴转速800r/min,进给速度60mm/min。
*装夹Φ50外圆表面,探出65mm,粗加工零件左侧外轮廓:
2×45°倒角,Φ48外圆,R20,R16,R10圆弧。
*精加工上述轮廓。
数控车削加工工艺
*手工钻孔,孔深至尺寸要求。 *粗加工孔内轮廓。 *精加工孔内轮廓。 *调头装夹Φ48外圆,粗加工零件右侧外轮廓:2×45°倒
角,螺纹外圆,Φ36端面,锥面,Φ48外圆到圆弧面。
数控机床编程与操作
数控车削加工工艺
完成如图所示零件的加工。毛坯尺寸ф50×114,材料 45钢,零件的径向尺寸公差±0.01mm。
数控车削加工工艺
1.图纸分析 (1)加工内容: 此零件加工包括车端面,外圆,倒角,圆弧,螺纹,槽等。 (2)工件坐标系: 该零件加工需调头,从图纸上尺寸标注分析应设置2个坐标 系,2个工件零点均定于装夹后的右端面(精加工面)。
*精加工上述轮廓。 *切槽。 *螺纹加工。
数控车削加工Байду номын сангаас艺
(5)刀具的选择和切削用量的确定
※T0101——外圆粗车刀:外轮廓粗加工,刀尖圆弧半径 0.8mm, 切 深 2 mm, 主 轴 转 速 8 0 0 r/min , 进 给 速 度 150mm/min。 ※T0202——外圆精车刀:外轮廓精加工,刀尖圆弧半径 0.8mm, 切深0.5mm,主轴转速1500r/min,进给速度 80mm/min。

数控车床零件的工艺分析及编程典型实例

数控车床零件的工艺分析及编程典型实例

数控车床零件的工艺分析及编程典型实例更新日期:来源:数控工作室根据下图所示的待车削零件,材料为45号钢,其中Ф85圆柱面不加工。

在数控车床上需要进行的工序为:切削Ф80mm 和Ф62mm 外圆;R70mm 弧面、锥面、退刀槽、螺纹及倒角。

要求分析工艺过程与工艺路线,编写加工程序。

图1 车削零件图1.零件加工工艺分析(1)设定工件坐标系按基准重合原则,将工件坐标系的原点设定在零件右端面与回转轴线的交点上,如图中Op点,并通过G50指令设定换刀点相对工件坐标系原点Op的坐标位置(200,100)(2)选择刀具根据零件图的加工要求,需要加工零件的端面、圆柱面、圆锥面、圆弧面、倒角以及切割螺纹退刀槽和螺纹,共需用三把刀具。

1号刀,外圆左偏刀,刀具型号为:CL-MTGNR-2020/R/1608 ISO30。

安装在1号刀位上。

3号刀,螺纹车刀,刀具型号为:TL-LHTR-2020/R/60/1.5 ISO30。

安装在3号刀位上。

5号刀,割槽刀,刀具型号为:ER-SGTFR-2012/R/3.0-0 IS030。

安装在5号刀位上。

(3)加工方案使用1号外圆左偏刀,先粗加工后精加工零件的端面和零件各段的外表面,粗加工时留0.5mm的精车余量;使用5号割槽刀切割螺纹退刀槽;然后使用3号螺纹车刀加工螺纹。

(4)确定切削用量切削深度:粗加工设定切削深度为3mm,精加工为0.5mm。

主轴转速:根据45号钢的切削性能,加工端面和各段外表面时设定切削速度为90m/min;车螺纹时设定主轴转速为250r/min。

进给速度:粗加工时设定进给速度为200mm/min,精加工时设定进给速度为50mm/min。

车削螺纹时设定进给速度为1.5mm/r。

2.编程与操作(1)编制程序(2)程序输入数控系统将程序在数控车床MDI方式下直接输入数控系统,或通过计算机通信接口将程序输入数控机床的数控系统。

然后在CRT 屏幕上模拟切削加工,检验程序的正确性。

内螺纹车削加工——数控车床编程实例

内螺纹车削加工——数控车床编程实例

内螺纹车削加工——数控车床编程实例
对图所示M40×2内螺纹编程。

根据标准可知,其螺距为2.309mm(即25.4/11),牙深为1.299mm,其它尺寸如图。

用五次吃刀,每次吃刀量(直径值)分别为0.9mm、0.6 mm 、0.6 mm 、0.4mm、0.1mm,螺纹刀刀尖角为60°。

%0001
N1 T0101 (换一号端面刀,确定其坐标系)
N2 M03 S300 (主轴以400r/min正转)
N3 G00 X100 Z100 (到程序起点或换刀点位置)
N4 X40 Z4 (到简单外圆循环起点位置)
N5 G80 X37.35 Z-38 F80 (加工螺纹外径39.95-2×1.299)
N6 G00 X100 Z100 (到换刀点位置)
N7 T0202 (换二号端面刀,确定其坐标系)
N8 G00 X40 Z4 (到螺纹简单循环起点位置)
N9 G82 X38.25 Z-30 R-4 E1.3 F2 (加工螺纹,吃刀深0.9)
N10 G82 X38.85 Z-30 R-4 E1.3 F2(加工螺纹,吃刀深0.6)
N11 G82 X39.45 Z-30 R-4 E1.3 F2(加工螺纹,吃刀深0.6)
N12 G82 X39.85 Z-30 R-4 E1.3 F2(加工螺纹,吃刀深0.4)
N13 G82 X39.95 Z-30 R-4 E1.3 F2(加工螺纹,吃刀深0.1)
N14 G00 X100 Z100 (到程序起点或换刀点位置)
N15 M30 (主轴停、主程序结束并复位)。

数控车铣复合编程实例

数控车铣复合编程实例

数控车铣复合编程实例介绍数控车铣复合编程是一种现代加工制造中常用的编程技术,它将数控车床和数控铣床的功能结合起来,能够实现更复杂、更高效的加工任务。

本文将以一个具体的编程实例为例,详细介绍数控车铣复合编程的过程和要点。

编程实例:制作一个圆形凸台在本编程实例中,我们将使用数控车铣复合编程来制作一个圆形凸台。

这个任务涉及到车削和铣削两个加工过程,将展示复合编程的优势和应用。

1. 设计凸台的参数首先,我们需要确定凸台的参数,包括圆心坐标、半径、高度等。

假设我们希望凸台的圆心坐标为(0,0),半径为50mm,高度为20mm。

2. 车削底座接下来,我们将使用数控车床对凸台的底座进行车削加工。

车削底座的过程如下:1.安装工件:将工件固定在数控车床的夹持装置上。

2.工件坐标系设定:确定工件坐标系原点(0,0),与凸台的圆心坐标保持一致。

3.具体车削操作:依次选择车刀、车刀路径、进给速度等参数,进行车削操作,以实现底座的加工。

3. 铣削凸台完成底座的车削后,我们将使用数控铣床对凸台进行铣削加工。

铣削凸台的过程如下:1.安装工件:将已经车削好的工件固定在数控铣床的夹持装置上。

2.工件坐标系设定:确定工件坐标系原点(0,0),与底座的工件坐标系保持一致。

3.具体铣削操作:依次选择铣刀、铣刀路径、进给速度等参数,进行铣削操作,以实现凸台的加工。

4. 完成加工并检查完成铣削操作后,我们可以拆卸工件,进行加工结果的检查。

在这个例子中,我们可以测量底座与凸台的直径、高度等参数,以确保加工结果符合要求。

数控车铣复合编程的优势和应用数控车铣复合编程的优势主要体现在以下几个方面:1.提高加工效率:数控车铣复合编程可以将车床和铣床的功能结合起来,实现一次夹持、一次装夹,完成多个加工操作,大大提高了加工效率。

2.减少人为错误:复合编程是在计算机上完成的,减少了人为操作的干预,避免了许多操作失误。

3.实现复杂图形加工:数控车铣复合编程可以实现各种复杂的图形加工,例如圆形凸台、曲面雕刻等,灵活性强。

数控车床编程实例

数控车床编程实例

如图2-16所示工件,毛坯为φ45㎜×120㎜棒材,材料为45钢,数控车削端面、外圆。

1.根据零件图样要求、毛坯情况,确定工艺方案及加工路线1)对短轴类零件,轴心线为工艺基准,用三爪自定心卡盘夹持φ45外圆,使工件伸出卡盘80㎜,一次装夹完成粗精加工。

2)工步顺序①粗车端面及φ40㎜外圆,留1㎜精车余量。

②精车φ40㎜外圆到尺寸。

2.选择机床设备根据零件图样要求,选用经济型数控车床即可达到要求。

故选用CK0630型数控卧式车床。

3.选择刀具根据加工要求,选用两把刀具,T01为90°粗车刀,T03为90°精车刀。

同时把两把刀在自动换刀刀架上安装好,且都对好刀,把它们的刀偏值输入相应的刀具参数中。

4.确定切削用量切削用量的具体数值应根据该机床性能、相关的手册并结合实际经验确定,详见加工程序。

5.确定工件坐标系、对刀点和换刀点确定以工件右端面与轴心线的交点O为工件原点,建立XOZ工件坐标系,如前页图2-16所示。

采用手动试切对刀方法(操作与前面介绍的数控车床对刀方法基本相同)把点O作为对刀点。

换刀点设置在工件坐标系下X55、Z20处。

6.编写程序(以CK0630车床为例)按该机床规定的指令代码和程序段格式,把加工零件的全部工艺过程编写成程序清单。

该工件的加工程序如下:N0010 G59 X0 Z100 ;设置工件原点N0020 G90N0030 G92 X55 Z20 ;设置换刀点N0040 M03 S600N0050 M06 T01 ;取1号90°偏刀,粗车N0060 G00 X46 Z0N0070 G01 X0 Z0N0080 G00 X0 Z1N0090 G00 X41 Z1N0100 G01 X41 Z-64 F80 ;粗车φ40㎜外圆,留1㎜精车余量N0110 G28N0120 G29 ;回换刀点N0130 M06 T03 ;取3号90°偏刀,精车N0140 G00 X40 Z1N0150 M03 S1000N0160 G01 X40 Z-64 F40 ;精车φ40㎜外圆到尺寸N0170 G00 X55 Z20N0180 M05N0190 M02实例二如图2-17所示变速手柄轴,毛坯为φ25㎜×100㎜棒材,材料为45钢,完成数控车削。

数控车床编程基础实例

数控车床编程基础实例

数控基础编程实例全系全解G00 快速定位速度值机床本身决定、由速率旋钮控制G01 直线切削第一节程式一定要附于F值G02 顺时针圆弧切削G03 逆时针圆弧切削G04 暂停G15 极坐标系统取消G16 极坐标系统设定G17 X-Y 平面设置G18 X-Z平面设置G19 Y-Z平面设置G20 英制单位设置G21 公制单位设置G28 返回机床原点G29 从原点到指令点G40 刀具补正取消G41 刀具左补正(半径)G42 刀具右补正G43 刀具长度正向补正G44 刀具长度负向补正G49 长度补正取消(H 为刀长补正代码,注意撞刀,要仔细)G54 工作坐标1G55 工作坐标2G56 工作坐标3G57 工作坐标4G58 工作坐标5G59 工作坐标6G70 精加工G73 高速深孔钻循环G80 取消循环G81 钻孔循环G82 深孔钻削循环G83 深孔啄钻G84 右螺旋功牙G85 铰孔G86 镗孔G90 绝对坐标G91 增量坐标G92 工件坐标设定G98 回归起始点循环G99 回归R点循环这几个是最常用的:M00 程序停止M01 任选停止M02 程序结束M03 主轴正转M04 主轴反转M05 主轴停止M06 刀具交换M08 冷却液开M09 冷却液关M30 程序结束M40 主轴齿轮空档M41 主轴齿轮1档或底速线圈M42 主轴齿轮2档或高速线圈M98调用子程序M99返回主程序这个面的做为参考:M00 程序停止M01 任选停止M02 程序结束M03 工作主轴起动(正转)M04 工作主轴起动(反转)M05 主轴停止M06 刀具交换M07 吹气M08 冷却液开M09 冷却液关M10 主轴点动关M11 主轴点动开M12 动力刀具轴停止M13 动力刀具轴正转M14 动力刀具轴反转M15 C轴正向定位M16 C轴反向定位M17 机外测量数据通过RS232C传送请求M18 主轴定向取消M19 主轴定向M20 尾架干涉区或主轴干涉监视关(对面双主轴规格) M21 尾架干涉区或主轴干涉监视开(对面双主轴规格) M22 倒角关M23 倒角开M24 卡盘干涉区关,刀具干涉区关M25 卡盘干涉区开,刀具干涉区开M26 螺纹导程有效轴Z轴指定M27 螺纹导程有效轴X轴指定M28 刀具干涉检查功能关M29 刀具干涉检查功能开M30 程序结束M31M32 螺纹车削单面切削模式M33 螺纹车削时交叉切削模式M34 螺纹车削逆向单面切削模式M35 装料器夹持器Z向滑动后退M36 装料器夹持器Z向滑动前进M37 装料器臂后退M38 装料器臂前进到卸载位置M39 装料器臂前进到卡盘位置M40 主轴齿轮空档M41 主轴齿轮1档或底速线圈M42 主轴齿轮2档或高速线圈M43 主轴齿轮3档M44 主轴齿轮4档M45M46 M47M48 主轴转速倍率无效取消M49 主轴转速倍率无效M50 附加吹气口1关M51 附加吹气口1开M52M53M54 分度卡盘自动分度M55 尾架后退M56 尾架前进M57 M63取消M58 卡盘底压M59 卡盘高压M60 M61取消M61 圆周速度恒定切削时,恒定旋转应答忽视M62 M64取消M63 主轴旋转M码应答忽视M64 主轴旋转之外的M码应答忽视M65 T码应答忽视M66 刀架回转位置自由M67 凸轮车削循环中同步运行模式取消M68 同步模式A运行开M69 同步模式B运行开M70 手动换到指令M71M72 ATC单元定位在接近位置M73 螺纹车削类型1M74 螺纹车削类型2M75 螺纹车削类型3M76 工件捕手后退M77 工件捕手前进M78 中心架松开M79 中心架夹紧M80 过切前进M81 过切后退M82M83 卡盘夹紧M84 卡盘松开M85 LAP粗车循环后不返回起始位置M86 刀架右回转指定M87 M86取消M88 吹气关M89 吹气开M90 关门M91 开门M92 棒料进给器后退M93 棒料进给器前进M94 装料器装料M95 装料器卸料M96 副轴用工件捕手后退M97 副轴用工件捕手前进M98 尾架低压M99 尾架高压数控车床编程实例一:加工半径数控编程加工半径数控编程零件图样%3110 (主程序程序名)N1 G92 X16 Z1(设立坐标系,定义对刀点的位置)N2 G37 G00 Z0 M03(移到数控子程序起点处、主轴正转)N3 M98 P0003 L6(调用数控子程序,并循环6次)N4 G00 X16 Z1 (返回对刀点)N5 G36(取消加工半径数控编程)N6 M05 (主轴停)N7 M30 (主程序结束并复位)%0003 (数控子程序名)N1 G01 U-12 F100(进刀到切削起点处,注意留下后面切削的余量)N2 G03 U7.385 W-4.923 R8(加工R8园弧段)N3 U3.215 W-39.877 R60(加工R60园弧段)N4 G02 U1.4 W-28.636 R40(加工切R40园弧段)N5 G00 U4 (离开已加工表面)N6 W73.436(回到循环起点Z轴处)N7 G01 U-4.8 F100(调整每次循环的切削量)N8 M99 (数控子程序结束,并回到主程序)数控车床编程实例二:直线插补指令G01数控编程直线插补指令G01数控编程零件图样%3305N1 G92 X100 Z10(设立加工工件坐标系,定义对刀点的位置)N2 G00 X16 Z2 M03 (移到倒角延长线,Z轴2mm处)N3 G01 U10 W-5 F300 (倒3×45°角)N4 Z-48 (加工Φ26外圆)N5 U34 W-10(切第一段锥)N6 U20 Z-73 (切第二段锥)N7 X90 (退刀)N8 G00 X100 Z10 (回对刀点)N9 M05 (主轴停)3×45°58487310N10 M30(主程序结束并复位)数控车床编程实例三:圆弧插补G02/G03指令数控编程圆弧插补指令编程零件图样%3308N1 G92 X40 Z5(设立工件坐标系,定义对刀点的位置)N2 M03 S400 (主轴以400r/min旋转)N3 G00 X0(到达工件中心)N4 G01 Z0 F60(工进接触工件毛坯)N5 G03 U24 W-24 R15 (加工R15圆弧段)N6 G02 X26 Z-31 R5 (加工R5圆弧段)N7 G01 Z-40 (加工Φ26外圆)N8 X40 Z5 (回对刀点)N9 M30(主轴停、主程序结束并复位)数控车床编程实例四:倒角指令数控编程倒角指令数控编程零件图样%3310N10 G92 X70 Z10(设立坐标系,定义对刀点的位置)N20 G00 U-70 W-10(从编程规划起点,移到工件前端面中心处)N30 G01 U26 C3 F100(倒3×45°直角)N40 W-22 R3(倒R3圆角)N50 U39 W-14 C3(倒边长为3等腰直角)N60 W-34(加工Φ65外圆)N70 G00 U5 W80(回到编程规划起点)N80 M30(主轴停、主程序结束并复位)数控车床数控编程实例五:倒角指令数控编程二倒角指令数控编程二图样%3310N10 G92 X70 Z10(设立坐标系,定义对刀点的位置)N20 G00 X0 Z4(到工件中心)N30 G01 W-4 F100(工进接触工件)N40 X26 C3 (倒3×45°的直角)N50 Z-21 (加工Φ26外圆)N60 G02 U30 W-15 R15 RL=3 (加工R15圆弧,并倒边长为4的直角)N70 G01 Z-70 (加工Φ56外圆)N80 G00 U10(退刀,离开工件)N90 X70 Z10(返回程序起点位置)M30(主轴停、主程序结束并复位)数控车床编程实例六:圆柱数控螺纹编程圆柱数控螺纹编程零件图样%3312N1 G92 X50 Z120(设立坐标系,定义对刀点的位置)N2 M03 S300(主轴以300r/min旋转)N3 G00 X29.2 Z101.5 (到螺纹起点,升速段1.5mm,吃刀深0.8mm)N4 G32 Z19 F1.5 (切削螺纹到螺纹切削终点,降速段1mm)N5 G00 X40 (X轴方向快退)N6 Z101.5(Z轴方向快退到螺纹起点处)N7 X28.6 (X轴方向快进到螺纹起点处,吃刀深0.6mm)N8 G32 Z19 F1.5 (切削螺纹到螺纹切削终点)N9 G00 X40 (X轴方向快退)N10 Z101.5(Z轴方向快退到螺纹起点处)N11 X28.2 (X轴方向快进到螺纹起点处,吃刀深0.4mm)N12 G32 Z19 F1.5(切削螺纹到螺纹切削终点)N13 G00 X40(X轴方向快退)N14 Z101.5 (Z轴方向快退到螺纹起点处)N15 U-11.96 (X轴方向快进到螺纹起点处,吃刀深0.16mm)N16 G32 W-82.5 F1.5 (切削螺纹到螺纹切削终点)N17 G00 X40(X轴方向快退)N18 X50 Z120 (回对刀点)N19 M05(主轴停)N20 M30 (主程序结束并复位)数控车床编程实例七:恒线速度功能数控编程恒线速度功能编程零件图样%3314N1 G92 X40 Z5(设立坐标系,定义对刀点的位置)N2 M03 S400(主轴以400r/min旋转)N3 G96 S80 (恒线速度有效,线速度为80m/min)N4 G00 X0(刀到中心,转速升高,直到主轴到最大限速)N5 G01 Z0 F60 (工进接触工件)N6 G03 U24 W-24 R15 (加工R15圆弧段)N7 G02 X26 Z-31 R5 (加工R5圆弧段)N8 G01 Z-40 (加工Φ26外圆)N9 X40 Z5 (回对刀点)N10 G97 S300(取消恒线速度功能,设定主轴按300r/min旋转)N11 M30(主轴停、主程序结束并复位)数控车床编程实例八:G80指令数控编程G80指令数控编程零件图样%3317M03 S400(主轴以400r/min旋转)G91 G80 X-10 Z-33 I-5.5 F100 (加工第一次循环,吃刀深3mm)X-13 Z-33 I-5.5(加工第二次循环,吃刀深3mm)X-16 Z-33 I-5.5(加工第三次循环,吃刀深3mm)M30(主轴停、主程序结束并复位)数控车床编程实例九:G81指令编程,点画线代表毛坯。

数控车加工外圆、切槽、车螺纹工件编程实例

数控车加工外圆、切槽、车螺纹工件编程实例

数控车加工外圆、切槽、车螺纹工件编程实例更新日期:来源:数控工作室例如图1所示工件,需要进行精加工,其中φ 85mm 外圆不加工。

毛坯为φ 85mm × 340mm 棒材,材料为45钢。

图1 车削编程实例工件以φ85mm 外圆及右中心孔为定位基准,用三爪自定心卡盘夹持φ85mm 外圆,用机床尾座顶尖顶住右中心孔。

加工时自右向左进行外轮廓面加工,走刀路线为:倒角——车螺纹外圆——车圆锥——车φ62mm 外圆——倒角——车φ80mm 外圆——车R 70mm 圆弧——车φ80mm 外圆——切槽——车螺纹。

根据加工要求,采用三把刀具:1号刀车外圆,2号刀切槽,3号刀车螺纹。

精加工程序如下:O0003;N 10 G 50X200.0 Z350.0;工件坐标系设定N 20 G 30 U0 W0 T0101;换1号刀N20 S 630 M 03;N 30 G 00 X41.8 Z 292.0 M 08;快速进给N 40 G 01 X48.34 Z 289.0 F 0.15;车端面N50 Z230.0;车螺纹外圆N60 X50.0;车台阶N70 X62.0 W-60.0;车圆锥N80 Z155. 0;车φ62mm 外圆N90 X78. 0;车台阶N100 X80.0 W-10.0;倒角N110 W-19. 0;车φ80mm 外圆N 120 G 02 W-60.0 I3.25 K-30.0;车R 70mm 圆弧N 130 G 01 Z65.0;车φ80mm 外圆N140 X90. 0;车台阶N 150 G 00 X200.0 Z350.0 T 0100 M 09;退刀N 160 G 30 U0 W0 T0202;换2号刀N170 S 315 M 03;N 180 G 00 X51.0 Z 227 M 08;N 190 G 01 X45. 0 F 0.16;切槽N 200 G 04 O5. 0 ;暂停进给5sN 210 G 00 X51.0;N220 X200.0 Z350.0 T 0200 M 09;N 230 G 30 U0 W0 T0303;换3号刀N240 S 200 M 03;N 250 G 00 X62.0 Z 296.0 M 08;快速接近车螺纹进给刀起点N 260 G 92 X47.54 Z 228.5 F 1.5;螺纹切削循环,螺距为1.5mm N270 X46. 94;螺纹切削循环,螺距为1.5mmN280 X46. 54;螺纹切削循环,螺距为1.5mmN290 X46. 38;螺纹切削循环,螺距为1.5mmN 300 G 00 X200.0 Z350.0 T 0300 M 09;N 310 M 05;N 320 M 30;。

数控车削加工编程举例

数控车削加工编程举例

7) 调用子程序举例
1)、刀尖圆弧半径自动补偿指令 G40、G41、 G42举例
刀尖位置编码:3 N10 G50 X200 Z175 T0101 N20 M03 S1500 N30 G00 G42 X58 Z10 M08 N40 G96 S200 N50 G01 Z0 F1.5 N60 X70 F0.2 N70 X78 Z-4 N80 X83 N85 Z-15 N90 X85 Z-5 N100 G02 X91 Z-18 R3 F0.15 N110 G01 X94 N120 X97 Z-19.5 N130 X100 N140 G00 G40 G97 X200 Z175 S1000 N150 M30
注意:其他系统常用的螺纹的加工为:G33、G92、G82
圆柱螺纹的加工程序编写举例
(螺纹导程4mm,升速进刀段δ1=3mm,降速退刀段 δ2=1.5mm,螺纹深度2.165 mm 大径=60mm)。
螺纹的加工程序。
…… G00 X115.67 Z84.5 G78 X58.5 X57.5 X56.5 X56 X55.77 …… Z10.7 F4
数控加工编程举例
一、钻、镗、攻丝、绞削加工程序编制
(孔内表面)
二、铣削加工程序编制(内外轮廓表面) 三、车削加工程序编制(回转体表面和端面) 四、加工中心程序编制(复合表面)
三、车削加工程序编制
回转体表面和端面) (回转体表面和端面)
1、零件加工特点:
主要为轴类、盘类等回转体零件。 主要加工表面为内外圆柱面、圆锥面、成形表面、螺纹和端面,以 及还需要做车槽、倒角、切断、钻孔、扩孔、铰孔等工作。 可在一次装夹中完成更多的加工工序,提高加工精度和生产效率。 X方向分直径和半径,直径是回转零件常用的标注方式。 切削需要多次吃刀。

GSK980T数控车床编程实例

GSK980T数控车床编程实例
如:G00 X30 Z50 G01X30 Z50 F100 的刀具运动轨迹如下图:
G0 0 运动 轨迹 线
X
30
G0 1 运动 轨迹 线
O
50
Z
3 G02、G03顺、逆时针圆弧插补
格式1:G02(G03) X~ Z~ R~ F~ 其中,X~Z~圆弧终点坐标值; R~圆弧半径 F~指定进给速度 表示刀具运动轨迹为圆弧线,圆弧起点为刀具当前 点,终点坐标和半径由该程序段设定.
G3 X20 Z-10 R10
G1 Z-35 X28 Z-45 N20 Z-57 G70 P10 Q20 G0 X50 Z100
子程序结 束 润滑开
程序暂停
代码 模态代码 功能说明
M03 是 M04 是 M05 是 M08 是 M09 是
M33 是
主轴正转
主轴反转
主轴停转
切削液开
切削液停 止 润滑关
常用G、M功能指令
熟练掌握以下代码的使用方法 * G00(快速定位) * G01(直线插补) ) * G02 (顺圆弧插补) * G03(逆圆弧插补) G71(外圆粗加工循环) G70(精加工循环)
G0 X24 Z3 G01X20.5 G01 Z-22 X22.5 Z-32 G0 X25 Z3
G0 X16.6 G01 Z0 G03 X26 Z-10 R13 G0 X25 Z1 X13.2
G01 Z0
G03X24 Z-10R12 G0 X25 Z1
X9.2 G01 Z0 G03 X22 Z-10 R11
•G0 X20 •G92 X19.4 Z-20 F1.5 • X18.9 • X18.6 • X18.4 • X18.3 • X18.2
G71内、外圆粗车固定循环指令

数控车床编程——普通盘类零件的车削加工

数控车床编程——普通盘类零件的车削加工

N42G00X69.4Z0; /快速走到内孔粗镗起点
N44Z-12.0; /刀具快进
N46G0lZ-32.0; /Φ69mm内孔粗镗
N48G03X66.0Z-33.7R1.7; /R2mm内圆角粗镗
N50X57.4;
N52Z45.0; /Φ58mm内孔粗镗
N133Z-88.0; /反向精镗Φ58mm内孔
N136G02X56.0Z-87.0R1.0; / 反向精镗Rlmm圆弧
N139X53.0; /反向精镗台阶
N142G40G00Z3.0:
N145G30U0W0 M09:
N148M30:
N41Z-113.0; /快速走到左端点(201,—113)处,以便精车左端面
N44G01X-151.0F0.15; 精车左端面 ‘
N47G30U2.O W20;
N50T0303; /调03号粗镗刀
N53G00X77.0Z0.3;
N58G02X74.4Z-1.0R1.3F0.3;/粗镗右端圆角R1
N10G0l ZO.3F0.3; /接近端面圆弧切削起点
N12G03X200.6Z-1.0Rl.3 /车削开始

N14G0l Z-20.0; /Φ200mm外圆粗车
N16G00X200.6Z0.3; /快速走到右端面粗车起点
N18G01X98.0; /右端面粗车
图2-45 典型盘形件
(1)左端面的加工 左端面的加工过程如图2-46所示,图中▲为定位点,▽为夹紧点,工件原点设置在右端,数控程序如下:
图2—46 左端加工过程
O0022 /程序编号O0022
N0 G50X200.0Z60.0; /设置工件原点在右端面

数控机床编程实例

数控机床编程实例
37
第三章 数控机床编程实例
调用子程序指令(G22)
指令格式 G22 A _ H _
G22 P _ Q _ H _
G22 A _ P _ Q _
30
第三章 数控机床编程实例
平行工件轮廓切削循环指令( G73 )
指令格式 G73 A _ U _ W _ I _ K _ D _ F _ E _ S _ G73 P _ Q _ U _ W _ I _ K _ D _ F _ E _ S _
指令说明 U、W X轴和Z轴向粗车余量
U(半径值)
I
X轴向精车余量
G01 W-18
D-E
G02 U16 W-8 I8(或R8)
E-F
14
第三章 数控机床编程实例
4、螺纹切削指令(G32)
指令格式 G32 X(U)_ Z(W)_ F(E)_ 指令功能 切削加工圆柱螺纹、圆锥螺纹和平面螺纹。
指令说明 1)F—公制螺纹的导程
E—英制螺纹的导程
2)F表示长轴方向的导程 如果X轴方向为长轴,F为半径值。 对于圆锥螺纹,其斜角α在450以下时,Z轴方向为长轴;
10
第三章 数控机床编程实例
朝着圆弧所在平面的另一坐标轴的负方向看, 顺为G02,逆为G03
11
第三章 数控机床编程实例
2)X、Z为圆弧终点坐标值 U、W为圆弧终点相对于圆弧起点的坐标增量
3)R为圆弧半径 在0°~180° R为正值 在180°~360° R为负值
R编程只适用于非整圆的圆弧插补 4)圆弧中心地址I、K确定
U、W 表示切削终点相对循环起点的坐标分量; F 表示进给速度
19
第三章 数控机床编程实例
2、锥面切削循环指令 (G90)

数控车床编程实例【范本模板】

数控车床编程实例【范本模板】

如图2-16所示工件,毛坯为φ45㎜×120㎜棒材,材料为45钢,数控车削端面、外圆.1.根据零件图样要求、毛坯情况,确定工艺方案及加工路线1)对短轴类零件,轴心线为工艺基准,用三爪自定心卡盘夹持φ45外圆,使工件伸出卡盘80㎜,一次装夹完成粗精加工.2)工步顺序①粗车端面及φ40㎜外圆,留1㎜精车余量。

②精车φ40㎜外圆到尺寸。

2.选择机床设备根据零件图样要求,选用经济型数控车床即可达到要求。

故选用CK0630型数控卧式车床. 3.选择刀具根据加工要求,选用两把刀具,T01为90°粗车刀,T03为90°精车刀。

同时把两把刀在自动换刀刀架上安装好,且都对好刀,把它们的刀偏值输入相应的刀具参数中。

4.确定切削用量切削用量的具体数值应根据该机床性能、相关的手册并结合实际经验确定,详见加工程序。

5.确定工件坐标系、对刀点和换刀点确定以工件右端面与轴心线的交点O为工件原点,建立XOZ工件坐标系,如前页图2—16所示。

采用手动试切对刀方法(操作与前面介绍的数控车床对刀方法基本相同)把点O作为对刀点。

换刀点设置在工件坐标系下X55、Z20处。

6.编写程序(以CK0630车床为例)按该机床规定的指令代码和程序段格式,把加工零件的全部工艺过程编写成程序清单。

该工件的加工程序如下:N0010 G59 X0 Z100 ;设置工件原点N0020 G90N0030 G92 X55 Z20 ;设置换刀点N0040 M03 S600N0050 M06 T01 ;取1号90°偏刀,粗车N0060 G00 X46 Z0N0070 G01 X0 Z0N0080 G00 X0 Z1N0090 G00 X41 Z1N0100 G01 X41 Z-64 F80 ;粗车φ40㎜外圆,留1㎜精车余量N0110 G28N0120 G29 ;回换刀点N0130 M06 T03 ;取3号90°偏刀,精车N0140 G00 X40 Z1N0150 M03 S1000N0160 G01 X40 Z—64 F40 ;精车φ40㎜外圆到尺寸N0170 G00 X55 Z20N0180 M05N0190 M02实例二如图2-17所示变速手柄轴,毛坯为φ25㎜×100㎜棒材,材料为45钢,完成数控车削。

数控编程g41编程实例及解释

数控编程g41编程实例及解释

数控编程g41编程实例及解释数控编程中的G41编程是指刀具半径补偿左方向编程的一种指令。

在数控加工中,刀具的实际切削半径可能会受到刀具磨损、加工材料硬度等因素的影响,因此需要进行刀具补偿以确保加工尺寸的精度。

G41编程就是用来进行刀具半径补偿的一种常见方式。

下面我将通过一个简单的数控编程实例来解释G41编程的应用:假设我们需要对一个工件进行外圆的车削加工,首先我们需要进行数控编程。

假设工件的直径是50mm,我们选择了刀具直径为10mm的车刀进行加工。

在进行数控编程时,我们需要考虑到刀具的实际切削半径可能会有所偏差,这时就需要使用G41编程进行刀具半径补偿。

首先,在数控编程中,我们需要指定车削的起点和终点坐标,然后使用G41指令来进行刀具半径补偿。

具体的编程指令可能如下所示:N10 G00 X50 Z5 ;快速移动到加工起点。

N20 G01 X0 F0.2 D01 ;设定进给速度和切削方向,并启用刀具半径补偿。

N30 G01 X-50 ;进行车削加工。

N40 G40 ;取消刀具半径补偿。

在上面的编程中,N10和N20行分别用于快速移动到加工起点并设定切削方向和启用刀具半径补偿,N30行进行实际的车削加工,N40行用于取消刀具半径补偿。

通过上面的实例,我们可以看到G41编程的应用,它可以帮助我们在数控加工中更精确地控制刀具的切削半径,从而提高加工的精度和质量。

总的来说,数控编程中的G41编程是一种常见的刀具半径补偿方式,通过合理的应用可以帮助我们在数控加工中更好地控制刀具的切削半径,从而提高加工精度和效率。

希望以上解释能够对你有所帮助。

《数控车削加工编程与操作》思政教育案例

《数控车削加工编程与操作》思政教育案例

数控车削加工编程与操作一、概述随着现代工业技术的不断发展,数控车床已经成为工业生产中不可或缺的重要设备。

数控车床通过计算机程序控制刀具在工件上的运动,可以精确高效地完成各种复杂的加工任务。

掌握数控车床的编程与操作技能对于现代制造业的从业人员来说至关重要。

本文将以数控车削加工编程与操作为主题,结合实际案例进行深入探讨。

二、数控车削加工的基本原理1. 数控车床的结构与工作原理数控车床是一种利用数字信号控制机床自动化加工的设备。

其基本结构包括床身、主轴与主轴箱、进给系统、刀架、夹具等部件。

通过数控系统的指令控制,数控车床可以实现不同类型的加工,包括车削、镗削、钻削等工艺。

2. 数控编程的基本概念数控编程是指根据工件的加工要求,编写相应的数控程序,将工件的几何形状、尺寸和加工工艺等信息转化为机床能够识别和执行的指令。

数控编程的核心是确定刀具的运动路径和工件的加工轨迹,以实现精确的加工。

三、数控车削加工编程与操作的实际案例以某机械零件的数控车削加工为例,介绍数控编程与操作的具体步骤和注意事项。

1. 工件加工要求与工艺分析某机械零件是一种轴类零件,需要进行外圆车削、端面车削和螺纹加工。

根据零件的实际尺寸和加工要求,需要编写相应的数控加工程序。

2. 数控车削加工程序编写根据工件的加工要求,编写数控车削加工程序。

首先确定加工工艺,包括选用合适的刀具、切削参数和进给速度等;然后根据工件的几何形状,编写加工路径和刀具运动轨迹的数控指令;最后进行程序调试和优化,确保加工精度和效率。

3. 数控车床操作将编写好的数控加工程序加载到数控车床的控制系统中,进行加工前的设备调试和检查工作。

操作工人需要熟悉数控车床的操作界面和各项功能按钮,按照程序要求对机床进行设置和调整,保证加工过程的顺利进行。

4. 加工过程的监控与调整在数控车床进行加工过程中,操作工人需要及时监控加工状态,并根据实际情况做出必要的调整。

包括刀具的磨损情况、加工质量的检查、加工参数的调整等。

数控车削加工实例

数控车削加工实例

数控车削加工综合实例锥孔螺母套零件如图23-1所示,按中批生产安排其数控加工工艺,编写出加工程序。

毛坯为¢72mm 棒料。

任务实施1 加工工艺的确定 1.分析零件图样该零件表面由内外圆柱面、圆锥孔、圆弧、内沟槽、内螺其余3.2纹等表面组成。

其中多个径向尺寸和轴向尺寸有较高的尺寸精度、表面质量和位置公差要求。

2.工艺分析1)加工方案的确定根据零件的加工要求,各表面的加工方案确定为粗车→精车。

2)装夹方案的确定加工内孔时以外圆定位,用三爪自定心卡盘装夹。

加工外轮廓时,为了保证同轴度要求和便于装夹,以工件左端面和¢32孔轴线作为定位基准,为此需要设计一心轴装置(图23-2中双点划线部分),用三爪卡盘夹持心轴左端,心轴右端留有中心孔并用顶尖顶紧以提高工艺系统的刚性。

外轮廓车削心轴定位装夹方案3)加工工艺的确定(1)加工路线的确定加工路线见表23-1。

数控加工工艺路线单(2)工序30①工序卡工序卡见表。

数控加工工序卡②进给路线的确定(略)③刀具及切削参数的确定刀具及切削参数的确定见表。

数控加工刀具卡(3)工序40①工序卡工序卡见表。

数控加工工序卡②进给路线的确定(略)③刀具及切削参数的确定刀具及切削参数的确定见表。

数控加工刀具卡(3)工序50①工序卡工序卡见表。

数控加工工序卡②进给路线的确定精加工外轮廓的走刀路线如图所示,粗加工外轮廓的走刀路线略。

外轮廓车削进给路线③刀具及切削参数的确定刀具及切削参数的确定见表。

数控加工刀具卡2 参考程序编制1.工序301)工件坐标系的建立以工件左端面与轴线的交点为编程原点建立工件坐标系。

2)基点坐标计算(略)3)参考程序参考程序见表工序30参考程序2.工序401)工件坐标系的建立以工件右端面与轴线的交点为编程原点建立工件坐标系。

2)基点坐标计算(略)3)参考程序参考程序见表工序40参考程序3.工序501)工件坐标系的建立以工件右端面与轴线的交点为编程原点建立工件坐标系。

车加工数控车床编程

车加工数控车床编程

数控车加工程序编制式中:X、Z- -圆柱面切削的终点坐标值;U、W--圆柱面切削的终点相对于循环起点坐标分量。

例:应用圆柱面切削循环功能加工图3.29所示零件。

N10 G50 X200 Z200 T0101N20 M03 S1000N30 G00 X55 Z4 M08N40 G01 G96 Z2 F2.5 S150N50 G90 X45 Z-25 F0.2N60 X40N70 X35N80 G00 X200 Z200N90 M30(2)圆锥面切削循环编程格式G90 X(U)~ Z(W)~ I~ F~式中:X、Z- 圆锥面切削的终点坐标值;U、W-圆柱面切削的终点相对于循环起点的坐标;I- 圆锥面切削的起点相对于终点的半径差。

如果切削起点的X向坐标小于终点的X向坐标,I值为负,反之为正。

如图3.30所示。

例:应用圆锥面切削循环功能加工图3.30所示零件。

……G01 X65 Z2G90 X60 Z-35 I-5 F0.2X50G00 X100 Z200……端面切削循环是一种单一固定循环。

适用于端面切削加工,如图3.31所示。

(1)平面端面切削循环编程格式G94 X(U)~ Z(W)~ F~式中:X、Z- 端面切削的终点坐标值;U、W-端面切削的终点相对于循环起点的坐标。

例:应用端面切削循环功能加工图3.31所示零件。

……G00 X85 Z5G94 X30 Z-5 F0.2Z-10Z-15……(2)锥面端面切削循环编程格式 G94 X(U)~ Z(W)~ K~ F~式中:X、Z- 端面切削的终点坐标值;U、W-端面切削的终点相对于循环起点的坐标;K- 端面切削的起点相对于终点在Z轴方向的坐标分量。

当起点Z向坐标小于终点Z向坐标时K为负,反之为正。

如图3.32所示。

例:应用端面切削循环功能加工图3.33所示零件。

……G94 X20 Z0 K-5 F0.2Z-5Z-10……3.2.9复合固定循环在复合固定循环中,对零件的轮廓定义之后,即可完成从粗加工到精加工的全过程,使程序得到进一步简化。

数控车编程实例

数控车编程实例

1X45
外圆 车刀
(a)
35
(b)
N0010 N0011
G00 X51.0 Z227.0 M08
快进至X=51mm, Z=227mm,开切削液 G01 X45.0 F0.16 X向工进至X=45mm, 速度0.16mm/r(车45mm槽)
N0012
X
155
G04 P1000.0
350 290
暂停进给1S
X
155
200 65 60 20 60 60 3X45
M06 T0202 S315 M03
350 290
换刀,并进行刀具补偿 主轴正转,转速315r/min
15 螺纹 车刀 T03 35 2 5 1X45 41.8
80 62
85
80
O
50
35
T01 T02 切槽刀 5
Z
M48X1.5
65
60
20
60
60 3X45 2
85
80
80 62
50
O
35
T01 T02 切槽刀 5 35
M48X1.51X45 NhomakorabeaZ
1X45
外圆 车刀
(a)
(b)
M48X1.5
1X45
41.8
由于加工螺 纹后,工作 会产生塑性 变形,会使 工件尺寸变 大,普通M螺 纹在配合中 外螺纹的牙 顶和内螺纹 X 的牙底间有 一间的间隙 ,故加工前 圆棒直径是 小于螺纹的 理论的大径 ,这个尺寸 一般在0.10.2之间选 择 . 加工前 圆棒的直径 O d = 4 8 0.2=47.8
290 155 65 60 20 60 60 3X45 85 80 80 62 50 2

数控车床g72编程实例及解释

数控车床g72编程实例及解释

数控车床g72编程实例及解释数控车床在现代制造业中扮演着重要的角色,它能够对各种各样的工件进行精确加工。

而G72编程则是数控车床中一个重要的编程方式。

本文将以一个实例为基础,详细介绍G72编程的相关知识,并深入解释其原理和应用。

一、实例介绍假设我们需要在数控车床上加工一个半径不规则的零件,如图所示。

该零件的外轮廓呈现出一个连续的曲线,传统的编程方式无法精确控制车床的刀具轨迹。

这时G72编程就能派上用场了。

[插入图片:零件示意图]二、G72编程原理G72编程是一种面向外轮廓的刀具半径补偿编程方式。

其原理是通过指定刀具半径,在车削时自动将刀具几何轨迹内移。

这样一来,刀具就能够按照预定半径来车削工件,从而完成复杂曲线的加工。

三、编程步骤1. 编写G72代码段我们需要在数控车床程序中编写G72代码段。

例如:G72 Pxx Qyy Rzz其中,P代表初始刀具半径,Q代表最终刀具半径,R代表刀具每转进给距离。

2. 指定补偿方向根据具体的零件形状,我们需要通过G41或G42指令来指定刀具补偿的方向。

G41为左偏补偿,G42为右偏补偿。

3. 设置辅助数据为了实现刀具的准确补偿,还需要在程序中设置一些辅助数据。

初始点坐标、最终点坐标和切入刀具的深度等等。

4. 编写轮廓加工程序在G72代码段之后,我们需要编写具体的车削轮廓加工程序。

该程序将根据G72编程自动计算刀具轨迹,并进行精确的加工。

四、实例分析我们以一个半径不规则的零件为例,演示G72编程的应用。

我们需要在数控车床上编写如下的代码段:G72 P10.0 Q12.5 R0.05接下来,我们使用G41指令来指定左偏补偿,设定辅助数据如下:- 初始点坐标:X0 Y0- 最终点坐标:X50 Y50- 切入刀具深度:Z-0.5我们编写具体的轮廓加工程序,并将其与G72代码段结合起来。

程序运行后,数控车床将按照指定的刀具半径对该零件进行加工。

五、总结与回顾通过本文的实例分析,我们深入探讨了数控车床G72编程的原理和应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1)单一固定循环指令举例 (G70 、 G77、G78指令) (2)复合固定循环指令举例 (G71、 G72、 G73、 G74 指令)
7) 调用子程序举例
1)、刀尖圆弧半径自动补偿指令 G40、G41、 G42举例
刀尖位置编码:3 N10 G50 X200 Z175 T0101 N20 M03 S1500 N30 G00 G42 X58 Z10 M08 N40 G96 S200 N50 G01 Z0 F1.5 N60 X70 F0.2 N70 X78 Z-4 N80 X83 N85 Z-15 N90 X85 Z-5 N100 G02 X91 Z-18 R3 F0.15 N110 G01 X94 N120 X97 Z-19.5 N130 X100 N140 G00 G40 G97 X200 Z175 S1000 N150 M30
端面切削循环
锥面端面切削循环
螺纹切削循环
1)圆柱面单一固定循环(G77)
编程格式 G77 X(U)~ Z(W)~ F~ 式中:X、Z- -圆柱面切削 的终点坐标值; U、W--圆柱面切削的终点 相对于循环起点坐标分量。
F - -切削进给量
华中I型:G80 X(U)~ Z(W)~ F~ FUNAC:G90 X(U)~ Z(W)~ F~
加工图所示零件
2)恒速切削与恒转速切削指令 (G96 G97)
ISO标准:
G96恒速切削指令(最大线速度m/min) G97恒转速切削指令(转速r/min) 格式: G96 ( G97) S___ 应用:G96常用与精加工和半精加工
G97常用与粗加工或半径变化不大的工件. 举例: G96 S180(恒速切削 最大线速度180 m/min) )
G97 S2500(恒转速切削 转速2500r/min)
3)恒进给速度与恒进给量指令 (G94 G95)
ISO标准:
G94:恒进给速度(mm/min) G95:恒进给量(mm/r) 格式: G94 ( G95) F___
华中I系统标准
G98:恒进给速度(mm/min) G99:恒进给量(mm/r) 格式: G98 ( G99) F___
G77圆柱面切削循环指令举例
N10 G50 X200 Z200 T0101 N20 M03 S1000 N30 G00 X55 Z4 M08 N40 G01 G96 Z2 F2.5 S150 N50 G77 X45 Z-25 F0.2 N60 X40 N70 X35 N80 G00 X200 Z200 N90 M30
2)圆锥面单一固定循环(G77)
编程格式 G77 X(U)~ Z(W)~ I~ F~ 式中:X、Z- 圆锥面切削的 终点坐标值; U、W-圆柱面切削的终点相对 于循环起点的坐标; I- 圆锥面切削的起点相对于 终点的半径差。如果切削起 点的X向坐标小于终点的X向
坐标,I值为负,反之为正。
I=(D1-D2)/2
应用:
G95恒进给量用于加工螺纹。
举例: G98 F100 :
(恒进给速度100mm/min)
G99 F0.3
(恒进给量0.3mm/r)
4、单一固定循环
单一固定循环可以将一系列连续加工动 作,如“切入-切削-退刀-返回”,用一个循 环指令完成,从而简化程序。
包括
圆柱面或圆锥面切削循环
平面端面切削循环
数控加工编程举例
一、钻、镗、攻丝、绞削加工程序编制
(孔内表面)
二、铣削加工程序编制(内外轮廓表面) 三、车削加工程序编制(回转体表面和端面) 四、加工中心程序编制(复合表面)
三、车削加工程序编制
(回转体表面和端面)
1、零件加工特点:
主要为轴类、盘类等回转体零件。 主要加工表面为内外圆柱面、圆锥面、成形表面、螺纹和端面,以 及还需要做车槽、倒角、切断、钻孔、扩孔、铰孔等工作。 可在一次装夹中完成更多的加工工序,提高加工精度和生产效率。 X方向分直径和半径,直径是回转零件常用的标注方式。 切削需要多次吃刀。
举例: G01 X65 Z2 G90 X60 Z-35 I-5 F0.2 X50 G00 X100 Z200
3)螺纹切削循环指令(G78)
螺纹切削循环指令把“切入-螺纹切削-退刀-返回”四个动作作为一个循环, 用一个程序段来指令。 编程格式
G78 X(U)~ Z(W)~ I~ F~ 式中:X(U)、 Z(W) - 螺纹切削的终点
坐标值; I - 螺纹部分半径之差,即螺纹切削起
始点与切削终点的半径差。加工圆柱 螺纹时,I=0。加工圆锥螺纹时,当X 向切削起始点坐标小于切削终点坐标 时,I为负,反之为正。 (X坐标值依据《机械设计手册》查表确 定)
F - 螺纹导程。
注意:其他系统常用的螺纹的加工为:G33、G92、G82
圆柱螺纹的加工程序编写举例
2、常用编程指令:
刀尖半径补偿指令: G40、G41、 G42 循环指令:单一固定循环指令(G70 、 G77、G78)
复合固定循环指令( G71 、G72、 G73 、G76 )
子程序指令 直径编程方式 ,半径编程方式 恒速切削和恒转速切削指令 进给速度和恒进给量切削速度
3、常用编程Βιβλιοθήκη 令举例1)刀尖圆弧半径自动补偿指令G40、G41、 G42举例 2)恒速切削G96与恒转速切削G97指令举例 3)恒进给速度G94与恒进给量G95指令举例 4)固定循环指令举例
圆锥螺纹的加工程序编写
…… G00 X80 Z62 G78 X49.6 Z12
X48.7 X48.1 X47.5 X47 G00 X200 Z200
……
I-5 F2
3)端面切削循环
(平面端面切削循环)
编程格式
G94 X(U)~ Z(W)~ F~
(螺纹导程4mm,升速进刀段δ1=3mm,降速退刀段 δ2=1.5mm,螺纹深度2.165 mm 大径=60mm)。
螺纹的加工程序。
…… G00 X115.67 Z84.5 G78 X58.5 Z10.7 F4
X57.5 X56.5 X56 X55.77 ……
圆柱螺纹的加工程序编写
G00 X35 Z104 G78 X29.2 Z53 F1.5 X28.6 X28.2 X28.04 G00 X200 Z200
相关文档
最新文档