车速传感器与轮速传感器介绍
ABS传感器车轮速度传感器解析
![ABS传感器车轮速度传感器解析](https://img.taocdn.com/s3/m/a909c792eff9aef8941e06d7.png)
1、什么是制动防抱死系统 ABS( Antilock Braking System ):汽车制动防抱死
系统。 2、ABS的发展和现状 (1)ABS最早在飞机和火车上使用。 (2) 上个世纪五十年代,福特公司将飞机的ABS移
置在林肯 (Lincoln)轿车上 。 (3)上个世纪八十年,ABபைடு நூலகம்开始在欧美普及。 (4)现在ABS是车辆的标配,技术更成熟。
转速传感器的优、缺点比较
电磁式轮速传感器
优点: 结构简单、成本低
缺点: 1.其输出信号的幅值随转速的变化而变化。 若车速过慢,其输出信号低于1V,电控单元就无法检测。
2.响应频率不高。当转速过高时,传感器的频率响应跟不上。 3.抗电磁波干扰能力差。 目前,国内外ABS系统的控制速度范围一般为15~160km/h,今后要求控制速 度范围扩大到8~260km/h以至更大,显然电磁感应式轮速传感器很难适应。
霍尔轮速传感器
优点: 1.输出信号电压幅值不受转速的影响。 2.频率响应高。其响应频率高达20kHz,相当于车速为 1000km/h时所检测的信号频率。 3.抗电磁波干扰能力强。
霍尔传感器不仅广泛应用于ABS轮速检测,也广泛应用于其控制系统的转 速检测。
车轮转速传感器需要的特点
1.精度要求高。它的精度要求位于家电和计测之间,要求1
%或1%以下的 精度。汽车要求传感器在.40。C~+120℃ 的范围内长期工作,抗振为159 (150~2000Hz),冲击:从1米 高处落在混凝土上而不引起精度的下降,抗电 磁干扰、耐腐蚀。
2.使用环境恶劣。有来自发动机产生的热、振动、汽油和油
的蒸汽,以及 轮胎的污泥、飞溅的水花,可概括为温度、湿度 等气候条件,振动冲击等机 械条件;电源、电磁干扰等电气条 件,或简单地归纳为温度、湿度、振动等物理环境、过电压电磁 波等电气环境。
防滑系统工作原理
![防滑系统工作原理](https://img.taocdn.com/s3/m/c2880d2eae1ffc4ffe4733687e21af45b307fea4.png)
防滑系统工作原理
防滑系统是一种汽车安全装置,旨在提高行驶时的牵引力和稳定性,以减少车辆在湿滑或冰雪路面上的打滑和失控风险。
防滑系统的工作原理主要包括以下几个方面:
1. 轮速传感器:防滑系统通过安装在车轮上的传感器,实时监测车轮的转速。
每个车轮都配备有一个传感器,能够精确测量车轮的旋转速度。
2. 控制单元:防滑系统的控制单元位于车辆内部,接收来自轮速传感器的信号。
控制单元根据传感器所提供的数据,分析车轮的转速差异,以确定是否出现打滑情况。
3. 刹车压力调节器:当防滑系统检测到某个车轮出现打滑或即将出现打滑的迹象时,它将向该车轮施加适度的制动力,通过调节刹车油压来减缓车轮的转速,增加轮胎与地面之间的摩擦力。
4. 车速和加速度传感器:防滑系统还包括车速和加速度传感器,用于测量车辆的速度和加速度。
这些传感器提供的数据能够帮助控制系统更好地了解车辆的运动状态,从而更准确地控制刹车压力调节器。
5. 反馈控制:防滑系统的控制单元通过不断监测轮速和车速等数据,能够实时调整刹车压力调节器施加到每个车轮上的力度。
该控制过程是一个反馈循环,通过不断优化刹车力度,使车辆保持在最佳的牵引力范围内,以确保安全的行驶。
通过以上的工作原理,防滑系统能够减少车辆在湿滑或冰雪路面上的打滑现象,提高车辆的稳定性和操控性。
它给驾驶员带来了更好的操控感受,并大大降低了车辆失控的风险,提高了行车安全性。
轮速传感器分类
![轮速传感器分类](https://img.taocdn.com/s3/m/ed647ba882d049649b6648d7c1c708a1284a0af3.png)
一般来说,所有的转速传感器都可以作为轮速传感器,但是考虑到车轮的工作环境以及空间大小等实际因素,常用的轮速传感器主要有:磁电式轮速传感器、霍尔式轮速传感器。
图1 磁电式轮速传感器图2 霍尔式轮速传感器磁电式轮速传感器是利用电磁感应原理设计的,其主要部件如下图所示。
它具有结构简单、成本低、不怕泥污等特点,在现代轿车的ABS防抱死制动系统中得到广泛应用。
但是磁电式轮速传感器也有一些缺点:(1)频率响应不高。
当车速过高时,传感器的频率响应跟不上,容易产生误信号;(2)抗电磁波干扰能力差,尤其是输出信号振幅值较小时。
霍尔式轮速传感器利用霍尔效应原理制成,如下图所示。
霍尔式轮速传感器在汽车上也获得了较多应用。
霍尔式轮速传感器具有如下特点:(1)输出信号电压振幅值不受转速的影响;(2)频率响应高;(3)抗电磁波干扰能力强。
(二)原理磁电式轮速传感器(1)结构图3 磁电式轮速传感器安装图图4 磁电式轮速传感器极轴形状磁电式轮速传感器一般由磁感应传感头和齿圈组成,传感头由永磁铁、极轴、感应线圈等组成。
齿圈是一个运动部件,一般安装在轮毂上或轮轴上与车轮一起旋转。
轮速传感头是一个静止部件,传感头磁极与齿圈的端面有一定间隙。
如下图所示。
汽车车轮转速传感器通常安装在车轮处,但在有些车型上则设置在主减速器或变速器中。
极轴根据形状的不同分为凿式、柱式、菱形三种类型,如下图所示。
不同形状的传感头相对于齿圈的安装方式也不同。
菱形极轴车速传感器头一般径向垂直于齿圈安装;凿式极轴车速传感器头轴向相切于齿圈安装;柱式极轴车速传感器头轴向垂直于齿圈安装。
安装时应牢固,为避免水、灰尘对传感器工作的影响,在安装前须将传感器加注润滑脂。
磁电式轮速传感器是由永磁性磁芯和线圈组成。
磁力线从磁芯的一极出来,穿过齿圈和空气,返回到磁芯的另一极。
由于传感器的线圈圈绕在磁芯上,因此,这些磁力线也会穿过线圈。
当车轮旋转时,与车轮同步的齿圈(转子)随之旋转,齿圈上的齿和间隙依次快速经过传感器的磁场,其结果是改变了磁路的磁阻,从而导致线圈中感应电势发生变化,产生一定幅值、频率的电势脉冲。
汽车传感器与检测技术课件 6速度传感器
![汽车传感器与检测技术课件 6速度传感器](https://img.taocdn.com/s3/m/e9fb1ddd70fe910ef12d2af90242a8956becaaa2.png)
如图6-28a所示,如果没有加速度作用在这个系统上,那么测 出来的两个电容器的电荷量C1和C2是相等的。如图6-28b所 示,若作用有横向加速度,那么可移动质量就会因惯性而作 用到中间板上,即它顶着固定板并逆着加速度方向移动。于 是两板之间距离就改变了,相应的分电容器的电荷量也增加 了。
霍尔式轮速传感器,可用检测其输出电压信号的方法来判断 其工作好坏。关闭点火开关,将车支起,使每个轮胎离地 10cm左右,然后拔下轮速传感器的导线连接器插头,并用导 线将线吏插头与轮速传感器插头的电源端子相连,用万用表 (打开交流电压挡)的两表笔分别搭在轮速传感器的信号输 出端子间,测量传感器的输出电压。接通点火开关,用手转 动车轮,万用表应显示7~12V范围内波动的交流电压,若电 压不在此范围内,应检查传感器与齿圈之间的间隙,标准值 应在0.2~0.5mm范围内,否则应进行调整。
ABS ECU通过识别传感器发来交流信号的频率来确定车轮的转速, 如果ECU发现车轮的减速度急剧增加,滑移率达到20%时,它立刻 给执行器发出指令,减小或停止车轮的制动力,以免车轮抱死。
3.轮速传感器的缺点 电磁感应式轮速传感器的缺点主要有以下几个方面: 1)电磁感应式轮速传感器向ABS ECU输送的电压信号的强弱
(1)线路导通性检测 关闭点火开关,断开轮速传感器连接 器和制动防滑控制ECU连接器,用万用表测量左前速度传感 器S4的2号端子与防滑ECU的18号端子、左前速度传感器S4的 1号端子与防滑ECU的4号端子之间的电阻值,其阻值应小于 1Ω。
汽车中的各种传感器与作用
![汽车中的各种传感器与作用](https://img.taocdn.com/s3/m/363a370b7cd184254b353537.png)
汽车中的各种传感器与作用
1.曲轴转速传感器用于检测发动机转速和判定一(四)缸上止点。
2.凸轮轴位置传感器用于区分一(四)缸压缩上止点。
3.节气门位置传感器用于检测发动机的节气门位置(也是用于提供发动机负荷信号)。
4.爆震传感器用于检测发动机是否发生爆震。
5.水温传感器用于检测发动机冷却液温度(提供发动机温度信号)。
6.进气温度传感器用于检测进气温度。
7.进气歧管绝对压力传感器用于检测进气管内的进气压力。
8.空气流量计用于检测进气空气的质量。
9.加速踏板位置传感器用于检测加速踏板位置。
10.轮速传感器用于检测轮速。
11.车速传感器用于检测车速。
此外还有风速传感器、雨量传感器、光照强度传感器、车身高度传感器、燃油液位传感器、燃油温度传感器、机油压力传感器、喷油器升程传感器等等。
汽车测速原理
![汽车测速原理](https://img.taocdn.com/s3/m/9d8a80fd250c844769eae009581b6bd97e19bc4f.png)
汽车测速原理汽车测速原理,就是通过一定的传感器和数据采集系统,对汽车的速度进行准确的测量,从而保证驾车安全和道路通畅。
传统的汽车测速方法是通过测量车轮旋转的圈数来计算车速,但是这种方法非常容易出现误差,而且只能作为一种大致估计的方法。
现代汽车测速系统采用了更加精确的测速计算原理,下面来进行详细介绍。
1. 车速传感器车速传感器是汽车测速系统中最重要的一个组成部分,它能够实时感知车轮的速度,并将这些信息传输给控制模块进行处理。
常用的车速传感器有两种,一种是利用车轮旋转时产生的电磁信号进行测速,另一种是通过轮轴和车轮之间的机械连接来实现测速。
2. 数据采集系统数据采集系统是汽车测速系统的核心部分,它能够收集和处理车速传感器发出的数据,并进行计算和分析,最终输出准确的车速值。
数据采集系统通常由控制模块、计算机、传输线路等组成,其中控制模块的主要功能是将车速传感器发出的信号转化成数字信号,然后传输给计算机进行处理。
3. GPS定位系统GPS定位系统是一种与车速传感器相辅相成的测速技术,它能够通过卫星定位方式来计算车速。
GPS定位系统的优点是精度高、误差小,不受天气、路况等因素的影响。
但是它的缺点也很明显,就是需要在开车时打开定位功能,而且获取卫星信号的时间和精度也存在一定的局限性。
因此,在实际应用中,GPS定位系统往往作为备用测速方式,进行与车速传感器的双重测量,以保证测速的准确性。
4. 操作系统与显示屏操作系统和显示屏是汽车测速系统中的可视化部分,它们能够将测速数据以数字、图形、报表等形式呈现给驾驶员,方便他们及时掌握车速情况。
现代汽车测速系统一般采用液晶显示屏和触摸按键,用户可以通过触摸屏幕调整测速系统的设置和参数,以获得更加个性化的驾驶体验。
综上所述,汽车测速系统是现代汽车智能化的重要组成部分,它能够实现快速、准确、可靠的测速,对于保证道路安全和交通通畅具有重要作用。
随着科技不断进步,汽车测速系统也将不断更新迭代,为驾驶员提供更加智能化、便捷化的应用体验。
汽车自动驾驶技术中的车速传感器原理及使用方法
![汽车自动驾驶技术中的车速传感器原理及使用方法](https://img.taocdn.com/s3/m/36c9503d1611cc7931b765ce0508763230127472.png)
汽车自动驾驶技术中的车速传感器原理及使用方法随着科技和工程领域的不断发展,汽车自动驾驶技术已经成为了当今汽车行业的热门话题。
在实现完全自动驾驶之前,我们需要先了解和掌握各种传感器技术,包括车速传感器。
本文将重点介绍汽车自动驾驶技术中的车速传感器的原理及使用方法。
首先,让我们来了解一下车速传感器的原理。
车速传感器被安装在车辆的轮毂或传动系统中,用于测量车辆的速度并将信息传送给自动驾驶系统。
车速传感器通常采用磁电传感技术,即利用磁场感应来测量车辆速度。
车速传感器原理的核心是利用霍尔效应。
霍尔效应是指当电流通过一个导体时,在该导体两侧产生一个垂直于电流方向的电场,并且该电场的方向与施加的磁场的方向成直角。
传感器中通过将霍尔元件与一个永久磁铁相组合,当车辆运动时,传感器会检测到磁场的变化,从而测量车辆的速度。
了解了车速传感器原理后,接下来我们将介绍一些车速传感器的使用方法。
首先,安装车速传感器时,需要确保传感器与车辆的轮毂或传动系统紧密连接。
这有助于确保传感器能够准确地感应到磁场的变化。
其次,使用车速传感器时,需要对传感器进行校准。
校准的目的是使传感器能够准确地测量车辆的速度。
校准车速传感器可以通过以下步骤完成:首先,安装车速传感器后,运行车辆并记录车辆在不同速度下的实际速度。
然后,将这些实际速度与传感器测得的速度进行比较,并根据差异调整传感器的输出值,直到传感器的测量值与实际速度一致。
另外,车速传感器还需要定期进行维护和保养。
与其他传感器一样,车速传感器也需要定期检查和清理,以确保其正常工作。
传感器表面可能会附着灰尘、油污等物质,这些物质会影响传感器的感应效果。
定期维护保养车速传感器可以延长其使用寿命并确保其准确测量车辆的速度。
在汽车自动驾驶技术中,车速传感器发挥着重要的作用。
它不仅对车辆的速度进行测量,还可以与其他传感器进行数据融合,进一步提高自动驾驶系统的精确性和可靠性。
通过准确测量车辆的速度,自动驾驶系统可以更好地掌握车辆的行驶状况,做出更准确的决策和动作。
【 汽车传感器结构原理及典型故障案例】1_第三章 掌握速度和减速度传感器的
![【 汽车传感器结构原理及典型故障案例】1_第三章 掌握速度和减速度传感器的](https://img.taocdn.com/s3/m/7225183f1eb91a37f1115cbf.png)
1)关闭点火开关。
2)将车支起,使四个轮胎离地10cm左右。
3)拔下轮速传感器的导线插接器插头并用导线将线束插头与轮 速传感器插头的电源端子相连。
4)将万用表(用交流电压档)的两表笔分别搭接在轮速传感器的 信号输出端子(注意+、-极性),测量传感器的输出电压。
5)打开点火开关,用手转动车轮,万用表应显示交流电压在7~ 14V范围。
二、霍尔效应式轮速传感器
1.结构原理
图3-6 霍尔效应式轮速传感器的磁路 a)磁场较弱时 b)磁场较强时
2.检测方法
1)关闭点火开关。 2)将车支起,使四个轮胎离地10cm左右。 3)拔下轮速传感器的导线插接器插头并用导线将线束插头与轮 速传感器插头的电源端子相连。 4)将万用表(用交流电压档)的两表笔分别搭接在轮速传感器的 信号输出端子(注意+、-极性),测量传感器的输出电压。 5)打开点火开关,用手转动车轮,万用表应显示交流电压在7~ 14V范围。
1)检测传感器的电源电压。
2)检测传感器线束的导通性。
图3-15 检测传感器线束的导通性
1.结构原理 2.检测方法
三、光敏式车速传感器
1.结构原理
图3-16 光敏式车速传感器 a)结构示意图 b)实物图
1.结构原理
图3-17 光敏式车速传感器的工作原理 1—遮光板 2—光敏晶体管
1.结构原理
3.检测举例
图3-5 轮速传感器与ECU的连接电路
1)检测传感器的信号电压。
表3-1 各轮速传感器信号电压的标准值
2)检测传感器的电阻值。
表3-2 各轮速传感器电阻值的标准值
3)检测传感器与齿圈的气隙。
表3-3 轮速传感器与齿圈的间隙
4)检测传感器线束的电阻值。
【汽车传感器原理与检修】汽车传感器原理与检修 第八章 速度与加速度传感器
![【汽车传感器原理与检修】汽车传感器原理与检修 第八章 速度与加速度传感器](https://img.taocdn.com/s3/m/74fddbd683d049649a66583a.png)
舌簧开关触点由强磁体制成,在装于分电器轴上的磁铁的作用下动作,舌 簧开关触点不直接与大气接触,其容器内充有惰性气体。
舌簧开关式发动机转速传感器的工作原理如图8-4所示。曲轴转两圈、分 电器轴转一圈,分电器内的磁铁也转一圈。当磁铁靠近舌簧开关时,在磁力线 的作用下,使触点带磁性。触点的磁性与磁铁近侧极性相同,从而使舌簧开关 触点靠本身磁性吸引,使开关导通。磁铁随分电器轴转动后,磁极远离或只有 一端靠近舌簧开关时,触点不受磁力线的影响,触点分开。这样,两个舌簧开 关在分电器轴上的磁铁作用下,相互以180°的相位差进行通、断变换,把发 动机转速信号输入ECU。
由于转子凸齿与磁头间的气隙直接影响磁路的磁阻和传感线圈输出电压的高
低,因此在使用中,转子凸齿与磁头间的气隙不能随意变动。气隙如果有变化, 必须按规定进行调整,气隙一般设计在0.2~0.4mm范围内。
图8-2 磁感应式传感器的工作原理
2. 磁感应式传感器的检测
采用磁电感应式发动机转速传感 器的检测,可以参照磁电感应式 曲轴位置传感器的检测方法来进 行,用万用表测阻法是最简单、 实用的方法。例如三菱4D56柴油 发动机转速传感器电路如图8-3所 示,其线圈电阻在20℃时测量值 应为1.3~1.9Ω。
柴油机的喷射泵工作时,传感器的齿轮被带动旋转,所以在线圈中便有交流 电压产生。交流电压的频率与发动机的转速成正比,该交变电压作为输入信号 ,经转速表内的IC电路放大、整形后就可以使转速表指示出发动机的实际转速。
不管柴油机采用什么供油方式,其发动机转速传感器均是相似的,均用于检测 发动机转速和曲轴的位置。ECU根据此信号计算出喷射始点和喷油量。
1.柴油发动机用转速传感器的结构与原理 发动机转速传感器一般安装在缸体上,或喷油泵上如图 8-1所示。
检测轮速传感器的注意事项
![检测轮速传感器的注意事项](https://img.taocdn.com/s3/m/7fc63c410640be1e650e52ea551810a6f424c85b.png)
检测轮速传感器的注意事项轮速传感器是车辆中非常重要的一个组成部分,它主要用于检测车辆的车速以及车轮的转速。
在车辆行驶过程中,如果轮速传感器出现问题或故障,不仅会导致车辆性能下降,还可能出现安全隐患。
因此,在进行轮速传感器的检测时,需要注意以下几点:1. 充分理解轮速传感器的工作原理和功能在进行轮速传感器的检测之前,首先需要对轮速传感器的工作原理和功能进行充分的理解。
只有了解了传感器的工作原理,才能知道如何正确地进行检测和故障排除。
2. 检查传感器的外观和连接线路检查传感器的外观是否正常,是否有明显的损坏或磨损情况。
同时,还需要检查传感器的连接线路是否完好,是否有松动或脱落的情况。
这些问题可能导致传感器无法正常工作,因此需要及时进行修复或更换。
3. 使用专业的检测工具和设备进行轮速传感器的检测时,需要使用专业的检测工具和设备。
这些工具和设备能够提供准确的测量结果,并且能够帮助判断传感器是否正常工作。
如果没有这些专业的检测工具和设备,建议寻求专业技术人员的帮助。
4. 分析传感器输出信号对于轮速传感器来说,其主要输出信号是车速和车轮转速。
在进行检测时,需要通过专业工具读取传感器输出的信号,然后进行分析和比较。
如果信号不稳定或与实际情况不符,就说明传感器可能存在问题或故障。
5. 检查传感器与其他系统的连接除了检查传感器本身的工作情况外,还需要检查传感器与其他车辆系统之间的连接情况。
例如,检查传感器与车辆控制单元的连接线路是否正常,是否有松动或腐蚀现象。
这些连接问题也可能导致传感器无法正常工作。
6. 注意传感器的安装位置和固定方式对于轮速传感器来说,安装位置和固定方式非常重要。
因为传感器需要与车轮紧密接触,所以需要注意传感器的安装位置是否正确,是否与车轮之间存在间隙或干扰物。
同时,传感器的固定方式也需要牢固可靠,以免在行驶过程中发生位移或脱落。
总之,轮速传感器的检测过程需要严格按照规范和要求进行,必须确保各个环节都做到位。
监控车速应用的什么原理
![监控车速应用的什么原理](https://img.taocdn.com/s3/m/f3114eb5710abb68a98271fe910ef12d2af9a90c.png)
监控车速应用的什么原理监控车速的应用主要依靠车辆速度传感器和相关的数据处理系统。
这些应用可以使用不同的技术和原理来实现,下面将介绍几种常见的监控车速应用的原理。
1.GPS定位系统:GPS(全球定位系统)是一种通过卫星定位来测量车辆位置和速度的技术。
GPS接收器可以接收来自卫星的信号,并从中计算车辆位置和速度。
通过与预先设定的地图数据进行比较,可以确定车辆是否超速。
这种应用通常被称为“GPS车速监控系统”。
它可以通过车辆上安装的GPS接收器获取车速数据,并将其传输到相关的数据处理系统进行分析和记录。
2.视频图像处理:视频图像处理是另一种监控车速的常见应用原理。
这种方法使用车辆周围安装的摄像头来捕捉车辆行驶的视频,并通过图像处理算法来识别车辆的位置和速度。
例如,通过跟踪车辆的位置变化和临近物体的运动情况,可以计算车辆的速度。
这种应用通常用于交通监控和交通违章检测系统。
3.轮速传感器:车辆的轮速传感器是一种常见的监控车速的装置。
它通常安装在车轮上并与车辆的计算机系统相连。
传感器通过测量车轮转动的速度来计算车辆的速度。
这种方法可以通过车辆本身的传感器来获取数据,而无需额外的安装或传输设备。
这种应用常用于车辆的动态稳定控制和防抱死刹车系统等。
4. Doppler效应原理:Doppler效应是一种基于声波或雷达波传播过程中物体速度变化而产生的频率变化的原理。
在监控车速应用中,可以使用雷达系统来测量车辆速度。
雷达发射器发射出高频的电磁波,当波经过车辆时,车辆的运动会导致波的频率发生变化。
通过测量反射回来的波的频率变化,可以计算车辆的速度。
这种应用常用于交通雷达测速仪和自动门控制系统等。
这些都是常见的监控车速应用的原理。
不同的应用会选择不同的原理和技术来实现车速监控,以满足不同的需求和要求。
随着技术的不断进步,未来还可能出现更多基于新原理和技术的车速监控应用。
汽车传感器_百度百科
![汽车传感器_百度百科](https://img.taocdn.com/s3/m/abe714f34693daef5ef73d48.png)
曲轴位置传感器:检测曲轴及发动机转速,提供给ECU作为确定点火正时及工作顺序的基准信号;
氧传感器 :检测排气中的氧浓度,提供给ECU作为控制燃油/空气比在最佳值(理论值)附近的的基准信号;
汽车传感器过去单纯用于发动机上,现在巳扩展到底盘、车身和灯光电气系统上了。这些系统采用的传感器有100多种。在种类繁多的传感器中,常见的有∶
进气 压力传感器 :反映进气歧管内的绝对压力大小的变化,是向ECU(发动机电控单元)提供计算喷油持续时间的基准信号;
空气流量计:测量发动机吸入的空气量,提供给ECU作为喷油时间的基准信号;
7.零漂和温漂
传感器在无输入或输入为另一值时,每隔一定时间,其输入值偏离原示值的最大偏差与满量程的百分比为零漂。而温度每升高1℃,传感器输出值的最大偏差与满量程的百分比,称为温漂。
二、发动机常用传感器工作机理 一)磁电效应
根据法拉第电磁感应定律,N匝线圈在磁场中运动,切割磁力线(或线圈所在磁场的磁通变化)时,线圈中所产生的感应电动势的大小取决于穿过线圈的磁通的变化率,
传感器的静态特性参数指标
1.灵敏度
灵敏度是指稳态时传感器输出量y和输入量x之比,或输出量y的增量和输入量x的增量之比,用k表示为
k=dY/dX
2.分辨力
传感器在规定的测量范围内能够检测出的被测量的最小变化量称为分辨力。
3.测量范围和量程
在允许误差限内,被测量值的下限到上限之间的范围称为测量范围。
直线移动式磁电传感器
直线移动式磁电传感器由永久磁铁、线圈和传感器壳体等组成
当壳体随被测振动体一起振动且在振动频率远大于传感器的固有频率时,由于弹簧较软,运动件质量相对较大,运动件来不及随振动体一起振动(静止不动)。此时,磁铁与线圈之间的相对运动速度接近振动体的振动速度。
车速传感器 原理
![车速传感器 原理](https://img.taocdn.com/s3/m/b347be4f91c69ec3d5bbfd0a79563c1ec4dad715.png)
车速传感器原理
车速传感器是一种用来测量车辆行驶速度的装置。
它可以通过检测车轮转动的频率来计算车辆的速度,并将测量结果传输给车辆的控制系统。
车速传感器的原理基于霍尔效应,即当导体通过一个磁场时,会产生一个电压差。
车速传感器通常由一个磁性编码盘和一个霍尔传感器组成。
磁性编码盘固定在车轮或传动轴上,而霍尔传感器则安装在车辆底盘上。
当车轮转动时,磁性编码盘上的磁性标记通过霍尔传感器产生变化的磁场。
这个变化的磁场会产生相应的电压差,霍尔传感器会将这个电压差转换为数字信号。
车速传感器会测量磁性编码盘上的磁标记通过的频率,并根据这个频率计算车辆的行驶速度。
这个速度值会发送给车辆的控制系统,以便实现一些行车功能,如自动变速器的换档控制、防抱死制动系统等。
车速传感器的工作原理可以总结如下:当车轮旋转时,磁性编码盘上的磁标记通过霍尔传感器产生变化的磁场,霍尔传感器将这个磁场转换为电压差。
然后,车速传感器测量这个电压差的频率,并根据频率计算车辆的行驶速度。
最后,车速传感器将速度值发送给车辆的控制系统,以实现各种行车功能。
总之,车速传感器是一种基于霍尔效应的装置,通过测量车轮转动的频率来计算车辆的速度,并将测量结果传输给车辆的控制系统。
列举自动驾驶汽车传感器的应用
![列举自动驾驶汽车传感器的应用](https://img.taocdn.com/s3/m/e63819498f9951e79b89680203d8ce2f006665db.png)
列举自动驾驶汽车传感器的应用随着科技的不断发展,自动驾驶汽车已经成为现实。
自动驾驶汽车依靠各种传感器来感知周围环境,并作出相应的决策和控制。
下面将列举自动驾驶汽车传感器的应用。
1. 激光雷达传感器(LIDAR)激光雷达传感器通过发射激光束并测量其反射时间来感知周围环境。
它可以提供高精度的三维地图,帮助车辆识别和跟踪其他车辆、行人、障碍物等,并测量它们的距离和速度。
2. 摄像头传感器摄像头传感器是自动驾驶汽车中最常见的传感器之一。
它们可以捕捉实时视频图像,帮助车辆识别和分析周围环境。
通过计算机视觉算法,车辆可以检测道路标志、交通信号灯、行人、车辆等,并做出相应的决策。
3. 雷达传感器雷达传感器利用电磁波来感知周围环境。
它们可以提供车辆周围物体的位置和速度信息,帮助车辆避免碰撞和保持安全距离。
雷达传感器在恶劣天气条件下也能够正常工作,使自动驾驶汽车具备良好的适应性。
4. 超声波传感器超声波传感器通过发射超声波脉冲并测量其回应时间来感知周围环境。
它们可以用于测量距离,帮助车辆检测和避免与其他车辆、行人、障碍物等的碰撞。
超声波传感器通常用于低速行驶和近距离感知。
5. 惯性测量单元(IMU)惯性测量单元是一种集成了加速度计和陀螺仪的传感器组合。
它可以测量车辆的加速度、角速度和方向,帮助车辆确定自身的姿态和位置。
IMU传感器对于辅助其他传感器提供更精确的定位和导航信息具有重要作用。
6. GPS传感器GPS传感器通过接收全球定位系统(GPS)卫星信号来确定车辆的位置和速度。
它可以提供高精度的地理定位信息,帮助车辆进行导航和路径规划。
GPS传感器通常与其他传感器结合使用,提供更准确的定位和导航能力。
7. 气象传感器气象传感器用于感知和监测周围的气象条件,如温度、湿度、气压等。
这些信息对于自动驾驶汽车的决策和控制至关重要。
例如,在下雨或雾天时,车辆可以根据气象传感器提供的信息调整行驶策略,确保行车安全。
8. 轮速传感器轮速传感器通过监测车轮的旋转速度来计算车辆的速度和加速度。
汽车速度传感器介绍PPT(45张)
![汽车速度传感器介绍PPT(45张)](https://img.taocdn.com/s3/m/7c7ada826bd97f192379e908.png)
2.车速传感器的类型
车速传感器的类型有:舌簧开关式、电磁感应式、光电 式、可变磁阻式、霍尔式等
一、舌簧开关式车速传感器的结构、原理与检测
(一)舌簧开关式车速传感器的结构、原理
光电式车速传感器是利用光敏元器件将轴类零件的旋 转运动周期性(遮光和透光交替)地将电压信号传递给ECU, 常用的主要部件有光敏二极管、光敏晶体管及光电池
车速表软轴
遮光板
车速表软轴
光耦合器件
车速表软轴
遮光板
车速表软轴
光耦合器件
车速表软轴每转一圈,传感器产生20个脉冲。
图 光电转速传感器原理
表笔接在传感器连接器插头两端子上,起动机转动12s,观 察电压表指针是否有脉冲电压产生,若无脉冲电压产生,表 示传感器有故障,应当更换。
一、电磁感应式车速传感器的结构、原理与检测 (一)电磁感应式车速传感器的结构、原理
1.传感器的结构 如图车速传感器由永久磁铁和电磁感应线圈组成,它被
固定安装在变速器输出轴附近的壳体上,输出轴上的驻车锁 定齿轮为感应转子。
感
时间
应
电
压
-U
2.传感器的安装位置 电磁感应式车速传感器安装在自动变速器输出轴附近
的壳体上,用于检测自动变速器输出轴的转速。电控单元 ECU根据车速传感器的信号计算车速,作为换挡控制的依 据。该传感器的安装情况如图所示。
驻车锁定齿轮
输出轴
车速传感器
(二)电磁感应式车速传感器的检测 1.开路检测:检测传感器的电阻。 3.开路检测:检测感应脉冲。
速度/减速度传感器的结构、原理一览表
汽车轮速传感器工作原理
![汽车轮速传感器工作原理](https://img.taocdn.com/s3/m/96bca194fc0a79563c1ec5da50e2524de518d0ff.png)
汽车轮速传感器工作原理
汽车轮速传感器是一种用于测量车轮转速的传感器,它通常安装
于车辆的车轮和轮轴连接处。
传感器通过检测车轮旋转的速度来确定
车辆的速度,从而帮助车辆控制系统更好地掌控车速,避免发生侧滑、打滑等情况。
汽车轮速传感器工作原理基于霍尔效应。
传感器内部有一个小型
磁铁和一个感应器(通常为霍尔元件)。
当车轮旋转时,磁铁也跟着
旋转,感应器就会检测到磁场的变化,进而产生电信号。
该电信号直
接反映出车轮转速,因此车辆控制系统可以通过这个信号来监控车速,以便更好地控制车辆。
由于传感器放置在车轮处,所以它需要经常进行维护和保养。
如
果传感器发生故障,可能会导致车辆控制系统失效,对驾驶安全造成
风险。
因此,在汽车日常维修保养中,建议耐心检查和维护车辆轮速
传感器。
轮速和减速度传感器讲解
![轮速和减速度传感器讲解](https://img.taocdn.com/s3/m/1712adf26f1aff00bed51e2c.png)
车轮转速传感器工作原理
(a)齿圈齿顶与传感器磁芯相对时 (b)齿圈齿隙与传感器磁芯相对时 1-齿圈 2-磁芯端部齿 3-感应线圈端 子 4-感应线圈 5-磁芯套 6-磁力线 7磁场 8-磁芯 9-齿顶
霍尔式的基本工作原理
一、 霍尔效应及霍尔元件
1. 霍尔效应 置于磁场中的静止载流导体,当它的电流方向与磁场方向不一致时,载流导体
光电式速度传感器原理图 (a)光线被遮住,接收器无信号 (b )光线未被遮住,接收器有信号
减速度传感器
减速度传感器又称G传感器,通常用于四轮驱动汽车的ABS/ASR等与汽车驱 动与制动控制有关的系统上。 汽车高附着系数路面上制动时其减速度大,在低附着系数路面上制动时其减 速度小,当汽车行驶在雪地、结冰路等低附着系数路面上时,采取相应措施,以 提高制动性能。 汽车在在低附着系数行驶时,其驱动轮通常会出现滑转现象。两轮驱动的汽 车上,ABS系统的ECU可根据轮速传感器传来的信号判断驱动车轮的滑转状况。 ABS系统在不同的附着系数路面将采用不同的防抱死制动方式。
差动变压器式
速度表内
变速器壳体内 驱动轮上、从动轮上、后桥主 减速器壳上或变速器输出轴上 车身、车架上
光电效应
改变磁阻 电磁感应 霍尔效应 惯性作用
轮速传感器
减速传感器
转速传感器
安装位置
作用与分类
作用 是检测车轮转速,并把检测结果输入ABS/ASR 等用于制动或驱动控制的系统的ECU。
分类 磁电式轮速传感器 霍尔式轮速传感器 ຫໍສະໝຸດ 电式轮速传感器1.光电效应
所谓光电效应就是指物体吸收光能后产生的电 效应。可分为3类。 (1)外光电效应。它是指物质在光的照射下发 生电子逸出的现象。如光电管,光电倍增管等。 (2)内光电效应。它是指材料在光的照射下发 生电阻率变化的现象。如光敏电阻,光导管等。 (3)光生伏特效应。它是指物体在光的照射下, 其内部产生一定电势的现象。如光敏二极管, 光敏晶体管,光电池等。
基于轮速传感器计算车速的方法
![基于轮速传感器计算车速的方法](https://img.taocdn.com/s3/m/0e2611cd900ef12d2af90242a8956bec0975a589.png)
基于轮速传感器计算车速的方法基于轮速传感器计算车速的方法车速是汽车功能的重要指标之一,车速的计算方法有很多种,其中基于轮速传感器计算车速的方法是目前使用较广的一种。
下面就来介绍一下这种计算车速的方法。
一、轮速传感器的工作原理轮速传感器是安装在汽车轮胎上的一种传感器,用于测量轮胎运动的速度和方向。
通过参考车轮周围地面的相对速度,轮速传感器可以产生一个脉冲信号,用来计算车速。
二、计算车速的方法在基于轮速传感器计算车速的方法中,需要同时测量车辆的里程和时间。
一般来说,这样的测量是通过车辆的发动机控制单元(ECU)来完成的。
ECU会通过轮速传感器收集车轮的速度数据,然后使用这些数据计算车辆的速度,最后输出到车辆的仪表板上。
具体的计算方法如下:1. 测量轮胎直径:首先,需要测量车轮的直径,因为用于计算车速的数值需要根据车轮直径进行修正。
测量车轮直径时,可以使用一个简单的公式:直径=轮胎宽度×纵横比×2+轮辋直径。
2. 轮胎转速的计算:轮胎转速是指一个轮胎旋转的次数,在基于轮速传感器测量车速的方法中,可以通过轮速传感器产生的脉冲数来计算。
因为轮速传感器可以测量每个轮胎旋转的角度和方向,所以通过计算脉冲数的变化,可以得到轮胎的转速。
3. 车速的计算:车速是根据测量到的里程数和时间来计算的。
里程数可以通过记录汽车车轮的旋转次数来测量,时间则可以通过设备测量。
当里程数和时间两个变量被测量后,就可以使用以下公式计算车速:车速=里程÷时间。
三、基于轮速传感器计算车速的应用基于轮速传感器计算车速的方法已经被广泛应用于现代汽车中。
其中最为常见的应用之一是在车速表(速度计)中。
车速表将车速以某一形式显示,使驾驶员可以随时了解车速信息,这对于保证驾驶安全至关重要。
此外,基于轮速传感器计算车速的方法还应用于许多先进的汽车功能,如智能巡航控制、倒车雷达和车道保持辅助系统等。
总之,基于轮速传感器计算车速的方法是一种高效、准确、广泛应用的方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
车速传感器
车速传感器检测电控汽车的车速,控制电脑用这个输入信号来控制发动机怠速,自动变速器的变扭器锁止,自动变速器换档及发动机冷却风扇的开闭和巡航定速等其它功能。
车速传感器的输出信号可以是磁电式交流信号,也可以是霍尔式数字信号或者是光电式数字信号,车速传感器通常安装在驱动桥壳或变速器壳内,车速传感器信号线通常装在屏蔽的外套内,这是为了消除有高压电火线及车载电话或其他电子设备产生的电磁及射频干扰,用于保证电子通讯不产生中断,防止造成驾驶性能变差或其他问题,在汽车上磁电式及光电式传感器是应用最多的两种车速传感器,在欧洲、北美和亚洲的各种汽车上比较广泛采用磁电式传感器来进行车速(VSS)、曲轴转角(CKP)和凸轮轴转角(CMP)的控制,同时还可以用它来感受其它转动部位的速度和位置信号等,例如压缩机离合器等。
1)磁电式车速传感器磁电式车速传感器是一个模拟交流信号发生器,它们产生交变电流信号,通常由带两个接线柱的磁芯及线圈组成。
这两个线圈接线柱是传感器输出的端子,当由铁质制成的环状翼轮(有时称为磁组轮)转动经过传感器时,线圈里将产生交流电压信号。
磁组轮上的逐个齿轮将产生一一对应的系列脉冲,其形状是一样的。
输出信号的振幅(峰对峰电压)与磁组轮的转速成正比(车速),信号的频率大小表现于磁组轮的转速大小。
传感器磁芯与磁组轮间的气隙大小对传感器的输入信号的幅度影响极大,如果在磁组轮上去掉一个或多个齿就可以产生同步脉冲来确定上止点的位置。
这会引起输出信号频率的改变,而在齿减少时输出信号幅度也会改变,发动机控制电脑或点火模块正是靠这个同步脉冲信号来确定触发电火时间或燃油喷射时刻的。
测试步骤可以将系统驱动轮顶起,来模拟行驶时的条件,也可以将汽车示波器的测试线加长,在行驶中进行测试。
波形结果车轮转动后,波形信号在示波器显示中心处的零伏平线上开始上下跳动,并随着车速的提高跳动越来越高。
波形显示与例子十分相似,这个波形是在大约30英里/小时的速度下记录的,它又不像交
流信号波形,车速传感器产生的波形与曲轴和凸轮轴传感器的波形的形状特征十分相似的。
通常,波形在零伏线上下的跳变是非常对称的,车速传感器的信号的振幅随车速增加。
速度越快波形幅值就越高,而且车速增加,波形频率也将增加,示波器将显示有较多的波形震荡。
确定振幅、频率和形状等关键的尺度是正确的、可重复的、有规则的、可预测的。
这是指波峰的幅值正常,两脉冲间的时间不变,形状是不变的且可预测的,尖峰高低不平是因传感器的磁芯与磁组轮相碰所引起的,这可能是有传感器的轴衬或传动部件不圆造成的,尖峰丢失是损坏缺点的磁组轮造成的。
不同型式的传感器,其波形的峰值电压和形状有轻微的差异,另外由于传感器内部是一个线圈,所以故障是与温度有关的,在大多数情况下波形会变得短很多,变形也很大,同时还可能设定故障码(DTC),故障在示波器上显示的摇动线束,这可以更进一步确定磁电式传感器是造成故障的根本原因,车速传感器信号输出最常见的故障是根本不产生信号,但如果驾驶汽车时波形是齐直的直线,那么应该先检查示波器和传感器的连线,确定电路有没有对地搭铁,确认零部件能否转动(塑料齿轮有没有咬死等)确认传感器气隙是否正常,然后再断定传感器。
2)霍尔式车速传感器霍尔效应传感器(开关)在汽车应用中是十分特殊的,这主要是由于变速器周围空间位置冲突,霍尔效应传感器是固体传感器,它们主要应用在曲轴转角和凸轮轴位置上,用于开关点火和燃油喷射电路触发,它还应用在其它需要控制转动部件的位置和速度控制电脑电路中。
霍尔效应传感器或开关,由一个几乎完全闭合的包含永久磁铁和磁极部分的磁路组成,一个软磁铁叶片转子穿过磁铁和磁极间的气隙,在叶片转子上的窗口允许磁场不受影响的穿过并到达霍尔效应传感器,而没有窗口的部分则中断磁场,因此,叶片转子窗口的作用是开关磁场,使霍尔效应象开关一样地打开或关闭,这就是一些汽车厂商将霍尔效应传感器和其它类似电子设备称为霍尔开关的原因,该组件实际上是一个开关设备,而它的关键功能部件是霍尔效应传感器。
测试步骤将驱动轮顶起模拟行使状态,也可
以将汽车示波测试线加长进行行驶的测试。
波形结果当车轮开始转动时,霍尔效应传感器开始产生一连串的信号,脉冲的个数将随着车速增加而增加,与图例相像,这是大约30英里/小时时记录的,车速传感器的脉冲信号频率将随车速的增加而增加,但位置的占空比在任何速度下保持恒定不变。
车速传感器越高,在示波器上的波形脉冲也就越多。
确认从一个脉冲到另一个脉冲的幅度,频率和形状是一致的,这就是说幅度够大通常等于传感器的供电电压,两脉冲间隔一致,形状一致,且与预期的相同。
确定波形的频率与车速同步,并且占空比决无变化,还要观察如下内容:观察波形的一致性,检查波形顶部和底部尖角。
观察幅度的一致性:波形高度应相等,因为给传感器的供电电压是不变的。
有些实例表明波形底部或顶部有缺口或不规则。
这里关键是波形的稳定性不变,若波形对地电位过高,则说明电阻过大或传感器接地不良。
观察由行驶性能问题的产生和故障码出现而诱发的波形异常,这样可以确定与顾客反映的故障或行驶性能故障产生的根本原因直接有关信号问题。
虽然霍尔效应传感器一般设计能在高至150℃温度下运行,但它们的工作仍然会受到温度的影响,许多霍尔效应传感器在一定的温度下(冷或热)会失效。
如果示波器显示波形不正常,检查被干扰的线或连接不良的线束,检查示波器和连线,并确定有关部件转动正常(如:输出轴、传感器转轴等)。
当示波器显示故障时,摇动线束,这可以提供进一步判断,以确认霍尔效应传感器是否是故障的根本原因。
3)光电式车速传感器光电式车速传感器是固态的光电半导体传感器,它由带孔的转盘两个光导体纤维,一个发光二极管,一个作为光传感器的光电三极管组成。
一个以光电三极管为基础的放大器为发动机控制电脑或点火模块提供足够功率的信号,光电三极管和放大器产生数字输出信号(开关脉冲)。
发光二极管透过转盘上的孔照到光电三极管上实现光的传递与接收。
转盘上间断的孔可以开闭照射到光电三极管上的光源,进而触发光电三极管和放大器,使之像开关一样地打开或关闭输出信号。
从示波器上观察光电式车速传感器输出波形的方法与霍尔式车速传感器完全一样,只是光电
传感器有一个弱点即它们对油或脏物在光通过转盘传递的干涉十分敏感,所以光电传感器的功能元件通常被设计成密封得十分好,但损坏的分电器或密封垫容器在使用中会使油或赃物进入敏感区域,这会引起行驶性能问题并产生故障码。
轮速传感器
现代汽车的ABS系统中都设置有电磁感应式的轮速传感器,它可以安装在主减速器或变速器中,轮速传感器的组成和工作原理如图所示。
它是由永久磁铁、磁极、线圈和齿圈组成。
齿圈5在磁场中旋转时,齿圈齿顶和电极之间的间隙就以一定的速度变化,则使磁路中的磁阻发生变化。
其结果是使磁通量周期地增减,在线圈1的两端产生正比于磁通量增减速度的感应电压,并将该交流电压信号输送给电子控制器。
轮速传感器的组成及工作原理
1-线圈;2-磁铁;3磁极;4-磁通;5-齿圈。