八年级数学上册 全等三角形单元试卷(word版含答案)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级数学上册全等三角形单元试卷(word版含答案)
一、八年级数学轴对称三角形填空题(难)
1.如图,已知正六边形 ABCDEF 的边长是 5,点 P 是 AD 上的一动点,则 PE+PF 的最小值是_____.
【答案】10
【解析】
利用正多边形的性质,可得点B关于AD对称的点为点E,连接BE交AD于P点,那么有PB=PF,PE+PF=BE最小,根据正六边形的性质可知三角形APB是等边三角形,因此可知BE 的长为10,即PE+PF的最小值为10.
故答案为10.
2.在平面直角坐标系中,点A在x轴的正半轴上,点B在y轴的正半轴上,
∆为等腰三角形,符合条件的C点有∠=︒,在x轴或y轴上取点C,使得ABC
ABO
36
__________个.
【答案】8
【解析】
【分析】
观察数轴,按照等腰三角形成立的条件分析可得答案.
【详解】
解:如下图所示,若以点A 为圆心,以AB 为半径画弧,与x 轴和y 轴各有两个交点, 但其中一个会与点B 重合,故此时符合条件的点有3个;
若以点B 为圆心,以AB 为半径画弧,同样与x 轴和y 轴各有两个交点,
但其中一个与点A 重合,故此时符合条件的点有3个;
线段AB 的垂直平分线与x 轴和y 轴各有一个交点,此时符合条件的点有2个.
∴符合条件的点总共有:3+3+2=8个. 故答案为:8.
【点睛】
本题考查了等腰三角形的判定,可以观察图形,得出答案.
3.如图,在ABC 中,AB AC >,按以下步骤作图:分别以点B 和点C 为圆心,大于BC 一半长为半径作画弧,两弧相交于点M 和点N ,过点M N 、作直线交AB 于点D ,连接CD ,若10AB =,6AC =,则ADC 的周长为_____________________.
【答案】16
【解析】
【分析】
利用基本作图可以判定MN 垂直平分BC ,则DC=DB ,然后利用等线段代换得到ACD ∆的周长=AB+AC ,再把10AB =,6AC =代入计算即可.
【详解】
解:由作法得MN 垂直平分BC ,则DC=DB ,
10616ACD C CD AC AD DB AD AC AB AC ∆=++=++=+=+=
故答案为:16.
【点睛】
本题考查了基本作图和线段垂直平分线的性质,熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线)是本题的关键.
4.如图,在ABC ∆中,ABC ∠和ACB ∠的平分线相交于点O ,过点O 作//EF BC 交AB 于E ,交AC 于F ,过点O 作OD AC ⊥于D 下列结论:①EF BE CF =+;
②点O 到ABC ∆各边的距离相等;③1902
BOC A ∠=+∠;④设OD m =,AE AF n +=,则AEF S mn ∆=;⑤1()2
AD AB AC BC =+-.其中正确的结论是.__________.
【答案】①②③⑤
【解析】
【分析】
由在△ABC 中,∠ABC 和∠ACB 的平分线相交于点O ,根据角平分线的定义与三角形内角和定理,即可求得③∠BOC =90°+12
∠A 正确;由平行线的性质和角平分线的定义得出△BEO 和△CFO 是等腰三角形得出EF =BE +CF 故①正确;由角平分线的性质得出点O 到△ABC 各边的距离相等,故②正确;由角平分线定理与三角形面积的求解方法,即可求得
④设OD =m ,AE +AF =n ,则S △AEF =
12
mn ,故④错误,根据HL 证明△AMO ≌△ADO 得到AM =AD ,同理可证BM =BN ,CD =CN ,变形即可得到⑤正确.
【详解】 ∵在△ABC 中,∠ABC 和∠ACB 的平分线相交于点O ,∴∠OBC =
12
∠ABC ,∠OCB =12∠ACB ,∠A +∠ABC +∠ACB =180°,∴∠OBC +∠OCB =90°﹣12∠A ,∴∠BOC =180°﹣(∠OBC +∠OCB )=90°+12
∠A ;故③正确;
∵在△ABC 中,∠ABC 和∠ACB 的平分线相交于点O ,∴∠OBC =∠OBE ,∠OCB =∠OCF . ∵EF ∥BC ,∴∠OBC =∠EOB ,∠OCB =∠FOC ,∴∠EOB =∠OBE ,∠FOC =∠OCF ,∴BE =OE ,CF =OF ,∴EF =OE +OF =BE +CF ,故①正确;
过点O 作OM ⊥AB 于M ,作ON ⊥BC 于N ,连接OA .
∵在△ABC 中,∠ABC 和∠ACB 的平分线相交于点O ,∴ON =OD =OM =m ,
∴S △AEF =S △AOE +S △AOF =12AE •OM +12AF •OD =12OD •(AE +AF )=12
mn ;故④错误; ∵在△ABC 中,∠ABC 和∠ACB 的平分线相交于点O ,∴点O 到△ABC 各边的距离相等,故②正确;
∵AO =AO ,MO =DO ,∴△AMO ≌△ADO (HL ),∴AM =AD ;
同理可证:BM =BN ,CD =CN .
∵AM +BM =AB ,AD +CD =AC ,BN +CN =BC ,∴AD =
12
(AB +AC ﹣BC )故⑤正确. 故答案为:①②③⑤.
【点睛】
本题考查了角平分线的定义与性质,等腰三角形的判定与性质.此题难度适中,解题的关键是注意数形结合思想的应用.
5.已知如图,每个小正方形的边长都是1231,,, ....A A A 都在格点上,
123345567,, ....A A A A A A A A A 都是斜边在x 轴上,且斜边长分别为2,4,6,.的等腰直角三
角形.若123A A A △的三个顶点坐标为()()()1232,0,1
,1,0,0A A A -,则依图中规律,则19A 的坐标为 ___________
【答案】()8,0-