数字信号处理作业
数字信号处理作业

题8图
解: (1) 由题8图可以看出h2(n)与h1(n)是循环移位 关系:
h2(n)=h1((n+4))8R8(n) 由DFT的循环移位性质可得
H 2 (k) W8k 4 H1(k) e jk H1(k) (1)k H1(k) | H 2 (k) || W8k 4 H1 (k) || H1 (k ) |
(2) 由题8图可知, h1(n)和h2(n)均满足线性相位条件: h1(n)=h1(N-1-n) h2(n)=h2(N-1-n)
x(t)=cos(2πfct+jc)[1+cos(2πfmt+jm)]
所以, 已调AM信号x(t) 只有3个频率: fc、 fc+fm、 fc-fm。 x(t)的最高频率fmax=1.1 kHz, 频率分辨率F≤100 Hz(对本题 所给单频AM调制信号应满足100/F=整数, 以便能采样到这
三个频率成分)。 故
(1)
Tp m in
1 F
1 100
0.01s
10ms
(2) Fsmin 2 fmax 2.2 kHz
(3)
N m in
Tp Tm a x
Tp
f m in
10 103
2.2 103
22
5-1. 已知系统用下面差分方程描述:
y(n)=3 y(n 1)-1 y(n 2)+x(n) 1 x(n 1)
j
3
2
j 3
j 3
H(z)
3
3
1 e z
数字信号处理实验作业完全版

实验1:理想采样信号的序列,幅度谱,相位谱,以及改变参数后的图像。
源程序: clc;n=0:50;A=444.128;a=50*sqrt(2.0*pi;T=0.001;w0=50*sqrt(2.0*pi;x=A*exp(-a*n*T.*sin(w0*n*T;close allsubplot(3,2,1;stem(x,’.’;title('理想采样信号序列';k=-25:25;W=(pi/12.5*k;X=x*(exp(-j*pi/12.5.^(n'*k;magX=abs(X;s ubplot(3,2,2;stem(magX,’.’;title('理想采样信号序列的幅度谱';angX=angle(X;subplot(3,2,3;stem(angX;title('理想采样信号序列的相位谱'n=0:50;A=1;a=0.4,w0=2.0734;T=1; x=A*exp(-a*n*T.*sin(w0*n*T;subplot(3,2,4;stem(x,’.’; title('理想采样信号序列'; k=-25:25; W=(pi/12.5*k;X=x*(exp(-j*pi/12.5.^(n'*k; magX=abs(X; subplot(3,2,5; stem(magX,’.’title('理想采样信号序列的幅度谱';0204060-2000200理想采样信号序列020406005001000理想采样信号序列的幅度谱0204060-505理想采样信号序列的相位谱0204060-11理想采样信号序列020406012理想采样信号序列的幅度谱上机实验答案:分析理想采样信号序列的特性产生在不同采样频率时的理想采样信号序列Xa(n,并记录各自的幅频特性,观察频谱‚混淆‛现象是否明显存在,说明原因。
源程序:A=444.128;a=50*pi*sqrt(2.0;W0=50*pi*sqrt(2.0;n=-50:1:50; T1=1/1000;Xa=A*(exp(a*n*T1.*(sin(W0*n*T1;subplot(3,3,1;plot(n,Xa;title('Xa序列';xlabel('n';ylabel('Xa';k=-25:25;X1=Xa*(exp(-j*pi/12.5.^(n'*k;subplot(3,3,2; stem(k,abs(X1,'.';title('Xa的幅度谱';xlabel('k';ylabel('〃幅度';subplot(3,3,3;stem(k,angle(X1,'.';title('Xa的相位谱';xlabel('k';ylabel('相位';T2=1/300;Xb=A*(exp(a*n*T2.*(sin(W0*n*T2;subplot(3,3,4;plot(n,Xb;title('Xb序列';xlabel('n';ylabel('相位';k=-25:25;X2=Xb*(exp(-j*pi/12.5.^(n'*k;subplot(3,3,5; stem(k,abs(X2,'.'; title('Xb 的幅度谱';xlabel('k';ylabel('〃幅度';subplot(3,3,6;stem(k,angle(X2,'.'; title(' Xb 的相位谱';xlabel('k';ylabel('相位';T3=1/200;Xc=A*(exp(a*n*T3.*(sin(W0*n*T3; subplot(3,3,7;plot(n,Xc;title('Xc 序列'; xlabel('n';ylabel('Xc';k=-25:25;X3=Xc*(exp(-j*pi/12.5.^(n'*k;subplot(3,3,8; stem(k,abs(X3,'.'; title('Xc 的幅度谱'; xlabel('k';ylabel('幅度';subplot(3,3,9;stem(k,angle(X3,'.'; title('Xc 的相位谱';xlabel('k';ylabel('相位';-50050-5057X a 序列n X a-500500128X a 的幅度谱k 幅度-50050-55X a 的相位谱k相位-50050-50518X b 序列n 相位-50050051018X b 的幅度谱k 幅度-50050-55X b 的相位谱k相位-50050-505x 1026X c 序列nX c-500500510x 1026X c 的幅度谱k幅度-50050-505X c 的相位谱k相位由图可以看出:当采样频率为1000Hz时,采样序列在折叠频率附近处,无明显混叠。
数字信号处理作业解答

数字信号处理作业解答作业题目1:确定下列信号的周期(1)()sin 0.1n π (2)()cos 0.3n π (3)()cos 0.10.2n π- (4)28j n eπ解:(1)由()()220sin 0.1=sin n n ππ,可知其周期为N =20 (2)由()()2cos 0.3=cos 3n n ππ⎡⎤⎣⎦,可知其周期为N =20(3)由()()220cos 0.10.2=cos 0.2n n ππππ--,其中2π为无理数,可知该信号周期不 存在,为非周期信号(4)28j n eπ周期为N =8作业题目2:图示为一周期为10的随意连续时间周期信号 (1) 写出它的傅里叶级数形式;(2) 该级数式表明f(t)可以分解为哪些信号的叠加?解:(1)()()210jnt nn f t F eπ+∞=-∞=∑(2)该级数式表明f(t)可以分解为频率为210π整数倍的一系列虚指数信号的叠加,也就是: ()()()()()2222101010102221012++++++j t jt jt j t f t F eF eF F eF eππππ----=作业题目3:写出周期信号x(n)的傅里叶级数形式()()()()1cos cos 1nx n n n ππ=+++-解:先确定信号周期为N=12,基波频率为212π, 先将x(n)化为: ()()()()21262212121cos 2cos3j nx n n n eπππ=+++利用欧拉公式:()()()()()()22222121212121222336111122221j n j n j n j n j nx n eeeeeπππππ--=+++++将()()()()22221212121221039,j n j n j n j n eeeeππππ--==带入得x(n)傅里叶级数形式为:()()()()()()222221212121212236910111122221j n j n j j n j n nx n eeeeeπππππ=+++++作业题目4:写出周期信号x(n)的傅里叶级数形式,确定傅里叶系数,并画出频谱图解:信号周期为N=6,其傅里叶级数形式为:()()265jknk k x n a eπ==∑其中傅里叶系数:()()()()26265-0-0161000000616jk n k n jk a x n ex e ππ==⎡⎤=+++++⎢⎥⎣⎦=∑ 因此:()()()()()()()26222226666650234516111111666666jk nk j n j n j n j n j n x n ee e e e e ππππππ===+++++∑ 频谱图:作业题目5:已知某周期信号x(n) 频谱图如下,求该信号x(n)。
数字信号处理课后作业

数字信号处理课后作业P2.1利用在本章讨论的基本MATLAB信号函数和基本MATLAB信号运算产生下列序列,并用tem函数画出信号样本。
1.某1(n)=3δ(n+2)+2δ(n)-δ(n-3)+5δ(n-7),-5<=n<=152.某3(n)=10μ(n)-5μ(n-5)-10μ(n-10)+5μ(n-15)>>n=[-5:15];>>某1=3某impeq(-2,-5,15)+2某impeq(0,-5,15)-impeq(3,-5,15)+5某impeq(7,-5,15);>>ubplot(2,1,1)>>tem(n,某1) >>title('SequenceinProblem2.11')>>某label('n');>>ylabel('某1(n)')>>n=[-20:30];>>某3=10某tepeq(0,-20,30)-5某tepeq(5,-20,30)-10某tepeq(10,-20,30)+5某tepeq(15,-20,30);>>ubplot(2,1,2);>>tem(n,某3);>>title('SequenceinProblem2.13');>>某label('n');>>ylabel('某3(n)')SequenceinProblem2.1164某1(n)20-2-505nSequenceinProblem2.131015105某3(n)0-5-20-15-10-505n1015202530P2.4设某(n)={2,4,-3,-1,-5,4,7},产生并画出下列序列的样本(用tem函数)。
1.某1(n)=2某(n-3)+3某(n+4)-某(n)2.某2(n)=4某(4+n)+5某(n+5)+2某(n)>>n=[-3:3];>>某=[2,4,-3,-1,-5,4,7];>>[某11,n11]=ighift(某,n,3);>>[某12,n12]=ighift(某,n,-4);>>[某13,n13]=ighift(某,n,0);>>[某1,n1]=igadd(2某某11,n11,3某某12,n12);>>[某1,n1]=igadd(某1,n1,-某13,n13);>>ubplot(2,1,1);>>tem(n1,某1);>>title('SequenceinE某ample2.41');>>某label('n');>>ylabel('某1(n)')>>[某21,n21]=ighift(某,n,-4);>>[某22,n22]=ighift(某,n,-5);>>[某23,n23]=ighift(某,n,0);>>[某2,n2]=igadd(4某某21,n21,5某某22,n22);>>[某2,n2]=igadd(某2,n2,2某某23,n23);>>ubplot(2,1,2);>>tem(n2,某2);>>title('SequenceinE某ample2.42');>>某label('n');>>ylabel('某2(n)');SequenceinE某ample2.414020某1(n)0-20-8-6-4-20246nSequenceinE 某ample2.4210050某2(n)0-50-8-6-4-2n024P2.19一个线性和时不变系统呦下面差分方程描述:y(n)-0.5y(n-1)+0.25y(n-2)=某(n)+2某(n-1)+某(n-3)1.利用filter函数计算并画出在0<=n<=100内系统的脉冲响应。
数字信号处理作业答案(参考版-第一章)

1-2习题1-2图所示为一个理想采样—恢复系统,采样频率Ωs =8π,采样后经过理想低通G jΩ 还原。
解:(1)根据余弦函数傅里叶变换知:)]2()2([)]2[cos(πδπδππ-Ω++Ω=t F ,)]6()6([)]6[cos(πδπδππ-Ω++Ω=t F 。
又根据抽样后频谱公式:∑∞-∞=∧Ω-Ω=Ωk s a a jk j X T j X )(1)(,得到14T= ∑∞-∞=∧--Ω+-+Ω=Ωk a k k j X )]82()82([4)(1ππδππδπ∑∞-∞=∧--Ω+-+Ω=Ωk a k k j X )]86()86([4)(2ππδππδπ所以,)(1t x a ∧频谱如下所示)(2t x a ∧频谱如下所示(2))(1t y a 是由)(1t x a ∧经过理想低通滤波器)(Ωj G 得到,)]2()2([)()()]([11πδπδπ-Ω++Ω=ΩΩ=∧j G j X t y F a a ,故)2cos()(1t t y a π=(4π) (4π) (4π)(4π)(4π) (4π) Ω-6π-10π-2π 2π0 6π10π)(1Ω∧j X a Ω10π-10π -6π-2π 0 2π6π-14π 14π(4π)(4π) (4π)(4π) (4π) (4π)(4π) (4π))(2Ω∧j X a同理,)]2()2([)()()]([22πδπδπ-Ω++Ω=ΩΩ=∧j G j X t y F a a 故)2cos()(2t t y a π=(3)由题(2)可知,无失真,有失真。
原因是根据采样定理,采样频率满足信号)(1t x a 的采样率,而不满足)(2t x a 的,发生了频谱混叠。
1-3判断下列序列是否为周期序列,对周期序列确定其周期。
(1)()5cos 86x n A ππ⎛⎫=+ ⎪⎝⎭(2)()8n j x n eπ⎛⎫- ⎪⎝⎭=(3)()3sin 43x n A ππ⎛⎫=+ ⎪⎝⎭解:(1)85πω=,5162=ωπ为有理数,是周期序列,.16=N (2)πωπω162,81==,为无理数,是非周期序列; (3)382,43==ωππω,为有理数,是周期序列,8=N 。
(完整word版)数字信号处理习题及答案

==============================绪论==============================1。
A/D 8bit 5V 00000000 0V 00000001 20mV 00000010 40mV 00011101 29mV==================第一章 时域离散时间信号与系统==================1。
①写出图示序列的表达式答:3)1.5δ(n 2)2δ(n 1)δ(n 2δ(n)1)δ(n x(n)-+---+++= ②用(n ) 表示y (n )={2,7,19,28,29,15}2. ①求下列周期)54sin()8sin()4()51cos()3()54sin()2()8sin()1(n n n n n ππππ-②判断下面的序列是否是周期的; 若是周期的, 确定其周期。
(1)A是常数 8ππn 73Acos x(n)⎪⎪⎭⎫ ⎝⎛-= (2))81(j e )(π-=n n x 解: (1) 因为ω=73π, 所以314π2=ω, 这是有理数, 因此是周期序列, 周期T =14。
(2) 因为ω=81, 所以ωπ2=16π, 这是无理数, 因此是非周期序列。
③序列)Acos(nw x(n)0ϕ+=是周期序列的条件是是有理数2π/w 0。
3.加法 乘法序列{2,3,2,1}与序列{2,3,5,2,1}相加为__{4,6,7,3,1}__,相乘为___{4,9,10,2} 。
移位翻转:①已知x(n)波形,画出x(—n )的波形图。
②尺度变换:已知x(n)波形,画出x (2n )及x(n/2)波形图.卷积和:①h(n)*求x(n),其他2n 0n 3,h(n)其他3n 0n/2设x(n) 例、⎩⎨⎧≤≤-=⎩⎨⎧≤≤=}23,4,7,4,23{0,h(n)*答案:x(n)=②已知x (n )={1,2,4,3},h (n )={2,3,5}, 求y (n )=x (n )*h (n )x (m )={1,2,4,3},h (m )={2,3,5},则h (—m )={5,3,2}(Step1:翻转)解得y (n )={2,7,19,28,29,15}③(n)x *(n)x 3),求x(n)u(n u(n)x 2),2δ(n 1)3δ(n δ(n)2、已知x 2121=--=-+-+=}{1,4,6,5,2答案:x(n)=4. 如果输入信号为,求下述系统的输出信号。
数字信号处理作业(附答案)1-郑佳春

习题一1.2 在过滤限带的模拟数据时,常采用数字滤波器,如图中T 表示采样周期(假设T 足够小,足以防止混迭效应),把从)()(t y t x 到的整个系统等效为一个模拟滤波器。
(a ) 如果kHz rad n h 101,8)(=π截止于,求整个系统的截止频率。
(b )对于kHz T 201=,重复(a )的计算。
解 (a )因为当0)(=≥ωπωj e H rad 时,在数-模变换中)(1)(1)(Tj X T j X T e Y a a j ωω=Ω= 所以)(n h 得截止频率πω=c对应于模拟信号的角频率c Ω为8π=ΩT c因此 Hz Tf c c 6251612==Ω=π 由于最后一级的低通滤波器的截止频率为Tπ,因此对T 8π没有影响,故整个系统的截止频率由)(ωj eH 决定,是625Hz 。
(b )采用同样的方法求得kHz 201=,整个系统的截止频率为 Hz Tf c 1250161==1.3 一模拟信号x(t)具有如图所示的带通型频谱,若对其进行采样,试确定最佳采样频率,并绘制采样信号的频谱。
解:由已知可得:==35,25H L f kHz f kHz ,10k H L B f f Hz =-=,为使无失真的恢复原始信号,采样频率应满足:2f 21c c s B f Bf m m+-≤≤+且220s f B kHz >=、0/12H m f B ≤≤-=⎡⎤⎣⎦ 当m=1时,2501c s f Bf kHz -==,满足: 3550s kHz f kHz ≤≤ 当m=2时,2252c s f Bf kHz -==,满足:23.325s kHz f kHz ≤≤ 故最佳采样频率为25kHz,采样信号的频谱图如下图所示 :1.5 判断下面的序列是否是周期的,若是周期的,确定其周期,并绘制一个周期的序列图(1)16()cos()58x n A n ππ=-,A 是常数 解:2251685N wπππ===,所以x(n)是周期的,且最小正周期为5 1285()cos()40n x n A π-= 绘图:方法一:计算法 当n=0时,1()cos()8x n A π-==0.99A 当n=1时,123()cos()40x n A π==3cos()40A ππ+=0.998A 当n=2时,251()cos()40x n A π==11cos()40A π=0.863A 当n=3时,379()cos()40x n A π==19cos()40A ππ+=0.996A 当n=4时,507()cos()40x n A π==27cos()40A π=0.999A 当n=5时,635()cos()40x n A π==6405cos()40A π-= 方法二:Matlab 法> xn=cos(16*n*pi/5-pi/8); > plot(n,xn) > n=0:4;> xn=cos(16*n*pi/5-pi/8); > plot(n,xn)> plot(n,xn,'.');grid;1.6对如下差分方程所述系统,试分析其线性特性与时变特性(1)()()2(1)y n x n x n =-- (3)2()4()y n x n =解:(1)121212[()()]()()2{(1)(1)}T ax n bx n ax n bx n ax n bx n +=+--+- 121122[()][()]()2(1)()2(1)T ax n T bx n ax n ax n bx n bx n +=--+--故 1212[()()][()][()]T ax n bx n T ax n T bx n +=+所以y(n)为线性又0000[()]()2(1)()T x n n x n n x n n y n n -=----=- 所以y(n)为时不变(3)2222121122[()()]4()8()()4()T ax n bx n a x n abx n x n b x n +=++ 221212[()][()]4()4()T ax n T bx n ax n bx n +=+ 故1212[()()][()][()]T ax n bx n T ax n T bx n +≠+ y(n)为非线性又2000[()]4()()T x n n x n n y n n -=-=- 故y(n)为时不变1.7试判断如下算法是否是因果的?是否是稳定的?并说明理由。
《数字信号处理》作业答案

第一章离散时间系统4.判断下列每个序列是否是周期的,若是周期的,试确定其周期。
(1)⎪⎭⎫ ⎝⎛-=873cos )(ππn A n x (2)⎪⎭⎫⎝⎛=n A n x π313sin )( (3))6()(π-=nj e n x解:(1)由⎪⎭⎫ ⎝⎛-=873cos )(ππn A n x 可得31473220==ππωπ,所以)(n x 的周期是14。
(2)由⎪⎭⎫⎝⎛=n A n x π313sin )(可得136313220==ππωπ,所以)(n x 的周期是6。
(3)由⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-==-6sin 6cos 6sin 6cos )()6(n j n n j n e n x nj πππ,所以)(n x 是非周期的。
6.试判断(1)∑-∞==nm m x n y )()(是否是线性系统?解:根据∑-∞==nm m x n y )()(可得 ∑-∞===nm m x n x T n y )()]([)(111,∑-∞===nm m xn x T n y)()]([)(222∑∑∑∑∑-∞=-∞=-∞=-∞=-∞=+=+=++=+nm n m n m nm nm n xb n x a n bx m ax n bx n ax T n x b n x a n by n ay )()()]()([)]()([)()()()(2121212121所以系统是线性的。
9.列出图P1-9系统的差分方程并按初始条件y(n)=0,n<0,求输入为x(n)=u(n)时的输出序列y(n),并画图。
解:x 1(n)=x(n)+x 1(n-1)/4 x 1(n)- x 1(n-1)/4=x(n) x 1(n-1)- x 1(n-2)/4=x(n-1) y(n)=x 1(n)+x 1(n-1) y(n-1)/4=x 1(n-1)/4+x 1(n-2)/4y(n)-y(n-1)/4=x(n)+x(n-1) y(n) =x(n)+x(n-1) +y(n-1)/4y(0)=u(0)=1y(1)=u(1)+u(0)+y(0)/4=2+1/4y(2)=u(2)+u(1)+y(1)/4=2+(2+1/4)/4=2(1+1/4)+(1/4)2 y(3)=u(3)+u(2)+y(2)/4==2(1+1/4+(1/4)2)+(1/4)3y(n)=2(1+1/4+……+(1/4)n-1)+(1/4)ny(n)=2(1-(1/4)n )/(1-1/4)+(1/4)n =[8/3-5/3(1/4)n ]u(n)11.有一理想抽样系统,抽样角频率为π6=Ωs ,抽样后经理想低通滤波器)(ωj H a 还原,其中:⎪⎩⎪⎨⎧≥<=πωπωω30321)(j H a令有两个输入信号)2cos()(1t t x a π=,)5cos()(12t t x a π=输出信号有没有失真?为什么?解:抽样频率大于两倍信号最大频率则无失真,)2cos()(1t t x a π=信号角频率为2π<3π,y a1(n)无失真。
数字信号处理习题解答

y(5)=2*1+1*2=4;y(6)=2*3+1*1+3*2=13 y(7)=1*3+3*1=6;y(8)=3*3=9
y(9)=0;
• N=10圆卷积的结果
10 13 9
6
4
4
1
2
n
0
补充作业
x(n)
22
1
1
n
0
求: (1)x(n)*x(n)的线卷积。
,N=4(不加长)
,N=6(补零加长)
,N=7(补零加长)
作业解答
lfhuang
第一次作业: P104页,3题
...
...
0
n
0
n
第一次作业: P104页,3题
第一次作业: P104页,3题
4
...
1
.k .
0
第二次作业: P104页,4题
第二次作业: P104页,4题
... ... ...
... 图a
n
...
图b n
...
图c n
第二次作业: P104页,4题
3
2
1
1
n
0
周期化
3
2
1
1
n
0
3
3
3
1
2 1
12 1
1
2 1
0
0
n
反折、取主值区间。
3 2
11
0
右平移、相乘、相加 y(0)=1*1+2*1+1*2=5 y(1)=2*3+1*1+3*2=13 y(2)=1*2+2*1+1*3+3*3=16
数字信号处理》课后作业参考答案

第3章 离散时间信号与系统时域分析3.1画出下列序列的波形(2)1()0.5(1)n x n u n -=- n=0:8; x=(1/2).^n;n1=n+1; stem(n1,x);axis([-2,9,-0.5,3]); ylabel('x(n)'); xlabel('n');(3) ()0.5()nx n u n =-()n=0:8; x=(-1/2).^n;stem(n,x);axis([-2,9,-0.5,3]); ylabel('x(n)'); xlabel('n');3.8 已知1,020,36(),2,780,..n n x n n other n≤≤⎧⎪≤≤⎪=⎨≤≤⎪⎪⎩,14()0..n n h n other n≤≤⎧=⎨⎩,求卷积()()*()y n x n h n =并用Matlab 检查结果。
解:竖式乘法计算线性卷积: 1 1 1 0 0 0 0 2 2)01 2 3 4)14 4 4 0 0 0 0 8 83 3 3 0 0 0 0 6 62 2 2 0 0 0 0 4 41 1 1 0 0 0 02 21 3 6 9 7 4 02 6 10 14 8)1x (n )nx (n )nMatlab 程序:x1=[1 1 1 0 0 0 0 2 2]; n1=0:8; x2=[1 2 3 4]; n2=1:4; n0=n1(1)+n2(1);N=length(n1)+length(n2)-1; n=n0:n0+N-1; x=conv(x1,x2); stem(n,x);ylabel('x(n)=x1(n)*x2(n)');xlabel('n'); 结果:x = 1 3 6 9 7 4 0 2 6 10 14 83.12 (1) 37πx (n )=5sin(n) 解:2214337w πππ==,所以N=14 (2) 326n ππ-x (n )=sin()-sin(n)解:22211213322212,2122612T N w T N w N ππππππ=========,所以(6) 3228n π-x (n )=5sin()-cos(n) 解:22161116313822222()T N w T w x n ππππππ=======,为无理数,所以不是周期序列所以不是周期序列3.20 已知差分方程2()3(1)(2)2()y n y n y n x n --+-=,()4()nx n u n -=,(1)4y -=,(2)10,y -=用Mtalab 编程求系统的完全响应和零状态响应,并画出图形。
23春-数字信号处理-在线作业

23春-数字信号处理-在线作业交卷时间2023-05-14 12:28:41一、单选题(每题3分,共20道小题,总分值60分)1.由模拟信号进行采样得到时域离散信号时,同样要满足定理,(3分)采样位移反折对称正确答案A您的答案是A回答正确展开2.序列x(n)的部分x e(n)对应着X(e jω)的实部X R(e jω)。
(3分)对称共轭对称反对称共轭反对称正确答案B您的答案是D回答错误展开3.栅栏效应的存在,有可能漏掉的频谱分量。
(3分)大小高低正确答案A您的答案是A回答正确展开4.如果信号的自变量和函数值均取离散值,则称为。
(3分)模拟信号数字信号离散信号抽样信号正确答案B您的答案是C回答错误展开5.采用按时间抽取的基-2 FFT算法计算N=8点DFT,需要计算______次复数乘法(3分)8165664正确答案D您的答案是D回答正确展开6.因果(可实现)系统其系统函数H(z)的收敛域一定包含点。
(3分)12∞正确答案D您的答案是D回答正确展开7.如果信号的自变量和函数值都取连续值,则称这种信号为或者称为时域连续信号,例如语言信号、温度信号等(3分)模拟信号数字信号离散信号抽样信号正确答案A您的答案是A回答正确展开8.由傅里叶变换理论知道,若信号的频谱有限宽,则其持续时间必然为。
(3分)有限长无限长不确定正确答案B您的答案是B回答正确展开9.序列x(n)的部分x o(n)对应着X(e jω)的虚部(包括j)。
(3分)对称共轭对称反对称共轭反对称正确答案D您的答案是D回答正确展开10.对连续信号进行谱分析时,首先要对其采样,变成时域后才能用DFT(FFT)进行谱分析。
(3分)模拟信号数字信号离散信号抽样信号正确答案C您的答案是A回答错误展开11.维持Fs不变,为提高可以增加采样点数N。
(3分)频率周期频率分辨率数字分辨率正确答案C您的答案是C回答正确展开12.离散序列x(n)只在n为时有意义。
(3分)自然数整数实数复数正确答案B您的答案是B回答正确展开采用按时间抽取的基-2 FFT算法计算N=8点DFT,需要计算______次复数加法(3分)8165664正确答案C您的答案是D回答错误展开14.所谓信号的谱分析,就是计算信号的。
数字信号处理课后作业

数字信号处理课后作业1、作业分两次完成,第一次就是第三周结束,第5周星期五之前交电子工程学院604房间。
内容就是第一章到第四章的作业2、第二次第8周星期五之前叫过来,内容就是第六章到第七章的作业(必须抄题)3、最后一次作业必须附上50个数字信号处理相关的英文缩写,英文全称和中文意思。
4、附上十款以上去年到今年,大的dsp 厂家生产的dsp 型号及对应的网站地址。
(做了的加平时成绩1分)数字信号处理作业第一章3. 判断下面的序列是否是周期的,若是周期的,确定其周期。
(2))81()(π-=n j en x5. 设系统分别由下面的差分方程描述,x(n)与y(n)分别表示系统输入和输出,判断系统是否是线性非时变的。
)、(为整常数300) ,n x(n-n y(n)=)s i n ()()(8n n x n y ω=)、(6. 给定下述系统的差分方程,判断系统是否是因果稳定系统,并说明理由。
∑-=-=1)(1)(1N k k n x Nn y )、(∑+-==0)()()3(n n n n k k x n y 、)()(5n x en y =)、(7. 设线性时不变系统的单位脉冲响应h(n)和输入序列x(n)如题7图所示,要求画出输出y(n)到波形。
11. 设系统由下面差分方程描述:)1(21)()1(21)(-++-=n x n x n y n y设系统是因果的,利用地推法求系统的单位取样响应。
12. 有一连续信号2/,20),2cos()(π??π==+=Hz f ft t x a 式中,(1)求出)(t x a 的周期;(2)用采样间隔T=0.02s 对)(t x a 进行采样,试写出采样信号)(^t x a 的表达式;(3)画出对应)(^t x a 的时域离散信号(序列)x(n)的波形,并求出x(n)的周期。
第二章 4. 设==其它,01,0,1)(n n x将x(n)以4为周期进行周期延拓,形成周期序列)(~n x ,画出x(n)和)(~n x 的波形,求出)(~n x 的离散傅立叶级数)(~k X 和傅立叶变换。
数字信号处理实验作业

实验5 抽样定理一、实验目的:1、了解用MA TLAB 语言进行时域、频域抽样及信号重建的方法。
2、进一步加深对时域、频域抽样定理的基本原理的理解。
3、观察信号抽样与恢复的图形,掌握采样频率的确定方法和内插公式的编程方法。
二、实验原理:1、时域抽样与信号的重建 (1)对连续信号进行采样例5-1 已知一个连续时间信号sin sin(),1Hz 3ππ=0001f(t)=(2f t)+6f t f ,取最高有限带宽频率f m =5f 0,分别显示原连续时间信号波形和F s >2f m 、F s =2f m 、F s <2f m 三情况下抽样信号的波形。
程序清单如下:%分别取Fs=fm ,Fs=2fm ,Fs=3fm 来研究问题 dt=0.1; f0=1; T0=1/f0; m=5*f0; Tm=1/fm; t=-2:dt:2;f=sin(2*pi*f0*t)+1/3*sin(6*pi*f0*t); subplot(4,1,1); plot(t,f);axis([min(t),max(t),1.1*min(f),1.1*max(f)]); title('原连续信号和抽样信号'); for i=1:3;fs=i*fm;Ts=1/fs; n=-2:Ts:2;f=sin(2*pi*f0*n)+1/3*sin(6*pi*f0*n); subplot(4,1,i+1);stem(n,f,'filled');axis([min(n),max(n),1.1*min(f),1.1*max(f)]); end程序运行结果如图5-1所示:原连续信号和抽样信号图5-1(2)连续信号和抽样信号的频谱由理论分析可知,信号的频谱图可以很直观地反映出抽样信号能否恢复原模拟信号。
因此,我们对上述三种情况下的时域信号求幅度谱,来进一步分析和验证时域抽样定理。
例5-2编程求解例5-1中连续信号及其三种抽样频率(F s>2f m、F s=2f m、F s<2f m)下的抽样信号的幅度谱。
吉大14秋学期《数字信号处理》在线作业一答案

C.双线性变换是一种分段线性变换
D.以上说法都不对
?
正确答案:ACD
6.以下对双线性变换的描述中正确的是( )
A.双线性变换是一种非线性变换
B.双线性变换可以用来进行数字频率与模拟频率间的变换
C.双线性变换把s平面的左半平面单值映射到z平面的单位圆内
A.连续非周期信号的频谱为周期连续函数
B.连续周期信号的频谱为周期连续函数
C.离散非周期信号的频谱为周期连续函数
D.离散周期信号的频谱为周期连续函数
?
正确答案:ABD
三,判断题
1.采样频率fs=5000Hz,DFT的长度为2000,其谱线间隔为2.5Hz。
A.错误
B.正确
?
正确答案:B
2.时间抽取法FFT对两个经时间抽取的N/2点离散序列X(2r)和X(2r+1)做DFT,并将结果相加,就得一个N点DFT。
C.并联型
D.频率抽样型
?
正确答案:ABC
9.下面关于IIR滤波器设计说法错误的是( )
A.双线性变换法的优点是数字频率和模拟频率成线性关系
B.冲激响应不变法无频率混叠现象
C.冲激响应不变法不适合设计高通滤波器
D.双线性变换法只适合设计低通、带通滤波器
?
正确答案:ABD
10.下面说法中不正确的是()
D.以上说法都不对
?
正确答案:ABC
7.下面说法中不正确的是( )
A.连续非周期信号的频谱为非周期连续函数
B.连续周期信号的频谱为非周期连续函数
C.离散非周期信号的频谱为非周期连续函数
D.离散周期信号的频谱为非周期连续函数
数字信号处理作业_答案

数字信号处理作业DFT 习题1. 如果)(~n x 是一个周期为N 的周期序列,那么它也是周期为N 2的周期序列。
把)(~n x 看作周期为N 的周期序列,令)(~1k X 表示)(~n x 的离散傅里叶级数之系数,再把)(~n x 看作周期为N 2的周期序列,再令)(~2k X 表示)(~n x 的离散傅里叶级数之系数。
当然,)(~1k X 是周期性的,周期为N ,而)(~2k X 也是周期性的,周期为N 2。
试利用)(~1k X 确定)(~2k X 。
(76-4)2. 研究两个周期序列)(~n x 和)(~n y 。
)(~n x 具有周期N ,而)(~n y 具有周期M 。
序列)(~n w 定义为)()()(~~~n y n x n w +=。
a. 证明)(~n w 是周期性的,周期为MN 。
b. 由于)(~n x 的周期为N ,其离散傅里叶级数之系数)(~k X 的周期也是N 。
类似地,由于)(~n y 的周期为M ,其离散傅里叶级数之系数)(~k Y 的周期也是M 。
)(~n w 的离散傅里叶级数之系数)(~k W 的周期为MN 。
试利用)(~k X 和)(~k Y 求)(~k W 。
(76-5)3. 计算下列各有限长度序列DFT (假设长度为N ):a. )()(n n x δ= b .N n n n n x <<-=000)()(δc .10)(-≤≤=N n an x n(78-7)4. 欲作频谱分析的模拟数据以10千赫速率被取样,且计算了1024个取样的离散傅里叶变换。
试求频谱取样之间的频率间隔,并证明你的回答。
(79 -10)5. 令)(k X 表示N 点序列)(n x 的N 点离散傅里叶变换(a ) 证明如果)(n x 满足关系式:)1()(n N x n x ---=,则0)0(=X 。
(b ) 证明当N 为偶数时,如果)1()(n N x n x --=,则0)2/(=N X 。
数字信号处理大作业

数字信号处理上机实验学院:电子工程学院班级:021061学号: 02106013姓名:岳震震实验一:信号、系统及系统响应02106013 岳震震一,实验目的(1) 熟悉连续信号经理想采样前后的频谱变化关系,加深对时域采样定理的理解。
(2)熟悉时域离散系统的时域特性。
(3)利用卷积方法观察分析系统的时域特性。
(4)掌握序列傅里叶变换的计算机实现方法,利用序列的傅里叶变换对连续信号、离散信号及系统响应进行频域分析。
二,实验原理与方法(1) 时域采样。
(2)LTI系统的输入输出关系。
三,实验内容及步骤(1)认真复习采样理论、离散信号与系统、线性卷积、序列的傅里叶变换及性质等有关内容,阅读本实验原理与方法。
(2)编制实验用主程序及相应子程序。
①信号产生子程序,用于产生实验中要用到的下列信号序列:a .Xa(t)=Ae-at sin(Ω0t)U(t)b.单位脉冲序列:xb(n)=δ(n)c.矩形序列:xc(n)=RN(n),N=10②系统单位脉冲响应序列产生子程序。
本实验要用到两种FIR系统。
a .ha(n)=R10(n);b. hb(n)=δ(n)+2.5δ(n-1)+2.5δ(n-2)+δ(n-3)③有限长序列线性卷积子程序用于完成两个给定长度的序列的卷积。
可以直接调用MATLAB语言中的卷积函数conv。
conv用于两个有限长度序列的卷积,它假定两个序列都从n=0开始。
调用格式如下:y=conv(x,h)调通并运行实验程序,完成下述实验内容:①分析采样序列的特性。
a. 取采样频率fs=1 kHz, 即T=1 ms。
b.改变采样频率,fs=300Hz,观察|X(ejω)|的变化,并做记录(打印曲线);进一步降低采样频率,fs=200Hz,观察频谱混叠是否明显存在,说明原因,并记录(打印)这时的|X(ejω)|曲线。
②时域离散信号、系统和系统响应分析。
a.观察信号xb(n)和系统hb(n)的时域和频域特性;利用线性卷积求信号xb(n)通过系统hb(n)的响应y(n),比较所求响应y(n)和hb(n)的时域及频域特性,注意它们之间有无差别,绘图说明,并用所学理论解释所得结果。
数字信号处理作业及答案(全)

数字信号处理作业(1)1、画出离散信号的波形 (1))2(3)3(2)(1++-=n n n x δδ (2))2()(2+-=n u n x (3))5()()(3--=n u n u n x(4))()()(214n u n x n ⋅= (5))()25.0sin(3)(5n u n n x ⋅⋅=π2、设x (n )、y (n )分别为系统的输入、输出变量,根据定义确定系统是否为:(1)线性,(2)稳定,(2)因果 ① )()]([ )(2n ax n x T n y == ② b n x n x T n y +==)()]([ )(③ )0()()]([ )(00>-==n n n x n x T n y ④ ∑+-=>=)0()( )(0n n n n m n m x n y3、已知:描述系统的差分方程为 )()1(5- )(n x n y n y =- 且初始条件为: 0)1(=-y 求:系统的单位冲激响应h (n )4、已知:线性时不变系统的单位脉冲响应为 10 , )( )(<<⋅=a n u a n h n 求:该系统的单位阶跃响应。
数字信号处理作业(1)解答1、画出离散信号的波形 (1))2(3)3(2)(1++-=n n n x δδ (2))2()(2+-=n u n x (3))5()()(3--=n u n u n x(4))()()(214n u n x n ⋅= (5))()25.0sin(3)(5n u n n x ⋅⋅=π2、设x (n )、y (n )分别为系统的输入、输出变量,根据定义确定系统是否为:(1)线性,(2)稳定,(3)因果因果:输出只取决于当前和之前的输入。
线性移不变系统的因果的充要条件:h (n )=0 , n < 0稳定系统:有界输入产生有界输出。
线性移不变系统稳定的充要条件:∞<=∑∞-∞=P n h m )(① )()]([ )(2n ax n x T n y ==(非线性,稳定,因果) ② b n x n x T n y +==)()]([ )((非线性,稳定,因果) ③ )0( )()]([ )(00>-==n n n x n x T n y (线性,稳定,因果) ④ )0( )( )(0>=∑+-=nm x n y n n n n m (线性,稳定,非因果)注意:非线性系统的稳定、因果只能按定义判断,不能按线性、移不变系统的h (n )特点判断。
数字信号处理第四章作业

求线性卷积,并比较它们的运算量。
k
(b) z k ak , k=0,1„,N-1.a 为实数, a 0 。 (c) (a)和(b)两者都行。 (d) (a)和(b)都不行,即线性调频 z 变换不能计算 H(z)在 z 为实数时的取样。 10. (第四章习题 13)设对列长 N=64 及列长 L=48 的两序列用(1)直接计算法,(2)快速卷积法
数字信号处理第四章作业数字信号处理数字信号处理试卷数字信号处理第三版数字信号处理pdf数字信号处理期末试卷matlab数字信号处理数字信号处理教程数字信号处理实验报告数字信号处理第四版
数字信号处理第四章作业
1. ( 第四章习题 1) 如果一台通用计算机的速度为平均每次复乘需要 100us,每次复加需要 20us, 今用来计算 N=1024 点的 DFT[x(n)],问直接运算需要长时间, 用 FFT 运算需多少时间? 2. (第四章习题 2)把 16 点序列 x(0) x(1) „x(15)排成反序序列。 3. (第四章习题 4)试用基-2 按时间抽取与按频率抽取法分别作出 N=16 时的信号流图。 4. (第四章习题 5)试画出 4 点按时间抽取的 FFT 算法流程图,要求利用本书图 4-8 的蝶形, 具有反序的输入序列,自然顺序的输出序列,并且表示成“原位”计算。 5. (第四章习题 6)重排题 5 的流图,使它仍然符合“原位”计算,但要有自然顺序输入,反 序输出。 6. (第四章习题 8)推导 N=16 时,基-4FFT 公式,并画出流图,就运算量的多少(不计 i, j 的运算量)与基-2 情况作比较。 7. (第四章习题 9)画出 8 点分裂基 L 型运算流图,计算其复数乘法次数,并与基 -2 和基-4 法 进行比较。 8. (第四章习题 10)已知 X(k)和 Y(k)分别是两个 N 点实序列 x(n)和 y(n)的 DFT 为提高运算效 率,试设计用一次 N 点 IFFT 来从 x(k)和 y(k)求 x(n)和 y(n)。 9. (第四章习题 12)在下列说法中选择正确的结论。线性调频 z 变换可以用来计算一个有限长 序列 h(n)在 z 平面实 z 轴上诸点{zk}的 z 变换 H(z) ,使 (a) z k a , k=0,1„,N-1.a 为实数, a 1 。
数字信号处理习题及答案完整版

数字信号处理习题及答案HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】==============================绪论============================== 1. A/D 8bit 5V 00000000 0V 00000001 20mV 00000010 40mV 00011101 29mV==================第一章 时域离散时间信号与系统================== 1.①写出图示序列的表达式答:3)1.5δ(n 2)2δ(n 1)δ(n 2δ(n)1)δ(n x(n)-+---+++= ②用(n) 表示y (n )={2,7,19,28,29,15} 2. ①求下列周期②判断下面的序列是否是周期的; 若是周期的, 确定其周期。
(1)A是常数 8ππn 73Acos x(n)⎪⎪⎭⎫ ⎝⎛-= (2))81(j e )(π-=n n x 解: (1) 因为ω=73π, 所以314π2=ω, 这是有理数, 因此是周期序列, 周期T =14。
(2) 因为ω=81, 所以ωπ2=16π, 这是无理数, 因此是非周期序列。
③序列)Acos(nw x(n)0ϕ+=是周期序列的条件是是有理数2π/w 0。
3.加法乘法序列{2,3,2,1}与序列{2,3,5,2,1}相加为__{4,6,7,3,1}__,相乘为___{4,9,10,2} 。
移位翻转:①已知x(n)波形,画出x(-n)的波形图。
②尺度变换:已知x(n)波形,画出x(2n)及x(n/2)波形图。
卷积和:①h(n)*求x(n),其他2n 0n 3,h(n)其他3n 0n/2设x(n) 例、⎩⎨⎧≤≤-=⎩⎨⎧≤≤=②已知x (n )={1,2,4,3},h (n )={2,3,5}, 求y (n )=x (n )*h (n )x (m )={1,2,4,3},h (m )={2,3,5},则h (-m )={5,3,2}(Step1:翻转)解得y (n )={2,7,19,28,29,15} ③(n)x *(n)x 3),求x(n)u(n u(n)x 2),2δ(n 1)3δ(n δ(n)2、已知x 2121=--=-+-+=4. 如果输入信号为,求下述系统的输出信号。
西电数字信号处理大作业

实验一、信号的采样clc,clear;dt=0.001;tf=6;t=0:dt:tf;xa=sqrt(t)+cos(t);T=0.5;n=0:tf/T;x=sqrt(n*T)+cos(n*T);figure(1)subplot(2,1,1)plot(t,xa),grid on ;title('original image')subplot(2,1,2)stem(n*T,x),grid on ,title('digital image')实验二、信号与系统的时域分析差分方程为)()2()1()(21n bx n y a n y a n y +----=,其中8.01-=a ,64.02=a ,866.0=b 。
系统单位脉冲响应)(n ha1=-0.8;a2=0.64;b=0.866;ys=0;xn=[1,zeros(1,49)];B=1;A=[1,a1,a2];xi=filtic(B,A,ys);yn=filter(B,A,xn,xi);n=0:length(yn)-1;subplot(1,1,1);stem(n,yn,'.')title('(a)');xlabel('n');ylabel('y(n)')输入x(n)=cos(n)T=0.1;z=cos(n*T);zn=conv(yn,z); figure(2);n1=1:99;stem(n1,zn,'.')实验三、系统的频域和Z域分析程序代码(画出dtft的幅度和频率谱)clc,clear;n=0:1:7;x=(0.9*exp(j*pi/3)).^n;w=0:pi/200:pi;X=x*exp(-j).^(n'*w);realX=real(X);imagX=imag(X);angX=angle(X);magX=abs(X);subplot(2,2,1);plot(w/pi,magX);grid xlabel('frequency in pi unit');title('magnitude part');subplot(2,2,2);plot(w/pi,realX);grid xlabel('frequency in pi unit');title('real part');subplot(2,2,3);plot(w/pi,imagX);grid xlabel('frequency in pi unit');title('imaginary part');subplot(2,2,4);plot(w/pi,angX);grid xlabel('frequency in pi unit');title('angel part');clc,clear;a=[1,-0.5,0.06];b=[1,1,0];m=0:length(b)-1;l=0:length(a)-1;w=0:pi/500:pi;num=b*exp(-j*m'*w);den=a*exp(-j*l'*w);H=num./den;magH=abs(H);angH=angle(H);H1=freqz(b,a,w);magH1=abs(H1);angH1=angle(H1);subplot(2,2,2);plot(w/pi,angH);grid;xlabel('w(frequency in pi units)');ylabel('Ïàλrad/w');subplot(2,2,1);plot(w/pi,magH);grid;xlabel('w(frequency in pi units)');ylabel('·ù¶È|H|');subplot(2,2,3);plot(w/pi,magH1);grid;xlabel('w(frequency in pi units)');ylabel('·ù¶È|H1|');subplot(2,2,4);plot(w/pi,angH);grid;xlabel('w(frequency in pi units)');ylabel('Ïàλrad/w');axis([0,1,-0.8,0]); figure(2);zplane(b,a);实验四、信号的频谱分析程序代码clc,clear;n=0:7;k=0:7;N=8;w=n*(2*pi)/8;x=(0.9*exp(j*pi/3)).^n;X1=[x zeros(1,8)];X2=[X1 zeros(1,16)];XK=x*exp(-j*k'*w);k1=0:15;n1=0:15;w1=n1*(2*pi)/16;XK1=X1*exp(-j*k1'*w1);k2=0:31;n2=0:31;w2=n2*(2*pi)/16;XK2=X2*exp(-j*k2'*w2);w3=0:pi/200:2*pi;X=x*exp(-j*n'*w3);magX=abs(X);angX=angle(X);magXK=abs(XK);angXK=angle(XK);magXK1=abs(XK1);angXK1=angle(XK1);magXK2=abs(XK2);angXK2=angle(XK2);subplot(4,2,1);plot(w3/pi,magX);xlabel('w/pi');ylabel('·ù¶È|X|');grid on;subplot(4,2,2);plot(w3/pi,angX);xlabel('w/pi');ylabel('Ïàλrad/pi'); subplot(4,2,3);stem(n,magXK);xlabel('K');ylabel('·ù¶È|XK|');subplot(4,2,4);stem(n,magXK);xlabel('K');ylabel('Ïàλrad/pi'); subplot(4,2,5);stem(n1,magXK1);xlabel('K1');ylabel('·ù¶È|XK1|'); subplot(4,2,6);stem(n1,magXK1);xlabel('K1');ylabel('Ïàλrad/pi'); subplot(4,2,7);stem(n2,magXK2);xlabel('K2');ylabel('·ù¶È|XK2|'); subplot(4,2,8);stem(n2,magXK2);xlabel('K2');ylabel('Ïàλrad/pi');实验五、IIR数字滤波器设计IIR汉宁窗低通高通低通巴特沃斯通带截止频率wp=0.2pi 通带最大衰减R=1dB阻带截止频率wp=0.35pi 阻带最大衰减R=10dBclc,clear;Wp=0.2;Ws=0.35;Rp=1;Rs=100;[N,Wc]=buttord(Wp,Ws,Rp,Rs);[Bz,Az]=butter(N,Wc)w=0:0.1:pi;[H,w1]=freqz(Bz,Az,w);;ang=angle(H);H=20*log10(abs(H))subplot(4,2,1); plot(w/pi,H) ;gridon ;xlabel('\omega/\pi');ylabel('|H(e^j^\omega)|/dB');title('µÍͨÂ˲¨Æ÷')subplot(4,2,2);plot(w/pi,ang);gridon ;xlabel('\omega/\pi');ylabel('Phase/dB')[Bz1,Az1]=butter(N,Wc,'high')w=0:0.1:pi;[H1,w2]=freqz(Bz1,Az1,w);ang1=angle(H1);H1=20*log10(abs(H1))subplot(4,2,3); plot(w/pi,H1) ;gridon ;xlabel('\omega/\pi');ylabel('|H(e^j^\omega)|/dB');title('¸ßͨÂ˲¨Æ÷')subplot(4,2,4);plot(w/pi,ang1);gridon ;xlabel('\omega/\pi');ylabel('Phase/dB')Wp1=[0.2 0.8];Ws1=[0.35 0.65];[N2,Wc1]=buttord(Wp1,Ws1,Rp,Rs);[Bz2,Az2]=butter(N2,Wc1,'stop')w=0:0.1:pi;[H2,w3]=freqz(Bz2,Az2,w);ang2=angle(H2);H2=20*log10(abs(H2))subplot(4,2,5); plot(w/pi,H2) ;gridon ;xlabel('\omega/\pi');ylabel('|H(e^j^\omega)|/dB');title('´ø×èÂ˲¨Æ÷')subplot(4,2,6);plot(w/pi,ang2);gridon ;xlabel('\omega/\pi');ylabel('Phase/dB')Wp1=[0.2 0.8];Ws1=[0.35 0.65];[N2,Wc1]=buttord(Wp1,Ws1,Rp,Rs);[Bz3,Az3]=butter(N2,Wc1)w=0:0.1:pi;[H3,w4]=freqz(Bz3,Az3,w);ang3=angle(H3);H3=20*log10(abs(H3))subplot(4,2,7); plot(w/pi,H3) ;gridon ;xlabel('\omega/\pi');ylabel('|H(e^j^\omega)|/dB');title('´øͨÂ˲¨Æ÷')subplot(4,2,8);plot(w/pi,ang3);gridon ;xlabel('\omega/\pi');ylabel('Phase/dB')切比雪夫1型通带截止频率wp=0.7pi 通带最大衰减R=1dB阻带截止频率wp=0.5pi 阻带最大衰减R=40dBclc,clear;Wp=0.7;Ws=0.5;Rp=1;Rs=40;[N,Wpo]=cheb1ord(Wp,Ws,Rp,Rs);[Bz,Az]=cheby1(N,Rp,Wpo)w=0:0.1:pi;[H,w1]=freqz(Bz,Az,w);ang=angle(H);H=20*log10(abs(H))subplot(4,2,1); plot(w/pi,H) ;gridon ;xlabel('\omega/\pi');ylabel('|H(e^j^\omega)|/dB');title('µÍͨÂ˲¨Æ÷')subplot(4,2,2);plot(w/pi,ang);gridon ;xlabel('\omega/\pi');ylabel('Phase/dB')[Bz1,Az1]=cheby1(N,Rp,Wpo,'high');w=0:0.1:pi;[H1,w2]=freqz(Bz1,Az1,w);ang1=angle(H1);H1=20*log10(abs(H1))subplot(4,2,3); plot(w/pi,H1) ;gridon ;xlabel('\omega/\pi');ylabel('|H(e^j^\omega)|/dB');title('¸ßͨÂ˲¨Æ÷')subplot(4,2,4);plot(w/pi,ang1);gridon ;xlabel('\omega/\pi');ylabel('Phase/dB')Wp1=[0.2 0.8];Ws1=[0.35 0.65];[N2,Wpo1]=cheb1ord(Wp1,Ws1,Rp,Rs);[Bz2,Az2]=cheby1(N2,Rp,Wpo1,'stop')w=0:0.1:pi;[H2,w3]=freqz(Bz2,Az2,w);ang2=angle(H2);H2=20*log10(abs(H2))subplot(4,2,5); plot(w/pi,H2) ;gridon ;xlabel('\omega/\pi');ylabel('|H(e^j^\omega)|/dB');title('´ø×èÂ˲¨Æ÷')subplot(4,2,6);plot(w/pi,ang2);gridon ;xlabel('\omega/\pi');ylabel('Phase/dB')Wp1=[0.2 0.8];Ws1=[0.35 0.65];[N2,Wpo1]=cheb1ord(Wp1,Ws1,Rp,Rs);[Bz3,Az3]=cheby1(N2,Rp,Wpo1)w=0:0.1:pi;[H3,w4]=freqz(Bz3,Az3,w);ang3=angle(H3);H3=20*log10(abs(H3))subplot(4,2,7); plot(w/pi,H3) ;gridon ;xlabel('\omega/\pi');ylabel('|H(e^j^\omega)|/dB');title('´øͨÂ˲¨Æ÷')subplot(4,2,8);plot(w/pi,ang3);gridon ;xlabel('\omega/\pi');ylabel('Phase/dB')实验六、FIR数字滤波器设计FIR汉宁窗低通高通低通% 采用Hamming窗设计一个带阻FIR滤波器阻带:0~0.5pi,阻带最小衰减Rs=40dB;通带:0.5~pi,通带最大衰减:Rp=1dB。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数字信号处理作业(二) 通信11-2班 陈亚环 201110204017
2.6设x[n]、y[n]、w[n]分别表示长度为N 、M 、L 的三个序列,每一个序列的第一个样本都出现在n=0处,序列x[n]*y[n]*w[n]的长度是多少?
解:序列x[n]*y[n]*w[n]的长度是N+M+L-2
2.9已知x[n]={2, 0, -1, 6, -3, 2, 0},33≤≤-n
y[n]={8, 2,-7 , -3, 0, 1, 1},15≤≤-n
w[n]={3, 6, -1, 2, 6, 6, 1},42≤≤-n
求(a )u[n]= x[n]*y[n] (b )v[n]= x[n]*w[n] (c )g[n]= y[n]*w[n] 解:
(a )u[n]= x[n]*y[n]={16 , 4, -22, 40,-5 ,-27,-33, -6, -1, -3, -1, 2, 0}(b )v[n]= x[n]*w[n]={6, 12, 5, 16, 40,-8, 23, 22, 21, 0, 9, 2, 0} (c )g[n]= y[n]*w[n]={24, 54, 2, -37, 41, -52, -19,-53, -24, 11,12,7, 1}
3.46考虑序列][n(0.4)g[n]n n u =,其DTFT 为)G (e
j ω,利用表3.1给出的对称关系及表3.3给出的定理,不用计算)G (e
j ω,求下面)G (e j ω函数的DTFT 。
(a )、)(e )(e X -j4j 1ωωωj e G =
(b )、)()(e X )5.0(j 2πωω+=j e G
(c )、)(4)(3)(e X j 3ωωωj j e G e G +=
(d )、ωωωd e dG j )()(e X j 4= (e )、)(j )(e X j 5ωωj im e G =
解: (a )、]4[)4.0)(4(]4[][x )
(e )(e X 41j4-j 1--=-=∴=-n u n n g n e G n j 由时移定理可以得到ωωω
(b )、πππωωj j j e n u e n g n e G 5.0n 5.02)5.0(j 2][n(0.4)][][x )
()(e X --+==∴=由频移定理得
(c )、
]
)4.0(43[)4.0(][4n(0.4)-u[n] )4.0(3][4][3][x )
(4)(3)(e X 2n -3j 3n n n j j n n u n n g n g n e G e G ---=-=-+=∴+=ωωω (d) ωωω
d e dG j )()(e X j 4=由频率微分定理可得 ][n(0.4)1][1][x n 4n u j
n g j n == (e )、)(j )(e X j 5ωωj im e G =
][][x 4n g n ca =
3.48设()ωj e X 表示长为9的序列x[n]
x[n]={3, 1, -5, -11, 0, -5 , 3, 3, 8} 35≤≤-n 的DTFT ,不求变换计算()ωj e X 的函数:
(a )()j0e X (b )()πj e X (c )()ωππ
ω
d ⎰-j
e X 解:(a )()3][e
X 35j0-==∑-=n n x (b )()πππππππππj j j j j j j n jn e e e e e e e e n x 32234535j 83351153][e
X ----=-+++---+==∑ (c )()ππωππ
ω10]0[2e X j -==⎰-x d 4.31 解:设)(H FT ][h ),(H FT ][h ),(H FT ][h 332211jw jw jw e n e n e n 为的为的为的,经过加法器后得到的中间量为)(U FT ],[u jw e n 为其
由图p4.2可得:
]
[*][*][1]
[*][][)(H )(H )(H -1)(H )(H X Y )(H )(H )(H X Y )(H )(H )(H -1)
(H )(H U Y Y )(H X U 321213212121321213n h n h n h n h n h n h e e e e e e e e e e e e e e e e e e e e e e e jw jw jw jw jw jw jw jw
jw jw jw jw jw jw jw jw jw jw jw jw jw jw jw -=∴===∴=+=)()()()()()()()
()()(
其中]3[6][]3[2][*][21+---=n n n n h n h δδδ
]
3[6]4[18][40]1[9]1[2]3[7]
5[5]3[2]2[36]4[4]8[10]6[14][*][*][1321++++-++-+---+---+-----=-n n n n n n n n n n n n n h n h n h δδδδδδδδδδδδ
Matlab4.1
% 滑动平均滤波器信号平滑效果%
R = 50;
d = rand(R,1)-0.5;
m = 0:1:R-1;
s = 2*m.*(0.9.^m);
x = s + d';
plot(m,d,'r-',m,s,'b--',m,x,'g:')
xlabel('Time index n'); ylabel('Amplitude') legend('d[n]','s[n]','x[n]');
pause
M = input('Number of input samples = ');
b = ones(M,1)/M;
y = filter(b,1,x);
plot(m,s,'r-',m,y,'b--')
legend('s[n]','y[n]');
xlabel ('Time index n');ylabel('Amplitude')
当M=5时,当M=7时,
当M=9时,
增加滤波器的长度,信号平滑的效果会提升,但会增长平滑后输出与含噪声输入
之间的延迟。