简单的电容测量仪设计
简单的电容测量仪设计
电子技术课程设计评分标准电子技术课程设计任务书设计题目:电容测量仪学生姓名:学号:专业班级: 09自动化一、设计条件1.可选元件(1)双运放芯片(),二极晶体管;(2)电阻、电容、电位器等;(3)引脚插座,排针。
2.可用仪器万用表,示波器,直流稳压电源。
二、设计任务及要求1.设计任务根据电路技术要求的指标,制作一个简易电容测量装置,完成选题电路的设计、装配、焊接与调试。
2.设计要求(1)电容测量的范围:1uf~1000uf,100nf~1uf;(2)选择电路方案,完成对确定方案电路的设计。
包括:计算电路元件参数、选择元件、画出总体电路原理图;(3)用软件仿真整体或部分核心实验电路,得出适当结果;(4)装配、调试作品,按规定格式写出课程设计报告书。
三、时间安排1.第9周:布置设计任务,讲解设计要求、实施计划、设计报告等要求,完成选题。
2.第10~14周:完成资料查阅、作品设计、模拟仿真,领取元件、实际制作。
3.第15~16周:制作并调试设计作品。
4.第17周:作品检查、评价、验收,撰写设计报告。
5.第18周:抽选作品答辩,提交设计报告。
指导教师签名:年月日目录摘要 (1)关键词 (1)1 绪论 (1)2 需求分析 (1)2.1 设计任务及要求 (1)2.1.1 设计任务 (1)2.1.2 设计要求 (1)2.2 设计思想 (1)3 设计方案 (1)3.1 方案论证 (1)3.1.1 文氏桥振荡电路 (2)3.1.2 反向比例运算电路 (3)3.1.3 C/ACV转换电路 (3)3.1.4 有源滤波电路 (4)3.2 工作原理 (5)4 电路详细设计 (5)4.1 文氏桥振荡电路分析 (5)4.2 反向比例运算以及C/ACV转换电路分析 (6)4.3 有源滤波电路分析 (7)5 实验结果 (7)5.1 文氏桥振荡实验 (7)5.2 反向比例电路实验 (8)5.3 有源滤波实验 (8)5.4 结果分析 (9)5.4.1 文氏桥振荡以及反向比例运算电路分析 (9)5.4.2 有源滤波以及C/ACV电路分析 (9)6 结论 (10)6.1 设计成果 (10)6.2 设计特点 (10)6.3 存在问题及改进方法 (10)参考文献 (10)致谢 (10)附录A 电路全图 (11)附录B 元器件清单 (11)题目摘要本文主要通过用容抗法来完成一个电路对电容值的测量。
课程设计-简易电容测量仪
简易电容测试仪一、系统简介本文设计了一套简易电容系统,能够在误差允许的范围内测量普通电容的容值,并在液晶界面上显示相关信息。
二、系统实现原理系统分模拟部分和数字部分。
模拟部分是由集成运放结电阻和所测电容构成的方波发生器,产生的方波频率与所测试的电容具有函数关系。
因此只要知道产生方波的频率,就能反推出电容的容值。
此外,在方波发生器后面我们添加稳压电路和半波整形电路,使得方波的输入幅度在5V 以下且为正值,而不改变方波的频率。
数字部分是FPGA 作为主控的,负责频率的测量以及液晶的显示。
下面介绍测量频率的原理。
FPGA 测量频率有两种算法,就是常说的测频和测周。
测频是在一段闸门时间内对输入信号周期进行计数,而测周则相反,是在输入信号的时段内,对标准信号周期进行计数。
一般的原则是,高频测频,低频测周。
本系统用的是测频的方法。
我们可以用低频时钟的两个上升沿之间的那段时间作为闸门,对上升沿时间内输入信号周期进行计数。
最后通过计算得到频率。
显示部分我们使用1602液晶屏,通过FPGA 状态机驱动显示。
三、系统结构框图四、硬件电路设计 方波发生器 整形电路 FPGA LCD 显示图示电路产生方波的频率符合f=12R1Cln(1+2R3R2)的关系式,其中C为待测电容。
而且经稳压电路和半波整流电路后的幅度为0~3.3V,能直接输入给FPGA,符合要求。
五、程序设计//顶层文件//top.v`include “cepin.v”`include ”1602.v”module top(clkin,datain,rst,clkout,cnt,fre,rem,clk_LCD, LCD_EN,RS,RW,DB8);fre m1(.clkin(clkin),.datain(datain),.clkout(clkout),.cnt(cnt),.fre(fre),.rem(rem)); LCD_Driver m2(.clkin(clkin), .rst(rst),.fre( fre), .clk_LCD(clk_LCD),.LCD_EN (LCD_EN),.RS(RS),.RW(RW),.DB8(DB8));endmodule//测频模块://cepin.vmodule fre(clkin,datain,clkout,cnt,fre,rem);input clkin; //100Minput datain;output reg clkout = 1'b1;output reg [7:0] cnt = 8'b0;output wire [7:0] fre;output wire [7:0] rem;parameter N=100000; //1khzreg [1:0] datatmp = 0; //不初始化计数会仿真错误reg [15:0] clktmp = 0;reg [7:0] cnttmp = 0;//分频always @(posedge clkin)beginif(clktmp == N/2-1)beginclkout <= ~clkout;clktmp <= 16'b0;endelseclktmp <= clktmp+1'b1;end//拼接符号检测上升沿always @(posedge datain)datatmp = {clkout,datatmp[1]}; //捕获沿的方法//对慢时钟上升沿间的输入信号计数,为高频测频always @(posedge datain)beginif(datatmp == 2'b10) //上升沿begincnt <= cnttmp+1'b1; //加1补偿cnttmp <= 8'b0;endelsecnttmp <= cnttmp +1'b1;end//调用除法核计算电容,参数确定,公式确定LPM_DIVIDa m(.denom(…),.numer(…),.quotient(…),.remain(…)); //……endmodule//显示模块//1602.vmodule LCD_Driver(clkin, rst, fre, clk_LCD,LCD_EN,RS,RW,DB8);input clkin,rst,fre; //rst为全局复位信号(高电平有效)output clk_LCD;output LCD_EN,RS,RW;//LCD_EN为LCD模块的使能信号(下降沿触发)//RS=0时为写指令;RS=1时为写数据//RW=0时对LCD模块执行写操作;RW=1时对LCD模块执行读操作output [7:0] DB8; //8位指令或数据总线reg [7:0] DB8;reg [111:0] Data_First_Buf,Data_Second_Buf; //液晶显示的数据缓存reg RS,LCD_EN_Sel;reg [3:0] disp_count; //用来判断是否已经写满一行reg [3:0] state; //状态机格式//状态机编码parameter Clear_Lcd = 4'b0000, //清屏并光标复位Set_Disp_Mode= 4'b0001, //设置显示模式:8位2行5x7点阵Disp_On =4'b0010, //显示器开、光标不显示、光标不允许闪烁Shift_Down =4'b0011, //文字不动,光标自动右移Write_Addr =4'b0100, //写入显示起始地址Write_Data_First= 4'b0101, //写入第一行显示的数据Write_Data_Second= 4'b0110, //写入第二行显示的数据Idel =4'b0111; //空闲状态parameter Data_First = "频率", //液晶显示的第一行的数据//Data_Second = “” ; //液晶显示的第二行的数据assign RW = 1'b0; //RW=0时对LCD模块执行写操作assign LCD_EN = LCD_EN_Sel ? clk_LCD : 1'b0; //通过LCD_EN_Sel信号来控制LCD_EN的开启与关闭//省去分频部分//……always @(posedge clk_LCD or negedge rst)beginif(!rst)beginstate <=Clear_Lcd; //复位:清屏并光标复位RS <=1'b0; //复位:RS=0时为写指令;DB8 <=8'b0; //复位:使DB8总线输出全0LCD_EN_Sel<= 1'b1; //复位:开启夜晶使能信号disp_count<= 4'b0;endelsecase(state) //初始化LCD模块Clear_Lcd:beginstate <=Set_Disp_Mode;DB8 <=8'b00000001; //清屏并光标复位endSet_Disp_Mode:beginstate <=Disp_On;DB8 <=8'b00111000; //设置显示模式:8位2行5x8点阵endDisp_On:beginstate <=Shift_Down;DB8 <=8'b00001100; //显示器开、光标不显示、光标不允许闪烁endShift_Down:beginstate <=Write_Addr;DB8 <=8'b00000110; //文字不动,光标自动右移endWrite_Addr:beginstate <=Write_Data_First;DB8 <=8'b10000001; //写入第一行显示起始地址:第一行第二个位置Data_First_Buf<= Data_First; //将第一行显示的数据赋给Data_First_Buf endWrite_Data_First: //写第一行数据beginif(disp_count== 14) //disp_count等于14时表示第一行数据已写完beginDB8 <=8'b11000001; //送入写第二行的指令RS <=1'b0;disp_count<= 4'b0;//Data_Second_Buf<= Data_Second;Data_Second_Buf<= fre;state <=Write_Data_Second; //写完第一行进入写第二行状态endelsebeginDB8 <=Data_First_Buf[111:104];Data_First_Buf<= (Data_First_Buf << 8);RS <=1'b1; //RS=1表示写数据disp_count<= disp_count + 1'b1;state <=Write_Data_First;endendWrite_Data_Second: //写第二行数据beginif(disp_count == 14)beginLCD_EN_Sel<= 1'b0;RS <=1'b0;disp_count<= 4'b0;state <=Idel; //写完进入空闲状态endelsebeginDB8 <=Data_Second_Buf[111:104];Data_Second_Buf<= (Data_Second_Buf << 8);RS <=1'b1;disp_count<= disp_count + 1'b1;state <=Write_Data_Second;endendIdel:beginstate <=Idel; //在Idel状态循环enddefault: state <= Clear_Lcd;//若state为其他值,则将state置为Clear_Lcd endcaseendendmodule六、测试验证方法在方波发生电路的电容处设计为插孔式,能插上不同容值的电容。
电容测试仪设计【开题报告】
毕业论文开题报告电子信息工程电容测试仪设计一、课题研究意义及现状目前,随着电子工业时代的发展,电子组件的急剧增加,电子的应用范围也越来越广,在应用中我们常常要用到容量大小不一的电容。
电容的测量仅仅用电容表已经满足不了而且不准确,那种高精度的仪器给在校大学生和普通大众使用又不实用。
因此,要测试电容的大小,设计一个可靠,简单的电容测试仪。
电容的测试发展已经很久,方法众多。
传统的电容测量方法有电桥法和谐振法两种。
前者精度高但速度慢;后者电路简单,速度快但精度低。
选择这个课题主要是想研究出一种高效率高精度的电容测试仪。
比较各种电容的测试方法,我选出了把测试电容的模拟量转化为数字量,这种数字量比较容易处理,使仪表实现智能化,避免由于传统的指针读数引起的误差电容的未来发展趋势为电容测量仪朝着小型化、轻型化方向发展。
全面实现数字化和自动化;参数自设定计术;过程自优化技术;故障自诊断技术;相关配套行业朝着专业化,规模化发展,社会分工更明显。
通过这次的课题研究让我把所学的理论与实际相结合起来,提高自己的动手能力和独立思考能力。
在现实社会中,实际的动手能力至关重要,而这种实际能力的培养单靠教学是远远不够的。
二、课题研究的主要内容和预期目标本课题来源于实验室,通过对本课题的研究,对我们今后相关课程的理论教学改革和实验教学改革可以起到积极的推动作用,并打下坚实的基础。
设计和实现一个电容测试仪-电容表。
将测电容变为测频率,即进行C-F转换,然后设计一个频率计,通过测频率F来显示或计算出电容的大小。
1:通过计算机软件的仿真。
2:能测试电容的范围为1000PF~1000uF,测试精度为10%3:通过3位数码管显示。
4:要搭建硬件电路,并进行实测。
三、课题研究的方法及措施实现一个电容测试仪-电容表。
将测电容转变为测频率,即进行C-F转换,然后设计一个频率计,通过测频率F来显示或计算出电容的大小。
电容转频率的电路是利用555芯片的单稳态触发器或电容的充放电规律等,可以把被测电容的大小转换成脉冲的宽度。
简易数字电容测量仪
电子技术课程设计报告——简易数字电容测量仪的设计设计题目:简易数字电容测量仪班级学号:学生姓名:目录一、预备知识.................... 错误!未定义书签。
二、课程设计题目:简易数字电容测量仪的设计错误!未定义书签。
三、课程设计目的及基本要求...... 错误!未定义书签。
四、设计内容提要及说明.......... 错误!未定义书签。
4.1设计内容........................................ 错误!未定义书签。
4.2设计说明........................................ 错误!未定义书签。
五、原理图及原理说明 ........................ 错误!未定义书签。
5.1功能模块电路原理图..................... 错误!未定义书签。
5.2模块工作原理说明 ........................ 错误!未定义书签。
六、调试...........................................................................错误!未定义书签。
七、设计中涉及的实验仪器和工具.... 错误!未定义书签。
八、课程设计心得体会 ........................ 错误!未定义书签。
九、参考文献 ........................................ 错误!未定义书签。
一、预备知识关于数字式简易数字电容测试仪的设计,我们提出了三种设计方法和思路。
在具体操作中,经过对资料的收集、分析,研究与对比,最终选择了简单易懂,而且精度较高的方法,即门控法。
本方法的基本理论是单稳态触发器电路的输出脉宽wt与电容C成正比,再通过一系列的控制,计数,锁存,显示电路实现了对电容的一般测试与数字显示。
在本次数电课程设计的同时,对于中大规模集成电路从认识到分析、再到整体框图设计、单元模块设计、最终到电路的模拟和实际电路的成形有了一定的认识,同时使我们在电子设计方面有了一定的实际动手能力,也为这次数电课程设计打下了坚实的基础。
电容测量仪的课程设计
电容测量仪的课程设计一、课程目标知识目标:1. 学生能够理解电容的基本概念,掌握电容的单位、计算公式及测量方法。
2. 学生能够了解电容测量仪的原理、结构、功能及其使用方法。
3. 学生能够掌握用电容测量仪进行实验操作的基本步骤和注意事项。
技能目标:1. 学生能够正确使用电容测量仪进行电容值的测量,并能够处理实验数据。
2. 学生能够通过实际操作,提高实验操作能力和解决问题的能力。
3. 学生能够运用所学知识,设计简单的电容测量实验,培养创新意识和实践能力。
情感态度价值观目标:1. 学生在实验过程中,能够积极参与,主动探究,培养对物理实验的兴趣和热情。
2. 学生能够关注实验过程中的安全问题,养成良好的实验习惯。
3. 学生通过实验,体会物理学在生活中的应用,增强科学素养和科技强国意识。
课程性质分析:本课程为物理实验课程,旨在通过实际操作,让学生掌握电容测量仪的使用,提高实验操作能力和解决问题的能力。
学生特点分析:学生为八年级学生,具备一定的物理知识基础,但对实验操作相对陌生,需要教师在教学过程中给予指导。
教学要求:教师应注重理论与实践相结合,突出实验操作技能的培养,关注学生的个体差异,因材施教。
通过本课程的学习,使学生能够达到上述课程目标,为后续物理学习打下坚实基础。
二、教学内容1. 理论知识:- 电容的定义、单位、符号及计算公式。
- 电容测量仪的工作原理、结构组成、功能特点。
- 电容测量仪的操作步骤、注意事项及维护保养。
2. 实践操作:- 使用电容测量仪进行电容值测量。
- 电容测量实验数据记录、处理和分析。
- 设计简单的电容测量实验,培养创新意识和实践能力。
3. 教学大纲:- 第一课时:导入电容概念,介绍电容的单位、计算公式,让学生了解电容测量仪的工作原理和结构。
- 第二课时:详细讲解电容测量仪的使用方法,进行实际操作演示,指导学生正确使用测量仪。
- 第三课时:组织学生进行电容测量实验,关注操作步骤和注意事项,培养学生实验操作技能。
简单电阻,电容和电感检验测试仪设计
课程设计任务书学生姓名:专业班级:指导教师:工作单位:信息工程学院题目: 简易电阻、电容和电感测试仪设计初始条件:LM317 LM337NE555 NE5532STC89C52 TLC549 ICL7660 1602液晶要求完成的主要任务:1、测量范围:电阻100Ω-1MΩ;电容100pF-10000pF;电感100μH-10mH。
2、测量精度:5%。
3、制作1602液晶显示器,显示测量数值,并用发光二级管分别指示所测元件的类别。
时间安排:指导教师签名:年月日系主任(或责任教师)签名:__________ 年月日目录摘要 (4)ABSTRACT (5)1、绪论 (7)2、电路方案的比较与论证 (7)2.1电阻测量方案 (7)2.2电容测量方案 (9)2.3电感测量方案 (11)3、核心元器件介绍 (12)3.1LM317的介绍 (12)3.2LM337的介绍 (13)3.3NE555的介绍 (14)3.4NE5532的介绍 (17)3.5STC89C52的介绍 (18)3.6TLC549的介绍 (20)3.7ICL7660的介绍 (23)3.81602液晶的介绍 (24)4、单元电路设计 (26)4.1直流稳压电源电路的设计 (27)4.2电源显示电路的设计 (28)4.3电阻测量电路的设计 (29)4.4电容测量电路的设计 (30)4.5电感测量电路的设计 (31)4.6电阻、电容、电感显示电路的设计 (32)5、程序设计 (33)5.1中断程序流程图 (33)5.2主程序流程图 (34)6、仿真结果 (34)6.1电阻测量电路仿真 (34)6.2电容测量电路仿真 (35)6.3电感测量电路仿真 (36)7、调试过程 (37)7.1电阻、电容和电感测量电路调试 (37)7.2液晶显示电路调试 (38)8、实验数据记录 (38)心得体会 (40)参考文献 (41)附件 (42)附件1:电路图 (42)附件2:元件清单 (43)附件3:程序代码 (45)附件4:实物图 (64)摘要近几年来,电子行业的发展速度相当快,电子行业的公司企业数目也不断增多。
电阻、电容和电感测量仪的设计
XXX 学院电子设计竞赛作品研究与设计报告作品名称:电阻、电容和电感测量仪的设计作者:指导老师:摘要:本系统是基于AT89S52单片机测量电阻、电容和电感的对应振荡电路所产生的频率,从而实现各个参数的测量。
其中电阻和电容是采用555多谐振荡电路产生的,而电感则是根据电容三点式产生的。
AT89S52的定时器可以利用外部时钟源来计数,这里我们将 RCL的测量电路产生的频率作为单片机AT89S52的时钟源,通过计数则可以计算出被测频率在通过该频率计算出各个参数。
此系统一方面实现了测量精度高,测量误差小,另一方面便于使仪表实现自动化,系统能自动识别电阻、电容和电感,并自动进行量程切换及在128*64液晶屏上显示其数值大小。
关键词:AT89S52555芯片74LS197分频电路CD4052多路开关目录1引言 (3)2方案设计 (4)2.1设计思路 (4)2.2方案比较与选择 (4)2.3硬件模块设计 (5) (5) (6) (7) (8) (9) (9) (10)2.4系统软件设计 (10)3数据测试及误差分析 (11)4结论 (13)参考文献 (14)附录 (15)1引言目前,市场上如万用表等测量电阻、电容和电感的元器件数不胜数,但是随着技术的进步,人们对元器件功能、精度和效率等的要求越来越高,为此,我们通过AT89S52单片机设计了测量电阻、电容和电感对应振荡电路所产生的频率实现各个参数的测量。
本系统分为四个部分,第一部分,通过555电路构成的多谐振电路将被测电阻转化为频率信号;第二部分,与第一部分相似也是采用555电路将电容转化为相应的频率信号输出;第三部分,采用电容的三点式振荡电路将电感转化为与之对应的频率信号输出;最后一部分,也就是显示部分,具体的讲就是用MSP430单片机运用一定的软件系统将输入的频率信号转化为相应的被测量的一个过程。
这四大版块共同构成了建议电阻电容和电感测试仪的整个电路系统。
简易电容测试仪的设计
仪 的 设计 与 实现 【 J ] . 硅谷 , 2 0 l l ( 1 ) : 4 7 .
[ 2 】郝鹏 , 王大明. 基 于5 1 单片机的电阻、 电
容、 电感 测 试仪 [ J ] . 科 技致 富 向导 , 2 0 1 1
( 2 0 ) : 9 6 .
【 3 ]渠艳 霞 . 基 于 单 片 机控 制 的 电阻 电 容 测 试 仪的 设计 [ J 】 . 总裁, 2 0 0 9 ( 4 ) : 1 4 1 —1 4 2 . [ 4 ]徐 思 成 . 一 种 基 于单 片 机 智 能 电 容测 试
大小 , 采用4 位7 段 数 码 管进 行 显 示 。 为 增加
数 码 管 亮度 , 选 取7 4 L S 2 4 5 芯 片 增加 驱 动 电
流。
图1 多谐 振荡 器原 理 图
被
_ . j \ I \ 】 多谐振荡 l :
。
—
I \I : : : 极管指示灯 I
①作者 简 介 : 黄璞( 1 9 8 2 一) , 女, 汉, 湖 北 省宜 昌市 人 , 鄂 东 职 业技 术 学 院 , 讲师 , 主要 从 事 工 业 控 制 与检 测 技 术方 面 研 究 。 黎会 鹏( 1 9 8 1 一) , 男, 汉, 湖北省 荆门 市人 , 鄂东 职业 技术 学院 , 讲师, 主要 从事 嵌入 式 系统设 计方 面研 究 。
圆圆
ห้องสมุดไป่ตู้
动 力 与 电 气 工 程
简易 电容 测 试 仪 的设 计 ①
黄璞 黎会鹏 ( 鄂 东职业 技术 学院机 电系 湖北黄 冈
4 3 8 0 0 0 )
摘 要: 介 绍 了一种基于A T8 9 c 5 1 单 片机的电容测试 仪的硬 件结 构和设计思 想 。 该方案是根. tN E5 5 5 芯 片多谐振 荡电路 的应 用特点 , 把电 容的大小转 变成频率的大 小, 进 而可 以通过 单片机 对输 出的频率进行 测量 , 再通 过该频率计算 出被 测参数 。 该 测量仪具有 结构简单, 成本 低廉, 精度 较 高 , 方便 实 用等特 点 。 ’ 关键 词 : 电 容 A T 8 9 C 5 1 N E5 5 5 中 图分 类号 : TP 3 0 4 文 献标 识码 : A 文 章编 号 : 1 6 7 2 -3 7 9 1 ( 2 0 1 3 ) 0 8 ( b ) -0 1 2 2 —0 2
简易电阻、电容和电感测试仪设计.(DOC)
元器件参数测量仪的设计一、课程目的1.加深对电路分析、模拟电路、数字逻辑电路、微处理器等相关课程理论知识的理解;2.掌握电子系统设计的基本方法和一般规则;3.熟练掌握电路仿真方法;4.掌握电子系统的制作和调试方法;二、设计任务1.设计并制作一个元器件参数测量仪。
2.(基本要求)电阻阻值测量,范围:100欧~1M欧;3.(基本要求)电容容值测量,范围:100pF~10 000pF;4.(基本要求)测量精度:正负5% ;5.(基本要求)4位显示对应数值,并有发光二极管分别指示所测器件类型;6.(提高要求)增加电感参数的测量;7.(提高要求)增加三极管直流放大倍数的测量;8.(提高要求)扩大量程;9.(提高要求)提高测量精度;10.(提高要求)测量量程自动切换;三、任务说明:电阻电容电感参数测量常用电桥法,该方法测量精度,但是电路复杂。
也可为简化起见,电阻测量也可采用简单的恒流法,电容采用555定时电路;1、绪论在现代化生产、学习、实验当中,往往需要对某个元器件的具体参数进行测量,在这之中万用表以其简单易用,功耗低等优点被大多数人所选择使用。
然而万用表有一定的局限性,比如:不能够测量电感,而且容量稍大的电容也显得无能为力。
所以制作一个简单易用的电抗元器件测量仪是很有必要的。
现在国内外有很多仪器设备公司都致力于低功耗手持式电抗元器件测量仪的研究与制作,而且精度越来越高,低功耗越来越低,体积小越来越小一直是他们不断努力的方向。
该类仪器的基本工作原理是将电阻器阻值的变化量,电容器容值的变化量,电感器电感量的变化量通过一定的调理电路统统转换为电压的变化量或者频率的变化量等等,再通过高精度AD采集或者频率检测计算等方法来得到确定的数字量的值,进而确定相应元器件的具体参数。
2、电路方案的比较与论证2.1电阻测量方案方案一:利用串联分压原理的方案V CC GNDR x R0图2-1串联分压电路图根据串联电路的分压原理可知,串联电路上电压与电阻成正比关系。
简易数字电容测量仪设计
简易数字电容测量仪设计引言电容是电子电路中常见的元件之一,用于存储电荷和调节电路的频率响应。
因此,对电容进行准确测量是电子工程师和爱好者常常面临的挑战之一。
本文将介绍一种简易数字电容测量仪的设计,该仪器可以实现对电容的快速、准确测量。
一、设计原理数字电容测量仪的设计基于计时电路的原理。
当一个已知电容通过一个已知电阻充电或放电时,可以测量所需的时间来计算电容的值。
具体而言,我们需要设计一个计时电路,通过测量电容充电或放电所需的时间,然后使用公式 C = t / (R * ln(2)) 来计算电容的值。
二、硬件设计1. 电路图我们的数字电容测量仪的电路图如下所示:2. 元件选择为了简化设计,我们选择了一些常用的元件。
电阻选用1kΩ的标准电阻,电容选用10μF的陶瓷电容。
此外,我们还需要一个微控制器来处理计时和计算电容值。
3. 电路实现根据电路图,我们可以使用常见的电子元件将电路实现。
首先,将电容和电阻按照图中的连接方式进行连接。
然后,将微控制器与电路连接,以便进行计时和计算。
最后,将电路供电,即可完成硬件的设计。
三、软件设计1. 计时和计算我们需要编写一个程序来实现计时和计算电容值。
首先,我们需要初始化计时器,并设置为充电或放电模式。
然后,我们可以使用计时器来测量所需的时间,并存储在一个变量中。
最后,我们使用上述公式来计算电容的值。
2. 显示结果为了方便使用者查看测量结果,我们可以在液晶显示屏上显示电容的值。
我们需要编写一个程序来将计算得到的电容值转换为适当的格式,并将其显示在液晶屏上。
四、实验结果与讨论我们通过使用实际的电容进行测试,验证了我们设计的数字电容测量仪的准确性和可靠性。
实验结果表明,我们的测量仪可以精确地测量电容的值,并将其显示在液晶屏上。
五、总结本文介绍了一种简易数字电容测量仪的设计。
通过使用计时电路和微控制器,我们可以实现对电容的快速、准确测量。
该仪器的设计原理简单,硬件和软件设计也相对简单,适合初学者和爱好者使用。
电容测量仪的设计
电容测量仪的设计金爱华(辽宁省本溪广播电视大学 本溪 117000)摘 要 提出了利用双斜率积分原理实现电容—周期变换,进而求出被测电容值的新方案,着重讨论了电容—周期变换原理。
关键词 双斜率积分 模拟开关 运算放大器 电容—周期变换是电容数字化测量技术的核心环节。
本文提出的利用电容—周期变换求出被测电容的方案基于双斜率积分原理,其组成电路简单、准确度高,同时具有很强的抗共模干扰性能。
该测量电路较容易组成数字电容表。
采用双斜率积分原理的测量电路如图1所示。
假定被测电容Cx 两端初始电压等于零,A 1、A 2为理想的运算放大器,则可画出A 1、A 2输出电压的波形,如图2所示。
图1 电容测量电路图图2 积分器及比较器输出波形根据图2所示波形,我们可作如下分析:当模拟开关S 断开时,被测电容对E 2进行积分,这一积分过程为定值积分过程,将一直积分到使A 1输出U A 1=E 1为止。
设此定值积分阶段积分时间为T 1,则其关系式为:U A 1=-1R 2C x∫T 1E 2d t =-E 2T 1R 2C x=E 1(1) 整理可得 T 1=-E 1R 2C xE 2(2)T 1阶段结束后,比较器A 2翻转,其输出跳变为低电平,经反相器F 后控制模拟开关S 闭合,使负电压E 2接入积分回路。
由于E 1R 1>E 2R 2,故通过C x的积分电流极性将发生变化,使得积分器朝相反方向积分,这时其输出电压U A 1将从E 1值经过一段时间后被积分至0V 。
设这段反向积分时间为T 2,则有关系式:E 1-1C x∫T 2(E 2R 2+E 1R 1)d t =0(3)整理可得:T 2=E 1R 1R 2C x R 1E 2+R 2E 1(4) 设比较器输出电压信号周期为T ,则由(2)、(4)两式得:T =T 1+T 2=-E 1R 2C x E 2+E 1R 1R 2C xR 1E 2+R 2E 1(5)或C x =-E 2(R 1E 2+R 2E 1)TE 21R 22(6)将(5)式取微分,得到d T =d T 1+d T 2=(-E 1R 2E 2+E 1R 1R 2R 1E 2+R 2E 1) d C x (7)或S =d T d C x =-E 1R 2E 2+E 1R 1R 2R 1E 2+R 2E 1(8)(下转第24页) 12第2期金爱华:电容测量仪的设计施。
简易电容电感测量仪的制作
收稿日期:2005—09—10作者简介:纪丽凤(1971-),女,辽宁营口市人,工程师,主要从事电子技术教学研究.【学术研究】简易电容电感测量仪的制作纪丽凤1,张廷辉2(11辽宁信息职业技术学院,辽宁辽阳111000;21辽河油田,辽宁盘锦124000) 摘 要:介绍一种简易电容电感测量仪的原理、制作与使用注意事项.关键词:交流电桥法;信号源;平衡指示器;振荡器中图分类号:T M938 文献标识码:A 文章编号:1008-5688(2005)04-0017-01电容和电感都是构成电路的最基本元件,测量电容和电感可以用伏安计法、电桥法、谐振法等多种方法.本文中设计的电容电感测量仪采用交流电桥法,具有测量范围较宽、精度较高、工作稳定、使用方便的特点,而且制作调试简单容易.1 电容电感测量仪电路组成 电容电感测量仪既可以测量电容,又可以测量电感,由一个测量选择开关决定.电容测量范围为:5pF ~100μF ,共分7档量程;电感测量范围为:5μH ~100H ,共分7档量程;可通过量程开关选择.各档位测量范围见表1.图1为电容电感测量仪电路原理图.电路中使用了4个集成运算放大器,分别构成信号源和平衡指示器.电阻R 10~R 17、电位器R P 、电容器C 5以及被测电容或电感等构成测量电桥.S 1是量程开关,S 2是测量选择开关.构成电桥桥臂的阻容元件阻值或容量必须准确,以保证测量精度. 表1S 1档位测C 测L 1100μF 011mH 210μF 1mH 31μF 10mH 31μF 10mH 4011μF 100mH 50101μF 1mH 61000pF 10H 7100pF 100H 2 测量原理分析211 测量原理测量原理如图2所示.被测元件阻抗Z X 与已知元件阻抗Z A 、Z B 、Z C 构成电桥的4个臂,电桥的一组对角线A 、B 间接交流信号源,另一组对角线C 、D 间接平衡指示器.当Z X Z C =Z A Z B 时,电桥平衡,C 、D 间电(下转75页)第7卷第4期2005年10月 辽宁师专学报Journal of Liaoning T eachers College V ol 17N o 14Oct 12005明:实验组台阶指数成绩高于对照组.说明登山运动处方在实施过程中主要是走、跑交替的耐力性运动,它可以有效提高实验对象的耐力素质.增强学生的心肺功能.31113 登山运动处方对身体素质指标的影响实验前后,实验组在50m 、800m 、腰、腹和下肢各关节灵活性、坐位体前屈几方面素质上有显著提高.其中在耐力和灵活性上呈非常显著性差异,这说明了学生平时参加运动的机会很少,尤其在速度、耐力和灵敏素质方面的锻炼较少.这样一旦运动起来很容易表现出显著性.同时,由于高职学生的专业特点,更加约束了他们参加运动的时间和效果.因此,以灵活多样的运动形式和内容,适时地增加学生参加运动的时间和机会,能够全面发展学生的身体素质.312 登山运动处方对人文知识掌握的影响本实验目的之一是通过本地域登山运动处方的实施,提高学生人文素质.从实验前后28名学生试卷成绩分析来看,说明了对人文知识的掌握还须有一个认识与强化的过程,通过实验组和对照组的成绩提高的差值来看,所施加学生当导游员的因素(导游员准备、导游等过程),也使学生的综合能力得到了充分地培养与提高.比如:语言表达能力,收集和处理材料的能力、随机应变的能力等.同时,在人文知识掌握的全过程中,注重学生智商和情商的有机融合,而同学们人文素质的积累就是情商的本质表现,这个智,的确达到了本次实验的目的.4 结论(1)本论文所设计的登山运动处方可改善高职学生身体状况,减少腹部、腰部皮褶厚度;可明显提高台阶指数,增强心肺功能;学生的耐力、灵活性和下肢爆发力得到明显改善.(2)在登山运动处方实验中,学生当导游员,可以强化学生对本地域人文知识的掌握.提高高职学生热爱家乡,为本地区经济建设服务的意识.(责任编辑 刘国忠,朱成杰)(上接17页)位差为零.由于Z A 、Z B 、Z C 已知,所以可测出Z X .212 电容的测量测量电容采用惠斯顿电桥,见图3.C X 为被测电容,C 0为标准电容,R A 、R B 为标准电阻,U 是交流信号源,P 是做平衡指示用的电流表.电桥平衡条件为C X R A =C 0R B ,当电桥平衡时,C X =(C 0R B )/R A .213 电感的测量测量电感采用马克斯韦电桥,如图4所示.L X 为被测电感,C 0为标准电容,R A 、R B 为标准电阻.电桥平衡条件为L X /C 0=R A R B ,当电桥平衡时,L X =C 0R A R B .为了简化电路、方便使用,本测量仪忽略了电容电感的损耗问题,完全可以满足业余测量对精度的要求.214 信号源和平衡指示器原理集成运放IC l -1等构成文氏桥振荡器,产生116kH z的正弦波作为测量电桥的信号源(见图5).IC i -2为缓冲放大器,以隔离电桥电路对振荡器的影响.IC 2-1和IC 2-2构成两级放大器,将电桥C 、D 间检测到的信号进行放大,总增益68dB (2500倍),使测量仪具有很高的检测灵敏度,易于调节电桥平衡,提高测量精度.放大器的输出接压电蜂鸣器B ,作为电桥平衡指示.电桥完全平衡时,蜂鸣器无声.信号源输出经变压器T 1耦合至电桥AB 间,电桥CD间的检测信号经变压器T 2耦合至平衡指示器,这样信号源与平衡指示器便可以有公共接地点,以便用一组直流电源供电,示意图如图6所示.(责任编辑 王立俊,王 巍)李雪松,等高职学生登山运动处方实践研究75 。
简易电阻、电容和电感测试仪设计原理
简易电阻、电容和电感测试仪设计原理简易电阻、电容和电感测试仪一、任务设计并制作一台数字显示的电阻、电容和电感参数测试仪,示意框图如下:二、要求1.基本要求.基本要求(1)测量范围:电阻100Ω~1M Ω;电容100pF 100pF~~10000pF 10000pF;电感;电感100μH ~10mH 10mH。
(2)测量精度:±5% 。
)测量精度:±5% 。
(3)制作4位数码管显示器,显示测量数值,并用发光二极管分别指示所测元件的类型和单位。
三、设计步骤三、设计步骤1、分模块测量电路的设计原理(1)电阻测量电路的基本原理电阻测量仪的关键技术是电阻测量仪的关键技术是R X /V 转换器,转换器,R R X 即所需测量的电阻,无论电路多么复杂,总可以把与R X 相并联的元件等效为两只互相串联的电阻R 1和R 2。
由此构成三角形电阻网络,其原理图如下所示:上图中R 0为量程电阻,只要使R 1两端呈等电位,此时U R1=0=0,则,则R 1相当于开路,路,R R 2变成运放的负载电阻,变成运放的负载电阻,R R 1和R 2就不起分流作用,这样即可直接测就不起分流作用,这样即可直接测 R R X 的阻值。
的阻值。
E E 为测试电压,为测试电压,I I S 为测试电流,设流过R X 和R 1的电流分别为I X 和I 1,根据基尔霍夫定律可知:,根据基尔霍夫定律可知:I S =I X + I 1又根据“虚地”原理,则又根据“虚地”原理,则U R1= I 1 R 1=0故I 1=0=0,可忽略不计。
由此得到:,可忽略不计。
由此得到:,可忽略不计。
由此得到:I S =I X再考虑到C 点接地,则D 点为“虚地”,因此:点为“虚地”,因此:I S=E/ R0进而推导出:进而推导出: U X= I X R X= I S R X= (E/ R0)·R X显然,只要能得到RX 两端的电压UX,就能求出RX的值,即:的值,即: R X= U X/(E/ R0)= U X R0/ E这就是电阻测量的基本原理。
简易数字式电阻电容和电感测量仪设计方案
简易数字式电阻电容和电感测量仪设计方案设计一个简易的数字式电阻、电容和电感测量仪可以分为以下几个步骤:1.设计测量电路:首先,需要设计一个测量电路,电路可以使用基本的电压和电流测量技术。
电阻测量可以使用恒流法或恒压法,电容测量可以使用充放电法或交流法,电感测量可以使用交流法。
根据选择的测量方法设计合适的电路。
2.选取合适的传感器:为了实现数字化测量,需要选择合适的传感器。
电阻可以使用电阻表,电容可以使用电容计,电感可以使用电感表。
根据需要选择合适的传感器并进行调试和校准。
3.连接传感器与微控制器:将选取的传感器与微控制器进行连接,确保传感器的输出信号可以被微控制器读取。
可以使用模拟输入通道或数字接口来连接传感器和微控制器。
4.编写微控制器程序:根据测量电路和传感器的特性,编写微控制器的程序,实现测量功能。
程序中需要包括对传感器信号的处理、测量结果的计算和存储等功能。
5.设计用户界面:为了方便使用,可以设计一个简单的用户界面。
可以使用液晶显示屏、按键或触摸屏等组件来实现用户界面。
用户界面可以用来选择测量类型、显示测量结果等。
6.调试和测试:将硬件和软件部分进行集成,并进行调试和测试。
确保测量准确性和可靠性,对测量仪进行必要的校准和调整。
总结:设计一个简易的数字式电阻、电容和电感测量仪需要选择合适的测量电路和传感器,采集传感器信号并经过微控制器处理、计算和显示。
同时需要设计合适的用户界面,实现用户操作和结果显示。
最后进行调试和测试,确保测量仪的准确性和可靠性。
简易电容值测量仪
简易电容值测量仪设计2012.12.目录第一部分系统设计1.1 设计题目及要求 (1)1.2 总体设计方案 (2)1.2.1 设计思路 (3)1.2.2 方案论证与比较 (5)第二部分单元电路设计2.1标准脉冲信号电路 (6)2.1.1标准脉冲信号电路工作原理2.1.2标准脉冲信号电路元件的选取与计算2.2 多谐振荡器电路 (7)2.2.1标准脉冲信号电路工作原理2.2.2标准脉冲信号电路元件的选取与计算2.3 锁定电路 (7)2.3.1锁定电路工作原理2.3.2锁定电路元件的选取与计算2.4 计数、锁存、译码和数码管显示电路 (7)2.4.1计数、锁存、译码和数码管显示电路工作原理2.4.2计数、锁存、译码和数码管显示电路元件的选取与计算2.5 指示灯显示电路 (7)2.5.1指示灯显示电路工作原理2.5.2指示灯显示电路元件的选取与计算第三部分整机电路3.1 整机电路图 (7)3.2 元件清单 (8)第四部分性能指标的测试4 电路实现的功能和系统使用说明 (13)1.1 设计题目及要求设计一个可测量电容值的电路。
要求: 1.电容测量范围为1000PF-2UF 。
2.能实现电容的测试与显示。
3.电源采用5V 或±5V 供电。
1.2总体设计方案 1.2.1设计思路题目的关键步骤就是如何把电容值转变成为数字量,即利用受电容影响的电路把电容值转变为可测量,可处理的物理量和数字量,然后显示。
1.2.2方案论证与比较从设计思路出发,可以提出以下两个方案:方案1:把锯齿波信号输入到以被测电容为微分电容的微分电路,得出电容C x 和输出电压U x 之间的线性关系,经过整流滤波后,利用A/D 转换把电压量以数字量形式表现出来,最后用显示电路显示。
,如图1-2-1所示图1-2-1方案2:利用多谐振荡器接成单稳态触发器产生由外接电容决定其脉冲宽度的方波信号,用被测电容作为这个外界电容,即可得出被测电容C x 和脉冲宽度t w 之间的关系,将t w 用计数器转为数字量,通过译码后用显示电路显示出来,如图1-2-2所示 计数器方案论证:经过方案的初步比较,方案1采用A/D转换由模块精度确定,加之模拟模拟信号的不稳定性,可能会造成较大误差,而且A/D转换模块价格相对较高;方案2电路以及思路简单,实现精度可控,所以采用方案2。
便携式电容器测试仪的设计
便携式电容器测试仪的设计摘要:利用变频逆变电源配合钳形电流表构成简洁、实用电容测试仪,并介绍其技术指标和使用特点。
0 引言现代电力系统中,广泛采用电容器作为补偿负序、滤波、抽压等装置。
为了增加耐压和容量,电容器往往采取串并联的方法,一旦电容串(并)联连接,对外就呈现出总的容量值,普通的电容测量仪器就无法在线测量出其中某个电容的数值。
要想测得某个电容的容量,就要把该电容从并联系统中拆除下来,实际操作非常复杂,并在恢复时,极易出现保险断裂和接触不良的现象,造成电容器系统投入后,差压保护动作跳闸。
基于此,介绍一种实用电容器测试仪。
1 电容测试仪原理为了实现不拆线、模拟在线运行状态的测量,可以在母线上( 如图1 ,AI 、AI I ) 对并联电容施加交流电压,然后利用电流钳形表分别测量每个被测电容的电流,通过公式X = U /I 计算出电容的容抗;还可以根据公式R x= X c /t a n ( 9 0 °-q) 计算出电容的损耗( R 是电容器的电阻,q是施加电压和电容电流之间的相位角) ,从而判别电容器缺油、碳化以及受潮等情况。
1.1施加电压根据计算,对于牵引供电系统现在使用的4.51F的电容,要想取得1A的电流,施加的工频电压在700 V以上,为了保证操作者的人身安全和测试仪器的安全,必须设法降低施加电压。
设计中采用了变频的方式,如采用100Hz电压时,对于同一电容器,施加电压可降低2倍;采用200Hz电压时,可降低4倍。
为了保证电容器测试后,不储存电荷,施加电压也不宜过高,选用12V。
对1“F电容,在5OHz时的容抗为3. 18k12,采用12V电压时,钳形表所测得的电流约为4mA。
这样用钳形表测量4mA电流时,输出精度就是电容测量的精度。
普通电流表要保证测量毫安级电流的准确度是很容易做到的,但对于钳形电流表来说,却是非常困难的,要受到钳口的大小、闭合缝隙以及导线在钳口中的位置等诸多因素的影响。
电容测量仪课程设计
电容测量仪课程设计一、课程目标知识目标:1. 学生能够理解电容测量仪的基本原理,掌握其操作方法和使用步骤。
2. 学生能够描述电容测量仪在电子测量中的应用,了解不同类型电容器的特点。
3. 学生能够运用电容测量仪测量电容器的电容值,并准确读取数据。
技能目标:1. 学生能够正确操作电容测量仪,进行电容器的测量实验。
2. 学生能够通过观察和记录实验数据,分析电容器的性能和影响因素。
3. 学生能够运用解决实际问题的能力,利用电容测量仪进行电子电路的检测和故障排查。
情感态度价值观目标:1. 学生培养对电子测量学科的兴趣,激发探索科学原理的积极性。
2. 学生养成严谨、细致的实验操作习惯,注重团队合作,互相交流和分享实验心得。
3. 学生认识到电容测量技术在现代电子技术中的重要性,培养对科技创新的尊重和关注。
课程性质分析:本课程为电子测量学科的一部分,侧重于实践操作和实际应用。
课程设计紧密结合教材内容,以电容测量仪为教学载体,提升学生对电子测量技术的理解和掌握。
学生特点分析:考虑到学生所在年级的特点,他们具备一定的电子基础知识,但对电容测量仪的操作和应用尚不熟悉。
因此,课程目标旨在通过实践操作,使学生将理论知识与实际应用相结合。
教学要求:1. 教师应提供明确的指导,确保学生正确操作电容测量仪。
2. 教学过程中注重启发式教学,引导学生主动思考、分析和解决问题。
3. 教学评估以学生的实际操作能力和实验结果为主要依据,关注学生在知识、技能和情感态度价值观方面的综合发展。
二、教学内容本章节教学内容紧密围绕课程目标,依据教材相关章节进行组织与安排,确保科学性和系统性。
1. 电容测量仪原理:- 电容测量仪的工作原理及其分类- 电容测量仪的电路组成与功能- 电容测量仪的技术参数及其影响2. 电容测量仪操作方法:- 电容测量仪的连接与准备- 电容测量仪的操作步骤与注意事项- 电容测量仪的校准与维护3. 电容器测量实验:- 不同类型电容器的特点与应用- 电容器的电容值测量方法- 实验数据的记录与分析4. 教学大纲安排:- 第一课时:电容测量仪原理及操作方法介绍- 第二课时:电容测量仪的实际操作与练习- 第三课时:电容器测量实验及数据记录与分析5. 教学内容进度:- 第一周:电容测量仪原理及其操作方法- 第二周:电容器测量实验及数据分析- 第三周:复习与巩固,解决学生疑问教学内容与教材关联性:本章节教学内容与教材中关于电子测量、电容测量仪及电容器测量的章节紧密相关,确保学生在学习过程中能够结合教材内容,形成完整的知识体系。
stm32电容测量仪实验报告
stm32电容测量仪实验报告一、引言电容是一种重要的电子元件,广泛应用于电路中的滤波、耦合、调谐等功能。
为了准确测量电路中的电容值,我们设计并制作了一款基于STM32微控制器的电容测量仪。
本实验报告将详细介绍实验的背景、设计原理、实验步骤和结果分析。
二、实验背景在电子电路实验中,常常需要测量电容的数值。
传统的测量方法主要依赖于万用表或LCR表,但它们的使用方法相对复杂且不够灵活。
为了解决这一问题,我们选择使用STM32微控制器来设计一款简单易用的电容测量仪。
三、设计原理本实验采用的是简单的RC模型,通过测量电容充放电的时间来计算电容值。
具体的工作原理如下:1. 首先,我们通过一个位于STM32开发板上的定时器来产生一个固定频率的方波信号。
2. 然后,将方波信号经过一个电阻与待测电容相连,形成一个RC电路。
3. 当方波信号上升沿来临时,开始充电,测量时间直至电压达到一定阈值(例如1/2的工作电压)。
4. 当方波信号下降沿来临时,开始放电,测量时间直至电压降至一定阈值(例如1/2的工作电压)。
5. 根据充电和放电的时间,可以计算出电容值。
四、实验步骤1. 连接电路:将STM32开发板上的定时器输出端口与电阻和待测电容相连。
2. 程序设计:使用STM32开发板上的开发环境编写程序,配置定时器的工作模式和频率,并编写计算电容的算法。
3. 烧录程序:将程序烧录到STM32开发板上。
4. 进行测量:将待测电容连接到电路上,启动测量程序,观察测量结果。
五、实验结果与分析我们使用了几个不同值的电容进行了实验测量,并将测量结果与实际值进行了比较。
实验结果表明,我们设计的电容测量仪能够准确测量电容的数值,并且测量误差较小。
然而,由于电阻的存在,测量结果可能会受到电阻的影响,所以在实际应用中需要进行一定的修正。
六、结论本实验成功设计并制作了一款基于STM32微控制器的电容测量仪。
实验结果表明,该测量仪能够准确测量电容的数值,并具有较低的测量误差。
电容测量仪课课程设计
电容测量仪课课程设计一、教学目标本课程旨在通过电容测量仪的相关知识,让学生掌握电容测量仪的基本原理、使用方法以及相关的应用场景。
在知识目标方面,要求学生了解电容测量仪的基本结构,掌握其工作原理,并能够运用电容测量仪进行基本的电容值测量。
在技能目标方面,要求学生能够熟练操作电容测量仪,掌握数据处理的基本方法,并能够对测量结果进行分析和解释。
在情感态度价值观目标方面,通过实验操作,培养学生的动手能力,提高其对物理实验的兴趣,使其能够主动探索科学知识。
二、教学内容本课程的教学内容主要包括电容测量仪的基本原理、使用方法以及相关的应用场景。
首先,介绍电容测量仪的基本结构,包括各个部分的功能和相互关系。
然后,讲解电容测量仪的工作原理,包括电容的定义、测量方法以及测量仪器的工作流程。
最后,通过实际操作,让学生熟悉电容测量仪的使用方法,掌握数据处理的基本方法,并对测量结果进行分析和解释。
三、教学方法为了激发学生的学习兴趣和主动性,本课程将采用多种教学方法。
首先,通过讲授法,向学生传授电容测量仪的基本原理和相关知识。
其次,通过讨论法,让学生参与到课堂讨论中,加深对知识的理解和记忆。
然后,通过案例分析法,让学生分析实际案例,提高其应用知识解决问题的能力。
最后,通过实验法,让学生亲自动手操作,培养其动手能力和实验技能。
四、教学资源为了支持教学内容和教学方法的实施,我们将选择和准备适当的教学资源。
教材方面,我们将使用《电容测量仪》教材,为学生提供基础知识。
参考书方面,我们将推荐《电容器原理与应用》等书籍,供学生深入研究。
多媒体资料方面,我们将准备相关的实验视频和操作演示,帮助学生更好地理解知识。
实验设备方面,我们将准备电容测量仪和相关实验器材,让学生能够进行实际操作。
五、教学评估为了全面、客观、公正地评估学生的学习成果,我们将采用多种评估方式。
平时表现方面,将通过观察学生的课堂表现、参与度等来评估其学习态度和理解程度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电子技术课程设计评分标准电子技术课程设计任务书设计题目:电容测量仪学生姓名:学号:专业班级: 09自动化一、设计条件1.可选元件(1)双运放芯片(),二极晶体管;(2)电阻、电容、电位器等;(3)引脚插座,排针。
2.可用仪器万用表,示波器,直流稳压电源。
二、设计任务及要求1.设计任务根据电路技术要求的指标,制作一个简易电容测量装置,完成选题电路的设计、装配、焊接与调试。
2.设计要求(1)电容测量的范围:1uf~1000uf,100nf~1uf;(2)选择电路方案,完成对确定方案电路的设计。
包括:计算电路元件参数、选择元件、画出总体电路原理图;(3)用软件仿真整体或部分核心实验电路,得出适当结果;(4)装配、调试作品,按规定格式写出课程设计报告书。
三、时间安排1.第9周:布置设计任务,讲解设计要求、实施计划、设计报告等要求,完成选题。
2.第10~14周:完成资料查阅、作品设计、模拟仿真,领取元件、实际制作。
3.第15~16周:制作并调试设计作品。
4.第17周:作品检查、评价、验收,撰写设计报告。
5.第18周:抽选作品答辩,提交设计报告。
指导教师签名:年月日目录摘要 (1)关键词 (1)1 绪论 (1)2 需求分析 (1)2.1 设计任务及要求 (1)2.1.1 设计任务 (1)2.1.2 设计要求 (1)2.2 设计思想 (1)3 设计方案 (1)3.1 方案论证 (1)3.1.1 文氏桥振荡电路 (2)3.1.2 反向比例运算电路 (3)3.1.3 C/ACV转换电路 (3)3.1.4 有源滤波电路 (4)3.2 工作原理 (5)4 电路详细设计 (5)4.1 文氏桥振荡电路分析 (5)4.2 反向比例运算以及C/ACV转换电路分析 (6)4.3 有源滤波电路分析 (7)5 实验结果 (7)5.1 文氏桥振荡实验 (7)5.2 反向比例电路实验 (8)5.3 有源滤波实验 (8)5.4 结果分析 (9)5.4.1 文氏桥振荡以及反向比例运算电路分析 (9)5.4.2 有源滤波以及C/ACV电路分析 (9)6 结论 (10)6.1 设计成果 (10)6.2 设计特点 (10)6.3 存在问题及改进方法 (10)参考文献 (10)致谢 (10)附录A 电路全图 (11)附录B 元器件清单 (11)题目摘要本文主要通过用容抗法来完成一个电路对电容值的测量。
根据参考文献可以得出其基本设计思想是:将一个频率一定的正弦波信号作用于被测电容C x,利用所产生的容抗X c实现C/ACA转换,将X c转换为交流电压;再通过测量交流电压的值来获得C x的电容量。
利用此方法测量范围可自己来调节,可以测量从100nf~1uf,1uf~1000uf的电容值,得到最后输出的正弦波来算得电容C x的值,且测量结果较为准确。
关键词电容测量电路;文氏桥振荡电路;反向比例运算电路;C/ACV转换电路;有源滤波电路。
1 绪论储存电荷的容器,是我们在实验中常见的元器件。
它是由两片靠得较近的金属片,中间再隔以绝缘物质而组成的。
绝缘材料不同,可制成各种各样的电容。
:云母、瓷介、纸介,电解电容等。
在构造上,又分为固定电容和可变电容。
容器对直流电阻力无穷大,即电容器具有隔直流作用。
电容对交流电的阻力受交流电频率影响,即相同容量的电容对不同频率的交流电呈现不同的容抗。
电容不像电阻那样容易测量其值的大小,有些时候我们就希望通过某种仪器来测量的值。
目前测量电容的几种基本方法有:1、电容式传感器测量;2、振荡频率法;3、电抗电桥测量;4、恒流充电振荡法等,本设计采用容抗法测量电容值。
本设计电路图简单,清晰明了且元器件容易得到。
2 需求分析2.1 设计任务及要求2.1.1 设计任务根据题目说给的要求设计一个电容测量装置,能够借用万用表,示波器与直流稳压装置来准确地测量一定范围内的电容值。
2.1.2 设计要求根据题目的要求采用直流稳压源供电,运用运算放大器、晶体管。
电位器电阻等元器件设计电路装置测量100nf~1000uf的电容值。
2.2 设计思想在电路中接入待测电容,将电容所产生的电流量转化为电压量,再根据容抗法和最后电路输出的正弦电压计算出电容值。
3 设计方案采用容抗法将正弦波信号作用与被测电容利用所产生的容抗Xc实现C/ACV转换,将Xc 转换为交流电压来获得Cx的电容量。
3.1 方案论证本设计先通过一个文氏桥电路自激振荡产生一个频率一定的正弦波,再通过反向比例电路来减小正弦波的幅值,然后经过被测电容再过一个有源滤波电路,将最先产生的正弦波信号从干扰信号滤出来,得到电压u o4是幅值与被测电容Cx容量称正比关系的一定频率的交流电压,根据换算就可以算得电容的值。
方案图如3-1所示:图3-1 方案框图3.1.1 文氏桥振荡电路文氏桥振荡电路是最常见及最典型的RC 桥式正弦波振荡电路,其主要由三部分构成:RC 串并联选频网络,运算放大器及反馈网络。
其产生的频率为:35111021C C R R fo π=电路如图3-2所示:图3-2 文氏桥振荡电路3.1.2 反向比例运算电路振荡输出的波形经过R2与反向比例运算电路的输出端并联输入其放大器的反向输入端,可得到其比例系数如下:234R R R Au +-= 上式中R4为201电位器,可以调节阻值的大小来改变比例系数,稳定U o2输出的波形,一般波形稳定后就不再调动R4了。
同时该电路还有隔离振荡电路和被测电容,使电路更加稳定。
电路如图3-3所示:图3-3 反向比例运算电路3.1.3 C/ACV 转换电路电路输入的电抗便为被测电容的容抗,公式如下:fCxj jwCx Xcx π211==转换系数为:其中R f 可根据被测电容的不同值来选择不同档位的电阻来测量。
当Uo2的幅值一定的时候,Uo3与被测电容量Cx 成正比。
这样,电容量就转换成电压量,可以通过计算得出被测电容的值了。
电路如图3-4所示:图3-4 C/ACV 转换电路3.1.4 有源滤波电路根据需求将有源滤波电路加入,能够滤除输入电压中间夹杂的干扰频率,得到想要的电压频率。
电路如图3-5所示:图3-5 有源滤波电路上图中的中心频率⎪⎭⎫⎝⎛+=117181221R R R C fo π所以,能过通过U4的频率为U3中的频率幅值与滤波电路中的fo 相同频率的交流电压值,根据U4的最后输出来算得电容值。
3.2 工作原理从整个电路来看可以得到,该电路最先通过文氏桥振荡产生的正弦波作用于电容上,将电容量转化为交流电压量,再通过滤波电路出去干扰信号后得到电压值U4,经过公式就能够计算出被测电容。
整体电路如图3-6所示:图3-6 整体电路4 电路详细设计4.1 文氏桥振荡电路分析其中在试验中R10=R11=39.2k Ω,C5=C3=0.01uf 可以得到的频率fo ,根据公式Hz C C R R fo 40035111021≈=π,实际试验中测得Hz fo 315≈。
如图4-1所示为XX 电路:图4-1 文氏桥振荡电路为保证空能够产生自激振荡,925R R 。
4.2 反向比例运算以及C/ACV 转换电路分析自激振荡产生的正弦波经过反向比例运算器后得到幅值的降低,再经过被测电容以及C/ACV 转换电路把电容的容抗转换成电压量。
图4-2 反向比例运算电路4.3 有源滤波电路分析通过⎪⎭⎫⎝⎛+=117181221R R R C fo π的选择,把干扰频率滤去。
在实际试验中,测得U4的fo =315Hz ,所以U4只允许U3中频率约为315Hz 的频率通过。
图4-3 有源滤波电路5 实验结果5.1 文氏桥振荡实验Uo1产生的波形如下电路产生的正弦波信号测试结果如表5-1所示。
表5-1 Uo1测量结果测量次数 1 2 3 4 平均Uo1/v 5.32 5.38 5.40 5.36 5.37 5.2 反向比例电路实验Uo2产生的波形如下测试结果如表5-2所示。
表5-2 Uo2测量结果测量次数 1 2 3 4 平均Uo2/mv 55.3 52.3 56.1 54.6 54.6 5.3 有源滤波实验Uo4产生波形如下(Uo3与Uo4的波形一致),下图为被测电容是470nf的Uo4波形:测试结果如表5-3所示。
表5-3 Uo4测量结果被测电容Cx Rf 值/Ω Uo4/V fo /Hz计算得Cx 值 470nf 68 K 3.68 312.5 488nf 4.7uf10K4.82313.44.5uf5.4 结果分析5.4.1 文氏桥振荡以及反向比例运算电路分析当桥式电路能够产生自激振荡以及自激振荡产生了正弦波后,其是否失真与电路中的元器件参数有关。
在刚开始使用=电路的时候可能要调节R9与R5的值的大小使Uo1产生稳定是输出波形。
另外,产生的振荡在整个电路中应该保持频率不变。
其中理想的自激振荡频率值与实际实验中测量的值存在一定的偏差,其中可能是因为外界频率干扰以及双运放芯片跟电路中元器件受温度的影响导致的参数变化。
在实验中,不同的运算放大器芯片产生的效果不同,因为每种芯片中的内部参数各不一样,所以在以后设计中要注意使用相应的芯片,不能随意用其他芯片替换。
5.4.2 有源滤波以及C/ACV 电路分析电容的容抗经过电路转换成交流电压量,在C/ACV 转换电路中选择适当的Rf 值来测量电容值,得到交合适的电压输出值,计算公式如下:因为Uo3的波形在最后的滤波电路中能够被其选择滤出来,滤波选择公式如下:⎪⎭⎫⎝⎛+=117181221R R R C fo π 所以再通过滤波电路后的选频得到最后需求的波形。
6 结论6.1 设计成果在本设计中将Rf设置成多个可供选择的电位器来适应被测电容的范围,得到根伟理想的Uo4输出波形;在电路中很容易测量交流电压量,而不是电容的容抗,所以根据换算公式,将电容值换算出来,能够达到实验要求。
6.2 设计特点设计方法简单,能够测量的电容范围较广,思路清晰。
6.3 存在问题及改进方法因为电路需要根据公式换算而不是直接将交流电压量通过转换直接显示出数值,不够直观,相对麻烦一点;由于要靠示波器等设备测量多次数值,所以导致存在一定的误差。
可以在Uo4输出后接A/D转换器以及液晶显示器,更直观的得出电容值。
参考文献[1] 康华光.电子技术基础(模拟部分)(第四版).武汉:高等教育出版社,2005.7[2] 童诗白华成英. 模拟电子技术(第四版). 北京:高等教育出版社,2006.5致谢附录A 电路全图附图A-1 完整电路图附录B 元器件清单附表A-1 元器件清单精品文档欢迎您的下载,资料仅供参考!致力为企业和个人提供合同协议,策划案计划书,学习资料等等打造全网一站式需求。