初二分式所有知识点总结和常考题提高难题压轴题练习含答案解析
人教版八年级数学上册《分式》知识点复习及典例解析
人教版八年级数学上册《分式》知识点复习及典例解析《分式》知识点复习及典例解析一、复习目标1.理解并记住分式的乘法法则、除法法则,会进行简单的分式乘除法计算.能解决一些与分式的乘除运算有关的简单的实际问题.2.了解同分母分式的加减法法则,会进行同分母分式的加减运算,理解通分的意义,会通过通分把异分母的分式加减转化为同分母的分式加减.3.能熟练地进行分式的加减乘除混合运算,提高类比的能力和代数化归的能力.4.了解分式方程的概念,掌握解一元一次方程的分式方程的方法,了解产生增根的原因,会检捡一个数是不是分式方程的增根.5.能够列出可化为一元一次方程的分式方程解简单实际问题.二、重点难点重点:分式乘除法、加减法法则的应用. 分式方程的概念,分式方程的解法难点:异分母分式加减法. 解分式方程时,去分母可能会出现增根。
三、知识概要1. 分式的乘除乘法法则:分式乘分式时,分子的积作积的分子,分母的积作积的分母. 除法法则:分式除以分式,把除式的分子和分母颠倒位置后与被除式相乘. 式子表示:.;bcad c d b a d c b a bd ac d c b a =?=÷=? 2. 分式的加减(1)分式的通分:把几个异分母的分式化成与原来的分式相等的同分母的分式叫通分.(2)法则:同分母分式相加减,分母不变,分子相加减.异分母分式相加减,先通分,变为同分母的分式,再加减.式子表示:;c b a c b c a ±=±.bdbc ad bd bc bd ad d c b a ±=±=± 3.分式方程的概念分式是一种表示具体情境中数量的模型,分式方程则是表示这些数量关系之间相等关系的模型,分式方程是分母中含有未知数的方程.4.分式方程的解法分式方程是转化为一元一次方程来求解,它是通过去分母实现转化的.主要步骤:去分母,去括号,移项,合并同类项,系数化为1,检验.因为分式方程可能产生增根,所以解分式方程最后一步“检验”,检查所解整式方程的根到底是不是分式方程的根.5.去分母的技巧解分式方程的基本思路是“转化”,即把分式方程化为我们熟悉的整式方程,转化的途径是“去分母”,即方程两边都乘以最简公分母.去分母是解分式方程的第一步,也是关键的一步,当分式方程中分式的分母是一次式时,可直接确定最简公分母,方程两边同乘以最简公分母后实现去分母,当各分式的分母中有二次式时,要先进行因式分解,再确定最简公分母,然后再去分母.6.验根的方法因为解分式方程可能出现增根,所以验根是必要的,验根的方法有两种,一种是把求得的未知数的值代入原方程进行检验,这种方法道理简单,而且可以检查解方程时有无计算错误,另一种是把求得的末知数的值代入最简公分母,看分母的值是否为零,这种方法比较简便,但不能检查解方程过程中出现的计算错误.7.列分式方程解决实际问题的方法步骤(1)、审:分析问题,寻找已知、未知及相相等关系,(2)、设:设恰当的未知数(3)、列:根据相等关系列出分式方程(4)、解:求出所列方程的解(5)、验:首先检验所求的解是不是分式方程的解,然后检验所求的解是否与实际符合(6)、答:写出答案.四、典例解析考点一、分式概念的运用例1.若分式||33x x --的值为零,则x 的值等于。
2024中考数学复习核心知识点精讲及训练—分式(含解析)
2024中考数学复习核心知识点精讲及训练—分式(含解析)1.了解分式、分式方程的概念,进一步发展符号感;2.熟练掌握分式的基本性质,会进行分式的约分、通分和加减乘除四则运算,发展学生的合情推理能力与代数恒等变形能力;3.能解决一些与分式有关的实际问题,具有一定的分析问题、解决问题的能力和应用意识;4.通过学习能获得学习代数知识的常用方法,能感受学习代数的价值。
考点1:分式的概念1.定义:一般地,如果A、B表示两个整式,并且B中含有字母,那么式子AB叫做分式.其中A叫做分子,B叫做分母.2.最简分式:分子与分母没有公因式的分式;3.分式有意义的条件:B≠0;4.分式值为0的条件:分子=0且分母≠0考点2:分式的基本性质分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变,这个性质叫做分式的基本性质,用式子表示是:A A M A A MB B M B B M⨯÷==⨯÷,(其中M是不等于零的整式).考点3:分式的运算考点4:分式化简求值(1)有括号时先算括号内的;(2)分子/分母能因式分解的先进行因式分解;(3)进行乘除法运算(4)约分;(5)进行加减运算,如果是异分母分式,需线通分,变为同分母分式后,分母不变,分子合并同类项,最终化为最简分式;(6)带入相应的数或式子求代数式的值【题型1:分式的相关概念】【典例1】(2022•怀化)代数式x,,,x2﹣,,中,属于分式的有()A.2个B.3个C.4个D.5个【答案】B【解答】解:分式有:,,,整式有:x,,x2﹣,分式有3个,故选:B.【典例2】(2023•广西)若分式有意义,则x的取值范围是()A.x≠﹣1B.x≠0C.x≠1D.x≠2【答案】A【解答】解:∵分式有意义,∴x+1≠0,解得x≠﹣1.故选:A.1.(2022•凉山州)分式有意义的条件是()A.x=﹣3B.x≠﹣3C.x≠3D.x≠0【答案】B【解答】解:由题意得:3+x≠0,∴x≠﹣3,故选:B.2.(2023•凉山州)分式的值为0,则x的值是()A.0B.﹣1C.1D.0或1【答案】A【解答】解:∵分式的值为0,∴x2﹣x=0且x﹣1≠0,解得:x=0,故选:A.【题型2:分式的性质】【典例3】(2023•兰州)计算:=()A.a﹣5B.a+5C.5D.a 【答案】D【解答】解:==a,故选:D.1.(2020•河北)若a≠b,则下列分式化简正确的是()A.=B.=C.=D.=【答案】D【解答】解:∵a≠b,∴,故选项A错误;,故选项B错误;,故选项C错误;,故选项D正确;故选:D.2.(2023•自贡)化简:=x﹣1.【答案】x﹣1.【解答】解:原式==x﹣1.故答案为:x﹣1.【题型3:分式化简】【典例4】(2023•广东)计算的结果为()A.B.C.D.【答案】C【解答】解:==.故本题选:C.1.(2023•河南)化简的结果是()A.0B.1C.a D.a﹣2【答案】B【解答】解:原式==1.故选:B.2.(2023•赤峰)化简+x﹣2的结果是()A.1B.C.D.【答案】D【解答】解:原式=+==,故选:D.【题型4:分式的化简在求值】【典例5】(2023•深圳)先化简,再求值:(+1)÷,其中x=3.【答案】,.【解答】解:原式=•=•=,当x=3时,原式==.1.(2023•辽宁)先化简,再求值:(﹣1)÷,其中x=3.【答案】见试题解答内容【解答】解:原式=(﹣)•=•=x+2,当x=3时,原式=3+2=5.2.(2023•大庆)先化简,再求值:,其中x=1.【答案】见试题解答内容【解答】解:原式=﹣+====,当x=1时,原式==.3.(2023•西宁)先化简,再求值:,其中a,b是方程x2+x﹣6=0的两个根.【答案】,6.【解答】解:原式=[﹣]×a(a﹣b)=×a(a﹣b)﹣=﹣=;∵a,b是方程x2+x﹣6=0的两个根,∴a+b=﹣1ab=﹣6,∴原式=.1.(2023春•汝州市期末)下列分式中,是最简分式的是()A.B.C.D.【答案】C【解答】解:A、=,不是最简分式,不符合题意;B、==,不是最简分式,不符合题意;C、是最简分式,符合题意;D、==﹣1,不是最简分式,不符合题意;故选:C.2.(2023秋•岳阳楼区校级期中)如果把分式中的x和y都扩大2倍,那么分式的值()A.不变B.扩大2倍C.扩大4倍D.缩小2倍【答案】B【解答】解:∵==×2,∴如果把分式中的x和y都扩大2倍,那么分式的值扩大2倍,故选:B.3.(2023•河北)化简的结果是()A.xy6B.xy5C.x2y5D.x2y6【答案】A【解答】解:x3()2=x3•=xy6,故选:A.4.(2023秋•来宾期中)若分式的值为0,则x的值是()A.﹣2B.0C.2D.【答案】C【解答】解:由题意得:x﹣2=0且3x﹣1≠0,解得:x=2,故选:C.5.(2023秋•青龙县期中)分式的最简公分母是()A.3xy B.6x3y2C.6x6y6D.x3y3【答案】B【解答】解:分母分别是x2y、2x3、3xy2,故最简公分母是6x3y2;故选:B.6.(2023春•沙坪坝区期中)下列分式中是最简分式的是()A.B.C.D.【答案】A【解答】解;A、是最简二次根式,符合题意;B、=,不是最简二次根式,不符合题意;C、==,不是最简二次根式,不符合题意;D、=﹣1,不是最简二次根式,不符合题意;故选:A.7.(2023春•原阳县期中)化简(1+)÷的结果为()A.1+x B.C.D.1﹣x【答案】A【解答】解:原式=×=×=1+x.故选:A.8.(2023•门头沟区二模)如果代数式有意义,那么实数x的取值范围是()A.x≠2B.x>2C.x≥2D.x≤2【答案】A【解答】解:由题意得:x﹣2≠0,解得:x≠2,故选:A.9.(2023春•武清区校级期末)计算﹣的结果是()A.B.C.x﹣y D.1【答案】B【解答】解:﹣==.故答案为:B.10.(2023春•东海县期末)根据分式的基本性质,分式可变形为()A.B.C.D.【答案】C【解答】解:=﹣,故选:C.11.(2023秋•莱州市期中)计算的结果是﹣x.【答案】﹣x.【解答】解:÷=•(﹣)=﹣x,故答案为:﹣x.12.(2023秋•汉寿县期中)学校倡导全校师生开展“语文阅读”活动,小亮每天坚持读书.原计划用a天读完b页的书,如果要提前m天读完,那么平均每天比原计划要多读的页数为(用含a、b、m的最简分式表示).【答案】.【解答】解:由题意得:平均每天比原计划要多读的页数为:﹣=﹣=,故答案为:.13.(2023春•宿豫区期中)计算=1.【答案】1.【解答】解:===1,故答案为:1.14.(2023•广州)已知a>3,代数式:A=2a2﹣8,B=3a2+6a,C=a3﹣4a2+4a.(1)因式分解A;(2)在A,B,C中任选两个代数式,分别作为分子、分母,组成一个分式,并化简该分式.【答案】(1)2a2﹣8=2(a+2)(a﹣2);(2)..【解答】解:(1)2a2﹣8=2(a2﹣4)=2(a+2)(a﹣2);(2)选A,B两个代数式,分别作为分子、分母,组成一个分式(答案不唯一),==.15.(2023秋•思明区校级期中)先化简,再求值:(),其中.【答案】,.【解答】解:原式=÷(﹣)=÷=•=,当x=﹣1时,原式==.16.(2023秋•长沙期中)先化简,再求值:,其中x=5.【答案】,.【解答】解:原式=(﹣)•=•=,当x=5时,原式==.17.(2023•盐城一模)先化简,再求值:,其中x=4.【答案】见试题解答内容【解答】解:原式=(+)•=•=•=x﹣1,当x=4时,原式=4﹣1=3.18.(2022秋•廉江市期末)先化简(﹣x)÷,再从﹣1,0,1中选择合适的x值代入求值.【答案】﹣,0.【解答】解:原式=(﹣)•=﹣•=﹣,∵(x+1)(x﹣1)≠0,∴x≠±1,当x=0时,原式=﹣=0.1.(2023秋•西城区校级期中)假设每个人做某项工作的工作效率相同,m个人共同做该项工作,d天可以完成若增加r个人,则完成该项工作需要()天.A.d+y B.d﹣r C.D.【答案】C【解答】解:工作总量=md,增加r个人后完成该项工作需要的天数=,故选:C.2.(2023秋•长安区期中)若a=2b,在如图的数轴上标注了四段,则表示的点落在()A.段①B.段②C.段③D.段④【答案】C【解答】解:∵a=2b,∴=====,∴表示的点落在段③,故选:C.3.(2023秋•东城区校级期中)若x2﹣x﹣1=0,则的值是()A.3B.2C.1D.4【答案】A【解答】解:∵x2﹣x﹣1=0,∴x2﹣1=x,∴x﹣=1,∴(x﹣)2=1,∴x2﹣2+=1,∴x2+=3,故选:A.4.(2023秋•鼓楼区校级期中)对于正数x,规定,例如,,则=()A.198B.199C.200D.【答案】B【解答】解:∵f(1)==1,f(1)+f(1)=2,f(2)==,f()==,f(2)+f()=2,f(3)==,f()==,f(3)+f()=2,…f(100)==,f()==,f(100)+f()=2,∴=2×100﹣1=199.故选:B.5.(2023秋•延庆区期中)当x分别取﹣2023,﹣2022,﹣2021,…,﹣2,﹣1,0,1,,,…,,,时,计算分式的值,再将所得结果相加,其和等于()A.﹣1B.1C.0D.2023【答案】A【解答】解:当x=﹣a和时,==0,当x=0时,,则所求的和为0+0+0+⋯+0+(﹣1)=﹣1,故选:A.6.(2022秋•永川区期末)若分式,则分式的值等于()A.﹣B.C.﹣D.【答案】B【解答】解:整理已知条件得y﹣x=2xy;∴x﹣y=﹣2xy将x﹣y=﹣2xy整体代入分式得====.故选:B.7.(2023春•铁西区月考)某块稻田a公顷,甲收割完这块稻田需b小时,乙比甲多用0.3小时就能收割完这块稻田,两人一起收割完这块稻田需要的时间是()A.B.C.D.【答案】B【解答】解:乙收割完这块麦田需要的时间是(b+0.3)小时,甲的工作效率是公顷/时,乙的工作效率是公顷/时.故两人一起收割完这块麦田需要的工作时间为=(小时).故选:B.8.(2023春•临汾月考)相机成像的原理公式为,其中f表示照相机镜头的焦距,u表示物体到镜头的距离,v表示胶片(像)到镜头的距离.下列用f,u表示v正确的是()A.B.C.D.【答案】D【解答】解:∵,去分母得:uv=fv+fu,∴uv﹣fv=fu,∴(u﹣f)v=fu,∵u≠f,∴u﹣f≠0,∴.故选:D.9.(2023•内江)对于正数x,规定,例如:f(2)=,f()=,f(3)=,f()=,计算:f()+f()+f()+…+f()+f()+f(1)+f(2)+f(3)+…+f(99)+f(100)+f(101)=()A.199B.200C.201D.202【答案】C【解答】解:∵f(1)==1,f(2)=,f()=,f(3)=,f()=,f(4)==,f()==,…,f(101)==,f()==,∴f(2)+f()=+=2,f(3)+f()=+=2,f(4)+f()=+=2,…,f(101)+f()=+=2,f()+f()+f()+…+f()+f()+f(1)+f(2)+f(3)+…+f(99)+f(100)+f(101)=2×100+1=201.故选:C.10.(2023春•灵丘县期中)观察下列等式:=1﹣,=﹣,=﹣,…=﹣将以上等式相加得到+++…+=1﹣.用上述方法计算:+++…+其结果为()A.B.C.D.【答案】A【解答】解:由上式可知+++…+=(1﹣)=.故选A.11.(2023秋•顺德区校级月考)先阅读并填空,再解答问题.我们知道,(1)仿写:=,=,=.(2)直接写出结果:=.利用上述式子中的规律计算:(3);(4).【答案】(1),;;(2);(3);(4).【解答】解:(1),=;=,故答案为:,;;(2)原式=1﹣+++...++=1﹣=;故答案为:;(3)==1﹣+﹣+﹣+⋯⋯+=1﹣=;(2)原式=×()+×()+×()+...+×()=()==.12.(2023秋•株洲期中)阅读下列材料:通过小学的学习我们知道,分数可分为“真分数”和“假分数”,而假分数都可化为带分数.如:.我们定义:在分式中,对于只含有一个字母的分式,当分子的次数大于或等于分母的次数时,我们称之为“假分式”;当分子的次数小于分母的次数时,我们称之为“真分式”.如,这样的分式就是假分式;,这样的分式就是真分式.类似地,假分式也可以化为带分式(即:整式与真分式的和的形式).如:,;解决下列问题:(1)分式是真分式(填“真”或“假”);(2)将假分式化为带分式;(3)如果x为整数,分式的值为整数,求所有符合条件的x的值.【答案】(1)真;(2)x﹣2+;(3)﹣1或﹣3或11或﹣15.【解答】解:(1)分式是真分式;故答案为:真;(2);(3)原式=,∵分式的值为整数,∴x+2=±1或±13,∴x=﹣1或﹣3或11或﹣15.13.(2023秋•涟源市月考)已知,求的值.解:由已知可得x≠0,则,即x+.∵=(x+)2﹣2=32﹣2=7,∴.上面材料中的解法叫做“倒数法”.请你利用“倒数法”解下面的题目:(1)求,求的值;(2)已知,求的值;(3)已知,,,求的值.【答案】(1);(2)24;(3).【解答】解:(1)由,知x≠0,∴.∴,x•=1.∵=x2+=(x﹣)2+2=42+2=18.∴=.(2)由=,知x≠0,则=2.∴x﹣3+=2.∴x+=5,x•=1.∵=x2+1+=(x+)2﹣2+1=52﹣1=24.∴=.(3)由,,,知x≠0,y≠0,z≠0.则=,=,y+zyz=1,∴+=,+=,+=1.∴2(++)=++1=.∴++=.∵=++=,∴=.14.(2022秋•兴隆县期末)设.(1)化简M;(2)当a=3时,记M的值为f(3),当a=4时,记M的值为f(4).①求证:;②利用①的结论,求f(3)+f(4)+…+f(11)的值;③解分式方程.【答案】(1);(2)①见解析,②,③x=15.【解答】解:(1)=====;(2)①证明:;②f(3)+f(4)+⋅⋅⋅+f(11)====;③由②可知该方程为,方程两边同时乘(x+1)(x﹣1),得:,整理,得:,解得:x=15,经检验x=15是原方程的解,∴原分式方程的解为x=15.15.(2023春•蜀山区校级月考)【阅读理解】对一个较为复杂的分式,若分子次数比分母大,则该分式可以拆分成整式与分式和的形式,例如将拆分成整式与分式:方法一:原式===x+1+2﹣=x+3﹣;方法二:设x+1=t,则x=t﹣1,则原式==.根据上述方法,解决下列问题:(1)将分式拆分成一个整式与一个分式和的形式,得=;(2)任选上述一种方法,将拆分成整式与分式和的形式;(3)已知分式与x的值都是整数,求x的值.【答案】(1);(2);(3)﹣35或43或﹣9或17或1或7或3或5.【解答】解:(1)由题知,,故答案为:.(2)选择方法一:原式==.选择方法二:设x﹣1=t,则x=t+1,则原式=====.(3)由题知,原式====.又此分式与x的值都是整数,即x﹣4是39的因数,当x﹣4=±1,即x=3或5时,原分式的值为整数;当x﹣4=±3,即x=1或7时,原分式的值为整数;当x﹣4=±13,即x=﹣9或17时,原分式的值为整数;当x﹣4=±39,即x=﹣35或43时,原分式的值为整数;综上所述:x的值为:﹣35或43或﹣9或17或1或7或3或5时,原分式的值为整数.16.(2023春•兰州期末)阅读下列材料:通过小学的学习我们知道,分数可分为“真分数”和“假分数”,而假分数都可以化为带分数,如:.我们定义:在分式中,对于只含有一个字母的分式,当分子的次数大于或等于分母的次数时,我们称之为“假分式”;当分子的次数小于分母的次数时,我们称之为“真分式”.如,这样的分式就是假分式;再如:这样的分式就是真分式.类似的,假分式也可以化为带分式(即:整式与真分式的和的形式),如:.解决下列问题:(1)分式是真分式(填“真分式”或“假分式”);(2)将假分式化为整式与真分式的和的形式:=2+.若假分式的值为正整数,则整数a的值为1,0,2,﹣1;(3)将假分式化为带分式(写出完整过程).【答案】(1)真分式;(2)2+;1,2,﹣1;(3)x﹣1﹣.【解答】解:(1)由题意得:分式是真分式,故答案为:真分式;(2)==2+,当2+的值为正整数时,2a﹣1=1或±3,∴a=1,2,﹣1;故答案为:2+;1,2,﹣1;(3)原式===x﹣1﹣.1.(2023•湖州)若分式的值为0,则x的值是()A.1B.0C.﹣1D.﹣3【答案】A【解答】解:∵分式的值为0,∴x﹣1=0,且3x+1≠0,解得:x=1,故选:A.2.(2023•天津)计算的结果等于()A.﹣1B.x﹣1C.D.【答案】C【解答】解:====,故选:C.3.(2023•镇江)使分式有意义的x的取值范围是x≠5.【答案】x≠5.【解答】解:当x﹣5≠0时,分式有意义,解得x≠5,故答案为:x≠5.4.(2023•上海)化简:﹣的结果为2.【答案】2.【解答】解:原式===2,故答案为:2.5.(2023•安徽)先化简,再求值:,其中x=.【答案】x+1,.【解答】解:原式==x+1,当x=﹣1时,原式=﹣1+1=.6.(2023•广安)先化简(﹣a+1)÷,再从不等式﹣2<a<3中选择一个适当的整数,代入求值.【答案】;﹣1.【解答】解:(﹣a+1)÷=•=.∵﹣2<a<3且a≠±1,∴a=0符合题意.当a=0时,原式==﹣1.7.(2023•淮安)先化简,再求值:÷(1+),其中a=+1.【答案】,.【解答】解:原式=÷(+)=÷=•=,当a=+1时,原式==.8.(2023•朝阳)先化简,再求值:(+)÷,其中x=3.【答案】,1.【解答】解:原式=[+]•=•=,当x=3时,原式==1.。
初二数学上册(人教版)第十五章分式15.1知识点总结含同步练习及答案
x+1 2x + 3 ;(2) . 2x 3x − 5 x+1 解:(1) 要使 有意义,则分母 2x ≠ 0,即 x ≠ 0; 2x 2x + 3 5 (2) 要使 有意义,则分母 3x − 5 ≠ 0,即 x ≠ . 3x − 5 3 x+2 的值为 0 ? 2x − 3 x+2 解: = 0 ,即 x + 2 = 0 , 2x − 3 解得 x = −2 且 2x − 3 ≠ 0 . 所以当 x = −2 时,该分式值为 0 .
① 在分式 分式的基本性质 分式的分子与分母同乘(或除以)一个不等于 0 的整式,分式的值不变,即
约分 约去分式的分子和分母的公因式,不改变分式的值,这样的分式变形叫做分式的约分(reduction of a fraction). 一个分式的分子与分母没有公因式时,叫做最简分式.化简分式时,通常要使结果成为最简分式 或者整式. 通分 把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分(reduction of fractions to a common denominator). 各分式分母中的系数的最小公倍数与所有字母(或因式)的最高次幂的积,叫做最简公分母.
当 x 取何值时,分式
5xy . 20y 2 5xy 5y ⋅ x x 解: . = = 2 5y ⋅ 4y 4y 20y
化简
2a c x , , . b ab 2ab 解:最简公母为 2ab . 2a 4a2 , = b 2ab c 2c , = ab 2ab x x . = 2ab 2ab
通分
四、课后作业
1. 使分式
(查看更多本章节同步练习题,请到快乐学)
2 有意义的 x 的取值范围是 ( x−2 A.x ⩽ 2 B.x ⩽ −2
北师大版八年级数学下册分式知识点归纳总结及习题精练
分式及其运算知识点归纳总结一、知识点归纳1、分式的概念:一般地,如果A ,B 表示两个整式,B 中含有字母且B 不等于0,那么式子BA 叫做分式. 需要注意的四点:(1)分式的分母中必须含有字母;(2)分式的分母的值不能为0;(3)分式是写成两式相除的形式,中间以分数线隔开;(4)判断分式需要看最初的形式2、分式有无意义的条件:两个整式相除,除数不能为0,故分式有意义的条件是分母不为0,分母为0时,分式无意义3、分式的值:(1)分式的值为0,满足000≠=⇔=B A BA 且 (2)分式的值为1,满足01≠=⇔=B A BA (3)分式的值为-1,满足01≠-=⇔-=B A BA (4)分式的值为正,满足⎩⎨⎧<<⎩⎨⎧>>⇔>00000B A B A B A 或 (5)分式的值为负,满足⎩⎨⎧><⎩⎨⎧<>⇔<00000B A B A B A 或 4、分式的基本性质:分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变. )0(,≠÷÷==m mb m a b a bm am b a ,前提条件是0≠m ,强调是同时 5、分式的符号:y y y x x x--==-(符号调整时注意不要改变分式的值). 6、约分和最简分式:把一个分式的分子和分母的公因式约去,这种变形称为分式的约分.对分式进行约分化简时,通常要使结果成为最简分式(即分子和分母已没有公因式)或者整式. 通分:最简公分母7、分式的乘除运算乘法法则:分式乘以分式,用分子的积作为积的分子,分母的积作为积的分母. 除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘. 分式的加减运算同分母的分式相加减,分母不变_,把分子相加减;异分母的分式相加减,先通分,化成同分母的分式,然后再加减.在进行分式的运算前,要先把分式的分子和分母分解因式分式的乘除要约分,加减要通分,最后的结果要化成最简.有时进行分项化简分式及其运算的题型总结题型一:分式的定义及有无意义1、下列各式是分式的有_________________.(填写序号) ①1π;②2x x;③(3)(1)x x +÷-;④210xy -;⑤242x x --;⑥109x y +. 2、当x 取何值时,下列分式有意义?(1)ax x; (2)239x x +- (3(4)2x -. 3、当x =______分式212x x x ---=0,当x =________时,216(3)(4)x x x --+=0 4、已知当2x =-时,分式x b x a--无意义,当4x =时,该分式的值为0,则a b +=___________.5、若分式224x x x m++不论x 取何实数总有意义,则m 的取值范围 6、当x 时,22(1)x x -+的值为正数 题型二:分式的化简求值7、下列变形正确的有________________.(填写序号)1.x y x y x x -+-=;2.x y x y x x-++=-;3.x y x y y x x y -++=--;4.y x x y x y x y --=-++. 5.135320.55x y x y x x--= ;6.133m m m =++;7122x y y x +=--; 8.x x x y x y =--+- 8、若分式22x y x y+-的中,x y 同时扩大2倍,分式的值 若分式222x y xy+的中,x y 同时扩大2倍,分式的值 9、把下列分式化为最简分式:(1)22233x x x x ---; (2)22222222x y z yz z x y xy--+--+.10、分式的运算:(1)4222a b a a b a b ab a --⋅+-; (2)3222322212()xy xy x y x y x y ⎛⎫⎛⎫⎡⎤÷⋅ ⎪ ⎪⎢⎥+--⎣⎦⎝⎭⎝⎭.(3)2933a a a +--; (4)22433x x x x x---+-.下列说法错误的是( )A .2314a b 与2316a b c的最简公分母是2312a b c B .1m n +与1m n-的最简公分母是22m n - C .213x x -与229x -的最简公分母是(3)(3)x x x -+ D .1x y -与1y x -的最简公分母是()()x y y x -- 11、分式的混合运算:(1)2344111x x x x x -+⎛⎫+-÷ ⎪--⎝⎭ (2)22112111x x x x x x x ⎛⎫--+÷ ⎪-++-⎝⎭;(3)412222x x x x -⎛⎫÷+- ⎪--⎝⎭; (4)2222211b a ab b a a ab a a b ⎛⎫-+⎛⎫÷++ ⎪ ⎪-⎝⎭⎝⎭.(5)24(2)22m m m m ⎛⎫+÷+ ⎪--⎝⎭; (6)352242m m m m -⎛⎫÷+- ⎪--⎝⎭.(7)22222111113256712920x x x x x x x x x x +++++++++++++题型三:分式的应用1、若118x y +=,则2322x xy y x xy y -+++=____ 23a b =,则2222a ab b a b -++=________若2112x x x =-+,则2421x x x =++_____.3x =4y =5z ,则222z y x xz yz xy ++++=_______.2、已知113x y -=,求2322x xy y x xy y+---的值3、若0a b <<,且2260a b ab +-=,则a b a b +-的值为________.4、若m 为正实数,且1m m -=3,则221m m -=______ 1m m+=若15a a +=,则2421a a a =++ ;已知21x x x -+=7,则2421x x x ++= 5、若实数a ,b 满足:ab =1,则221111a b +++的值为________. 6、若分式2424x x x -+-的值为整数,则整数x 的值为__________. 已知a ,b ,c 为实数,且13ab a b =+,14bc b c =+,15ac a c =+,则abc ab bc ca++=_____.若abc =1,则111a b c ab a bc b ca c ++++++++的值为_______.。
初二分式所有知识点总结和常考题提高难题压轴题练习(含答案解析)
初二分式所有知识点总结和常考题知识点:1.分式:形如AB,A B 、是整式,B 中含有字母且B 不等于0的整式叫做分式.其中A 叫做分式的分子,B 叫做分式的分母. 2.分式有意义的条件:分母不等于0. 3.分式的基本性质:分式的分子和分母同时乘以(或除以)同一个不为0的整式,分式的值不变.4.约分:把一个分式的分子和分母的公因式(不为1的数)约去,这种变形称为约分.5.通分:异分母的分式可以化成同分母的分式,这一过程叫做通分.6.最简分式:一个分式的分子和分母没有公因式时,这个分式称为最简分式,约分时,一般将一个分式化为最简分式.7.分式的四则运算:⑴同分母分式加减法则:同分母的分式相加减,分母不变,把分子相加减.用字母表示为:a b a bc c c±±=⑵异分母分式加减法则:异分母的分式相加减,先通分,化为同分母的分式,然后再按同分母分式的加减法法则进行计算.用字母表示为: a c ad cb b d bd±±= ⑶分式的乘法法则:两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母.用字母表示为:a c acb d bd⨯=⑷分式的除法法则:两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘.用字母表示为:a c a d adb d bc bc÷=⨯=⑸分式的乘方法则:分子、分母分别乘方.用字母表示为:nn n a a b b ⎛⎫= ⎪⎝⎭8.整数指数幂:⑴m n m n a a a +⨯=(m n 、是正整数) ⑵()nm mn aa =(m n 、是正整数)⑶()nn n ab a b =(n 是正整数)⑷m n m n a a a -÷=(0a ≠,m n 、是正整数,m n >)⑸nn n a a b b ⎛⎫= ⎪⎝⎭(n 是正整数)⑹1nnaa-=(0a≠,n是正整数)9.分式方程的意义:分母中含有未知数的方程叫做分式方程.10.分式方程的解法:①去分母(方程两边同时乘以最简公分母,将分式方程化为整式方程);②按解整式方程的步骤求出未知数的值;③验根(求出未知数的值后必须验根,因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根).常考题:一.选择题(共14小题)1.在式子、、、、、中,分式的个数有()A.2个 B.3个 C.4个 D.5个2.化简的结果是()A.x+1 B.x﹣1 C.﹣x D.x3.如果把分式中的x和y都扩大2倍,则分式的值()A.扩大4倍B.扩大2倍C.不变D.缩小2倍4.把分式方程的两边同时乘以(x﹣2),约去分母,得()A.1﹣(1﹣x)=1 B.1+(1﹣x)=1 C.1﹣(1﹣x)=x﹣2 D.1+(1﹣x)=x﹣25.化简÷(1+)的结果是()A.B. C.D.6.计算的结果为()A.B. C. D.7.已知关于x的分式方程+=1的解是非负数,则m的取值范围是()A.m>2 B.m≥2 C.m≥2且m≠3 D.m>2且m≠38.下列运算正确的是()A.a2•a3=a6 B.()﹣1=﹣2 C.=±4 D.|﹣6|=69.某服装加工厂计划加工400套运动服,在加工完160套后,采用了新技术,工作效率比原计划提高了20%,结果共用了18天完成全部任务.设原计划每天加工x套运动服,根据题意可列方程为()A.B.C.D.10.货车行驶25千米与小车行驶35千米所用时间相同,已知小车每小时比货车多行驶20千米,求两车的速度各为多少?设货车的速度为x千米/小时,依题意列方程正确的是()A.B.C.D.11.如图,设k=(a>b>0),则有()A.k>2 B.1<k<2 C.D.12.A,B两地相距48千米,一艘轮船从A地顺流航行至B地,又立即从B地逆流返回A地,共用去9小时,已知水流速度为4千米/时,若设该轮船在静水中的速度为x千米/时,则可列方程()A.B.C.+4=9 D.13.计算的结果为()A.1 B.x+1 C. D.14.若分式(A,B为常数),则A,B的值为()A.B.C.D.二.填空题(共13小题)15.计算:=.16.若分式有意义,则实数x的取值范围是.17.分式方程的解x=.18.若代数式的值为零,则x=.19.化简的结果是.20.化简:=.21.计算÷(1﹣)的结果是.22.若关于x的方程=+1无解,则a的值是.23.已知关于x的方程的解是正数,则m的取值范围是.24.a、b为实数,且ab=1,设P=,Q=,则P Q(填“>”、“<”或“=”).25.如果实数x满足x2+2x﹣3=0,那么代数式的值为.26.某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所需时间与原计划生产450台机器所需时间相同,现在平均每天生产台机器.27.杭州到北京的铁路长1487千米.火车的原平均速度为x千米/时,提速后平均速度增加了70千米/时,由杭州到北京的行驶时间缩短了3小时,则可列方程为.三.解答题(共13小题)28.先化简,再求值:,其中.29.先化简代数式,然后选取一个使原式有意义的a值代入求值.30.已知x﹣3y=0,求•(x﹣y)的值.31.解方程:.32.先化简,再求值:,其中x是不等式3x+7>1的负整数解.33.先化简÷(a+1)+,然后a在﹣1、1、2三个数中任选一个合适的数代入求值.34.解分式方程:+=1.35.已知A=﹣(1)化简A;(2)当x满足不等式组,且x为整数时,求A的值.36.甲、乙两个工程队共同承担一项筑路任务,甲队单独施工完成此项任务比乙队单独施工完成此项任务多用10天,且甲队单独施工45天和乙队单独施工30天的工作量相同.(1)甲、乙两队单独完成此项任务需要多少天?(2)若甲、乙两队共同工作了3天后,乙队因设备检修停止施工,由甲队继续施工,为了不影响工程进度,甲队的工作效率提高到原来的2倍,要使甲队总的工作量不少于乙队的工作量的2倍,那么甲队至少再单独施工多少天?37.某商家预测一种应季衬衫能畅销市场,就用13200元购进了一批这种衬衫,面市后果然供不应求,商家又用28800元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但单价贵了10元.(1)该商家购进的第一批衬衫是多少件?(2)若两批衬衫按相同的标价销售,最后剩下50件按八折优惠卖出,如果两批衬衫全部售完后利润不低于25%(不考虑其他因素),那么每件衬衫的标价至少是多少元?38.从广州到某市,可乘坐普通列车或高铁,已知高铁的行驶路程是400千米,普通列车的行驶路程是高铁的行驶路程的1.3倍.(1)求普通列车的行驶路程;(2)若高铁的平均速度(千米/时)是普通列车平均速度(千米/时)的2.5倍,且乘坐高铁所需时间比乘坐普通列车所需时间缩短3小时,求高铁的平均速度.39.学校计划选购甲、乙两种图书作为“校园读书节”的奖品.已知甲图书的单价是乙图书单价的1.5倍;用600元单独购买甲种图书比单独购买乙种图书要少10本.(1)甲、乙两种图书的单价分别为多少元?(2)若学校计划购买这两种图书共40本,且投入的经费不超过1050元,要使购买的甲种图书数量不少于乙种图书的数量,则共有几种购买方案?40.某汽车销售公司经销某品牌A款汽车,随着汽车的普及,其价格也在不断下降.今年5月份A款汽车的售价比去年同期每辆降价1万元,如果卖出相同数量的A款汽车,去年销售额为100万元,今年销售额只有90万元.(1)今年5月份A款汽车每辆售价多少万元?(2)为了增加收入,汽车销售公司决定再经销同品牌的B款汽车,已知A款汽车每辆进价为7.5万元,B款汽车每辆进价为6万元,公司预计用不多于105万元且不少于99万元的资金购进这两款汽车共15辆,有几种进货方案?(3)如果B款汽车每辆售价为8万元,为打开B款汽车的销路,公司决定每售出一辆B款汽车,返还顾客现金a万元,要使(2)中所有的方案获利相同,a 值应是多少?此时,哪种方案对公司更有利?初二分式所有知识点总结和常考题提高难题压轴题练习(含答案解析)参考答案与试题解析一.选择题(共14小题)1.(2012春•潜江期末)在式子、、、、、中,分式的个数有()A.2个 B.3个 C.4个 D.5个【分析】判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.【解答】解:、、9x+这3个式子的分母中含有字母,因此是分式.其它式子分母中均不含有字母,是整式,而不是分式.故选:B.【点评】本题考查的是分式的定义,在解答此题时要注意分式是形式定义,只要是分母中含有未知数的式子即为分式.2.(2014•南通)化简的结果是()A.x+1 B.x﹣1 C.﹣x D.x【分析】将分母化为同分母,通分,再将分子因式分解,约分.【解答】解:=﹣===x,故选:D.【点评】本题考查了分式的加减运算.分式的加减运算中,如果是同分母分式,那么分母不变,把分子直接相加减即可;如果是异分母分式,则必须先通分,把异分母分式化为同分母分式,然后再相加减.3.(2012•岳麓区校级自主招生)如果把分式中的x和y都扩大2倍,则分式的值()A.扩大4倍B.扩大2倍C.不变D.缩小2倍【分析】把分式中的x和y都扩大2倍,分别用2x和2y去代换原分式中的x和y,利用分式的基本性质化简即可.【解答】解:把分式中的x和y都扩大2倍后得:==2•,即分式的值扩大2倍.故选:B.【点评】根据分式的基本性质,无论是把分式的分子和分母扩大还是缩小相同的倍数,都不要漏乘(除)分子、分母中的任何一项.4.(2005•扬州)把分式方程的两边同时乘以(x﹣2),约去分母,得()A.1﹣(1﹣x)=1 B.1+(1﹣x)=1 C.1﹣(1﹣x)=x﹣2 D.1+(1﹣x)=x﹣2【分析】分母中x﹣2与2﹣x互为相反数,那么最简公分母为(x﹣2),乘以最简公分母,可以把分式方程转化成整式方程.【解答】解:方程两边都乘(x﹣2),得:1+(1﹣x)=x﹣2.故选:D.【点评】找到最简公分母是解答分式方程的最重要一步;注意单独的一个数也要乘最简公分母;互为相反数的两个数为分母,最简公分母为其中的一个,另一个乘以最简公分母后,结果为﹣1.5.(2013•临沂)化简÷(1+)的结果是()A.B. C.D.【分析】首先对括号内的式子通分相加,然后把除法转化成乘法,进行约分即可.【解答】解:原式=÷=•=.故选A.【点评】本题主要考查分式的混合运算,通分、因式分解和约分是解答的关键.6.(2008•黄冈)计算的结果为()A.B. C. D.【分析】先算小括号里的,再把除法统一成乘法,约分化为最简.【解答】解:==,故选A.【点评】分式的四则运算是整式四则运算的进一步发展,在计算时,首先要弄清楚运算顺序,先去括号,再进行分式的乘除.7.(2014•黑龙江)已知关于x的分式方程+=1的解是非负数,则m的取值范围是()A.m>2 B.m≥2 C.m≥2且m≠3 D.m>2且m≠3【分析】分式方程去分母转化为整式方程,求出整式方程的解表示出x,根据方程的解为非负数求出m的范围即可.【解答】解:分式方程去分母得:m﹣3=x﹣1,解得:x=m﹣2,由方程的解为非负数,得到m﹣2≥0,且m﹣2≠1,解得:m≥2且m≠3.故选:C【点评】此题考查了分式方程的解,时刻注意分母不为0这个条件.8.(2009•潍坊)下列运算正确的是()A.a2•a3=a6 B.()﹣1=﹣2 C.=±4 D.|﹣6|=6【分析】幂运算的性质:①同底数的幂相乘,底数不变,指数相加;②一个数的负指数次幂等于这个数的正指数次幂的倒数,算术平方根的概念:一个正数的正的平方根叫它的算术平方根,0的算术平方根是0.绝对值的性质:正数的绝对值等于它本身,负数的绝对值等于它的相反数,0的绝对值是0.【解答】解:A、a2•a3=a5,故A错误;B、()﹣1=2,故B错误;C、=4,故C错误;D、根据负数的绝对值等于它的相反数,故D正确.故选D.【点评】本题涉及知识:负指数为正指数的倒数;任何非0数的0次幂等于1;绝对值的化简;二次根式的化简.9.(2013•本溪)某服装加工厂计划加工400套运动服,在加工完160套后,采用了新技术,工作效率比原计划提高了20%,结果共用了18天完成全部任务.设原计划每天加工x套运动服,根据题意可列方程为()A.B.C.D.【分析】关键描述语为:“共用了18天完成任务”;等量关系为:采用新技术前用的时间+采用新技术后所用的时间=18.【解答】解:采用新技术前用的时间可表示为:天,采用新技术后所用的时间可表示为:天.方程可表示为:.故选:B.【点评】列方程解应用题的关键步骤在于找相等关系.找到关键描述语,找到等量关系是解决问题的关键.本题要注意采用新技术前后工作量和工作效率的变化.10.(2014•黔南州)货车行驶25千米与小车行驶35千米所用时间相同,已知小车每小时比货车多行驶20千米,求两车的速度各为多少?设货车的速度为x千米/小时,依题意列方程正确的是()A.B.C.D.【分析】题中等量关系:货车行驶25千米与小车行驶35千米所用时间相同,列出关系式.【解答】解:根据题意,得.故选:C.【点评】理解题意是解答应用题的关键,找出题中的等量关系,列出关系式.11.(2013•杭州)如图,设k=(a>b>0),则有()A.k>2 B.1<k<2 C.D.【分析】分别计算出甲图中阴影部分面积及乙图中阴影部分面积,然后计算比值即可.【解答】解:甲图中阴影部分面积为a2﹣b2,乙图中阴影部分面积为a(a﹣b),则k====1+,∵a>b>0,∴0<<1,∴1<+1<2,∴1<k<2故选B.【点评】本题考查了分式的乘除法,会计算矩形的面积及熟悉分式的运算是解题的关键.12.(2016•本溪一模)A,B两地相距48千米,一艘轮船从A地顺流航行至B 地,又立即从B地逆流返回A地,共用去9小时,已知水流速度为4千米/时,若设该轮船在静水中的速度为x千米/时,则可列方程()A.B.C.+4=9 D.【分析】本题的等量关系为:顺流时间+逆流时间=9小时.【解答】解:顺流时间为:;逆流时间为:.所列方程为:+=9.故选A.【点评】未知量是速度,有速度,一定是根据时间来列等量关系的.找到关键描述语,找到等量关系是解决问题的关键.13.(2005•武汉)计算的结果为()A.1 B.x+1 C. D.【分析】先算括号里的通分,再进行因式分解,将除号换为乘号,最后再进行分式间的约分化简.【解答】解:===,故选C.【点评】注意:当整式与分式相加减时,一般可以把整式看作分母为1的分式,与其它分式进行通分运算.14.(2004•十堰)若分式(A,B为常数),则A,B的值为()A.B.C.D.【分析】对等式右边通分加减运算和,再根据对应项系数相等列方程组求解即可.【解答】解:.所以,解得.故选B.【点评】此题考查了分式的减法,比较灵活,需要熟练掌握分式的加减运算.二.填空题(共13小题)15.(2014•陕西)计算:=9.【分析】根据负整数指数幂的运算法则进行计算即可.【解答】解:原式===9.故答案为:9.【点评】本题考查的是负整数指数幂,即负整数指数幂等于该数对应的正整数指数幂的倒数.16.(2014•衢州)若分式有意义,则实数x的取值范围是x≠5.【分析】由于分式的分母不能为0,x﹣5为分母,因此x﹣5≠0,解得x.【解答】解:∵分式有意义,∴x﹣5≠0,即x≠5.故答案为:x≠5.【点评】本题主要考查分式有意义的条件:分式有意义,分母不能为0.17.(2013•梅州)分式方程的解x=1.【分析】本题的最简公分母是x+1,方程两边都乘最简公分母,可把分式方程转换为整式方程求解.结果要检验.【解答】解:方程两边都乘x+1,得2x=x+1,解得x=1.检验:当x=1时,x+1≠0.∴x=1是原方程的解.【点评】(1)解分式方程的基本思想是“转化思想”,方程两边都乘最简公分母,把分式方程转化为整式方程求解.(2)解分式方程一定注意要代入最简公分母验根.18.(2013•临夏州)若代数式的值为零,则x=3.【分析】由题意得=0,解分式方程即可得出答案.【解答】解:由题意得,=0,解得:x=3,经检验的x=3是原方程的根.故答案为:3.【点评】此题考查了分式值为0的条件,属于基础题,注意分式方程需要检验.19.(2013•凉山州)化简的结果是m.【分析】本题需先把(m+1)与括号里的每一项分别进行相乘,再把所得结果相加即可求出答案.【解答】解:=(m+1)﹣1=m故答案为:m.【点评】本题主要考查了分式的混合运算,在解题时要把(m+1)分别进行相乘是解题的关键.20.(2013•衢州)化简:=.【分析】先将x2﹣4分解为(x+2)(x﹣2),然后通分,再进行计算.【解答】解:===.【点评】本题考查了分式的计算和化简.解决这类题关键是把握好通分与约分.分式加减的本质是通分,乘除的本质是约分.21.(2015•黄冈)计算÷(1﹣)的结果是.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分即可得到结果.【解答】解:原式=÷=•=,故答案为:.【点评】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.22.(2013•绥化)若关于x的方程=+1无解,则a的值是2或1.【分析】把方程去分母得到一个整式方程,把方程的增根x=2代入即可求得a的值.【解答】解:x﹣2=0,解得:x=2.方程去分母,得:ax=4+x﹣2,即(a﹣1)x=2当a﹣1≠0时,把x=2代入方程得:2a=4+2﹣2,解得:a=2.当a﹣1=0,即a=1时,原方程无解.故答案是:2或1.【点评】首先根据题意写出a的新方程,然后解出a的值.23.(2013•德阳)已知关于x的方程的解是正数,则m的取值范围是m .>﹣6且m≠﹣4【分析】首先求出关于x的方程的解,然后根据解是正数,再解不等式求出m的取值范围.【解答】解:解关于x的方程得x=m+6,∵方程的解是正数,∴m+6>0且m+6≠2,解这个不等式得m>﹣6且m≠﹣4.故答案为:m>﹣6且m≠﹣4.【点评】本题考查了分式方程的解,是一个方程与不等式的综合题目,解关于x 的方程是关键,解关于x的不等式是本题的一个难点.24.(2009•枣庄)a、b为实数,且ab=1,设P=,Q=,则P =Q(填“>”、“<”或“=”).【分析】将两式分别化简,然后将ab=1代入其中,再进行比较,即可得出结论.【解答】解:∵P==,把ab=1代入得:=1;Q==,把ab=1代入得:=1;∴P=Q.【点评】解答此题关键是先把所求代数式化简再把已知代入即可.25.(2013•达州)如果实数x满足x2+2x﹣3=0,那么代数式的值为5.【分析】先根据分式混合运算的法则把原式进行化简,再根据实数x满足x2+2x ﹣3=0求出x2+2x的值,代入原式进行计算即可.【解答】解:原式=×(x+1)=x2+2x+2,∵实数x满足x2+2x﹣3=0,∴x2+2x=3,∴原式=3+2=5.故答案为:5.【点评】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.26.(2013•呼和浩特)某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所需时间与原计划生产450台机器所需时间相同,现在平均每天生产200台机器.【分析】根据现在生产600台机器的时间与原计划生产450台机器的时间相同.所以可得等量关系为:现在生产600台机器时间=原计划生产450台时间.【解答】解:设:现在平均每天生产x台机器,则原计划可生产(x﹣50)台.依题意得:=.解得:x=200.检验:当x=200时,x(x﹣50)≠0.∴x=200是原分式方程的解.∴现在平均每天生产200台机器.故答案为:200.【点评】此题主要考查了分式方程的应用,重点在于准确地找出相等关系,这是列方程的依据.而难点则在于对题目已知条件的分析,也就是审题,一般来说应用题中的条件有两种,一种是显性的,直接在题目中明确给出,而另一种是隐性的,是以题目的隐含条件给出.本题中“现在平均每天比原计划多生产50台机器”就是一个隐含条件,注意挖掘.27.(2013•舟山)杭州到北京的铁路长1487千米.火车的原平均速度为x千米/时,提速后平均速度增加了70千米/时,由杭州到北京的行驶时间缩短了3小时,则可列方程为﹣=3.【分析】先分别求出提速前和提速后由杭州到北京的行驶时间,再根据由杭州到北京的行驶时间缩短了3小时,即可列出方程.【解答】解:根据题意得:﹣=3;故答案为:﹣=3.【点评】此题考查了由实际问题抽象出分式方程,关键是读懂题意,找出题目中的等量关系并列出方程.三.解答题(共13小题)28.(2013•眉山)先化简,再求值:,其中.【分析】这道求代数式值的题目,不应考虑把x的值直接代入,通常做法是先把代数式去括号,把除法转换为乘法化简,然后再代入求值.【解答】解:原式=+(x﹣2)(3分)=x(x﹣1)+(x﹣2)=x2﹣2;(2分)当x=时,则原式的值为﹣2=4.(2分)【点评】分式混合运算要注意先去括号;分子、分母能因式分解的先因式分解;除法要统一为乘法运算.29.(2005•徐州)先化简代数式,然后选取一个使原式有意义的a值代入求值.【分析】本题考查的化简与计算的综合运算,关键是正确进行分式的通分、约分,并准确代值计算.此题要注意的是a≠1.【解答】解:原式===,∵a﹣1≠0,∴a≠1,当a=2时,原式=2.【点评】此题考查了分式的化简求值,取合适的值代入原式求值时,要特注意原式及化简过程中的每一步都有意义.30.(2015•甘南州)已知x﹣3y=0,求•(x﹣y)的值.【分析】首先将分式的分母分解因式,然后再约分、化简,最后将x、y的关系式代入化简后的式子中进行计算即可.【解答】解:=(2分)=;(4分)当x﹣3y=0时,x=3y;(6分)原式=.(8分)【点评】分式混合运算要注意先去括号;分子、分母能因式分解的先因式分解;除法要统一为乘法运算.31.(2013•普洱)解方程:.【分析】观察可得2﹣x=﹣(x﹣2),所以可确定方程最简公分母为:(x﹣2),然后去分母将分式方程化成整式方程求解.注意检验.【解答】解:方程两边同乘以(x﹣2),得:x﹣3+(x﹣2)=﹣3,解得x=1,检验:x=1时,x﹣2≠0,∴x=1是原分式方程的解.【点评】(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.(3)去分母时有常数项的不要漏乘常数项.32.(2013•重庆)先化简,再求值:,其中x是不等式3x+7>1的负整数解.【分析】首先把分式进行化简,再解出不等式,确定出x的值,然后再代入化简后的分式即可.【解答】解:原式=[﹣]×,=×,=×,=,3x+7>1,3x>﹣6,x>﹣2,∵x是不等式3x+7>1的负整数解,∴x=﹣1,把x=﹣1代入中得:=3.【点评】此题主要考查了分式的化简求值,以及不等式的整数解,关键是正确把分式进行化简.33.(2013•巴中)先化简÷(a+1)+,然后a在﹣1、1、2三个数中任选一个合适的数代入求值.【分析】先根据分式混合运算的法则把原式进行化简,再选取合适的a的值代入进行计算即可.【解答】解:原式=•+=+=,当a=2(a≠﹣1,a≠1)时,原式==5.【点评】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.34.(2013•陕西)解分式方程:+=1.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:2+x(x+2)=x2﹣4,解得:x=﹣3,经检验x=﹣3是分式方程的解.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.35.(2015•广州)已知A=﹣(1)化简A;(2)当x满足不等式组,且x为整数时,求A的值.【分析】(1)根据分式四则混合运算的运算法则,把A式进行化简即可.(2)首先求出不等式组的解集,然后根据x为整数求出x的值,再把求出的x 的值代入化简后的A式进行计算即可.【解答】解:(1)A=﹣=﹣=﹣=(2)∵∴∴1≤x<3,∵x为整数,∴x=1或x=2,①当x=1时,∵x﹣1≠0,∴A=中x≠1,∴当x=1时,A=无意义.②当x=2时,A==.【点评】(1)此题主要考查了分式的化简求值,注意化简时不能跨度太大,而缺少必要的步骤.(2)此题还考查了求一元一次不等式组的整数解问题,要熟练掌握,解决此类问题的关键在于正确解得不等式组或不等式的解集,然后再根据题目中对于解集的限制得到下一步所需要的条件,再根据得到的条件求得不等式组的整数解即可.36.(2013•哈尔滨)甲、乙两个工程队共同承担一项筑路任务,甲队单独施工完成此项任务比乙队单独施工完成此项任务多用10天,且甲队单独施工45天和乙队单独施工30天的工作量相同.(1)甲、乙两队单独完成此项任务需要多少天?(2)若甲、乙两队共同工作了3天后,乙队因设备检修停止施工,由甲队继续施工,为了不影响工程进度,甲队的工作效率提高到原来的2倍,要使甲队总的工作量不少于乙队的工作量的2倍,那么甲队至少再单独施工多少天?【分析】(1)设乙队单独完成此项任务需要x天,则甲队单独完成此项任务需要(x+10)天,根据甲队单独施工45天和乙队单独施工30天的工作量相同建立方程求出其解即可;(2)设甲队再单独施工a天,根据甲队总的工作量不少于乙队的工作量的2倍建立不等式求出其解即可.【解答】解:(1)设乙队单独完成此项任务需要x天,则甲队单独完成此项任务需要(x+10)天,由题意,得,解得:x=20.经检验,x=20是原方程的解,∴x+10=30(天)答:甲队单独完成此项任务需要30天,乙队单独完成此项任务需要20天;(2)设甲队再单独施工a天,由题意,得,解得:a≥3.答:甲队至少再单独施工3天.【点评】本题是一道工程问题的运用,考查了工作时间×工作效率=工作总量的运用,列分式方程解实际问题的运用,分式方程的解法的运用,解答时验根是学生容易忽略的地方.37.(2015•成都)某商家预测一种应季衬衫能畅销市场,就用13200元购进了一批这种衬衫,面市后果然供不应求,商家又用28800元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但单价贵了10元.(1)该商家购进的第一批衬衫是多少件?(2)若两批衬衫按相同的标价销售,最后剩下50件按八折优惠卖出,如果两批衬衫全部售完后利润不低于25%(不考虑其他因素),那么每件衬衫的标价至少是多少元?【分析】(1)可设该商家购进的第一批衬衫是x件,则购进第二批这种衬衫是2x件,根据第二批这种衬衫单价贵了10元,列出方程求解即可;(2)设每件衬衫的标价y元,求出利润表达式,然后列不等式解答.【解答】解:(1)设该商家购进的第一批衬衫是x件,则购进第二批这种衬衫是2x件,依题意有+10=,解得x=120,经检验,x=120是原方程的解,且符合题意.答:该商家购进的第一批衬衫是120件.(2)3x=3×120=360,设每件衬衫的标价y元,依题意有(360﹣50)y+50×0.8y≥(13200+28800)×(1+25%),解得y≥150.答:每件衬衫的标价至少是150元.【点评】本题考查了分式方程的应用和一元一次不等式的应用,弄清题意并找出题中的数量关系并列出方程是解题的关键.38.(2014•广州)从广州到某市,可乘坐普通列车或高铁,已知高铁的行驶路程是400千米,普通列车的行驶路程是高铁的行驶路程的1.3倍.(1)求普通列车的行驶路程;(2)若高铁的平均速度(千米/时)是普通列车平均速度(千米/时)的2.5倍,且乘坐高铁所需时间比乘坐普通列车所需时间缩短3小时,求高铁的平均速度.【分析】(1)根据高铁的行驶路程是400千米和普通列车的行驶路程是高铁的行驶路程的1.3倍,两数相乘即可得出答案;(2)设普通列车平均速度是x千米/时,根据高铁所需时间比乘坐普通列车所需时间缩短3小时,列出分式方程,然后求解即可;【解答】解:(1)根据题意得:400×1.3=520(千米),答:普通列车的行驶路程是520千米;(2)设普通列车平均速度是x千米/时,则高铁平均速度是2.5x千米/时,根据题意得:﹣=3,解得:x=120,。
八年级数学下学期期末考点 分式 全章复习 (4个考点梳理+9种题型解读)(原卷版)
清单03分式全章复习(4个考点梳理+9种题型解读)考点一分式的基础分式的概念:如果A,B表示两个整式,并且B中含有字母,那么式子A B叫做分式,A为分子,B为分母.对于分式A B来说:①当B≠0时,分式有意义;当B=0时,分式无意义.②当A=0且B≠0这两个条件同时满足时,分式值为0.③当A=B时,分式的值为1.当A+B=0时,分式的值为-1.④若A B>0,则A、B同号;若A B<0,则A、B异号.约分的定义:把一个分式的分子与分母的公因式约去,叫分式的约分.最简公式的定义:分子与分母没有公因式的分式,叫做最简分式.通分的定义:把几个异分母的分式分别化成与原来的分式相等的同分母分式,这一过程叫做分式的通分.通分步骤:①定最简公分母;②化异分母为最简公分母.最简公分母的定义:通常取各分母系数的最小公倍数与所有字母因式的最高次幂的积作为公分母,这样的分母叫做最简公分母.确定最简公分母的方法:类型方法步骤1.(23-24八年级上·全国·课后作业)对于分式2x y x y -+:(1)如果1x =,那么y 取何值时,分式无意义?(2)如果1y =,那么x 取何值时,分式无意义?(3)使分式无意义的x ,y 有多少对?(4)要使得分式有意义,x ,y 应有什么关系?(5)如果=1x -,那么y 取什么值时,分式的值为零?2.(22-23八年级下·河南南阳·阶段练习)对于分式23x a x b-+,当1x =-时,分式无意义;当4x =时,分式的值为0,求a b 的值.3.(22-23八年级上·湖南永州·期中)已知关于x 的分式21(1)(3)x x x -+-,求下列问题:(1)当x 满足什么条件,分式无意义;(2)当x 满足什么条件,分式有意义;(3)当x 满足什么条件,分式的值等于0.【考试题型2】利用分式的基本性质进行分式变形4.(23-24八年级上·全国·课后作业)在括号中填上恰当的式子:(1)()()30510a axy xy axy=≠;(2)()()22124a a a +=≠±-;(3)()()222x y x y x y+=≠-;(4)()22222a ab b a b a b -+-=-(0a b +≠且0a b -≠).5.(23-24八年级上·全国·课堂例题)不改变分式的值,使下列分式的分子和分母都不含“-”号:(1)35b a --;(2)35m n---;(3)332x x ---;(4)232x --+.6.(21-22八年级上·全国·课后作业)不改变分式的值,把下列各式的分式与分母中各项的系数都化为整数.①220.60.30.50.7x y x y -+;②22220.250.50.752a b a b +-;③1112361164a b c a b -++;④21318543x y x ---.考点二分式的运算【考试题型3】整式与分式相加减7.(23-24八年级上·山东潍坊·阶段练习)计算:(1)212293m m +--(2)211x x x -++8.(23-24八年级上·全国·课后作业)计算:(1)2222242x x xy y x x y y x x y---+---(2)236924424x x x -++--;(3)2111111x x x +++--;(4)3211x x x x +-+-9.(2022·四川泸州·一模)化简:221111x x x x -⎛⎫+- ⎪-+⎝⎭【考试题型4】分式加减乘除混合运算10.(23-24八年级上·山东聊城·阶段练习)计算:(1)23234243b b b a a a a b ⎛⎫⎛⎫⎛⎫⎛⎫÷-⋅⋅ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.(2)()22224414;22x xy y x y x y x y -+÷-⋅-+11.(23-24八年级上·山东烟台·期中)计算(1)22433842x x y x y y ⎛⎫⎛⎫⋅-÷- ⎪ ⎪⎝⎭⎝⎭;(2)211x x x x +--;(3)222632444163x x x x x x x ---÷⋅-+-+;(4)2211()xy x y x y x y -÷-+-.12.(23-24八年级上·山东东营·阶段练习)计算:(1)22233x y xy y z z ⎛⎫⋅÷ ⎪⎝⎭(2)()22222x xy y x y xy x xy x -+--÷(3)2222223223x y x y x y x y x y x y ++--+---(4)222111x x x x x ++---【考试题型5】分式的化简求值13.(22-23八年级下·贵州六盘水·阶段练习)先化简,再求值:24431221x x x x x -+÷-+++⎛⎫ ⎪⎝⎭,其中x 是不等式381x -<的正整数解.14.(23-24八年级上·山东烟台·期中)若a ,b 为实数,且()222|25|05a b b -+-=-,求22b a a b --的值.15.(23-24八年级上·广东湛江·期末)化简2869111x x x x x -+⎛⎫-+÷ ⎪++⎝⎭,再从1,1,3-中选择一个合适的数代入求值.16.(23-24八年级上·山东淄博·阶段练习)化简求值:112()y x y x y x y-÷-+-,其中x ,y 满足()2120x y -++=.考点三解分式方程分式方程的概念:分母中含有未知数的方程叫做分式方程.增根的概念:在方程变形时,有时可能产生不适合原方程的根,这种根叫做方程的增根.【考试题型6】解分式方程17.(23-24八年级上·山东烟台·期中)解分式方程:(1)23611x x =+-(2)31244x x x -+=--.18.(23-24八年级上·江苏南通·阶段练习)解下列分式方程:(1)21122x x x +=+--;(2)2227611x x x x x -=+--.【考试题型7】根据分式方程解的情况求值19.(22-23八年级下·全国·假期作业)已知关于x 的分式方程3211m x x +=---的解为非负数,求正整数m 的值.20.(23-24八年级上·全国·课堂例题)已知关于x 的方程233x m x x -=--的解是正数,求m 的取值范围.21.(23-24八年级上·湖南怀化·期中)已知关于x 的方程4433x m m x x---=--有增根,求m 的值.22.(23-24八年级下·全国·课后作业)已知关于x 的方程:3611(1)(1)mx x x x x +=+-+-.(1)若方程有增根,求m 的值;(2)若方程无解,求m 的值.23.(23-24八年级上·山东泰安·阶段练习)解方程:(1)解方程:21133x x x x =-++;(2)解方程:2236111y y y +=+--;(3)关于x 的分式方程()()232121mx x x x x +=-+-+.①若方程的增根为2x =,求m 的值;②若方程有增根,求m 的值;③若方程无解,求m 的值.【考试题型8】分式方程与一元一次不等式组综合24.(23-24八年级上·新疆乌鲁木齐·阶段练习)关于x 的方程2133x m x x--+=的解为正数,且关于y 的不等式组()323y m y m m -≥⎧⎨-≤+⎩有解,则符合题意的所有整数m 的和为.25.(22-23八年级下·重庆九龙坡·期末)若实数m 使关于x 的不等式组2333222x x x m ++⎧-≤⎪⎨⎪-<-⎩有整数解且至多有4个整数解,且使关于y 的分式方程16211m y y-=---的解为非负数,则满足条件的所有整数m 的和为.26.(23-24八年级上·重庆九龙坡·期末)若关于x 的不等式组3512622x x x x a-⎧<+⎪⎨⎪-≥+⎩有且只有3个奇数解,且关于y 的分式方程32111y a a y y +-+=--的解为整数,则符合条件的所有整数a 的和为.考点四利用分式方程解决实际问题用分式方程解决实际问题的步骤:审:理解并找出实际问题中的等量关系;设:用代数式表示实际问题中的基础数据;列:找到所列代数式中的等量关系,以此为依据列出方程;解:求解方程;验:考虑求出的解是否具有实际意义;+1)检验所求的解是否是所列分式方程的解.2)检验所求的解是否符合实际意义.答:实际问题的答案.与分式方程有关应用题的常见类型:【考试题型9】分式方程的实际应用27.(22-23八年级下·江苏无锡·期中)在2020年疫情防控期间,我市某公司为了满足全体员工的需求,花1万元买了一批口罩,随着2021年疫情的缓解,以及各种抗疫物资充足的供应,每包口罩的价格下降了50%,该公司又花了6000元购买了一批口罩,购买的数量比2020年购买的数量还多100包.求2020年每包口罩的价格是多少?(1)设2020年每包口罩的价格为x 元,则2021年每包口罩的价格为元;(用含x 的代数式表示)(2)求2020年每包口罩的价格.28.(23-24八年级上·山东烟台·期中)2023年9月21日,“天宫课堂”第四课在中国空间站开讲了,精彩的直播激发了学生探索科学奥秘的兴趣.某单位为满足学生的需求,充实物理小组的实验项目,需要购买甲、乙两款物理实验套装.经了解,每款甲款实验套装的零售价比乙款实验套装的零售价多7元,该单位以零售价分别用750元和540元购买了相同数量的甲、乙两款物理实验套装.(1)甲、乙两款物理实验套装每个的零售价分别为多少元?(2)由于物理兴趣小组人数增加,该单位需再次购买两款物理实验套装共200个,且甲款实验套装的个数不少于乙款实验套装的个数的一半,由于购买量大,甲乙两款物理实验套装分别获得了20元/每个、15元/每个的批发价.求甲、乙两款物理实验套装分别购买多少个时,所用资金最少.29.(23-24八年级上·山东聊城·阶段练习)京广高速铁路工程指挥部,要对某路段工程进行招标,接到了甲、乙两个工程队的投标书.从标书中得知:甲队单独完成这项工程所需天数是乙队单独完成这项工程所需天数的23;若由甲队先做10天,剩下的工程再由甲、乙两队合作30天完成.(1)求甲、乙两队单独完成这项工程各需多少天?(2)已知甲队每天的施工费用为8.4万元,乙队每天的施工费用为5.6万元.工程预算的施工费用为500万元,为缩短工期并高效完成工程,从一开始就安排甲乙两工程队合作,拟安排预算的施工费用是否够用?若不够用,需追加预算多少万元?请给出你的判断并说明理由.30.(23-24八年级上·山东潍坊·阶段练习)2023年,淄博烧烤成为热门话题,和三五好友在路边小摊上说说笑笑、感受人间烟火气成为时下最受欢迎的休闲方式之一.为恢复和提振消费,越来越多的城市加入支持“地摊经济”的队伍,近日淄博某社区拟建A,B两类摊位以搞活“地摊经济”.每个A类摊位的占地面积比每个B类摊位的占地面积多2平方米,用60平方米建A类摊位的个数恰好是用同样面积建B类摊位个数的35.求每个A,B类摊位占地面积各为多少平方米?。
八年级数学分式解答题单元复习练习(Word版 含答案)
1.已知: , .
(1)当 >0时,判断 与0的关系,并说明理由;
(2)设 .
①当 时,求 的值;
②若 是整数,求 的正整数值.
【答案】(1)见解析;(2)①1;②4或3或1
【解析】
【分析】
(1)作差后,根据分式方程的加减法法则计算即可;
(2)①把M、N代入整理得到y,解分式方程即可;
【详解】
解:(1)由 ; ; ; ;…,
知它的一般性等式为 ;
(2) ,
原式成立;
(3)
.
【点睛】
解答此题关键是找出规律,再根据规律进行逆向运算.
3.某小麦改良品种后平均每公顷增加产量a吨,原来产m吨小麦的一块土地,现在小麦的总产量增加了20吨.
(1)当a=0.8,m=100时,原来和现在小麦的平均每公顷产量各是多少?
②把y变形为: ,由于x为整数,y为整数,则 可以取±1,±2,然后一一检验即可.
【详解】
(1)当 时,M-N≥0.理由如下:
M-N= .
∵ >0,∴(x-1)2≥0,2(x+1)>0,∴ ,∴M-N≥0.
(2)依题意,得: .
①当 ,即 时,解得: .经检验, 是原分式方程的解,∴当y=3时,x的值是1.
2.已知下面一列等式:
; ; ; ;…
(1)请你按这些等式左边的结构特征写出它的一般性等式:
(2)验证一下你写出的等式是否成立;
(3)利用等式计算: .
【答案】(1)一般性等式为 ;(2)原式成立;详见解析;(3) .
【解析】
【分析】
(1)先要根据已知条件找出规律;(2)根据规律进行逆向运算;(3)根据前两部结论进行计算.
《常考题》初中八年级数学上册第十五章《分式》知识点总结(含答案解析)
一、选择题1.如图,在数轴上表示2224411424x x x x x x-++÷-+的值的点是( )A .点PB .点QC .点MD .点N C解析:C 【分析】先进行分式化简,再确定在数轴上表示的数即可. 【详解】解:2224411424x x x x x x-++÷-+ 2(2)14(2)(2)(2)x x x x x x -=+⨯+-+, 2422x x x -=+++, 242x x -+=+, 22x x +=+, =1, 在数轴是对应的点是M , 故选:C . 【点睛】本题考查了分式化简和数轴上表示的数,熟练运用分式计算法则进行化简是解题关键.2.若关于x 的一元一次不等式组()()1112232321x x x a x ⎧-≤-⎪⎨⎪-≥-⎩恰有3个整数解,且使关于y 的分式方程3133y ayy y++=--有正整数解,则所有满足条件的整数a 的值之和是( ) A .4 B .5C .6D .3A解析:A 【分析】不等式组整理后,根据已知解集确定出a 的范围,分式方程去分母转化为整式方程,由分式方程有正整数解,确定出a 的值,求出之和即可. 【详解】关于x 的一元一次不等式组整理得:325x a x ≤⎧⎪+⎨≥⎪⎩,∵325x a x ≤⎧⎪+⎨≥⎪⎩恰有3个整数解,∴2015a+<≤,即:23a -<≤, 关于y 的分式方程3133y ay y y ++=--,整理得:6y a=, ∵3133y ay y y ++=--有正整数解且63a≠, ∴满足条件的整数a 的值为:1,3 ∴所有满足条件的整数a 的值之和是4, 故选A . 【点睛】此题考查了分式方程的解,以及解一元一次不等式组,熟练掌握求一元一次不等式组的解以及解分式方程的步骤,是解题的关键.3.计算:2x y x yx y xy-⋅-=( ) A .x B .y xC .yD .1xA 解析:A 【分析】根据分式乘法计算法则解答. 【详解】解:2x y x yx y xy-⋅-=x , 故选:A . 【点睛】此题考查分式的乘法计算法则,熟记计算法则是解题的关键.4.2020年新冠肺炎疫情影响全球,某企业临时增加甲、乙两个厂房生产口罩,甲厂房每天生产的数量是乙厂房每天生产数量的2倍,两厂房各加工6000箱口罩,甲厂房比乙厂房少用5天.则甲、乙两厂房每天各生产的口罩箱数为( ) A .1200,600 B .600,1200C .1600,800D .800,1600A解析:A 【分析】先设乙厂房每天生产x 箱口罩,则甲厂房每天生产2x 箱口罩,根据工作时间=工作总量÷工作效率且两厂房各加工6000箱口罩时甲厂房比乙厂房少用5天,可得出关于x的分式方程,解方程即可得出结论.【详解】解:设乙厂房每天生产x箱口罩,则甲厂房每天生产2x箱口罩,依题意得:6000600052x x-=,解得:x=600,经检验,x=600是原分式方程的解,且符合题意,∴2x=1200.故答案选:A.【点睛】该题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.5.下列变形不正确的是()A.1122x xx x+-=---B.b a a bc c--+=-C.a b a bm m-+-=-D.22112323x xx x--=---A解析:A【分析】答题首先清楚分式的基本性质,然后对各选项进行判断.【详解】解:A、1122x xx x+--=---,故A不正确;B、b a a bc c--+=-,故B正确;C、a b a bm m-+-=-,故C正确;D、22112323x xx x--=---,故D正确.故答案为:A.【点睛】本题主要考查了分式的基本性质,掌握分式的基本性质是解题的关键.6.为推进垃圾分类,推动绿色发展,宜宾天原化工厂要购进甲、乙两种型号机器人用来进行垃圾分类.用460万元购买甲型机器人比用580万元购买乙型机器人的台数少一台,两种型号机器人的单价和为140万元.若设乙型机器人每台x万元,根据题意,所列方程正确的是()A.4605801x140x-=-B.4605801140x x=--C.4605801x140x=+-D .4605801140x x-=- B解析:B 【分析】设乙型机器人每台x 万元,由两种型号机器人的单价和为140万元得甲型机器人每台()140x -万元,根据用460万元购买甲型机器人比用580万元购买乙型机器人的台数少一台列得方程. 【详解】解:设乙型机器人每台x 万元,则甲型机器人每台()140x -万元,根据题意,可得4605801140x x=--.故选:B. 【点睛】此题考查分式方程的实际应用,正确理解题意找到题中的等量关系,由此列得方程解决实际问题是解题的关键. 7.下列说法正确的是( )A .分式242x x --的值为零,则x 的值为2±B .根据分式的基本性质,m n 可以变形为22mx nxC .分式32xyx y-中的,x y 都扩大3倍,分式的值不变D .分式211x x ++是最简分式D 解析:D 【分析】直接利用分式的值为零的条件以及分式的基本性质、最简分式的定义分别分析得出答案. 【详解】A 、分式242x x --的值为零,则x 的值为−2,故此选项错误;B 、根据分式的基本性质,等式m n =22mx nx(x≠0),故此选项错误;C 、分式32xyx y-中的x ,y 都扩大3倍,分式的值扩大为3倍,故此选项错误;D 、分式211x x ++是最简分式,正确; 故选:D .【点睛】此题主要考查了分式的值为零的条件以及分式的基本性质、最简分式的定义,正确掌握相关定义和性质是解题关键. 8.若数a 使关于x 的分式方程2311a x x+=--的解为非负数,且使关于y 的不等式组213202y yy a +⎧->⎪⎪⎨-⎪≤⎪⎩的解集为2y <-,则符合条件的所有整数a 的个数为( ) A .5 B .6C .7D .8C解析:C 【分析】 根据分式方程2311ax x+=--的解为非负数求得a>5,根据不等式组的解集为2y <-,求得2a ≥-,利用分式的分母不等于0得到x ≠1,即可得到a 的取值范围25a -≤≤,且x ≠1,根据整数的意义得到a 的整数值. 【详解】 解分式方程2311a x x+=--,得53a x -=,∵分式方程2311ax x+=--的解为非负数, ∴503a-≥, 解得a ≤5,∵关于y 的不等式组213202y yy a +⎧->⎪⎪⎨-⎪≤⎪⎩,得2y y a <-⎧⎨≤⎩,∵不等式组的解集为2y <-, ∴2a ≥-, ∵x-1≠0, ∴x ≠1,∴25a -≤≤,且x ≠1,∴整数a 为:-2、-1、0、1、3、4、5,共有7个, 故选:C . 【点睛】此题考查根据分式方程的解的情况求未知数的取值范围,根据不等式组的解集情况求未知数的取值范围,确定不等式的整数解,正确理解题意并计算是解题的关键.9.22()-n b a (n为正整数)的值是( )A .222+n n b aB .42n n b aC .212+-n n b aD .42-nn b aB解析:B 【分析】根据分式的乘方计算法则解答. 【详解】2422()-=nn n b b a a . 故选:B . 【点睛】此题考查分式的乘方计算法则:等于分子、分母分别乘方,熟记法则是解题的关键. 10.下列各式中正确的是( )A .263333()22=x x y y B .222224()=++a a a b a b C .22222()--=++x y x y x y x yD .333()()()++=--m n m n m n m n D 解析:D 【分析】根据分式的乘法法则计算依次判断即可. 【详解】A 、2633327()28=x x y y ,故该项错误; B 、22224()()=++a a a b a b ,故该项错误; C 、222()()()--=++x y x y x y x y ,故该项错误; D 、333()()()++=--m n m n m n m n ,故该项正确; 故选:D . 【点睛】此题考查分式的乘方计算法则:等于分子、分母分别乘方,熟记法则是解题的关键.二、填空题11.对于两个不相等的实数a ,b ,我们规定符号{}min ,a b 表示a ,b 中的较小的值,如{}min 2,42=.(1){}min 2,3--=__________________. (2)方程{}3min 2,322x x x--=---的解为_________________. (3)方程131min ,2222x x x x -⎧⎫=-⎨⎬---⎩⎭的解为_________________.-3【分析】(1)模仿题干可直接给出答案;(2)先将原式转化为分式方程求解即可;(3)根据题中的新定义化简求出分式方程的解检验即可【详解】解:(1)根据题意;(2)原方程为:去分母得解得:经检验是该解析:-3 34x = 0x = 【分析】(1)模仿题干可直接给出答案;(2)先将原式转化为分式方程,求解即可;(3)根据题中的新定义化简,求出分式方程的解,检验即可. 【详解】解:(1)根据题意,{}min 2,33--=-;(2)原方程为:3322x x x-=---, 去分母得33(2)x x +=--,解得:34x =,经检验34x =是该方程的根, 故{}3min 2,322xx x--=---的解为:34x =;(3)当1322x x <--时,x >2,方程变形得:11222x x x -=---, 去分母得:1=x-1-2x+4, 解得:x=2,不符合题意;当1322x x >--时,即x <2,方程变形得:31222x x x -=---, 解得:x=0,经检验x=0是分式方程的解, 综上,所求方程的解为x=0.故答案为:-3,34x =,0x =. 【点睛】本题考查新定义的实数运算,解分式方程.能将题目新定义的运算化为一般运算是解题关键.12.当x _______时,分式22x x -的值为负.且【分析】分式有意义x2≠0分式的值为负数只有分子x-2<0由此求x 的取值范围【详解】解:依题意得解得x <2且x≠0故答案为:x <2且x≠0【点睛】本题考查了分式的值求分式的值必须同时满足分母不为0解析:2x <且0x ≠ 【分析】分式有意义,x 2≠0,分式的值为负数,只有分子x-2<0,由此求x 的取值范围. 【详解】解:依题意,得2200x x -<⎧⎨≠⎩解得x <2且x≠0,故答案为:x <2且x≠0. 【点睛】本题考查了分式的值.求分式的值,必须同时满足分母不为0.13.211a a a-+=+_________.【分析】先通分再分母不变分子相减即可求解【详解】故答案为:【点睛】本题考查了分式加减运算的法则熟记法则是解题的关键 解析:11a + 【分析】先通分,再分母不变,分子相减即可求解. 【详解】222222211(1)11111111(1)(1)11a a a a a a a a a a a a a a a a a a a +--+=--=-=-==+++++++-++- 故答案为:11a + 【点睛】本题考查了分式加减运算的法则,熟记法则是解题的关键. 14.化简分式:2121211a a a a +⎛⎫÷+= ⎪-+-⎝⎭_________.【分析】先计算括号内的加法再将除法化为乘法再计算乘法即可【详解】解:===故答案为:【点睛】本题考查分式的混合运算掌握运算顺序和每一步的运算法则是解题关键 解析:11a - 【分析】先计算括号内的加法,再将除法化为乘法,再计算乘法即可. 【详解】解:2121211a a a a +⎛⎫÷+ ⎪-+-⎝⎭=2112211a a a a a +-+÷-+- =211(1)1a a a a +-⋅-+ =11a -, 故答案为:11a -. 【点睛】本题考查分式的混合运算.掌握运算顺序和每一步的运算法则是解题关键. 15.若13x x +=,则231x x x ++的值是_______.【分析】把原分式分子分母除以x 然后利用整体代入的方法计算【详解】当原式=故答案为:【点睛】本题考查了分式的化简求值:解决本题的关键是利用整体代入的方法计算解析:34【分析】把原分式分子分母除以x ,然后利用整体代入的方法计算. 【详解】233111x x x x x=++++,当13x x +=,原式=33314=+. 故答案为:34. 【点睛】本题考查了分式的化简求值:解决本题的关键是利用整体代入的方法计算.16.已知215a a+=,那么2421a a a =++________.【分析】将变形为=5a 根据完全平方公式将原式的分母变形后代入=5a 即可得到答案【详解】∵∴=5a ∴故答案为:【点睛】此题考查分式的化简求值完全平方公式根据已知等式变形为=5a 将所求代数式的分母变形为解析:124【分析】将215a a+=变形为21a +=5a ,根据完全平方公式将原式的分母变形后代入21a +=5a ,即可得到答案. 【详解】 ∵215a a+=,∴21a +=5a ,∴2421a a a =++()()2222222221242451a a a a a a a a===-+- 故答案为:124. 【点睛】此题考查分式的化简求值,完全平方公式,根据已知等式变形为21a +=5a ,将所求代数式的分母变形为22(1)a a +-形式,再代入计算是解题的关键. 17.计算:()222333a b a b --⋅=_______________.【分析】根据单项式乘单项式计算法则以及幂的乘方与积的乘方负整数指数幂计算即可【详解】原式=故答案为:【点睛】本题主要考查了单项式乘单项式幂的乘方与积的乘方负整数指数幂属于基础计算题 解析:3a b【分析】根据单项式乘单项式计算法则以及幂的乘方与积的乘方,负整数指数幂,计算即可. 【详解】 原式=44334343113333a a ba b a b a b b----+-=== 故答案为:3a b. 【点睛】本题主要考查了单项式乘单项式,幂的乘方与积的乘方,负整数指数幂,属于基础计算题.18.九年级()1班学生周末从学校出发到某实践基地研学旅行,实践基地距学校150千米,一部分学生乘慢车先行,出发30分钟后,另一部分学生乘快车前往,结果他们同时到达实践基地,已知快车的速度是慢车速度的1.2倍,如果设慢车的速度为x 千米/时,根据题意列方程为________.【分析】设慢车的速度为x千米/小时则快车的速度为12x千米/小时根据题意可得走过150千米快车比慢车少用小时列方程即可【详解】解:设慢车的速度为则快车的速度为根据题意得:故答案为:【点睛】本题考查了解析:15011502 1.2 x x-=【分析】设慢车的速度为x千米/小时,则快车的速度为1.2x千米/小时,根据题意可得走过150千米,快车比慢车少用12小时,列方程即可.【详解】解:设慢车的速度为xkm/h,则快车的速度为1.2xkm/h,根据题意得:1501150x2 1.2x-=.故答案为:1501150x2 1.2x-=.【点睛】本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,找出合适的等量关系,列方程.19.已知关于x的方程321x mx-=-的解是正数,则m的取值范围为____________.m>2且m≠3【分析】先给分式方程去分母化为整式方程用m表示出方程的解再由解为正数求出m的取值范围即可【详解】解:去分母得:3x﹣m=2(x﹣1)解得:x=m﹣2∵分式方程的解是正数且x≠1∴m﹣2解析:m>2且m≠3【分析】先给分式方程去分母化为整式方程,用m表示出方程的解,再由解为正数求出m的取值范围即可.【详解】解:去分母,得:3x﹣m=2(x﹣1),解得:x=m﹣2,∵分式方程的解是正数,且x≠1,∴m﹣2>0,且m﹣2≠1,解得:m>2且m≠3,故答案为:m>2且m≠3.【点睛】本题考查了分式方程的解、解一元一次不等式,熟练掌握分式方程的解法是解答的关键,注意分式的分母不能为零.20.计算:262393x x x x -÷=+--______.1【分析】先将分母因式分解再将除法转化为乘法再根据法则计算即可【详解】故答案为:1【点睛】本题主要考查了分式的混合运算解题的关键是掌握分式的混合运算顺序和运算法则解析:1【分析】先将分母因式分解,再将除法转化为乘法,再根据法则计算即可.【详解】262393x x x x -÷+-- 633(3)(3)2x x x x x -=+⋅++- 333x x x =+++ 33x x +=+ 1=.故答案为:1.【点睛】本题主要考查了分式的混合运算,解题的关键是掌握分式的混合运算顺序和运算法则.三、解答题21.某商店购进 A B 、两种商品,购买1个A 商品比购买1个B 商品多花10元,并且花费300元购买A 商品和花费100元购买B 商品的数量相等(1)求购买一个A 商品和一个B 商品各需要多少元(2)商店准备购买A B 、两种商品共80个,若A 商品的数量不少于B 商品数量的4倍,并且购买A B 、商品的总费用不低于1000元且不高于1060元,那么商店有哪几种购买方案? 解析:(1)购买一个A 商品需要15元,购买一个B 商品需要5元;(2)商店有3种购买方案,方案①:购进A 商品66个,B 商品14个;方案②:购进A 商品65个,B 商品15个;方案③:购进A 商品64个,B 商品16个【分析】(1)设购买一个B 商品需要x 元,则购买一个A 商品需要()10x +元,列出分式方程求解;(2)设购买B 商品m 个,则购买A 商品()80m -个,根据题意列出不等式组求出m 的范围,取整数解.【详解】解:()1设购买一个B 商品需要x 元,则购买一个A 商品需要()10x +元,依题意,得:30010010x x=+, 解得:5x =, 经检验, = 5x 是原方程的解,且符合题意,1015x ∴+=,答:购买一个A 商品需要15元,购买一个B 商品需要5元;()2设购买B 商品m 个,则购买A 商品()80m -个,依题意,得:()()804158051000158051060m m m m m m ⎧-≥⎪-+≥⎨⎪-+≥⎩,解得:1416m ≤≤, m 为整数,14m ∴=或15或16,∴商店有3种购买方案,方案①:购进A 商品66个,B 商品14个,方案②:购进A 商品65个,B 商品15个,方案③:购进A 商品64个,B 商品16个.【点睛】本题考查分式方程的应用和不等式的应用,解题的关键是掌握根据题意列分式方程和不等式的方法.22.某小区购买了A 型和B 型两种垃圾桶,购买A 型垃圾桶花费了2500元,购买B 型垃圾桶花费了2000元,且购买A 型垃圾桶数量是购买B 型垃圾桶数量的2倍,已知购买一个A 型垃圾桶比购买一个B 型垃圾桶少用30元,求购买一个A 型垃圾桶、一个B 型垃圾桶各需多少元?(要求列分式方程求解)解析:购买一个A 型垃圾桶需50元,一个B 型垃圾桶需80元【分析】设购买一个A 型垃圾桶需x 元,购买一个A 型垃圾桶比购买一个B 型垃圾桶少用30元,一个B 型垃圾桶需()30x +元,根据购买A 型垃圾桶数量是购买B 型垃圾桶数量的2倍,构造分式方程25002000230x x =⨯+,解方程并检验即可. 【详解】解:设购买一个A 型垃圾桶需x 元,则一个B 型垃圾桶需()30x +元, 由题意得:25002000230x x =⨯+, 解得50x =,经检验,50x =是原方程的解,且符合题意,30503080x +=+=,答:购买一个A 型垃圾桶需50元,一个B 型垃圾桶需80元.【点睛】本题考查列分式方程解应用题,掌握列分式方程解应用题的方法,抓住购买一个A 型垃圾桶比购买一个B 型垃圾桶少用30元设未知数,购买A 型垃圾桶数量是购买B 型垃圾桶数量的2倍构造方程,注意分式方程要验根.23.先化简,再求值:21111a a a ⎛⎫-÷ ⎪+-⎝⎭,其中1a =解析:1a -【分析】先把括号里分式通分,后变除法为乘法,因式分解后进行约分即可,将a 的值代入.【详解】原式=11(1)(1)1a a a a a +-+-⎛⎫⨯⎪+⎝⎭ =(1)(1)(1)a a a a a+-⨯+ 1a =-,当1a =时,原式=【点睛】本题考查了分式的化简求值,按照运算顺序,通分,因式分解,约分是解题的关键. 24.先化简,再求值:22121124x x x x -+⎛⎫+÷ ⎪--⎝⎭,其中3x =. 解析:21x x +-;52【分析】 先计算括号内的运算,然后计算除法,把分式进行化简得到最简分式,再把3x =代入计算,即可得到答案.【详解】解:原式=()()()22212211x x x x x x x +--+⨯=---; 当3x =时,原式=522331=-+. 【点睛】 本题考查了分式的混合运算,分式的化简求值,解题的关键是掌握运算法则进行计算. 25.随着智能分拣设备在快递业务中的普及,快件分拣效率大幅提高.使用某品牌智能分拣设备,每人每小时分拣的快件量是传统分拣方式的25倍,经过测试,由5人用此设备分拣8000件快件的时间,比20人用传统方式分拣同样数量的快件节省4小时.(1)使用智能分拣设备后,每人每小时可分拣快件多少件?(2)已知某快递中转站平均每天需要分拣10万件快件,每天工作时间为8小时,如果使用此智能分拣设备,每天只需要安排多少名工人就可以完成分拣工作?解析:(1)使用智能分拣设备后每人每小时可分拣快件2100件;(2)每天只需要安排6名工人就可以完成分拣工作【分析】(1)设用传统方式每人每小时可分拣x件,则用智能分拣设备后每人每小时可分拣25x件,利用时间差为4小时列方程80008000452520x x=-⨯,再解方程,检验即可得到答案;(2)利用每天工作总量(10万件)除以工作效率(每人每天分拣82584⨯⨯件),结果取符合题意的正整数即可得到答案.【详解】(1)解:设用传统方式每人每小时可分拣x件,则用智能分拣设备后每人每小时可分拣25x件,由题意,得800080004 52520x x=-⨯.解得84x=.经检验,84x=是原方程的解,∴252100x=,∴使用智能分拣设备后每人每小时可分拣快件2100件;(2)∵100000205 8425821=⨯⨯,∵2055621<<,∴每天只需要安排6名工人就可以完成分拣工作.【点睛】本题考查的是分式方程的应用,掌握工作量等于工作时间乘以工作效率是解题的关键.26.今年双11期间开州区紫水豆干凭借过硬的质量、优质的口碑大火,豆干店的王老板用2500元购进一批紫水豆干,很快售完;王老板又用4400元购进第二批紫水豆干,所购数量是第一批的2倍,由于进货量增加,进价比第一批每千克少了3元.(1)第一批紫水豆干每千克进价多少元?(2)该老板在销售第二批紫水豆干时,售价在第二批进价的基础上增加了%a,售出80%后,为了尽快售完,决定将剩余紫水豆干在第二批进价的基础上每千克降价325a元进行促销,结果第二批紫水豆干的销售利润为1520元,求a的值.(利润=售价-进价)解析:(1)第一批紫水豆干每千克进价是25元;(2)a的值是50.【分析】(1)设第一批紫水豆干每千克进价是x元,则第二批每件进价是(x-3)元,再根据等量关系:第二批所购数量是第一批的2倍列方程求解即可;(2)根据第一阶段的利润+第二阶段的利润=1520列方程求解即可.【详解】解:(1)设第一批紫水豆干每千克进价x元,根据题意,得:2500440023x x⨯=-,解得:x=25,经检验,x=25是原方程的解且符合题意;答:第一批紫水豆干每千克进价是25元.(2)第二次进价:25-3=22(元),第二次紫水豆干的实际进货量:4400÷22=200千克,第二次进货的第一阶段出售每千克的利润为:22×a%元,第二次紫水豆干第二阶段销售利润为每千克325a-元,由题意得:322%20080%200(180%)152025aa⨯⨯⨯-⨯-=,解得:a=50,即a的值是50.【点睛】本题考查了分式方程的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.27.观察下列等式:第1个等式:111122=-⨯;第2个等式:111 2323=-⨯;第3个等式:111 3434=-⨯;……(1)写出第5个等式:________________;(2)探究规律:猜想第n个等式,并证明;(3)问题解决:一个容器装有1升水,按照如下要求把水倒出:第1次倒出12升水,第2次倒出的水量是12升的13,第3次倒出的水量是13升的14,第4次倒出的水量是14升的1 5,……,第n次倒出的水量是1n升的11n+,如果不考虑实际操作因素,按照这种倒水的方法,这1升水能倒完吗?为什么?解析:(1)1115656=-⨯(2)()11111n n n n=-++;证明见解析(3)不能;见解析【分析】(1)观察各等式,找出分子分母中的数与序号的关系即可写出第五个等式;(2)根据题目中的式子,可以写出生意人猜想,并验证猜想是否正确;(3)根据题意求出前n 次倒水量之和,再与1进行比较即可.【详解】解:(1)第5个等式:1115656=-⨯; 故答案为:1115656=-⨯; (2)猜想:()11111n n n n =-++,证明: 等式右边()()()11111111n n n n n n n n n n +=-=-==++++等式左边, ∴猜想成立;(3)由题意可得:第n 次倒出水量:()11L n n +, ∴前n 次总共倒出水量:()11111223341n n ++++⨯⨯⨯+ 1111112231n n =-+-++-+ 111n =-+ 1n n =+, ∵11n n <+, ∴这1L 水不能倒完.【点睛】本题主要考查了数字变化规律的问题,通过观察、分析、归纳并发现其中的规律,并应用发现的规律解决问题,解题的关键是发现分子分母中的数与序号的关系.28.先化简,再求值:22131x x x x x ---+-,其中2x =. 解析:()11x x -,12【分析】此题需先根据分式的混合运算顺序和法则把22131x x x x x ---+-进行化简,然后把x 代入即可.【详解】解:原式=()13(1)(1)1x x x x x x ---++- =()(1)(1)(3)(1)(1)(1)1x x x x x x x x x x ----+-+- =22(1)(11)23x x x x x x x -+--++ ()11x x =- 当2x =时,原式12=【点睛】此题考查了分式的化简求值,分式的混合运算需特别注意运算顺序及符号的处理,也需要对通分、分解因式、约分等知识点熟练掌握.。
(文末附解析)八年级数学上册分式必考知识点归纳总结
(文末附解析)八年级数学上册分式必考知识点归纳总结单选题1、分式1x−2有意义,则x的取值范围是()A.x≠2B.x≠﹣2C.x=2D.x=﹣22、一只船顺流航行90千米与逆流航行60千米所用的时间相等,若水流的速度是2千米/时,求船在静水中的速度.如果设船在静水中的速度为x千米/时,可列出的方程是()A.90x+2=60x−2B.90x−2=60x+2C.90x+3=60xD.60x+3=90x3、若分式1x+5在实数范围内有意义,则x的取值范围是()A.x≠-5B.x≠0C.x≠5D.x>-54、一列火车长x米,以每秒a米的速度通过一个长为b米的大桥,用代数式表示它完全通过大桥(从车头进入大桥到车尾离开大桥)所需的时间为()A.x+ba 秒B.ba秒C.xa秒D.x−ba秒5、对于实数a,b,定义一种新运算“⊗”为:a⊗b=2a−b2,这里等式右边是通常的实数运算.例如:1⊗3=2 1−32=−14,则方程x⊗(−1)=6x−1−1的解是()A.x=4B.x=5C.x=6D.x=76、若把分式2xx+y中的x和y同时扩大为原来的3倍,则分式的值()A.扩大到原来的3倍B.扩大到原来的6倍C.缩小为原来的13D.不变7、一列火车长x米,以每秒a米的速度通过一个长为b米的大桥,用代数式表示它完全通过大桥(从车头进入大桥到车尾离开大桥)所需的时间为()A.x+ba 秒B.ba秒C.xa秒D.x−ba秒8、(−b 2a)2n (n 为正整数)的值是( ) A .b 2+2na 2n B .b 4na 2n C .−b 2n+1a 2n D .−b 4na 2n填空题9、若代数式1x−7有意义,则实数x 的取值范围是_____.10、若关于x 的分式方程3x x−2=m+3x−2+1有增根,则m =_________. 11、分式1m 2−3m 与1m 2−9的最简公分母是_____.12、化简:(1x−1+1)÷x x−1=______.13、计算:x 2+x x —x =____.解答题 14、先化简:x 2−4x 2−4x+4+xx 2−x ÷x−2x−1在从﹣1≤x≤3的整数 中选取一你喜欢的x 的值代入求值.15、先化简,再求值:a+2a ⋅4aa 2+4a+4+2a−4a 2−4,其中a =−12.(文末附解析)八年级数学上册分式_005参考答案1、答案:A解析:分式有意义,分母不等于零,据此来求x 的取值范围.当分母x -2≠0.即x ≠2时,分式1x−2有意义;故选:A .小提示:本题考查了分式有意义的条件.解题的关键是记住分式无意义时分母为零.2、答案:A解析:未知量是速度,有路程,一定是根据时间来列等量关系的.关键描述语是:顺流航行90千米与逆流航行60千米所用的时间相等,等量关系为:顺流航行90千米时间=逆流航行60千米所用的时间.顺流所用的时间为:90x+2;逆流所用的时间为:60x−2.所列方程为:90x+2=60x−2.故选A小提示:本题考查由实际问题抽象出分式方程,解题的关键是读懂题意,得到分式方程.3、答案:A解析:根据分式有意义的条件列不等式求解.解:根据分式有意义的条件,可得:x +5≠0,∴x ≠−5,故选:A.小提示:本题考查分式有意义的条件,理解分式有意义的条件是分母不能为零是解题关键.4、答案:A解析:∵火车走过的路程为(x+b)米,火车的速度为a米/秒,∴火车过桥的时间为x+ba(秒).故选:A.5、答案:B解析:已知方程利用题中的新定义化简,计算即可求出解.根据题中的新定义化简得:2x−1=6x−1−1,去分母得:2=6−x+1,解得:x=5,经检验x=5是分式方程的解.故选:B.小提示:此题考查了解分式方程,以及实数的运算,弄清题中的新定义是解本题的关键.6、答案:D解析:根据分式的基本性质即可求出答案.解:∵2×3x3x+3y =2×3x3(x+y)=2xyx+y,∴把分式2xx+y中的x和y同时扩大为原来的3倍,则分式的值不变,故选:D.小提示:本题考查分式的基本性质,解题的关键是熟练运用分式的基本性质,本题属于基础题型.7、答案:A解析:∵火车走过的路程为(x+b)米,火车的速度为a米/秒,∴火车过桥的时间为x+ba(秒).故选:A.8、答案:B解析:根据分式的乘方计算法则解答.(−b2a )2n=b4na2n.故选:B.小提示:此题考查分式的乘方计算法则:等于分子、分母分别乘方,熟记法则是解题的关键.9、答案:x≠7解析:根据分式有意义的条件列出不等式,解不等式即可.∵代数式1x−7有意义,分母不能为0,可得x−7≠0,即x≠7,所以答案是:x≠7.小提示:本题考查的是分式有意义的条件,掌握分式分母不为0是解题的关键.10、答案:3解析:分式方程去分母转化为整式方程,由分式方程有增根,确定出m的值即可解:去分母得:3x=m+3+x-2,由分式方程有增根,得到x-2=0,即x=2,把x=2代入整式方程得:6=m+3+2-2,解得:m=3.小提示:此题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.11、答案:m(m+3)(m﹣3)解析:先把两分式化成最简形式得1m2−3m =1m(m−3);1m2−9=1(m−3)(m+3),然后确定最简公分母即可.解:化简两分式得:1m2−3m =1m(m−3),1m2−9=1(m−3)(m+3)∴最简公分母是m(m+3)(m﹣3).小提示:本题主要考查了最简公分母,公分母是能使几个分式同时去掉分母的式子,几个含分母的式子系数取其最小公倍数,字母取其最高次数即得公分母.12、答案:1解析:根据分式的加减运算法则以及乘除运算法则即可求出答案.解:原式=1+x−1x−1×x−1x=x x−1×x−1x=1所以答案是:1.小提示:本题考查分式的混合运算,解题的关键是熟练运用分式的加减运算以及乘除运算法则,本题属于基础题型.13、答案:1解析:根据分式的减法运算法则即可得.原式=x 2+xx−x2x,=x2+x−x2x,=1,所以答案是:1.小提示:本题考查了分式的减法,熟练掌握分式的运算法则是解题关键.14、答案:x+3x−2,﹣23解析:直接利用分式的混合运算法则计算,再把已知数据代入求出答案.x 2−4x 2−4x+4+x x 2−x ÷x−2x−1=(x−2)(x+2)(x−2)2+x x(x−1)·x−1x−2=x+2x−2+1x−2=x+3x−2,∵从﹣1≤x≤3的整数 中选取一你喜欢的x 的值,∴x 可以为:﹣1,0,1,2,当x =0,1,2时,分式无意义,当x =﹣1时,原式=−1+3−1−2=﹣23.小提示:此题主要考查了分式的化简求值,正确进行分式的混合运算是解题关键.15、答案:6a+2,4.解析:把分子、分母进行因式分解,先根据分式乘法法则计算,再根据分式加减法法则化简得出最简结果,最后代入求值即可.a+2 a ⋅4aa2+4a+4+2a−4a2−4=a+2a ⋅4a(a+2)2+2(a−2)(a+2)(a−2)=4a+2+2a+2=6a+2.当a=−12时,原式=6−12+2=4.小提示:本题考查分式的运算——化简求值,熟练掌握分式的混合运算法则是解题关键.。
分式 知识归纳+真题解析
分式知识归纳+真题解析【知识归纳】1. 分式:整式A 除以整式B ,可以表示成 A B 的形式,如果除式B 中含有,那么称 A B为分式.若,则 A B 有意义;若,则 A B 无意义;若,则 A B=0. 2.分式的基本性质:分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的.用式子表示为 .3. 约分:把一个分式的分子和分母的约去,这种变形称为分式的约分.4.通分:根据分式的基本性质,把异分母的分式化为的分式,这一过程称为分式的通分.5.分式的运算⑴ 加减法法则:① 同分母的分式相加减: .② 异分母的分式相加减:.⑵ 乘法法则:.乘方法则:.⑶ 除法法则:.【知识归纳答案】1.字母, B ≠0, B=0, A=0且B ≠02.值不变.)0()0(≠÷÷=≠⋅⋅=C CB C A B A C C B C A B A . 3.公因式4.为同分母5.分式的运算⑴分母不变,分子相加减 .②先通分,变为同分母的分式,然后再加减 .⑵分式乘分式,用分子的积作为积的分子,分母的积作为积的分母.:分式的乘方,把分子、分母分别乘方.⑶:分式除以分式,把除式的分子、分母颠倒位置后与被除式相乘.真题解析1.若分式有意义,则x 的取值范围是( )A.x>3 B.x<3 C.x≠3 D.x=3【考点】62:分式有意义的条件.【分析】分式有意义的条件是分母不为0.【解答】解:∵分式有意义,∴x﹣3≠0,∴x≠3;故选:C.2.要使分式有意义,x应满足的条件是()A.x>3 B.x=3 C.x<3 D.x≠3【考点】62:分式有意义的条件.【分析】根据分式有意义的条件:分母≠0,列式解出即可.【解答】解:当x﹣3≠0时,分式有意义,即当x≠3时,分式有意义,故选D.3.若a2﹣ab=0(b≠0),则=()A.0 B.C.0或D.1或24.下列运算正确的是()A.(a2+2b2)﹣2(﹣a2+b2)=3a2+b2 B.﹣a﹣1=C.(﹣a)3m÷a m=(﹣1)m a2m D.6x2﹣5x﹣1=(2x﹣1)(3x﹣1)【考点】6B:分式的加减法;4I:整式的混合运算;57:因式分解﹣十字相乘法等.【分析】直接利用分式的加减运算法则以及结合整式除法运算法则和因式分解法分别分析得出答案.【解答】解:A、(a2+2b2)﹣2(﹣a2+b2)=3a2,故此选项错误;B、﹣a﹣1==,故此选项错误;C、(﹣a)3m÷a m=(﹣1)m a2m,正确;D、6x2﹣5x﹣1,无法在实数范围内分解因式,故此选项错误;故选:C.5.若=+,则中的数是()A.﹣1 B.﹣2 C.﹣3 D.任意实数【考点】6B:分式的加减法.【分析】直接利用分式加减运算法则计算得出答案.【解答】解:∵=+,∴﹣====﹣2,故____中的数是﹣2.故选:B.6.化简+的结果是()A.x+1 B.x﹣1 C.x2﹣1 D.【考点】6B:分式的加减法.【分析】原式变形后,利用同分母分式的减法法则计算即可得到结果.【解答】解:原式=﹣===x+1,故选A7.若x,y的值均扩大为原来的2倍,则下列分式的值保持不变的是()A.B.C.D.【考点】65:分式的基本性质.【分析】根据分式的基本性质,x,y的值均扩大为原来的2倍,求出每个式子的结果,看结果等于原式的即是.【解答】解:根据分式的基本性质,可知若x,y的值均扩大为原来的2倍,A、==;B、=;C、;D、==.故A正确.故选A.8.若分式的值为0,则x的值为()A.﹣1 B.1 C.±1 D.0【考点】63:分式的值为零的条件.【分析】根据分式的值为0的条件即可求出x的值.【解答】解:由题意可知:解得:x=1,故选(B)9.分式在实数范围内有意义,则x的取值范围是x≠1.【考点】62:分式有意义的条件.【分析】根据分式有意义,分母不等于0列式计算即可得解.【解答】解:由题意得x﹣1≠0,解得x≠1.故答案为:x≠1.10.当x=5时,分式的值为零.【考点】63:分式的值为零的条件.【分析】根据分式值为零的条件可得x﹣5=0且2x+3≠0,再解即可.【解答】解:由题意得:x﹣5=0且2x+3≠0,解得:x=5,故答案为:5.11.化简:÷=.【考点】6A:分式的乘除法.【分析】根据分式的乘除法的法则进行计算即可.【解答】解:÷=•=,故答案为:.12.计算:( +)•=1.【考点】6C:分式的混合运算.【分析】原式括号中两项变形后,利用同分母分式的减法法则计算,约分即可得到结果.【解答】解:原式=•=•=1.故答案为:113.一组按规律排列的式子:,,,,,…,其中第7个式子是,第n个式子是(用含的n式子表示,n为正整数).【考点】61:分式的定义.【分析】观察分母的变化为a的1次幂、2次幂、3次幂…n次幂;分子的变化为:2、5、10、17…n2+1;分式符号的变化为:+、﹣、+、﹣…(﹣1)n+1.【解答】解:∵=(﹣1)2•,=(﹣1)3•,=(﹣1)4•,…∴第7个式子是,第n个式子为:.故答案是:,.三.解答题(共9小题)14.化简•.15.(1)计算:(a﹣b)(a2+ab+b2)(2)利用所学知识以及(1)所得等式,化简代数式÷.【考点】6A:分式的乘除法;4B:多项式乘多项式.【分析】(1)根据多项式乘以多项式法则计算即可得;(2)利用(1)种结果将原式分子、分母因式分解,再约分即可得.【解答】解:(1)原式=a3+a2b+ab2﹣a2b﹣ab2﹣b3=a3﹣b3;(2)原式=•=(m﹣n)•=m+n.16.某学生化简分式+出现了错误,解答过程如下:原式=+(第一步)=(第二步)=.(第三步)(1)该学生解答过程是从第一步开始出错的,其错误原因是分式的基本性质;(2)请写出此题正确的解答过程.【考点】6B:分式的加减法.【分析】根据分式的运算法则即可求出答案.【解答】解:(1)一、分式的基本性质用错;(2)原式=+==故答案为:(1)一、分式的基本性质用错;17.设A=÷(a﹣).(1)化简A;(2)当a=3时,记此时A的值为f(3);当a=4时,记此时A的值为f(4);…解关于x的不等式:﹣≤f(3)+f(4)+…+f(11),并将解集在数轴上表示出来.【考点】6C:分式的混合运算;C4:在数轴上表示不等式的解集;C6:解一元一次不等式.【分析】(1)根据分式的除法和减法可以解答本题;(2)根据(1)中的结果可以解答题目中的不等式并在数轴上表示出不等式的解集.【解答】解:(1)A=÷(a﹣)=====;(2)∵a=3时,f(3)=,a=4时,f(4)=,a=5时,f(5)=,…∴﹣≤f(3)+f(4)+…+f(11),即﹣≤++…+∴﹣≤+…+,∴﹣≤,∴﹣≤,解得,x≤4,∴原不等式的解集是x≤4,在数轴上表示如下所示,.18.化简:(﹣)÷.【考点】6C:分式的混合运算.【分析】根据分式的减法和除法可以解答本题.【解答】解:(﹣)÷=====.学科网19.先化简,再求值:(﹣)÷,请在2,﹣2,0,3当中选一个合适的数代入求值.【考点】6D:分式的化简求值.【分析】先化简分式,然后根据分式有意义的条件即可求出m的值,从而可求出原式的值.【解答】解:原式=(﹣)×=×﹣×=﹣=,∵m≠±2,0,∴当m=3时,原式=320.先化简,再求值:(﹣1)÷,其中x=﹣4sin45°+()﹣1.【考点】6D:分式的化简求值;6F:负整数指数幂;T5:特殊角的三角函数值.【分析】先化简原式与x的值,然后将x的值代入原式即可求出答案.【解答】解:原式=()÷=•=﹣x=2﹣4×+2=2把x=2代入得,原式==﹣221.先化简,再求值:(x﹣)÷,其中x=,y=﹣1.【考点】6D:分式的化简求值.【分析】根据分式的减法和除法可以化简题目中的式子,然后将x、y的值代入化简后的式子即可解答本题.【解答】解:(x﹣)÷===x﹣y,当x=,y=﹣1时,原式==1.22.先化简÷(﹣x+1),然后从﹣<x<的范围内选取一个合适的整数作为x的值代入求值.【考点】6D:分式的化简求值;2B:估算无理数的大小.【分析】根据分式的减法和除法可以化简题目中的式子,然后在﹣<x<中选取一个使得原分式有意义的整数值代入化简后的式子即可解答本题.【解答】解:÷(﹣x+1)====,∵﹣<x<且x+1≠0,x﹣1≠0,x≠0,x是整数,∴x=﹣2时,原式=﹣.。
八年级数学 分式章节知识点总结及典型例题解析
八年级数学分式章节知识点总结及典型例题解析1.分式的定义:分式是由分子、分母两个整式组成的表达式,分母不能为零。
例:下列式子中,有分式的是:$\frac{2x+1}{3xy^3a^{-b}5a^{-b}159a^{2}15xy^{11}}$、$\frac{8a^2b}{2}$、$\frac{1}{x-y}$、$\frac{4x-3y}{2x+y}$、$\frac{2}{b^2-5a^2}$、$\frac{-x-2xy^2}{x-7}$。
2.分式有意义和无意义:1)使分式有意义:令分母不等于零,解方程求解;2)使分式无意义:令分母等于零,解方程求解;注意:$(x+1)^2 \neq 0$ 有意义。
例如:分式$\frac{x-5}{2-x}$,当$x=2$时,分式无意义;当$x=5$时,分式有意义。
3.分式的值为零:使分式的值为零:令分子等于零且分母不等于零。
注意:当分子等于使分母等于零时,要舍去。
例如:分式$\frac{x^2-11}{x-2a}$,当$x=\sqrt{11}$时,分式的值为零。
4.分式的基本性质的应用:分式的分子与分母同乘或除以一个不等于零的整式,分式的值不变。
例如:$\frac{A}{B}=\frac{AC}{BC}$,$\frac{A}{B}=\frac{A/C}{B/C}$。
没有明显问题的段落,无需删除或改写。
1.如果成立,那么a的取值范围是什么?2.例2:求出33/(ab)的值。
3.例3:将分式(1-b+c)/(a(b-c))中的a和b扩大10倍后,分式的值会怎样变化?4.例4:将分式10x/(x+y)中的x和y都扩大10倍后,分式的值会怎样变化?5.例5:将分式xy/(x+y)中的x和y都扩大2倍后,分式的值会怎样变化?6.例6:将分式(x-y)/(x+y)中的x和y都扩大2倍后,分式的值会怎样变化?7.例7:将分式(x-y)/xy中的x和y都扩大2倍后,分式的值会怎样变化?8.例8:将分式2x/(x+3y)中的x和y都缩小12倍后,分式的值会怎样变化?9.例9:将分式3x^3/(2y^2)中的x和y都扩大2倍后,分式的值保持不变的是什么?10.根据分式的基本性质,分式(ABC-D)/(a-b)可变形为(a+b)(D-ABC)/(a-b)。
初二数学八上第十五章分式知识点总结复习和常考题型练习
初二数学八上第十五章分式知识点总结复习和常考题型练习第十五章分式一、知识框架:二、知识概念:,A B、是整式,B中含有字母且B不1.分式:形如AB等于0的整式叫做分式.其中A叫做分式的分子,B叫做分式的分母.2.分式有意义的条件:分母不等于0.3.分式的基本性质:分式的分子和分母同时乘以(或除以)同一个不为0的整式,分式的值不变.4.约分:把一个分式的分子和分母的公因式(不为1的数)约去,这种变形称为约分.5.通分:异分母的分式可以化成同分母的分式,这一过程叫做通分.6.最简分式:一个分式的分子和分母没有公因式时,这个分式称为最简分式,约分时,一般将一个分式化为最简分式.7.分式的四则运算:⑴同分母分式加减法则:同分母的分式相加减,分母不变,把分子相加减.用字母表示为:a b a b c c c±±= ⑵异分母分式加减法则:异分母的分式相加减,先通分,化为同分母的分式,然后再按同分母分式的加减法法则进行计算.用字母表示为: a c ad cb b d bd±±= ⑶分式的乘法法则:两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母.用字母表示为:a c ac b d bd⨯= ⑷分式的除法法则:两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘.用字母表示为:a c a d ad b d b c bc÷=⨯= ⑸分式的乘方法则:分子、分母分别乘方.用字母表示为:n n n a a b b ⎛⎫= ⎪⎝⎭8.整数指数幂:⑴m n m n a a a +⨯=(m n 、是正整数)⑵()n m mn a a =(m n 、是正整数) ⑶()n n n ab a b =(n 是正整数) ⑷m n m naa a -÷=(0a ≠,m n 、是正整数,m n >)⑸n n n a a b b ⎛⎫= ⎪⎝⎭(n 是正整数) ⑹1n n a a -=(0a ≠,n 是正整数)9.分式方程的意义:分母中含有未知数的方程叫做分式方程.10.分式方程的解法:①去分母(方程两边同时乘以最简公分母,将分式方程化为整式方程);②按解整式方程的步骤求出未知数的值;③验根(求出未知数的值后必须验根,因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根).常考例题精选1.(2015·宜昌中考)若分式有意义,则a 的取值范围是 ( ) A.a=0 B.a=1C.a≠-1D.a≠02.(2015·丽水中考)把分式方程=转化为一元一次方程时,方程两边需同乘以( )A.xB.2xC.x+4D.x(x+4)3.(2015·宜宾中考)分式方程-=的解为( )A.3B.-3C.无解D.3或-34.(2015·海南中考)今年我省荔枝喜获丰收,有甲、乙两块面积相同的荔枝园,分别收获荔枝8 600kg和9 800kg,甲荔枝园比乙荔枝园平均每亩少60kg,问甲荔枝园平均每亩收获荔枝多少kg?设甲荔枝园平均每亩收获荔枝xkg,根据题意,可得方程( )A.=B.=C.=D.=5.(2015·河池中考)若分式有意义,则x的取值范围是.6.(2015·白银中考)若代数式-1的值为零,则x= ________.7.(2015·齐齐哈尔中考)若关于x的分式方程=-2有非负数解,则a的取值范围是.8.(2015·呼和浩特中考)化简:÷.9.(2015·连云港中考)先化简,再求值:÷,其中m=-3,n=5.10.(2015·凉山州中考)某车队要把4000t货物运到雅安地震灾区(方案定后,每天的运量不变).(1)从运输开始,每天运输的货物吨数n(单位:t)与运输时间t(单位:天)之间有怎样的函数关系式?(2)因地震,到灾区的道路受阻,实际每天比原计划少运20%,则推迟1天完成任务,求原计划完成任务的天数.11.(2015·重庆中考)先化简,再求值:÷,其中x是不等式3x+7>1的负整数解.12.(2015·玉溪中考)某学校为鼓励学生积极参加体育锻炼,派王老师和李老师去购买一些篮球和排球.回校后,王老师和李老师编写了一道题:同学们,请求出篮球和排球的单价各是多少元?13.(2015·娄底中考)为了创建全国卫生城市,某社区要清理一个卫生死角内的垃圾,租用甲、乙两车运送,两车各运12趟可完成,需支付运费4 800元.已知甲、乙两车单独运完此垃圾,乙车所运趟数是甲车的2倍,且乙车每趟运费比甲车少200元.(1)求甲、乙两车单独运完此堆垃圾各需运多少趟?(2)若单独租用一台车,租用哪台车合算?1.(2015·黔西南州)分式1x-1有意义,则x的取值范围是( )A.x>1 B.x≠1 C.x<1 D.一切实数2.下列各分式与ba相等的是( )A.b2a2B.b+2a+2C.aba2D.a+b2a3.下列分式的运算正确的是( )A.1a+2b=3a+bB.(a+bc)2=a2+b2c2C.a2+b2a+b=a+b D.3-aa2-6a+9=13-a4.(2015·泰安)化简(a+3a-4a-3)(1-1a-2)的结果等于( )19.计算或化简:(1)38-2-1+|2-1|;(2)2xx2-4-1x-2;(3)3-a2a-4÷(a+2-5a-2).20.解分式方程:(1)1x-x-2x=1; (2)12x-1=12-34x-2.21.化简求值:(1)(2015·淮安)先化简(1+1x-2)÷x-1x2-4x+4,再从1,2,3三个数中选一个合适的数作为x的值,代入求值;(2)已知x2x2-2=3,求(11-x-11+x)÷(xx2-1+x)的值.22.当x取何值,式子3(2x-3)-1与12(x-1)-1的值相等.23.(2015·宜宾)近年来,我国逐步完善养老金保险制度,甲、乙两人计划用相同的年数分别缴纳养老保险金15万元和10万元,甲计划比乙每年多缴纳养老保险金0.2万元.求甲、乙两人计划每年分别缴纳养老保险金多少万元?24.小明去离家2.4 km的体育馆看球赛,进场时,发现门票还放在家中,此时离比赛还有45 min,于是他立即步行(匀速)回家取票,在家取票用时2 min,取到票后,他马上骑自行车(匀速)赶往体育馆.已知小明骑自行车从家赶往体育馆比从体育馆步行回家所用时间少20 min,骑自行车的速度是步行速度的3倍.(1)小明步行的速度是多少?(2)小明能否在球赛开始前赶到体育馆?25.某开发商要建一批住房,经调查了解,若甲、乙两队分别单独完成,则乙队完成的天数是甲队的1.5倍;若甲、乙两队合作,则需120天完成.(1)甲、乙两队单独完成各需多少天?(2)施工过程中,开发商派两名工程师全程监督,需支付每人每天食宿费150元.已知乙队单独施工,开发商每天需支付施工费为10000元.现从甲、乙两队中选一队单独施工,若要使开发商选甲队支付的总费用不超过选乙队的,则甲队每天的施工费最多为多少元?(总费用=施工费+工程师食宿费)。
专题01 分式(压轴考点)(解析版)
专题01 分式(压轴考点)
【考点导航】
目录
【典型例题】 (1)
【考点一分式的化简求值中取值要有意义】 (1)
【考点二分式的混合运算错题复原】 (3)
【考点三分式方程中增根问题】 (7)
【考点四分式方程中解的情况求参数求值问题】 (10)
【考点五分式方程中无解问题】 (12)
【考点六分式中新定义问题】 (14)
【考点七分式方程的应用与一次函数的综合】 (20)
【典型例题】
【考点一分式的化简求值中取值要有意义】
【考点二分式的混合运算错题复原】
【考点三分式方程中增根问题】
【点睛】本题考查对分式方程增根的理解和掌握,理解分式方程的增根的意义是解题关键.【考点四分式方程中解的情况求参数求值问题】
【考点五分式方程中无解问题】
【考点六分式中新定义问题】
【考点七分式方程的应用与一次函数的综合】
【例题7】(2023·福建泉州·统考二模)毛笔书法是我国传统文化中极具代表性的一种艺术形式.某校书法兴趣小组计划购进一批毛笔,已知每支乙种毛笔的价格比每支甲种毛笔的价格多10元,且用600元购买甲种毛笔的数量与用1000元购买乙种毛笔的数量相等.
(1)求甲、乙两种毛笔每支各多少元?
(2)若要求购进甲、乙两种毛笔共50支,且乙种毛笔数量不少于甲种毛笔数量的2倍,试求购买这两种毛笔总费用的最小值.
【答案】(1)甲种毛笔的价格为15元,乙种毛笔的价格为25元。
15.1分式(重难点突破)解析版
【详解】A、2 = 2( ≠ 0),此变形错误,不符合题意;
2
6
= 3(
B.
2
C.3
1
2)
= 3,故 C 正确;
6
D. 2 = 4 ≠ 3,故 D 错误.
故选:C.
【点睛】本题主要考查了分式基本性质的应用,准确计算是解题的关键.
【变式训练 4-2】下列各式正确的是(
1
A.
=−
1
B.
=
)
1
【答案】D
【分析】根据分式的基本性质,进行计算即可解答.
−
3
【变式训练 1-4】.代数式−2,
A.1 个
5
72
2
9
,− + 2, 3 ,2,−中,是分式的有(
B.2 个
C.3
)个
D.4 个
【答案】B
【分析】分式的定义,一般地,如果、(不等于零)表示两个整式,且中含有字母,那么式子就叫
做分式,其中称为分子,称为分母.根据分式的宝岛即可完成.
3
【变式训练 2-1】.若分式(−1)有意义,则的取值范围是(
A. ≠ 0
B. ≠ 1
C. ≠ 3
【答案】D
【分析】根据分式有意义的条件进行求解即可.
3
【详解】解:要使分式(−1)有意义,
)
D. ≠ 0或 ≠ 1
≠0
则(−1) ≠ 0,即 −1 ≠ 0 ,
∴ ≠ 0且 ≠ 1,
A.2
B.3
2 4
, 3 中,分式的个数是(
3
北师大版八年级下册数学[分式的乘除(基础)知识点整理及重点题型梳理]
北师大版八年级下册数学重难点突破知识点梳理及重点题型巩固练习分式的乘除(基础)【学习目标】1.学会用类比的方法总结出分式的乘法、除法法则.2.会分式的乘法、除法运算.3.掌握乘方的意义,能根据乘方的法则,先乘方,再乘除进行分式运算.【要点梳理】要点一、分式的乘除法1.分式的乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为积的分母.用字母表示为:a c ac b d bd⋅=,其中a b c d 、、、是整式,0bd ≠. 2.分式的除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘.用字母表示为:a c a d adb d bc bc ÷=⋅=,其中a b cd 、、、是整式,0bcd ≠. 要点诠释:(1)分式的乘除法都能统一成乘法,然后约去公因式,化为最简分式或整式.(2)分式与分式相乘,若分子和分母是多项式,则先分解因式,看能否约分,然后再乘.(3)整式与分式相乘,可以直接把整式(整式可以看作分母是1的代数式)和分式的分子相乘作为分子,分母不变.当整式是多项式时,同样要先分解因式,便于约分.(4)分式的乘除法计算结果,要通过约分,化为最简分式或整式.要点二、分式的乘方分式的乘方运算法则:分式的乘方是把分子、分母分别乘方,用字母表示为:nn n a a b b⎛⎫= ⎪⎝⎭(n 为正整数). 要点诠释:(1)分式乘方时,一定要把分式加上括号.不要把n n n a a b b ⎛⎫= ⎪⎝⎭写成n n a a b b ⎛⎫= ⎪⎝⎭(2)分式乘方时,要首先确定乘方结果的符号,负数的偶次方为正,负数的奇次方为负.(3)在一个算式中同时含有分式的乘方、乘法、除法时,应先算乘方,再算乘除,有多项式时应先分解因式,再约分.(4)分式乘方时,应把分子、分母分别看作一个整体.如()222222a b a b a b b b b ---⎛⎫=≠ ⎪⎝⎭. 【典型例题】类型一、分式的乘法1、计算:(1)422449158a b x x a b ;(2)222441214a a a a a a -+--+-. 【思路点拨】(1)中分子、分母都是单项式,直接用分式乘法法则计算,结果要通过约分化简;(2)中分子、分母都是多项式,要先把可分解因式的分子、分母分解因式,然后用乘法法则化简计算.【答案与解析】 解:(1)422449158a b x x a b 422449315810a b x b x a b x==. (2)222441214a a a a a a -+--+-22(2)1(1)(2)(2)a a a a a --=-+- 22(2)(1)(1)(2)(2)a a a a a --=-+-222(1)(2)2a a a a a a --==-++-. 【总结升华】分式的乘法运算的实质就是运用分式的基本性质把分式约分化简的过程,熟练之后也可先约分后运用乘法法则计算. 举一反三:【变式】计算.(1)26283m x x m ;(2)22122x x x x+-+ 【答案】 解:(1)原式22621283242m x mx x x m mx ===; (2)原式22112(2)2x x x x x x +==-+-; 类型二、分式的除法2、 计算:(1)222324a b a b c cd-÷;(2)2222242222x y x y x xy y x xy -+÷+++. 【思路点拨】(1)先运用法则将分式的除法转化为乘法,然后约分化简;(2)先运用分式的除法法则将分式的除法转化为乘法,同时将分子、分母分解因式,然后约分化简.【答案与解析】解:(1)222324a b a b c cd -÷22222244236a b cd a b cd c a b c a b ==--23d c=-. (2) 2222242222x y x y x xy y x xy-+÷+++ 2(2)(2)2()()2x y x y x x y x y x y+-+=++22(2)24x x y x xy x y x y --==++. 【总结升华】分式的除法和实数的除法一样,均是转化为乘法来完成的. 举一反三:【变式】(2015•宝鸡校级模拟)化简:.【答案】解:原式=•=.类型三、分式的乘方3、(2014秋•华龙区校级月考)下列计算正确的是( )A. B.C. D.【思路点拨】把四个选项先利用分式的乘方法则,将分子分母分别乘方,然后利用积与幂的乘法法则,积的乘方的运算法则,积的乘方等于积中每一个因式分别乘方并把结果相乘,幂的乘方法则是底数不变,指数相乘,即可计算出结果,得到计算正确的选项.【答案】C .【解析】解:A 、,本选项错误; B 、,本选项错误;C 、,本选项正确;D 、,本选项错误.所以计算结果正确的是C .【总结升华】此题考查了分式的乘方法则,考查了积的乘方及幂的乘方法则,完全平方公式的运用,是一道基础题.类型四、分式的乘除法、乘方的混合运算4、 计算:(1)(2016春•淅川县期中)(﹣2ab ﹣2c ﹣1)2÷×()3; (2)222223()a b ab a ab b b a ⎛⎫-⎛⎫÷+ ⎪ ⎪-⎝⎭⎝⎭. 【思路点拨】先算乘方,再算乘、除.【答案与解析】解:(1)(﹣2ab ﹣2c ﹣1)2÷×()3=﹣••=﹣. (2)222223()a b ab a ab b b a ⎛⎫-⎛⎫÷+ ⎪ ⎪-⎝⎭⎝⎭2222232()1()[()]()a b ab b a a b b a -=+- 22222332()()1()()a b a b a b b a a b a b +-=+- 211()a a b a ab==++. 【总结升华】(1)题中有除法和乘方运算,应先算乘方,要特别注意符号的处理.(2)本题是乘除混合运算,首先把除法运算转化为乘法运算,再用乘法运算法则计算. 举一反三:【变式】计算:(1)332212b ba a ab⎛⎫⎛⎫⎛⎫-÷-÷⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭;(2)2222()m n n m m nm n mn m--+⎛⎫÷⎪-⎝⎭.【答案】解: (1)332212b ba a ab⎛⎫⎛⎫⎛⎫-÷-÷⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭23263382633312212b b b a a b a ba a ab a b⎛⎫⎛⎫=-÷-÷==⎪ ⎪⎝⎭⎝⎭.(2)2222()m n n m m nm n mn m--+⎛⎫÷⎪-⎝⎭22222()()()()m n m n m n m m nm n m n m n mn+---==-+.。
初二分式所有知识点总结和常考题提高难题压轴题练习(含标准答案解析)
初二分式所有知识点总结和常考题知识点:1.分式:形如AB,A B 、是整式,B 中含有字母且B 不等于0的整式叫做分式.其中A 叫做分式的分子,B 叫做分式的分母. 2.分式有意义的条件:分母不等于0. 3.分式的基本性质:分式的分子和分母同时乘以(或除以)同一个不为0的整式,分式的值不变.4.约分:把一个分式的分子和分母的公因式(不为1的数)约去,这种变形称为约分.5.通分:异分母的分式可以化成同分母的分式,这一过程叫做通分.6.最简分式:一个分式的分子和分母没有公因式时,这个分式称为最简分式,约分时,一般将一个分式化为最简分式.7.分式的四则运算:⑴同分母分式加减法则:同分母的分式相加减,分母不变,把分子相加减.用字母表示为:a b a bc c c±±=⑵异分母分式加减法则:异分母的分式相加减,先通分,化为同分母的分式,然后再按同分母分式的加减法法则进行计算.用字母表示为: a c ad cb b d bd±±= ⑶分式的乘法法则:两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母.用字母表示为:a c acb d bd⨯=⑷分式的除法法则:两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘.用字母表示为:a c a d adb d bc bc÷=⨯=⑸分式的乘方法则:分子、分母分别乘方.用字母表示为:nn n a a b b ⎛⎫= ⎪⎝⎭8.整数指数幂:⑴m n m n a a a +⨯=(m n 、是正整数) ⑵()nm mn aa =(m n 、是正整数)⑶()nn n ab a b =(n 是正整数)⑷m n m n a a a -÷=(0a ≠,m n 、是正整数,m n >)⑸nn n a a b b⎛⎫= ⎪⎝⎭(n 是正整数)⑹1nnaa-=(0a≠,n是正整数)9.分式方程的意义:分母中含有未知数的方程叫做分式方程.10.分式方程的解法:①去分母(方程两边同时乘以最简公分母,将分式方程化为整式方程);②按解整式方程的步骤求出未知数的值;③验根(求出未知数的值后必须验根,因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根).常考题:一.选择题(共14小题)1.在式子、、、、、中,分式的个数有()A.2个 B.3个 C.4个 D.5个2.化简的结果是()A.x+1 B.x﹣1 C.﹣x D.x3.如果把分式中的x和y都扩大2倍,则分式的值()A.扩大4倍B.扩大2倍C.不变D.缩小2倍4.把分式方程的两边同时乘以(x﹣2),约去分母,得()A.1﹣(1﹣x)=1 B.1+(1﹣x)=1 C.1﹣(1﹣x)=x﹣2 D.1+(1﹣x)=x﹣25.化简÷(1+)的结果是()A. B. C.D.6.计算的结果为()A. B. C. D.7.已知关于x的分式方程+=1的解是非负数,则m的取值范围是()A.m>2 B.m≥2 C.m≥2且m≠3 D.m>2且m≠38.下列运算正确的是()A.a2•a3=a6 B.()﹣1=﹣2 C.=±4 D.|﹣6|=69.某服装加工厂计划加工400套运动服,在加工完160套后,采用了新技术,工作效率比原计划提高了20%,结果共用了18天完成全部任务.设原计划每天加工x套运动服,根据题意可列方程为()A.B.C.D.10.货车行驶25千米与小车行驶35千米所用时间相同,已知小车每小时比货车多行驶20千米,求两车的速度各为多少?设货车的速度为x千米/小时,依题意列方程正确的是()A.B.C.D.11.如图,设k=(a>b>0),则有()A.k>2 B.1<k<2 C.D.12.A,B两地相距48千米,一艘轮船从A地顺流航行至B地,又立即从B地逆流返回A地,共用去9小时,已知水流速度为4千米/时,若设该轮船在静水中的速度为x千米/时,则可列方程()A.B.C.+4=9 D.13.计算的结果为()A.1 B.x+1 C. D.14.若分式(A,B为常数),则A,B的值为()A.B.C.D.二.填空题(共13小题)15.计算:=.16.若分式有意义,则实数x的取值范围是.17.分式方程的解x=.18.若代数式的值为零,则x=.19.化简的结果是.20.化简:=.21.计算÷(1﹣)的结果是.22.若关于x的方程=+1无解,则a的值是.23.已知关于x的方程的解是正数,则m的取值范围是.24.a、b为实数,且ab=1,设P=,Q=,则P Q(填“>”、“<”或“=”).25.如果实数x满足x2+2x﹣3=0,那么代数式的值为.26.某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所需时间与原计划生产450台机器所需时间相同,现在平均每天生产台机器.27.杭州到北京的铁路长1487千米.火车的原平均速度为x千米/时,提速后平均速度增加了70千米/时,由杭州到北京的行驶时间缩短了3小时,则可列方程为.三.解答题(共13小题)28.先化简,再求值:,其中.29.先化简代数式,然后选取一个使原式有意义的a值代入求值.30.已知x﹣3y=0,求•(x﹣y)的值.31.解方程:.32.先化简,再求值:,其中x是不等式3x+7>1的负整数解.33.先化简÷(a+1)+,然后a在﹣1、1、2三个数中任选一个合适的数代入求值.34.解分式方程:+=1.35.已知A=﹣(1)化简A;(2)当x满足不等式组,且x为整数时,求A的值.36.甲、乙两个工程队共同承担一项筑路任务,甲队单独施工完成此项任务比乙队单独施工完成此项任务多用10天,且甲队单独施工45天和乙队单独施工30天的工作量相同.(1)甲、乙两队单独完成此项任务需要多少天?(2)若甲、乙两队共同工作了3天后,乙队因设备检修停止施工,由甲队继续施工,为了不影响工程进度,甲队的工作效率提高到原来的2倍,要使甲队总的工作量不少于乙队的工作量的2倍,那么甲队至少再单独施工多少天?37.某商家预测一种应季衬衫能畅销市场,就用13200元购进了一批这种衬衫,面市后果然供不应求,商家又用28800元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但单价贵了10元.(1)该商家购进的第一批衬衫是多少件?(2)若两批衬衫按相同的标价销售,最后剩下50件按八折优惠卖出,如果两批衬衫全部售完后利润不低于25%(不考虑其他因素),那么每件衬衫的标价至少是多少元?38.从广州到某市,可乘坐普通列车或高铁,已知高铁的行驶路程是400千米,普通列车的行驶路程是高铁的行驶路程的1.3倍.(1)求普通列车的行驶路程;(2)若高铁的平均速度(千米/时)是普通列车平均速度(千米/时)的2.5倍,且乘坐高铁所需时间比乘坐普通列车所需时间缩短3小时,求高铁的平均速度.39.学校计划选购甲、乙两种图书作为“校园读书节”的奖品.已知甲图书的单价是乙图书单价的1.5倍;用600元单独购买甲种图书比单独购买乙种图书要少10本.(1)甲、乙两种图书的单价分别为多少元?(2)若学校计划购买这两种图书共40本,且投入的经费不超过1050元,要使购买的甲种图书数量不少于乙种图书的数量,则共有几种购买方案?40.某汽车销售公司经销某品牌A款汽车,随着汽车的普及,其价格也在不断下降.今年5月份A款汽车的售价比去年同期每辆降价1万元,如果卖出相同数量的A款汽车,去年销售额为100万元,今年销售额只有90万元.(1)今年5月份A款汽车每辆售价多少万元?(2)为了增加收入,汽车销售公司决定再经销同品牌的B款汽车,已知A款汽车每辆进价为7.5万元,B款汽车每辆进价为6万元,公司预计用不多于105万元且不少于99万元的资金购进这两款汽车共15辆,有几种进货方案?(3)如果B款汽车每辆售价为8万元,为打开B款汽车的销路,公司决定每售出一辆B款汽车,返还顾客现金a万元,要使(2)中所有的方案获利相同,a 值应是多少?此时,哪种方案对公司更有利?初二分式所有知识点总结和常考题提高难题压轴题练习(含答案解析)参考答案与试题解析一.选择题(共14小题)1.(2012春•潜江期末)在式子、、、、、中,分式的个数有()A.2个 B.3个 C.4个 D.5个【分析】判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.【解答】解:、、9x+这3个式子的分母中含有字母,因此是分式.其它式子分母中均不含有字母,是整式,而不是分式.故选:B.【点评】本题考查的是分式的定义,在解答此题时要注意分式是形式定义,只要是分母中含有未知数的式子即为分式.2.(2014•南通)化简的结果是()A.x+1 B.x﹣1 C.﹣x D.x【分析】将分母化为同分母,通分,再将分子因式分解,约分.【解答】解:=﹣===x,故选:D.【点评】本题考查了分式的加减运算.分式的加减运算中,如果是同分母分式,那么分母不变,把分子直接相加减即可;如果是异分母分式,则必须先通分,把异分母分式化为同分母分式,然后再相加减.3.(2012•岳麓区校级自主招生)如果把分式中的x和y都扩大2倍,则分式的值()A.扩大4倍B.扩大2倍C.不变D.缩小2倍【分析】把分式中的x和y都扩大2倍,分别用2x和2y去代换原分式中的x和y,利用分式的基本性质化简即可.【解答】解:把分式中的x和y都扩大2倍后得:==2•,即分式的值扩大2倍.故选:B.【点评】根据分式的基本性质,无论是把分式的分子和分母扩大还是缩小相同的倍数,都不要漏乘(除)分子、分母中的任何一项.4.(2005•扬州)把分式方程的两边同时乘以(x﹣2),约去分母,得()A.1﹣(1﹣x)=1 B.1+(1﹣x)=1 C.1﹣(1﹣x)=x﹣2 D.1+(1﹣x)=x﹣2【分析】分母中x﹣2与2﹣x互为相反数,那么最简公分母为(x﹣2),乘以最简公分母,可以把分式方程转化成整式方程.【解答】解:方程两边都乘(x﹣2),得:1+(1﹣x)=x﹣2.故选:D.【点评】找到最简公分母是解答分式方程的最重要一步;注意单独的一个数也要乘最简公分母;互为相反数的两个数为分母,最简公分母为其中的一个,另一个乘以最简公分母后,结果为﹣1.5.(2013•临沂)化简÷(1+)的结果是()A. B. C.D.【分析】首先对括号内的式子通分相加,然后把除法转化成乘法,进行约分即可.【解答】解:原式=÷=•=.故选A.【点评】本题主要考查分式的混合运算,通分、因式分解和约分是解答的关键.6.(2008•黄冈)计算的结果为()A. B. C. D.【分析】先算小括号里的,再把除法统一成乘法,约分化为最简.【解答】解:==,故选A.【点评】分式的四则运算是整式四则运算的进一步发展,在计算时,首先要弄清楚运算顺序,先去括号,再进行分式的乘除.7.(2014•黑龙江)已知关于x的分式方程+=1的解是非负数,则m的取值范围是()A.m>2 B.m≥2 C.m≥2且m≠3 D.m>2且m≠3【分析】分式方程去分母转化为整式方程,求出整式方程的解表示出x,根据方程的解为非负数求出m的范围即可.【解答】解:分式方程去分母得:m﹣3=x﹣1,解得:x=m﹣2,由方程的解为非负数,得到m﹣2≥0,且m﹣2≠1,解得:m≥2且m≠3.故选:C【点评】此题考查了分式方程的解,时刻注意分母不为0这个条件.8.(2009•潍坊)下列运算正确的是()A.a2•a3=a6 B.()﹣1=﹣2 C.=±4 D.|﹣6|=6【分析】幂运算的性质:①同底数的幂相乘,底数不变,指数相加;②一个数的负指数次幂等于这个数的正指数次幂的倒数,算术平方根的概念:一个正数的正的平方根叫它的算术平方根,0的算术平方根是0.绝对值的性质:正数的绝对值等于它本身,负数的绝对值等于它的相反数,0的绝对值是0.【解答】解:A、a2•a3=a5,故A错误;B、()﹣1=2,故B错误;C、=4,故C错误;D、根据负数的绝对值等于它的相反数,故D正确.故选D.【点评】本题涉及知识:负指数为正指数的倒数;任何非0数的0次幂等于1;绝对值的化简;二次根式的化简.9.(2013•本溪)某服装加工厂计划加工400套运动服,在加工完160套后,采用了新技术,工作效率比原计划提高了20%,结果共用了18天完成全部任务.设原计划每天加工x套运动服,根据题意可列方程为()A.B.C.D.【分析】关键描述语为:“共用了18天完成任务”;等量关系为:采用新技术前用的时间+采用新技术后所用的时间=18.【解答】解:采用新技术前用的时间可表示为:天,采用新技术后所用的时间可表示为:天.方程可表示为:.故选:B.【点评】列方程解应用题的关键步骤在于找相等关系.找到关键描述语,找到等量关系是解决问题的关键.本题要注意采用新技术前后工作量和工作效率的变化.10.(2014•黔南州)货车行驶25千米与小车行驶35千米所用时间相同,已知小车每小时比货车多行驶20千米,求两车的速度各为多少?设货车的速度为x千米/小时,依题意列方程正确的是()A.B.C.D.【分析】题中等量关系:货车行驶25千米与小车行驶35千米所用时间相同,列出关系式.【解答】解:根据题意,得.故选:C.【点评】理解题意是解答应用题的关键,找出题中的等量关系,列出关系式.11.(2013•杭州)如图,设k=(a>b>0),则有()A.k>2 B.1<k<2 C.D.【分析】分别计算出甲图中阴影部分面积及乙图中阴影部分面积,然后计算比值即可.【解答】解:甲图中阴影部分面积为a2﹣b2,乙图中阴影部分面积为a(a﹣b),则k====1+,∵a>b>0,∴0<<1,∴1<+1<2,∴1<k<2故选B.【点评】本题考查了分式的乘除法,会计算矩形的面积及熟悉分式的运算是解题的关键.12.(2016•本溪一模)A,B两地相距48千米,一艘轮船从A地顺流航行至B 地,又立即从B地逆流返回A地,共用去9小时,已知水流速度为4千米/时,若设该轮船在静水中的速度为x千米/时,则可列方程()A.B.C.+4=9 D.【分析】本题的等量关系为:顺流时间+逆流时间=9小时.【解答】解:顺流时间为:;逆流时间为:.所列方程为:+=9.故选A.【点评】未知量是速度,有速度,一定是根据时间来列等量关系的.找到关键描述语,找到等量关系是解决问题的关键.13.(2005•武汉)计算的结果为()A.1 B.x+1 C. D.【分析】先算括号里的通分,再进行因式分解,将除号换为乘号,最后再进行分式间的约分化简.【解答】解:===,故选C.【点评】注意:当整式与分式相加减时,一般可以把整式看作分母为1的分式,与其它分式进行通分运算.14.(2004•十堰)若分式(A,B为常数),则A,B的值为()A.B.C.D.【分析】对等式右边通分加减运算和,再根据对应项系数相等列方程组求解即可.【解答】解:.所以,解得.故选B.【点评】此题考查了分式的减法,比较灵活,需要熟练掌握分式的加减运算.二.填空题(共13小题)15.(2014•陕西)计算:=9.【分析】根据负整数指数幂的运算法则进行计算即可.【解答】解:原式===9.故答案为:9.【点评】本题考查的是负整数指数幂,即负整数指数幂等于该数对应的正整数指数幂的倒数.16.(2014•衢州)若分式有意义,则实数x的取值范围是x≠5.【分析】由于分式的分母不能为0,x﹣5为分母,因此x﹣5≠0,解得x.【解答】解:∵分式有意义,∴x﹣5≠0,即x≠5.故答案为:x≠5.【点评】本题主要考查分式有意义的条件:分式有意义,分母不能为0.17.(2013•梅州)分式方程的解x=1.【分析】本题的最简公分母是x+1,方程两边都乘最简公分母,可把分式方程转换为整式方程求解.结果要检验.【解答】解:方程两边都乘x+1,得2x=x+1,解得x=1.检验:当x=1时,x+1≠0.∴x=1是原方程的解.【点评】(1)解分式方程的基本思想是“转化思想”,方程两边都乘最简公分母,把分式方程转化为整式方程求解.(2)解分式方程一定注意要代入最简公分母验根.18.(2013•临夏州)若代数式的值为零,则x=3.【分析】由题意得=0,解分式方程即可得出答案.【解答】解:由题意得,=0,解得:x=3,经检验的x=3是原方程的根.故答案为:3.【点评】此题考查了分式值为0的条件,属于基础题,注意分式方程需要检验.19.(2013•凉山州)化简的结果是m.【分析】本题需先把(m+1)与括号里的每一项分别进行相乘,再把所得结果相加即可求出答案.【解答】解:=(m+1)﹣1=m故答案为:m.【点评】本题主要考查了分式的混合运算,在解题时要把(m+1)分别进行相乘是解题的关键.20.(2013•衢州)化简:=.【分析】先将x2﹣4分解为(x+2)(x﹣2),然后通分,再进行计算.【解答】解:===.【点评】本题考查了分式的计算和化简.解决这类题关键是把握好通分与约分.分式加减的本质是通分,乘除的本质是约分.21.(2015•黄冈)计算÷(1﹣)的结果是.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分即可得到结果.【解答】解:原式=÷=•=,故答案为:.【点评】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.22.(2013•绥化)若关于x的方程=+1无解,则a的值是2或1.【分析】把方程去分母得到一个整式方程,把方程的增根x=2代入即可求得a的值.【解答】解:x﹣2=0,解得:x=2.方程去分母,得:ax=4+x﹣2,即(a﹣1)x=2当a﹣1≠0时,把x=2代入方程得:2a=4+2﹣2,解得:a=2.当a﹣1=0,即a=1时,原方程无解.故答案是:2或1.【点评】首先根据题意写出a的新方程,然后解出a的值.23.(2013•德阳)已知关于x的方程的解是正数,则m的取值范围是m.>﹣6且m≠﹣4【分析】首先求出关于x的方程的解,然后根据解是正数,再解不等式求出m的取值范围.【解答】解:解关于x的方程得x=m+6,∵方程的解是正数,∴m+6>0且m+6≠2,解这个不等式得m>﹣6且m≠﹣4.故答案为:m>﹣6且m≠﹣4.【点评】本题考查了分式方程的解,是一个方程与不等式的综合题目,解关于x 的方程是关键,解关于x的不等式是本题的一个难点.24.(2009•枣庄)a、b为实数,且ab=1,设P=,Q=,则P =Q(填“>”、“<”或“=”).【分析】将两式分别化简,然后将ab=1代入其中,再进行比较,即可得出结论.【解答】解:∵P==,把ab=1代入得:=1;Q==,把ab=1代入得:=1;∴P=Q.【点评】解答此题关键是先把所求代数式化简再把已知代入即可.25.(2013•达州)如果实数x满足x2+2x﹣3=0,那么代数式的值为5.【分析】先根据分式混合运算的法则把原式进行化简,再根据实数x满足x2+2x ﹣3=0求出x2+2x的值,代入原式进行计算即可.【解答】解:原式=×(x+1)=x2+2x+2,∵实数x满足x2+2x﹣3=0,∴x2+2x=3,∴原式=3+2=5.故答案为:5.【点评】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.26.(2013•呼和浩特)某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所需时间与原计划生产450台机器所需时间相同,现在平均每天生产200台机器.【分析】根据现在生产600台机器的时间与原计划生产450台机器的时间相同.所以可得等量关系为:现在生产600台机器时间=原计划生产450台时间.【解答】解:设:现在平均每天生产x台机器,则原计划可生产(x﹣50)台.依题意得:=.解得:x=200.检验:当x=200时,x(x﹣50)≠0.∴x=200是原分式方程的解.∴现在平均每天生产200台机器.故答案为:200.【点评】此题主要考查了分式方程的应用,重点在于准确地找出相等关系,这是列方程的依据.而难点则在于对题目已知条件的分析,也就是审题,一般来说应用题中的条件有两种,一种是显性的,直接在题目中明确给出,而另一种是隐性的,是以题目的隐含条件给出.本题中“现在平均每天比原计划多生产50台机器”就是一个隐含条件,注意挖掘.27.(2013•舟山)杭州到北京的铁路长1487千米.火车的原平均速度为x千米/时,提速后平均速度增加了70千米/时,由杭州到北京的行驶时间缩短了3小时,则可列方程为﹣=3.【分析】先分别求出提速前和提速后由杭州到北京的行驶时间,再根据由杭州到北京的行驶时间缩短了3小时,即可列出方程.【解答】解:根据题意得:﹣=3;故答案为:﹣=3.【点评】此题考查了由实际问题抽象出分式方程,关键是读懂题意,找出题目中的等量关系并列出方程.三.解答题(共13小题)28.(2013•眉山)先化简,再求值:,其中.【分析】这道求代数式值的题目,不应考虑把x的值直接代入,通常做法是先把代数式去括号,把除法转换为乘法化简,然后再代入求值.【解答】解:原式=+(x﹣2)(3分)=x(x﹣1)+(x﹣2)=x2﹣2;(2分)当x=时,则原式的值为﹣2=4.(2分)【点评】分式混合运算要注意先去括号;分子、分母能因式分解的先因式分解;除法要统一为乘法运算.29.(2005•徐州)先化简代数式,然后选取一个使原式有意义的a值代入求值.【分析】本题考查的化简与计算的综合运算,关键是正确进行分式的通分、约分,并准确代值计算.此题要注意的是a≠1.【解答】解:原式===,∵a﹣1≠0,∴a≠1,当a=2时,原式=2.【点评】此题考查了分式的化简求值,取合适的值代入原式求值时,要特注意原式及化简过程中的每一步都有意义.30.(2015•甘南州)已知x﹣3y=0,求•(x﹣y)的值.【分析】首先将分式的分母分解因式,然后再约分、化简,最后将x、y的关系式代入化简后的式子中进行计算即可.【解答】解:=(2分)=;(4分)当x﹣3y=0时,x=3y;(6分)原式=.(8分)【点评】分式混合运算要注意先去括号;分子、分母能因式分解的先因式分解;除法要统一为乘法运算.31.(2013•普洱)解方程:.【分析】观察可得2﹣x=﹣(x﹣2),所以可确定方程最简公分母为:(x﹣2),然后去分母将分式方程化成整式方程求解.注意检验.【解答】解:方程两边同乘以(x﹣2),得:x﹣3+(x﹣2)=﹣3,解得x=1,检验:x=1时,x﹣2≠0,∴x=1是原分式方程的解.【点评】(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.(3)去分母时有常数项的不要漏乘常数项.32.(2013•重庆)先化简,再求值:,其中x是不等式3x+7>1的负整数解.【分析】首先把分式进行化简,再解出不等式,确定出x的值,然后再代入化简后的分式即可.【解答】解:原式=[﹣]×,=×,=×,=,3x+7>1,3x>﹣6,x>﹣2,∵x是不等式3x+7>1的负整数解,∴x=﹣1,把x=﹣1代入中得:=3.【点评】此题主要考查了分式的化简求值,以及不等式的整数解,关键是正确把分式进行化简.33.(2013•巴中)先化简÷(a+1)+,然后a在﹣1、1、2三个数中任选一个合适的数代入求值.【分析】先根据分式混合运算的法则把原式进行化简,再选取合适的a的值代入进行计算即可.【解答】解:原式=•+=+=,当a=2(a≠﹣1,a≠1)时,原式==5.【点评】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.34.(2013•陕西)解分式方程:+=1.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:2+x(x+2)=x2﹣4,解得:x=﹣3,经检验x=﹣3是分式方程的解.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.35.(2015•广州)已知A=﹣(1)化简A;(2)当x满足不等式组,且x为整数时,求A的值.【分析】(1)根据分式四则混合运算的运算法则,把A式进行化简即可.(2)首先求出不等式组的解集,然后根据x为整数求出x的值,再把求出的x 的值代入化简后的A式进行计算即可.【解答】解:(1)A=﹣=﹣=﹣=(2)∵∴∴1≤x<3,∵x为整数,∴x=1或x=2,①当x=1时,∵x﹣1≠0,∴A=中x≠1,∴当x=1时,A=无意义.②当x=2时,A==.【点评】(1)此题主要考查了分式的化简求值,注意化简时不能跨度太大,而缺少必要的步骤.(2)此题还考查了求一元一次不等式组的整数解问题,要熟练掌握,解决此类问题的关键在于正确解得不等式组或不等式的解集,然后再根据题目中对于解集的限制得到下一步所需要的条件,再根据得到的条件求得不等式组的整数解即可.36.(2013•哈尔滨)甲、乙两个工程队共同承担一项筑路任务,甲队单独施工完成此项任务比乙队单独施工完成此项任务多用10天,且甲队单独施工45天和乙队单独施工30天的工作量相同.(1)甲、乙两队单独完成此项任务需要多少天?(2)若甲、乙两队共同工作了3天后,乙队因设备检修停止施工,由甲队继续施工,为了不影响工程进度,甲队的工作效率提高到原来的2倍,要使甲队总的工作量不少于乙队的工作量的2倍,那么甲队至少再单独施工多少天?【分析】(1)设乙队单独完成此项任务需要x天,则甲队单独完成此项任务需要(x+10)天,根据甲队单独施工45天和乙队单独施工30天的工作量相同建立方程求出其解即可;(2)设甲队再单独施工a天,根据甲队总的工作量不少于乙队的工作量的2倍建立不等式求出其解即可.【解答】解:(1)设乙队单独完成此项任务需要x天,则甲队单独完成此项任务需要(x+10)天,由题意,得,解得:x=20.经检验,x=20是原方程的解,∴x+10=30(天)答:甲队单独完成此项任务需要30天,乙队单独完成此项任务需要20天;(2)设甲队再单独施工a天,由题意,得,解得:a≥3.答:甲队至少再单独施工3天.【点评】本题是一道工程问题的运用,考查了工作时间×工作效率=工作总量的运用,列分式方程解实际问题的运用,分式方程的解法的运用,解答时验根是学生容易忽略的地方.37.(2015•成都)某商家预测一种应季衬衫能畅销市场,就用13200元购进了一批这种衬衫,面市后果然供不应求,商家又用28800元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但单价贵了10元.。
(完整版)分式专题讲解(知识点+例题+练习+中考经典题)
分式专题讲解 知识点一、分式的概念: 一般地,如果A 、B 表示两个整式,并且除式B 中含有字母,那么式子叫分式。
解读:(1)分母中含有字母是分式的一个重要标志,它是分式与分数、整式的根本区别;分式A/B 有意义,则B =0(2)分式的分母的值不能等于零.若分母的值为零,则分式无意义;反之,若分式A/B 无意义,则B =0(3)当分子等于零而分母不等于零时,分式的值才是零.反之,若分式A/B=0,则A =0,且B ≠0例题1、下列各式中,哪些是整式?哪些是分式?a ab 2,x 1,3s ,b a a --,πy x +,)(21b a -,)(1z x y -,a-31练习:这些代数式中x -,π4,x a ,y x y x -+2,a 5-,71,2ba -,x -3中,是分式的有( )。
A.3个B.4个C.5个D.6个练习:已知的值。
,求x x x 011=--练习:的值是的值为零,则b 32122---b b b ( ) A.1 B.-1 C.1± D.2练习:写出一个含字母x 的分式,使得不论x 取何值,分式都有意义。
练习:若0y 3y 21,322是)为负数()为正数;()(为何值时,y x xx y -=探索题型:观察下列各等式:323112=+,434122=+,545132=+,656142=+,......,设n 为正整数,试用含n 的等式表示这个规律。
1、分式的基本性质分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变.用式子表示是:MB MA MB M A B A ÷÷=⨯⨯=(其中M 是不等于0的整式).特别提示:(1)在解题过程中,分母不为0是作为隐含条件给出的.若是分式,则说明分母中的字母一定能满足使分母不为0;(2)在运用分式的基本性质时,一定要重点强调分母不为0这个条件,没有给出的,要讨论是否等于0.例题1:下列运算中,错误的是( ).A.2b ab b a =B.b ab ab =2 C.b a b a b a b a 321053.02.05.0-+=-+ D .bc acb a =2、分式的约分根据分式的基本性质,把一个分式的分子和分母分别除以它们的公因式叫做分式的约分。
人教版八年级数学下册《分式》考点提要+精练精析
第十六章《分式》 提要:分式的四则运算是整式四则运算的进一步发展,是有理式恒等变形的重要内容之一,所以,分式的四则运算是本章的重点.分式的四则混合运算,是整式运算、因式分解和分式运算的综合运用,由于运用了较多的基础知识,运算步骤增多,解题方法多样灵活,又容易产生符号和运算方面的错误,所以是分式的难点.同时列分式方程解应用题和列整式方程解应用题相比较,虽然涉及到的基本数量关系有时是相同的,但由于含有未知数的式子不受整式的限制,所以更为多样而灵活.习题:一、填空题1.使分式234x a x +-的值等于零的条件是_________. 2.在分式2242x x x ---中,当x _____________时有意义,当x _________时分式值为零. 3.在括号内填入适当的代数式,使下列等式成立:2xy =22()2ax y ; 322()x xy x y --=()x x y-. 4.某农场原计划用m 天完成A 公顷的播种任务,如果要提前a 天结束,那么平均每天比原计划要多播种_________公顷.5.函数y =221(3)12x x x-++--中,自变量x 的取值范围是___________. 6.计算1201(1)5(2004)2π-⎛⎫-+-÷- ⎪⎝⎭的结果是_________. 7.已知u=121s s t -- (u≠0),则t=___________. 8.当m =______时,方程233x m x x =---会产生增根. 9.用科学记数法表示:12.5毫克=________吨.10.用换元法解方程222026133x x x x+-=+ ,若设x 2+3x =y ,,则原方程可化为关于y 的整式方程为____________.11.计算(x +y )·2222x y x y y x +-- =____________. 12.若a ≠b ,则方程a b +x a =x b -b a的解是x = ____________; 13.当x _____________时,||3x x -与3x x -互为倒数. 14.约分:34522748a bx a b x =____________;22923a a a ---=_____________. 15.当 x __________________时,分式325x --12x +有意义. 16.若分式123x -- 的值为正,则x 的取值范围是_______________. 17.如果方程5422436x x k x x -+=--有增根,则增根是_______________. 18.已知x y =32;则x y x y -+= __________. 19.m ≠±1时,方程m (mx -m +1)=x 的解是x =_____________.20.一个工人生产零件,计划30天完成,若每天多生产5个,则在26 天完成且多生产15个.求这个工人原计划每天生产多少个零件?若设原计划每天生产x 个,由题意可列方程为____________.二、选择题21.下列运算正确的是( )A .x 10÷x 5=x 2;B .x -4·x =x -3;C .x 3·x 2=x 6;D .(2x -2)-3=-8x 622.如果m 个人完成一项工作需要d 天,则(m +n )个人完成这项工作需要的天数为( )A .d +nB .d -nC .md m n + D .d m n + 23.化简a b a b a b--+等于( ) A .2222a b a b +- B .222()a b a b +- C .2222a b a b -+ D .222()a b a b +- 24.若分式2242x x x ---的值为零,则x 的值是( ) A .2或-2 B .2 C .-2 D .425.不改变分式52223x y x y -+的值,把分子、分母中各项系数化为整数,结果是( ) A .2154x y x y -+ B .4523x y x y -+ C .61542x y x y-+ D .121546x y x y -+。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初二分式所有知识点总结和常考题知识点:1.分式:形如AB,A B 、是整式,B 中含有字母且B 不等于0的整式叫做分式.其中A 叫做分式的分子,B 叫做分式的分母. 2.分式有意义的条件:分母不等于0. 3.分式的基本性质:分式的分子和分母同时乘以(或除以)同一个不为0的整式,分式的值不变.4.约分:把一个分式的分子和分母的公因式(不为1的数)约去,这种变形称为约分.5.通分:异分母的分式可以化成同分母的分式,这一过程叫做通分.6.最简分式:一个分式的分子和分母没有公因式时,这个分式称为最简分式,约分时,一般将一个分式化为最简分式.7.分式的四则运算:⑴同分母分式加减法则:同分母的分式相加减,分母不变,把分子相加减.用字母表示为:a b a bc c c±±=⑵异分母分式加减法则:异分母的分式相加减,先通分,化为同分母的分式,然后再按同分母分式的加减法法则进行计算.用字母表示为: a c ad cb b d bd±±= ⑶分式的乘法法则:两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母.用字母表示为:a c acb d bd⨯=⑷分式的除法法则:两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘.用字母表示为:a c a d adb d bc bc÷=⨯=⑸分式的乘方法则:分子、分母分别乘方.用字母表示为:nn n a a b b ⎛⎫= ⎪⎝⎭8.整数指数幂:⑴m n m n a a a +⨯=(m n 、是正整数) ⑵()nm mn aa =(m n 、是正整数)⑶()nn n ab a b =(n 是正整数)⑷m n m n a a a -÷=(0a ≠,m n 、是正整数,m n >)⑸nn n a a b b ⎛⎫= ⎪⎝⎭(n 是正整数)⑹1nnaa-=(0a≠,n是正整数)9.的意义:分母中含有未知数的方程叫做分式方程.10.分式方程的解法:①去分母(方程两边同时乘以最简公分母,将分式方程化为整式方程);②按解整式方程的步骤求出未知数的值;③验根(求出未知数的值后必须验根,因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根).常考题:一.选择题(共14小题)1.在式子、、、、、中,分式的个数有()A.2个B.3个C.4个D.5个2.化简的结果是()A.x+1 B.x﹣1 C.﹣x D.x3.如果把分式中的x和y都扩大2倍,则分式的值()A.扩大4倍B.扩大2倍C.不变D.缩小2倍4.把分式方程的两边同时乘以(x﹣2),约去分母,得()A.1﹣(1﹣x)=1 B.1+(1﹣x)=1 C.1﹣(1﹣x)=x﹣2 D.1+(1﹣x)=x﹣25.化简÷(1+)的结果是()A.B.C.D.6.计算的结果为()A.B.C.D.7.已知关于x的分式方程+=1的解是非负数,则m的取值范围是()A.m>2 B.m≥2 C.m≥2且m≠3 D.m>2且m≠38.下列运算正确的是()A.a2?a3=a6 B.()﹣1=﹣2 C.=±4D.|﹣6|=69.某服装加工厂计划加工400套运动服,在加工完160套后,采用了新技术,工作效率比原计划提高了20%,结果共用了18天完成全部任务.设原计划每天加工x套运动服,根据题意可列方程为()A.B.C.D.10.货车行驶25千米与小车行驶35千米所用时间相同,已知小车每小时比货车多行驶20千米,求两车的速度各为多少设货车的速度为x千米/小时,依题意列方程正确的是()A.B.C.D.11.如图,设k=(a>b>0),则有()A.k>2 B.1<k<2 C.D.12.A,B两地相距48千米,一艘轮船从A地顺流航行至B地,又立即从B地逆流返回A地,共用去9小时,已知水流速度为4千米/时,若设该轮船在静水中的速度为x千米/时,则可列方程()A.B.C.+4=9 D.13.计算的结果为()A.1 B.x+1 C.D.14.若分式(A,B为常数),则A,B的值为()A.B.C.D.二.填空题(共13小题)15.计算:= .16.若分式有意义,则实数x的取值范围是.17.分式方程的解x= .18.若代数式的值为零,则x= .19.化简的结果是.20.化简:= .21.计算÷(1﹣)的结果是.22.若关于x的方程=+1无解,则a的值是.23.已知关于x的方程的解是正数,则m的取值范围是.24.a、b为实数,且ab=1,设P=,Q=,则P Q(填“>”、“<”或“=”).25.如果实数x满足x2+2x﹣3=0,那么代数式的值为.26.某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所需时间与原计划生产450台机器所需时间相同,现在平均每天生产台机器.27.杭州到北京的铁路长1487千米.火车的原平均速度为x千米/时,提速后平均速度增加了70千米/时,由杭州到北京的行驶时间缩短了3小时,则可列方程为.三.解答题(共13小题)28.先化简,再求值:,其中.29.先化简代数式,然后选取一个使原式有意义的a值代入求值.30.已知x﹣3y=0,求?(x﹣y)的值.31.解方程:.32.先化简,再求值:,其中x是不等式3x+7>1的负整数解.33.先化简÷(a+1)+,然后a在﹣1、1、2三个数中任选一个合适的数代入求值.34.解分式方程:+=1.35.已知A=﹣(1)化简A;(2)当x满足不等式组,且x为整数时,求A的值.36.甲、乙两个工程队共同承担一项筑路任务,甲队单独施工完成此项任务比乙队单独施工完成此项任务多用10天,且甲队单独施工45天和乙队单独施工30天的工作量相同.(1)甲、乙两队单独完成此项任务需要多少天(2)若甲、乙两队共同工作了3天后,乙队因设备检修停止施工,由甲队继续施工,为了不影响工程进度,甲队的工作效率提高到原来的2倍,要使甲队总的工作量不少于乙队的工作量的2倍,那么甲队至少再单独施工多少天37.某商家预测一种应季衬衫能畅销市场,就用13200元购进了一批这种衬衫,面市后果然供不应求,商家又用28800元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但单价贵了10元.(1)该商家购进的第一批衬衫是多少件(2)若两批衬衫按相同的标价销售,最后剩下50件按八折优惠卖出,如果两批衬衫全部售完后利润不低于25%(不考虑其他因素),那么每件衬衫的标价至少是多少元38.从广州到某市,可乘坐普通列车或高铁,已知高铁的行驶路程是400千米,普通列车的行驶路程是高铁的行驶路程的倍.(1)求普通列车的行驶路程;(2)若高铁的平均速度(千米/时)是普通列车平均速度(千米/时)的倍,且乘坐高铁所需时间比乘坐普通列车所需时间缩短3小时,求高铁的平均速度.39.学校计划选购甲、乙两种图书作为“校园读书节”的奖品.已知甲图书的单价是乙图书单价的倍;用600元单独购买甲种图书比单独购买乙种图书要少10本.(1)甲、乙两种图书的单价分别为多少元(2)若学校计划购买这两种图书共40本,且投入的经费不超过1050元,要使购买的甲种图书数量不少于乙种图书的数量,则共有几种购买方案40.某汽车销售公司经销某品牌A款汽车,随着汽车的普及,其价格也在不断下降.今年5月份A款汽车的售价比去年同期每辆降价1万元,如果卖出相同数量的A款汽车,去年销售额为100万元,今年销售额只有90万元.(1)今年5月份A款汽车每辆售价多少万元(2)为了增加收入,汽车销售公司决定再经销同品牌的B款汽车,已知A款汽车每辆进价为万元,B款汽车每辆进价为6万元,公司预计用不多于105万元且不少于99万元的资金购进这两款汽车共15辆,有几种进货方案(3)如果B款汽车每辆售价为8万元,为打开B款汽车的销路,公司决定每售出一辆B款汽车,返还顾客现金a万元,要使(2)中所有的方案获利相同,a 值应是多少此时,哪种方案对公司更有利初二分式所有知识点总结和常考题提高难题压轴题练习(含答案解析)参考答案与试题解析一.选择题(共14小题)1.(2012春?潜江期末)在式子、、、、、中,分式的个数有()A.2个B.3个C.4个D.5个【分析】判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.【解答】解:、、9x+这3个式子的分母中含有字母,因此是分式.其它式子分母中均不含有字母,是整式,而不是分式.故选:B.【点评】本题考查的是分式的定义,在解答此题时要注意分式是形式定义,只要是分母中含有未知数的式子即为分式.2.(2014?南通)化简的结果是()A.x+1 B.x﹣1 C.﹣x D.x【分析】将分母化为同分母,通分,再将分子因式分解,约分.【解答】解:=﹣===x,故选:D.【点评】本题考查了分式的加减运算.分式的加减运算中,如果是同分母分式,那么分母不变,把分子直接相加减即可;如果是异分母分式,则必须先通分,把异分母分式化为同分母分式,然后再相加减.3.(2012?岳麓区校级自主招生)如果把分式中的x和y都扩大2倍,则分式的值()A.扩大4倍B.扩大2倍C.不变D.缩小2倍【分析】把分式中的x和y都扩大2倍,分别用2x和2y去代换原分式中的x和y,利用分式的基本性质化简即可.【解答】解:把分式中的x和y都扩大2倍后得:==2?,即分式的值扩大2倍.故选:B.【点评】根据分式的基本性质,无论是把分式的分子和分母扩大还是缩小相同的倍数,都不要漏乘(除)分子、分母中的任何一项.4.(2005?扬州)把分式方程的两边同时乘以(x﹣2),约去分母,得()A.1﹣(1﹣x)=1 B.1+(1﹣x)=1 C.1﹣(1﹣x)=x﹣2 D.1+(1﹣x)=x﹣2【分析】分母中x﹣2与2﹣x互为相反数,那么最简公分母为(x﹣2),乘以最简公分母,可以把分式方程转化成整式方程.【解答】解:方程两边都乘(x﹣2),得:1+(1﹣x)=x﹣2.故选:D.【点评】找到最简公分母是解答分式方程的最重要一步;注意单独的一个数也要乘最简公分母;互为相反数的两个数为分母,最简公分母为其中的一个,另一个乘以最简公分母后,结果为﹣1.5.(2013?临沂)化简÷(1+)的结果是()A.B.C.D.【分析】首先对括号内的式子通分相加,然后把除法转化成乘法,进行约分即可.【解答】解:原式=÷=?=.故选A.【点评】本题主要考查分式的混合运算,通分、因式分解和约分是解答的关键.6.(2008?黄冈)计算的结果为()A.B.C.D.【分析】先算小括号里的,再把除法统一成乘法,约分化为最简.【解答】解:==,故选A.【点评】分式的四则运算是整式四则运算的进一步发展,在计算时,首先要弄清楚运算顺序,先去括号,再进行分式的乘除.7.(2014?黑龙江)已知关于x的分式方程+=1的解是非负数,则m的取值范围是()A.m>2 B.m≥2 C.m≥2且m≠3 D.m>2且m≠3【分析】分式方程去分母转化为整式方程,求出整式方程的解表示出x,根据方程的解为非负数求出m的范围即可.【解答】解:分式方程去分母得:m﹣3=x﹣1,解得:x=m﹣2,由方程的解为非负数,得到m﹣2≥0,且m﹣2≠1,解得:m≥2且m≠3.故选:C【点评】此题考查了分式方程的解,时刻注意分母不为0这个条件.8.(2009?潍坊)下列运算正确的是()A.a2?a3=a6 B.()﹣1=﹣2 C.=±4D.|﹣6|=6【分析】幂运算的性质:①同底数的幂相乘,底数不变,指数相加;②一个数的负指数次幂等于这个数的正指数次幂的倒数,算术平方根的概念:一个正数的正的平方根叫它的算术平方根,0的算术平方根是0.绝对值的性质:正数的绝对值等于它本身,负数的绝对值等于它的相反数,0的绝对值是0.【解答】解:A、a2?a3=a5,故A错误;B、()﹣1=2,故B错误;C、=4,故C错误;D、根据负数的绝对值等于它的相反数,故D正确.故选D.【点评】本题涉及知识:负指数为正指数的倒数;任何非0数的0次幂等于1;绝对值的化简;二次根式的化简.9.(2013?本溪)某服装加工厂计划加工400套运动服,在加工完160套后,采用了新技术,工作效率比原计划提高了20%,结果共用了18天完成全部任务.设原计划每天加工x套运动服,根据题意可列方程为()A.B.C.D.【分析】关键描述语为:“共用了18天完成任务”;等量关系为:采用新技术前用的时间+采用新技术后所用的时间=18.【解答】解:采用新技术前用的时间可表示为:天,采用新技术后所用的时间可表示为:天.方程可表示为:.故选:B.【点评】列方程解应用题的关键步骤在于找相等关系.找到关键描述语,找到等量关系是解决问题的关键.本题要注意采用新技术前后工作量和工作效率的变化.10.(2014?黔南州)货车行驶25千米与小车行驶35千米所用时间相同,已知小车每小时比货车多行驶20千米,求两车的速度各为多少设货车的速度为x千米/小时,依题意列方程正确的是()A.B.C.D.【分析】题中等量关系:货车行驶25千米与小车行驶35千米所用时间相同,列出关系式.【解答】解:根据题意,得.故选:C.【点评】理解题意是解答应用题的关键,找出题中的等量关系,列出关系式.11.(2013?杭州)如图,设k=(a>b>0),则有()A.k>2 B.1<k<2 C.D.【分析】分别计算出甲图中阴影部分面积及乙图中阴影部分面积,然后计算比值即可.【解答】解:甲图中阴影部分面积为a2﹣b2,乙图中阴影部分面积为a(a﹣b),则k====1+,∵a>b>0,∴0<<1,∴1<+1<2,∴1<k<2故选B.【点评】本题考查了分式的乘除法,会计算矩形的面积及熟悉分式的运算是解题的关键.12.(2016?本溪一模)A,B两地相距48千米,一艘轮船从A地顺流航行至B地,又立即从B地逆流返回A地,共用去9小时,已知水流速度为4千米/时,若设该轮船在静水中的速度为x千米/时,则可列方程()A.B.C.+4=9 D.【分析】本题的等量关系为:顺流时间+逆流时间=9小时.【解答】解:顺流时间为:;逆流时间为:.所列方程为:+=9.故选A.【点评】未知量是速度,有速度,一定是根据时间来列等量关系的.找到关键描述语,找到等量关系是解决问题的关键.13.(2005?武汉)计算的结果为()A.1 B.x+1 C.D.【分析】先算括号里的通分,再进行因式分解,将除号换为乘号,最后再进行分式间的约分化简.【解答】解:===,故选C.【点评】注意:当整式与分式相加减时,一般可以把整式看作分母为1的分式,与其它分式进行通分运算.14.(2004?十堰)若分式(A,B为常数),则A,B的值为()A.B.C.D.【分析】对等式右边通分加减运算和,再根据对应项系数相等列方程组求解即可.【解答】解:.所以,解得.故选B.【点评】此题考查了分式的减法,比较灵活,需要熟练掌握分式的加减运算.二.填空题(共13小题)15.(2014?陕西)计算:= 9 .【分析】根据负整数指数幂的运算法则进行计算即可.【解答】解:原式===9.故答案为:9.【点评】本题考查的是负整数指数幂,即负整数指数幂等于该数对应的正整数指数幂的倒数.16.(2014?衢州)若分式有意义,则实数x的取值范围是x≠5 .【分析】由于分式的分母不能为0,x﹣5为分母,因此x﹣5≠0,解得x.【解答】解:∵分式有意义,∴x﹣5≠0,即x≠5.故答案为:x≠5.【点评】本题主要考查分式有意义的条件:分式有意义,分母不能为0.17.(2013?梅州)分式方程的解x= 1 .【分析】本题的最简公分母是x+1,方程两边都乘最简公分母,可把分式方程转换为整式方程求解.结果要检验.【解答】解:方程两边都乘x+1,得2x=x+1,解得x=1.检验:当x=1时,x+1≠0.∴x=1是原方程的解.【点评】(1)解分式方程的基本思想是“转化思想”,方程两边都乘最简公分母,把分式方程转化为整式方程求解.(2)解分式方程一定注意要代入最简公分母验根.18.(2013?临夏州)若代数式的值为零,则x= 3 .【分析】由题意得=0,解分式方程即可得出答案.【解答】解:由题意得,=0,解得:x=3,经检验的x=3是原方程的根.故答案为:3.【点评】此题考查了分式值为0的条件,属于基础题,注意分式方程需要检验.19.(2013?凉山州)化简的结果是m .【分析】本题需先把(m+1)与括号里的每一项分别进行相乘,再把所得结果相加即可求出答案.【解答】解:=(m+1)﹣1=m故答案为:m.【点评】本题主要考查了分式的混合运算,在解题时要把(m+1)分别进行相乘是解题的关键.20.(2013?衢州)化简:= .【分析】先将x2﹣4分解为(x+2)(x﹣2),然后通分,再进行计算.【解答】解:===.【点评】本题考查了分式的计算和化简.解决这类题关键是把握好通分与约分.分式加减的本质是通分,乘除的本质是约分.21.(2015?黄冈)计算÷(1﹣)的结果是.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分即可得到结果.【解答】解:原式=÷=?=,故答案为:.【点评】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.22.(2013?绥化)若关于x的方程=+1无解,则a的值是2或1 .【分析】把方程去分母得到一个整式方程,把方程的增根x=2代入即可求得a 的值.【解答】解:x﹣2=0,解得:x=2.方程去分母,得:ax=4+x﹣2,即(a﹣1)x=2当a﹣1≠0时,把x=2代入方程得:2a=4+2﹣2,解得:a=2.当a﹣1=0,即a=1时,原方程无解.故答案是:2或1.【点评】首先根据题意写出a的新方程,然后解出a的值.23.(2013?德阳)已知关于x的方程的解是正数,则m的取值范围是m>.﹣6且m≠﹣4【分析】首先求出关于x的方程的解,然后根据解是正数,再解不等式求出m的取值范围.【解答】解:解关于x的方程得x=m+6,∵方程的解是正数,∴m+6>0且m+6≠2,解这个不等式得m>﹣6且m≠﹣4.故答案为:m>﹣6且m≠﹣4.【点评】本题考查了分式方程的解,是一个方程与不等式的综合题目,解关于x的方程是关键,解关于x的不等式是本题的一个难点.24.(2009?枣庄)a、b为实数,且ab=1,设P=,Q=,则P = Q(填“>”、“<”或“=”).【分析】将两式分别化简,然后将ab=1代入其中,再进行比较,即可得出结论.【解答】解:∵P==,把ab=1代入得:=1;Q==,把ab=1代入得:=1;∴P=Q.【点评】解答此题关键是先把所求代数式化简再把已知代入即可.25.(2013?达州)如果实数x满足x2+2x﹣3=0,那么代数式的值为 5 .【分析】先根据分式混合运算的法则把原式进行化简,再根据实数x满足x2+2x﹣3=0求出x2+2x的值,代入原式进行计算即可.【解答】解:原式=×(x+1)=x2+2x+2,∵实数x满足x2+2x﹣3=0,∴x2+2x=3,∴原式=3+2=5.故答案为:5.【点评】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.26.(2013?呼和浩特)某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所需时间与原计划生产450台机器所需时间相同,现在平均每天生产200 台机器.【分析】根据现在生产600台机器的时间与原计划生产450台机器的时间相同.所以可得等量关系为:现在生产600台机器时间=原计划生产450台时间.【解答】解:设:现在平均每天生产x台机器,则原计划可生产(x﹣50)台.依题意得:=.解得:x=200.检验:当x=200时,x(x﹣50)≠0.∴x=200是原分式方程的解.∴现在平均每天生产200台机器.故答案为:200.【点评】此题主要考查了分式方程的应用,重点在于准确地找出相等关系,这是列方程的依据.而难点则在于对题目已知条件的分析,也就是审题,一般来说应用题中的条件有两种,一种是显性的,直接在题目中明确给出,而另一种是隐性的,是以题目的隐含条件给出.本题中“现在平均每天比原计划多生产50台机器”就是一个隐含条件,注意挖掘.27.(2013?舟山)杭州到北京的铁路长1487千米.火车的原平均速度为x千米/时,提速后平均速度增加了70千米/时,由杭州到北京的行驶时间缩短了3小时,则可列方程为﹣=3 .【分析】先分别求出提速前和提速后由杭州到北京的行驶时间,再根据由杭州到北京的行驶时间缩短了3小时,即可列出方程.【解答】解:根据题意得:﹣=3;故答案为:﹣=3.【点评】此题考查了由实际问题抽象出分式方程,关键是读懂题意,找出题目中的等量关系并列出方程.三.解答题(共13小题)28.(2013?眉山)先化简,再求值:,其中.【分析】这道求代数式值的题目,不应考虑把x的值直接代入,通常做法是先把代数式去括号,把除法转换为乘法化简,然后再代入求值.【解答】解:原式=+(x﹣2)(3分)=x(x﹣1)+(x﹣2)=x2﹣2;(2分)当x=时,则原式的值为﹣2=4.(2分)【点评】分式混合运算要注意先去括号;分子、分母能因式分解的先因式分解;除法要统一为乘法运算.29.(2005?徐州)先化简代数式,然后选取一个使原式有意义的a值代入求值.【分析】本题考查的化简与计算的综合运算,关键是正确进行分式的通分、约分,并准确代值计算.此题要注意的是a≠1.【解答】解:原式===,∵a﹣1≠0,∴a≠1,当a=2时,原式=2.【点评】此题考查了分式的化简求值,取合适的值代入原式求值时,要特注意原式及化简过程中的每一步都有意义.30.(2015?甘南州)已知x﹣3y=0,求?(x﹣y)的值.【分析】首先将分式的分母分解因式,然后再约分、化简,最后将x、y的关系式代入化简后的式子中进行计算即可.【解答】解:=(2分)=;(4分)当x﹣3y=0时,x=3y;(6分)原式=.(8分)【点评】分式混合运算要注意先去括号;分子、分母能因式分解的先因式分解;除法要统一为乘法运算.31.(2013?普洱)解方程:.【分析】观察可得2﹣x=﹣(x﹣2),所以可确定方程最简公分母为:(x﹣2),然后去分母将分式方程化成整式方程求解.注意检验.【解答】解:方程两边同乘以(x﹣2),得:x﹣3+(x﹣2)=﹣3,解得x=1,检验:x=1时,x﹣2≠0,∴x=1是原分式方程的解.【点评】(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.(3)去分母时有常数项的不要漏乘常数项.32.(2013?重庆)先化简,再求值:,其中x是不等式3x+7>1的负整数解.【分析】首先把分式进行化简,再解出不等式,确定出x的值,然后再代入化简后的分式即可.【解答】解:原式=[﹣]×,=×,=×,=,3x+7>1,3x>﹣6,x>﹣2,∵x是不等式3x+7>1的负整数解,∴x=﹣1,把x=﹣1代入中得:=3.【点评】此题主要考查了分式的化简求值,以及不等式的整数解,关键是正确把分式进行化简.33.(2013?巴中)先化简÷(a+1)+,然后a在﹣1、1、2三个数中任选一个合适的数代入求值.【分析】先根据分式混合运算的法则把原式进行化简,再选取合适的a的值代入进行计算即可.【解答】解:原式=?+=+=,当a=2(a≠﹣1,a≠1)时,原式==5.【点评】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.34.(2013?陕西)解分式方程:+=1.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:2+x(x+2)=x2﹣4,解得:x=﹣3,经检验x=﹣3是分式方程的解.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.35.(2015?广州)已知A=﹣(1)化简A;(2)当x满足不等式组,且x为整数时,求A的值.【分析】(1)根据分式四则混合运算的运算法则,把A式进行化简即可.(2)首先求出不等式组的解集,然后根据x为整数求出x的值,再把求出的x 的值代入化简后的A式进行计算即可.【解答】解:(1)A=﹣=﹣=﹣=(2)∵∴∴1≤x<3,∵x为整数,∴x=1或x=2,①当x=1时,∵x﹣1≠0,∴A=中x≠1,∴当x=1时,A=无意义.②当x=2时,A==.【点评】(1)此题主要考查了分式的化简求值,注意化简时不能跨度太大,而缺少必要的步骤.(2)此题还考查了求一元一次不等式组的整数解问题,要熟练掌握,解决此类问题的关键在于正确解得不等式组或不等式的解集,然后再根据题目中对于解集的限制得到下一步所需要的条件,再根据得到的条件求得不等式组的整数解即可.36.(2013?哈尔滨)甲、乙两个工程队共同承担一项筑路任务,甲队单独施工完成此项任务比乙队单独施工完成此项任务多用10天,且甲队单独施工45天和乙队单独施工30天的工作量相同.(1)甲、乙两队单独完成此项任务需要多少天(2)若甲、乙两队共同工作了3天后,乙队因设备检修停止施工,由甲队继续施工,为了不影响工程进度,甲队的工作效率提高到原来的2倍,要使甲队总的工作量不少于乙队的工作量的2倍,那么甲队至少再单独施工多少天【分析】(1)设乙队单独完成此项任务需要x天,则甲队单独完成此项任务需要(x+10)天,根据甲队单独施工45天和乙队单独施工30天的工作量相同建立方程求出其解即可;(2)设甲队再单独施工a天,根据甲队总的工作量不少于乙队的工作量的2倍建立不等式求出其解即可.【解答】解:(1)设乙队单独完成此项任务需要x天,则甲队单独完成此项任务需要(x+10)天,由题意,得,解得:x=20.经检验,x=20是原方程的解,∴x+10=30(天)答:甲队单独完成此项任务需要30天,乙队单独完成此项任务需要20天;(2)设甲队再单独施工a天,由题意,得,解得:a≥3.答:甲队至少再单独施工3天.【点评】本题是一道工程问题的运用,考查了工作时间×工作效率=工作总量的运用,列分式方程解实际问题的运用,分式方程的解法的运用,解答时验根是学生容易忽略的地方.37.(2015?成都)某商家预测一种应季衬衫能畅销市场,就用13200元购进了一批这种衬衫,面市后果然供不应求,商家又用28800元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但单价贵了10元.(1)该商家购进的第一批衬衫是多少件(2)若两批衬衫按相同的标价销售,最后剩下50件按八折优惠卖出,如果两批衬衫全部售完后利润不低于25%(不考虑其他因素),那么每件衬衫的标价至少是多少元【分析】(1)可设该商家购进的第一批衬衫是x件,则购进第二批这种衬衫是2x件,根据第二批这种衬衫单价贵了10元,列出方程求解即可;(2)设每件衬衫的标价y元,求出利润表达式,然后列不等式解答.【解答】解:(1)设该商家购进的第一批衬衫是x件,则购进第二批这种衬衫是2x件,依题意有+10=,解得x=120,经检验,x=120是原方程的解,且符合题意.答:该商家购进的第一批衬衫是120件.(2)3x=3×120=360,设每件衬衫的标价y元,依题意有(360﹣50)y+50×≥(13200+28800)×(1+25%),解得y≥150.答:每件衬衫的标价至少是150元.【点评】本题考查了分式方程的应用和一元一次不等式的应用,弄清题意并找出题中的数量关系并列出方程是解题的关键.38.(2014?广州)从广州到某市,可乘坐普通列车或高铁,已知高铁的行驶路程是400千米,普通列车的行驶路程是高铁的行驶路程的倍.(1)求普通列车的行驶路程;(2)若高铁的平均速度(千米/时)是普通列车平均速度(千米/时)的倍,且乘坐高铁所需时间比乘坐普通列车所需时间缩短3小时,求高铁的平均速度.【分析】(1)根据高铁的行驶路程是400千米和普通列车的行驶路程是高铁的行驶路程的倍,两数相乘即可得出答案;(2)设普通列车平均速度是x千米/时,根据高铁所需时间比乘坐普通列车所需时间缩短3小时,列出分式方程,然后求解即可;【解答】解:(1)根据题意得:400×=520(千米),答:普通列车的行驶路程是520千米;(2)设普通列车平均速度是x千米/时,则高铁平均速度是千米/时,根据题意得:﹣=3,解得:x=120,。