9.1平面的基本性质

合集下载

【ppt课件】9[1].1.1《平面的基本性质》课件(1)(旧人教第二册下B)-精品文档

【ppt课件】9[1].1.1《平面的基本性质》课件(1)(旧人教第二册下B)-精品文档

2.观察(1)、(2)、(3)三个图形,模型说明它 们的位置关系有什么不同,并用字母表示各个平面.
(1)
(2)
(3)
3.请将以下四图中,看得见的部分用实线描出.
(1)
(2)
(3)
(4)
4.如图所示,用符号表示以下各概念: ①点A、B在直线a上 ; ②直线a在平面内 ③点O不在平面内 ;点C在平面内 ;直线b不在平面内 ;
b、绝对平
c、无限延伸性
4、点、线、面的位置关系(集合语言表示法)Q NhomakorabeaP
点A 在平面a内,
A

点P在直线l上,
Pl
Ql
点B 在平面a外, B
点Q不 在直线l上,
直线 L 在平面 a 之外
(I) (II) L
L
A


l∥α
L A
直线L在平面a 内,

L
表示为:
L
直线a与b 相交于点A,


3、平面的空间感觉: (1) 一个平面把空间分成_____________部分;
(2) 二个平面把空间分成_____________部分;
(3) 三个平面把空间分成_____________部分。
(4) 正方体把空间分成______________部分
作业:绿书P5-7素质检测
练习: 1、书本P5 1- 7
E

王新敞
奎屯 新疆
A H D G B F C P
王新敞
奎屯
新疆
练习: 1.判断下列命题的真假,真的打“√”,假的打“×” (1)可画一个平面,使它的长为4cm,宽为2cm. (2)一条直线把它所在的平面分成两部分,一个平 面把空间分成两部分. (3)一个平面的面积为20 cm2. (4)经过面内任意两点的直线,若直线上各点都 在这个面内,那么这个面是平面.

9.1平面的基本性质第三课时 空间图形直观图的画法

9.1平面的基本性质第三课时 空间图形直观图的画法

首页
上一页
下一页
末页
瞻前顾后
要点突破
典例精析
演练广场
解 :点 C′的位置不对. ′ 的位置不对. 画法: 法一: (1)作 画法: 法一 : 作 CD∥x 轴交 y 轴于点 D, ∥ , 画对应轴 O′x′、 ′ y′, ∠ x′O′y′ ′ ′ O′ ′ 使 ′ ′ ′ = 45°. 1 (2)在 x′ 轴上取 O′B′= OB,在 y′ 轴的负半轴上取 O′D′ = OD,过 D′ 作 在 ′ ′ ′ , ′ ′ ′ , ′ 2 D′C′∥ ′轴且 D′C′= DC. ′ ′∥x′ ′ ′ ′∥ (3)连结 O′C′、 ′ C′, 并擦去辅助线, 连结 ′ ′ B′ ′ 并擦去辅助线, △ O′B′C′即为所画三角形的直观图. 则 ′ ′ ′即为所画三角形的直观图. 如 图.
首页
上一页
下一页
末页
瞻前顾后
要点突破
典例精析
演练广场
知识要点: 知识要点: 斜二测画法的理解及应用 (1)画图时要紧紧把握住一斜 画图时要紧紧把握住一斜 轴的线段, 画图时要紧紧把握住 一斜——在已知图形的 xOy 平面内垂直于 x 轴的线段,在直观 在已知图形的 两种度量形式, 图中均与 x′轴成 45°或 135°;二测 ′ 或 ;二测——两种度量形式,即在直观图中,平行于 x′轴或平行 两种度量形式 即在直观图中, ′ 于 z′轴的线段长度不变, 平行于 y′轴的线段长度变为原来的一半. ′ 轴的线段长度不变, ′ 轴的线段长度变为原来的一半. (2)画水平放置的平面图形的步骤为:画轴,取点,成图.图形中平行于 x 轴的线段 ,在 画水平放置的平面图形的步骤为: 轴的线段, 画水平放置的平面图形的步骤为 画轴,取点,成图. 直观图中保持不变, 轴的线段,长度变为原来的一半. 直观图中保持不变, 平行于 y 轴的线段,长度变为原来的一半 . 画立体图形的直观图,在画轴时, 画立体图形的直观图 ,在画轴时,要多画一条与平面 x′O′y′垂直的轴 O′z′,且 ′ ′ ′ ′ ′ 平行于 O′z′的线段, 长度不变,其他同平面图形的画法. ′ ′ 的线段,长度不变,其他同平面图形的画法. (3)空间几何体的直观图在数学中有重要作用 ,画得立体感强 ,在做题时立体关系就便于 空间几何体的直观图在数学中有重要作用 空间几何体的直观图在数学中有重要作用,画得立体感强, 观察,图形画得好,在科学实验和日常生活中也会大有作用. 观察,图形画得好, 在科学实验和日常生活中也会大有作用.

平面的基本性质教案

平面的基本性质教案

课题:9.1平面的基本性质(一)教学目标:知识目标:(1)了解平面的概念,掌握平面的画法及表示法(2)掌握平面的基本性质及它们的作用能力目标:(3)会用文字语言、图形语言、符号语言表示点、线、面的位置关系(4)能够画出水平放置的平面的直观图(5)培养学生的空间想象能力情感目标:(6)渗透数学来源于实践又服务于实践的辩证观点(7)在数学学习活动中获得成功的体验,建立自信心教学重点与难点重点:(1)平面的概念。

“平面”是教材中只作描述说明,而不定义的最原始的基本概念,应让学生结合实例弄清平面的含义,认真体会平面与平面无大小之分,无厚薄之别,仅有位置上的不同。

(2)会正确画图表示两相交平面的位置关系(3)会用文字语言、图形语言、符号语言表示点、线、面的位置关系,并熟记它们,达到能得心应手运用他们的程度。

难点:(1)理解平面的无限延展性;(2)集合概念的符号语言的正确使用。

授课类型:新授课课时安排:1课时教学方法与教学手段:讲授法多媒体辅助教学教学过程一、创设情景导入新课:首先来讨论一个问题:“给你6根火柴棒能拼出四个三角形吗?”现在老师这里有6根火柴棒,想来尝试的同学请举手。

好,**同学请上来(可以不用把六根火柴棒放在同一个平面里考虑)做得非常好,大家看下,这是什么图形,这不是平面图形,是立体几何图形,大家想一下就知道这个问题在平面中是解决不了的,解决这个问题就需要运用立体几何知识。

那么今天我们就来学习与立体几何有关的知识,(立体几何章节中的第一节)——平面的基本性质二、讲解新课:平面的画法:首先让学生观察光滑的桌面、平静的湖面,象这些桌面、平静的湖面都给我们以平面的形象师:生活中还有哪些留给我们平面的形象呢?生:黑板、地面、镜面、海平面师:对,象这些镜面、桌面、黑板面、地面、海平面等都给我们以平面的印象那平面具有什么特点?生:平坦、光滑师:对,那还具什么特点?生:、、、、同学们有没发现镜面、桌面、地面、海平面,逐渐增大,但还是平面,说明平面还具有“无限延展”的特点下面我们来归纳总结下平面的特点(看PPT)(平面具有“平”、“无限延展”、“无厚薄”的特点。

9.1 平面的基本性质

9.1 平面的基本性质

授课日期授课班级授课课时 2 授课形式新授授课章节名称平面的基本性质使用教学器材准备多媒体、PPT、教学视频等教学目标1.在观察、实验与思辨的基础上掌握平面的三个基本性质及推论.2.学会用集合语言描述空间中点、线、面之间的关系.3.培养学生在文字语言、图形语言与符号语言三种语言之间的转化的能力.教学重点平面的三个基本性质.教学难点理解平面的三个基本性质及其推论.更新、补充、删节内容无课外作业习题:2,3教学后记板书设计或授课提纲一、探究;二、平面及其表示;三、平面的基本性质;四、例题分析;五、小结;六、作业;课堂教学安排组织教学:3′复习回顾:7′新课讲解:35′一、探究公路、平静的海面、教室的黑板都给我们以平面的形象.你还能从生活中举出类似平面的物体吗?二、平面及其表示1.平面几何里所说的“平面”就是从桌面等物体中抽象出来的,但是,几何里的平面是无限延展的.2.平面的表示方法常把希腊字母α,β,γ等写在代表平面的平行四边形的一个角上来表示平面,如平面α、平面β等;也可以用代表平面的四边形的四个顶点,或者相对的两个顶点的大写英文字母作为这个平面的名称.基本性质 1 如果一条直线上有两点在一个平面内,那么这条直线上所有的点都在这个平面内.练习一在正方体ABCD-A1B1C1D1中,判断下列命题是否正确,并明理由:(1)直线AC1在平面CC1B1B内;(2)直线BC1在平面CC1B1B内.三、平面的基本性质平面内有无数个点,平面可以看成点的集合.点在平面内和点在平面外都可以用元素与集合的属于、不属于来表示.基本性质1可表示为:如果A∈α,B∈α,那么直线AB ⊂α.利用这个性质,可以判断一条直线是否在一个平面内.∙B∙Aα课堂教学安排课堂练习:35′课堂小结:10′作业布置基本性质 2 如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.基本性质 3 过不在一条直线上的三点,有且只有一个平面.推论 1 经过一条直线和直线外的一点,有且只有一个平面.推论2 经过两条相交直线,有且只有一个平面.推论3 经过两条平行直线,有且只有一个平面.四、例题分析:例1:在正方体ABCD-A1B1C1D1中,O 是AC 的中点.判断下列命题是否正确,并说明理由:(1) 由点A,O,C可以确定一个平面;(2) 由A,C1,B1确定的平面是平面ADC1B1;(3) 由A,C1,B1确定的平面与由A,D,C1确定的平面是同一个平面.例2:在正方体ABCD-A1B1C1D1中,判断下列命题是否正确,并明理由:(1)直线AC1在平面CC1B1B内;(2)直线BC1在平面CC1B1B内.五、小结:六、作业:习题:2,3αβ∙a。

平面的基本性质

平面的基本性质
答:因为不共线旳三点能够拟定一种平面.
D
C
A
B
符号表达:一般用希腊字母 , , 等来表示, 如:平面
也可用表达平行四边形旳两个相对顶点旳字母来
表达,如:平面AC,平面ABCD
一种平面在不同旳摆放状态下旳画法
四.点、直线、平面之间旳基本关系
空间图形旳基本元素是点、直线、平面, 从运动旳观点看,点动成线,线动成面,从而 能够把直线、平面看成是点旳集合.所以,它 们之间旳关系除了用文字和图形表达外,还能 够借用集合中旳符号语言来表达.
文字语言:
公理2.假如两个平面有一种公共点,那么它们还有 其他公共点,这些公共点旳集合是经过这个公共点 旳一条直线。
图形语言:
β
a
α
P
符号语言:P PFra bibliotekl且P l
公理2旳作用有二:
一是鉴定两个平面相交,即假如两个平面有一种 公共点,那么这两个平面相交;(画交线)
二是鉴定点在直线上,即点若是某两个平面旳公 共点,那么这点就在这两个平面旳交线上.
假如把桌面看作一种平面,把你旳笔看作 是一条直线旳话,你觉得在什么情况下, 才干使你旳笔所代表旳直线上全部旳点都 能在桌面上?
··
文字语言: 公理1.假如一条直线上两点在 一种平面内,那么这条直线上 旳全部旳点都在这个平面内 (即直线在平面内)。
图形语言:
α
A
B
符号语言: A B
直线AB
平面旳基本性质(1)
一.平面旳概念:
光滑旳桌面、平静旳湖面等都是我们很熟悉. 象这些桌面、平静旳湖面、镜面、黑板面等都
给我们以平__面__旳印象
数学中旳平面概念是现实平面加以抽象旳成果。

平面的基本性质(3).许兴华

平面的基本性质(3).许兴华

兴 T 华

N S
E
E
V

Firstpage首页 upward return next last 铃

证题要点 : (1) 不共线三点 E, D 1 , F 确定一个平面 ,
( 2) 点 G , H 平面 ,
( 3) 点 G , H , B 平面 ABC ,
( 4 )证 GAB BCH,

M
兴 T 华

N S
E
E
V

Firstpage首页 upward return next last 铃

•THE END •Goodbye!
南宁三中 许兴华
(文学博客)http : //blog.sin /s teven1970
在 google 搜索里输入:月亮河 A, 出现的第一个“新浪博 客”即是。
兴 T 华
许E 许
N S
E N 兴S T 华
E
E
V 课 V

件 Firstpage首页 upward return next last 铃 件
D1
A1 B1
(B)
C1
D1
A1 B1
C1
D
C
A
B D
A
(C )
B
(D)
C
兴 T 华

N S
E
E
V

Firstpage首页 upward return next last 铃

[ 证 ]平面 外的 ABC 确 定一个平面 ABC ,
ABC的三边所在的直线 分别交面于P、Q、R三点,
P、Q、R三点是平面 ABC与平面的公共点 ,

《平面的基本性质》课件

《平面的基本性质》课件

平面解析几何在实际问题中的应用案例
物理学中的应用
在物理学中,许多概念和公式可以通过平面解析几何来描述和解 释,例如力学、电磁学和光学中的许多概念。
工程学中的应用
在工程学中,平面解析几何被广泛应用于机械设计、建筑设计、航 空航天等领域。
计算机图形学中的应用
在计算机图形学中,平面解析几何是生成和处理二维图形的基础, 例如在游戏开发、动画制作和计算机视觉等领域的应用。
THANKS FOR WATCHING
感谢您的观看
平面与几何体的关系
总结词
平面是几何体的重要组成部分,它可以作为几何体的边界或 表面。
详细描述
在几何学中,许多常见的几何体都是由平面构成的。例如, 长方体的每个面都是一个平面,球体的表面也是一个平面。 此外,平面还可以用来定义其他几何体的形状和大小,例如 通过平面的交线来定义三维空间的形状。
CHAPTER 02
平面上的直线的方程
两点式方程
通过平面上两点的坐标,可以求出直 线的方程。
点斜式方程
已知直线上的一个点和直线的斜率, 可以求出直线的方程。
平面上的点与直线的位置关系
点在直线上
如果一个点的坐标满足直线的方程,则该点在直线上。
点在直线外
如果一个点的坐标不满足直线的方程,则该点在直线外。
CHAPTER 04
与线性代数的联系
线性代数提供了研究平面几何对象 (如向量、矩阵和线性变换)的工 具。
平面解析几何的发展历程与未来展望
发展历程
从早期的欧几里得几何到文艺复兴时 期的笛卡尔几何,再到现代的解析几 何,平面解析几何经历了漫长的发展 历程。
未来展望
随着数学和其他学科的发展,平面解 析几何将继续发展,与其他数学分支 的交叉将更加深入,新的研究方法和 视角也将不断涌现。

【中职】9.1 平面的基本性质

【中职】9.1 平面的基本性质

巩固知识 典型例题
例3 在长方体 ABCD A1B1C1D1中,画出由A、C、D1 三点所确定的平面γ与长方体的表面的交线.
解 点 A、D1 为平面 与平面 A1D的公共点, 点 A、C 为平面 与平面 BD 的公共点,
点 C、D1 为平面 与平面 C1D 的公共点.
分别将这三个点两两连接,得到直线 AD1、AC、CD1

立体几何

立体几何

立体几何
9.1何.1~9.1.2 平面的基本性质
【教学目标】 知识目标: (1)了解平面的概念、平面的基本性质; (2)掌握平面的表示法与画法.平面图形与立体图形的
直观画法。 能力目标: (1)画出平面及两个相交平面的直观图; (2)利用平面的性质和三个结论,解释生活空间的一些
z D
例2 画长为 4 cm,宽为 3 cm, A
高为 2 cm 的长方体的直观图.
D
A
y C
B
C
B x
(1) 用例 1 的方法画一个长为 4 cm,宽为 3 cm 的长方形的 直观图ABCD.
(2) 过 A 做 z 轴,使之垂直与 x 轴.在 z 轴上截取 AA = 2 cm. (3) 过点 B,C,D 分别作 z 轴的平行线 BB ,CC ,DD ,
(2) 在立体图形中,过 x 轴或 y 轴的交点取 z 轴,并
使 z 轴垂直于 x 轴和 y 轴. 过 x 轴或 y 轴的交点 作 z 轴对应的z 轴,且 z 轴垂直于 x 轴. (3) 图形中平行于 z 轴的线段画成平行于 z 轴的线段,
且长度不变. (4) 连接有关线段,擦去有关辅助线.
作边长为 4cm 的正方体的直观图.
练习:求证:三角形一定是平面图形

平面的基本性质

平面的基本性质

平面的基本性质一、知识梳理 一)平面1.特征:①无限延展 ②平的(没有厚度) ,平面是抽象出来的,只能描述,如平静的湖面,不能定义.一个平面把空间分成两部分,一条直线把平面分成两部分.2.表示:一般用一个希腊字母α、β、γ……来表示,还可用平行四边形的对角顶点的字母来表示如:平面α,平面AC 等.3.画法:通常画平行四边形来表示平面(1)一个平面: 当平面是水平放置的时候,通常把平行四边形的锐角画成45 ,横边画成邻边的2倍长,如图1(1).(2)直线与平面相交,如图1(2)、(3),:(3)两个相交平面:画两个相交平面时,先定位,后交线,邻边依次添,若一个平面的一部分被另一个平面遮住,应把被遮住部分的线段画成虚线或不画(如图2).4.点、线、面的基本位置关系如下表所示:b A =a βαB AβBAαβBAααβa图 2A(1aαa α⊂ 直线a 在平面α内. aα a α=∅ 直线a 与平面α无公共点. aAα a A α=直线a 与平面α交于点A .l αβ=平面α、β相交于直线l .点可看成元素,直线和平面可看成集合,符号“∈”只能用于点与直线,点与平面的关系,“⊂”和“ ”的符号只能用于直线与直线、直线与平面、平面与平面的关系,虽然借用于集合符号,但在读法上仍用几何语言. 例1、将下列符号语言转化为图形语言:(1)A α∈,B β∈,A l ∈,B l ∈; (2)a α⊂,b β⊂,//a c ,b c p =,c αβ=.说明:画图的顺序:先画大件(平面),再画小件(点、线). 例2、将下列文字语言转化为符号语言: (1)点A 在平面α内,但不在平面β内; (2)直线a 经过平面α外一点M ;(3)直线l 在平面α内,又在平面β内.(即平面α和β相交于直线l .)例3、在平面α内有,,A O B 三点,在平面β内有,,B O C 三点,试画出它们的图形.二)三条公理人们经过长期的观察和实践,把平面的三条基本性质归纳成三条公理. 公理1如果一条直线的两点在一个平面内,那么这条直线上的所有点都在这个平面内.BA α应用: ①判定直线在平面内;②判定点在平面内.模式:a A A a αα⊂⎧⇒∈⎨∈⎩.公理2如果两个平面有一个公共点,那么它们还有其他公共点,且所有这些公共点的集合是一条过这个公共点的直线.应用:①确定两相交平面的交线位置;②判定点在直线上.指出:今后所说的两个平面(或两条直线),如无特殊说明,均指不同的平面(直线). 公理3经过不在同一条直线上的三点,有且只有一个平面.应用:①确定平面;②证明两个平面重合.实例:(1)门:两个合页,一把锁;(2)摄像机的三角支架;(3)自行车的撑脚. 例4、判断下列命题是否正确。

平面的基本性质(2).许兴华

平面的基本性质(2).许兴华
高二数学课件
9.1平面的基本性质(2)
( 201210925 )
(月亮河 A )
Designed by Steven 华 兴 No.3 High School 课 许 of Nanning 件
T N S E
E
V
兴 T 华

N S E 许E V课
Firstpage首页 upward return next last 铃
一、平面的基本性质
1、几个公理 公理1:如果一条直线上的两点在一 个平面内,那么这条直线上的所有点 在这个平面内;
B A l
α
确定直线在平面内的依据
兴 T 华
N S E 许E V课
Firstpage首页 upward return next last 铃

公理2:如果两个平面有一个公共点, 那么它们还有其他公共点,且所有这 些公共点的集合是过这个公共点的一 条直线 β

o
a
d
又 H,K∈c,∴c α. 同理可证 d α. ∴a,b,c,d 四条直线在同一平面α内.
兴 T 华
N S E 许E V课
b c
Firstpage首页 upward return next last 铃

[应用举例](调研P5R思考题) 例2.已知三条直线两 两平行,
第四条直线与它们都相交, 求证 : 这四条直线共面 .
证明: 如图 l a A,由推理2得 : ,
直线 l 与直线 a 确定一个平面
.
a 与点 B ,
又 l b B, l c C , B, C .
经过直线 a , b 的平面必经过经过直线
而经过直线 与点B的平面是唯一的 . a 直线 b 平面 , 同理, 直线c .

高中数学《平面的基本性质》教案

高中数学《平面的基本性质》教案

高中数学《平面的基本性质》教案章节一:平面的概念1.1 教学目标让学生理解平面的基本概念,包括平面的定义和表示方法。

让学生掌握平面的性质,如平面的无限延展性和平面的包含关系。

1.2 教学内容平面定义:平面是无限延展的、无厚度的二维空间。

平面表示方法:用希腊字母“π”表示平面。

平面性质:平面的无限延展性,平面内任意两点可以确定一条直线。

1.3 教学步骤引入平面的概念,引导学生思考日常生活中的平面例子。

讲解平面的定义和表示方法,通过图形和实例进行说明。

引导学生理解平面的性质,通过实际操作和几何证明来加深理解。

章节二:平面的基本性质2.1 教学目标让学生掌握平面的基本性质,包括平面的连续性、平行的性质和平面的包含关系。

2.2 教学内容平面连续性:平面上的任意两点都可以用一条直线连接。

平面平行性质:同一平面内,不相交的两条直线称为平行线。

平面包含关系:一条直线可以包含在平面内,也可以不包含在平面内。

2.3 教学步骤回顾平面的概念和表示方法,引导学生思考平面的性质。

讲解平面的连续性,通过图形和实例进行说明。

讲解平面的平行性质,通过实际操作和几何证明来加深理解。

讲解平面的包含关系,通过实际操作和几何证明来加深理解。

章节三:平面的画法3.1 教学目标让学生掌握平面的画法,包括平面在坐标系中的表示和平面的方程。

3.2 教学内容平面在坐标系中的表示:平面可以用方程表示,如Ax + By + C = 0。

平面方程的求法:通过已知的平面上的点和平面的法向量来求解平面方程。

3.3 教学步骤引导学生回顾平面的概念和性质,引出平面的画法。

讲解平面在坐标系中的表示方法,通过图形和实例进行说明。

讲解平面方程的求法,通过实际操作和几何证明来加深理解。

章节四:平面与直线的关系4.1 教学目标让学生掌握平面与直线的关系,包括平面与直线的相交和平行。

4.2 教学内容平面与直线的相交:平面与直线相交时,交点称为直线在平面上的投影。

平面与直线的平行:平面与直线平行时,直线上的任意点都不在平面内。

9.1平面的基本性质

9.1平面的基本性质

A
(1)
(2)
(3)
巩固知识
典型例题
9.1
平 面 的 基 本 性 质
例2 在长方体 ABCD A1B1C1D1 中,画出由A、C、D1 三点所确定的平面γ与长方体的表面的交线. 解 点 A、D1 为平面 与平面 A1 D 的公共点, 点 A、 C 为平面 与平面 BD 的公共点, 点 C、D1 为平面 与平面 C1D 的公共点. 分别将这三个点两两连接,得到直线 AD1、AC、CD1 就是为由 A、C、D1三点所确定的平面γ与长方体的表面的 交线.
就紧贴在桌面上.也就是细绳上所有的点都在桌面上
动脑思考
探索新知
9.1
平 面 的 基 本 性 质
直线与平面都可以看做点的集合.点A、B在直线l上,记作
A l、B l; 点A、B在平面 内,记作 A 、B .
平面的性质 1:如果直线l上的两个点都在平面 内,那么直线l上的 所有点都在平面 内. 此时称直线l在平面 内或平面 经过直线l.记作 l . 画直线l在平面 内的图形表示时,要 将直线画在平行四边 形的内部 .
学习方法
自我反思
目标检测
9.1
画出两个相交平面.
平 面 的 基 本 性 质
继续探索
活动探究
9.1
平 面 的 基 本 性 质
读书部分:阅读教材相关章节
书面作业:教材习题9.1 A组(必做)
教材习题9.1 B组(选做)
实践调查:寻找生活中的实例
用平面的性质解释
作 业
l.
本章中的两个平面 是指不重合的两个平面, 两条直线是指不重合的 两条直线.
动脑思考
探索新知
9.1

高三数学平面的基本性质3

高三数学平面的基本性质3

课题:9.1平面的基本性质(三)教学目的:1.理解公理三的三个推论.2.进一步掌握“点线共面”的证明方法3.将三条定理及三个推论用符号语言表述,提高几何语言水平.4.通过公理3导出其三个推论的思考与论证培养逻辑推理能力.教学重点:用反证法和同一法证明命题的思路.教学难点:对公理3的三个推论的存在性与唯一性的证明及书写格式.授课类型:新授课课时安排:1课时教具:多媒体、实物投影仪教学过程:一、复习引入:1.平面的概念:平面是没有厚薄的,可以无限延伸,这是平面最基本的属性2.平面的画法及其表示方法:①常用平行四边形表示平面通常把平行四边形的锐角画成45 ,横边画成邻边的两倍画两个平面相交时,当一个平面的一部分被另一个平面遮住时,应把被遮住的部分画成虚线或不画②一般用一个希腊字母α、β、γ……来表示,还可用平行四边形的对角顶点的字母来表示如平面AC等3.空间图形是由点、线、面组成的4 平面的基本性质公理1 如果一条直线的两点在一个平面内,那么这条直线上的所有点都在这个平面内推理模式:A AB B ααα∈⎫⇒⊂⎬∈⎭. 如图示: 应用:是判定直线是否在平面内的依据,也可用于验证一个面是否是平面.公理1说明了平面与曲面的本质区别.通过直线的“直”来刻划平面的“平”,通过直线的“无限延伸”来描述平面的“无限延展性”,它既是判断直线在平面内,又是检验平面的方法.公理2如果两个平面有一个公共点,那么它们还有其他公共点,且所有这些公共点的集合是一条过这个公共点的直线推理模式:A l A ααββ∈⎫⇒=⎬∈⎭且A l ∈且l 唯一如图示: 应用:①确定两相交平面的交线位置;②判定点在直线上公理2揭示了两个平面相交的主要特征,是判定两平面相交的依据,提供了确定两个平面交线的方法.公理3 经过不在同一条直线上的三点,有且只有一个平面推理模式:,, A B C 不共线⇒存在唯一的平面α,使得,,A B C α∈ 应用:①确定平面;②证明两个平面重合“有且只有一个”的含义分两部分理解,“有”说明图形存在,但不唯一,“只有一个”说明图形如果有顶多只有一个,但不保证符合条件的图形存在,“有且只有一个”既保证了图形的存在性,又保证了图形的唯一性.在数学语言的叙述中,“确定一个”,“可以作且只能作一个”与“有且只有一个”是同义词,因此,在证明有关这类语句的命题时,要从“存在性”和“唯一性”两方面来论证. 平面图形与空间图形的概念:如果一个图形的所有点都在同一个平面内,则称这个图形为平面图形,否则称为空间图形二、讲解新课:推论1 经过一条直线和直线外的一点有且只有一个平面.已知:直线l ,点A 是直线l 外一点.求证:过点A 和直线l 有且只有一个平面证明:(存在性):在直线l 上任取两点B 、C ,∵A l ∉,∴,,A B C 不共线.由公理3,经过不共线的三点,,A B C 可确定一个平面α,∵点,B C 在平面α内,根据公理1,∴l α⊂,即平面α是经过直线l 和点A 的平面.(唯一性):∵,B C l ∈,l α⊂,A α∈,∴点,,A B C α∈,由公理3,经过不共线的三点,,A B C 的平面只有一个,所以,经过l 和点A 的平面只有一个推理模式:A a ∉⇒存在唯一的平面α,使得A α∈,l α⊂推论2 经过两条相交直线有且只有一个平面已知:直线P b a = .求证:过直线a 和直线b 有且只有一个平面证明:(存在性):在直线a 上任取两点A ,直线b 上B ,∵P b a = ,∴,,A B P 不共线.由公理3,经过不共线的三点,,A B P 可确定一个平面α,∵点,,A B P 在平面α内,根据公理1,∴,a b α⊂,即平面α是经过直线a 和直线b 的平面.(唯一性):∵P b a = ,,A a B b ∈∈,,a b α⊂,∴点,,A B P α∈,由公理3,经过不共线的三点,,A B P 的平面只有一个,所以,经过直线a 和直线b 的平面只有一个推理模式:P b a = ⇒存在唯一的平面α,使得,a b α⊂推论3 经过两条平行直线有且只有一个平面已知:直线//a b .求证:过直线a 和直线b 有且只有一个平面证明:(存在性):∵//a b ∴由平行线的定义,直线a 和直线b 在同一个平面α内,即平面α是经过直线a 和直线b 的平面.(唯一性):取,A C a ∈,B b ∈,∵,,//a b a b α⊂ ∴点A,B,C 不共线且,,A B C α∈,由公理3,经过不共线的三点,,A B C 的平面只有一个,所以,经过直线a 和直线b 的平面只有一个推理模式://a b ⇒存在唯一的平面α,使得,a b α⊂三、讲解范例:例1 两两相交且不过同一个点的三条直线必在同一平面内已知:直线,,AB BC CA 两两相交,交点分别为,,A B 求证:直线,,AB BC CA 共面证法一:∵直线AB AC A = ,∴直线AB 和AC 可确定平面α,∵B AB ∈,C AC ∈,∴B α∈,C α∈,∴BC α⊂,即,,AB BC CA α⊂即直线,,AB BC CA 共面证法二:因为A ∉直线BC 上,所以过点A 和直线BC 确定平面α.(推论1)因为A ∈α, B ∈BC ,所以B ∈α.故AB α,同理AC α,所以AB ,AC ,BC 共面.证法三:因为A ,B ,C 三点不在一条直线上,所以过A ,B ,C 三点可以确定平面α. 因为A ∈α,B ∈α,所以AB α.同理BC α,AC α,所以AB ,BC ,CA 三直线共面.问题:在这题中“且不过同一点”这几个字能不能省略,为什么?例2 在正方体1111ABCD A B C D -中,①1AA 与1CC 是否在同一平面内?②点1,,B C D 是否在同一平面内?③画出平面1AC 与平面1BC D 的交线,平面1ACD 与平面1BDC 的交线 解:①在正方体1111ABCD A B C D -中,∵11//AA CC ,∴由推论3可知,1AA 与1CC 可确定平面1AC ,∴1AA 与1CC 在同一平面内②∵点1,,B C D 不共线,由公理3可知,点1,,B C D 可确定平面1BC D , ∴点1,,B C D 在同一平面内③∵AC BD O = ,11D C DC E = ,∴点O ∈平面1AC ,O ∈平面1BCD , 又1C ∈平面1AC ,1C ∈平面1BCD ,∴平面1AC 平面1BC D 1OC =, 同理平面1ACD 平面1BDC OE =.例3 若l αβ= ,,A B α∈,c β∈,试画出平面ABC 与平面,αβ的交线解:(1)若D l AB = 时,如图(1);(2)若l AB //时,如图(2)四、课堂练习:1.选择题1C(1)下列图形中不一定是平面图形的是 ( ) (A )三角形 (B )菱形 (C )梯形 (D )四边相等的四边形(2)空间四条直线,其中每两条都相交,最多可以确定平面的个数是( ) (A )一个 (B )四个 (C )六个 (D )八个(3)空间四点中,无三点共线是四点共面的 ( ) (A )充分不必要条件 (B )必要不充分条件(C )充分必要条件 (D )既不充分也不必要(4)若a ⊂ α,b ⊂ β,α∩β=c ,a ∩b =M ,则 ( ) (A )M ∈c (B )M ∉c (C )M ∈α (D )M ∈β答案:⑴ D ⑵ C ⑶ D ⑷ A2.已知直线a //b //c ,直线d 与a 、b 、c 分别相交于A 、B 、C ,求证:a 、b 、c 、d 四线共面.证明:因为a //b ,由推论3,存在平面α,使得,a b αα⊂⊂又因为直线d 与a 、b 、c 分别相交于A 、B 、C ,由公理1,d α⊂下面用反证法证明直线c α⊂:假设c α⊄,则c C α= ,在平面α内过点C 作c b ' ,因为b //c ,则c c ' ,此与c c C '= 矛盾.故直线c α⊂.综上述,a 、b 、c 、d 四线共面.3.求证:一个平面和不在这个平面内的一条直线最多只有一个公共点.证明:(用反证法)假设一个平面和不在这个平面内的一条直线有2个公共点,则由公理1,这条直线上的每一个点都在这个平面内,此与条件矛盾.所以一个平面和不在这个平面内的一条直线最多只有一个公共点.五、小结 :公理3的三个推论是以公理3为主要的推理论证的依据,是命题间逻辑关系的体现,为使命题的叙述和论证简明、准确,应将其证明过程用数学的符号语言表述六、课后作业:七、板书设计(略)八、课后记:。

9.1平面的基本性质中职ppt课件

9.1平面的基本性质中职ppt课件

1
4
2
6
3
4
7
8
教材分析 教法学法 教学过程
1.创设情境 2.探索研究 3.自主定义 4.应用反思
(4)为什么许多自行车后轮旁只安装一只撑脚? 为什么照相机支架是三条腿?
B
A
C B
A
C
B
αA
C
教材分析 教法学法 教学过程
1.创设情境 2.探索研究 3.自主定义 4.应用反思
平面的基本性质
平面的概念 1.平面的画法及表示 平面通常的画法 平面的表示 2.平面的基本性质
问题2.在自然界有没有真正的平 面?
教材分析 教法学法 教学过程
1.创设情境 2.探索研究 3.自主定义
2. 平面的画法:
问题3.在平面几何中,怎样画直线?
问题4.我们能否根据直线的画法,想出平 面的画法?
(学生会画出圆形、四边形、三角形等封闭图形,引出 平面的通常画法和表示方法。)
教材分析 教法学法 教学过程
教材分析 教法学法 教学过程
故事2. 用手指头将一封信 平稳地摆放在空间某一位置, 至少需要几个手指头?这些 手指需要满足什么条件?
1.创设情境 2.探索研究 3.自主定义 4.应用反思
教材分析 教法学法 教学过程
1.创设情境 2.探索研究 3.自主定义 4.应用反思
性质2:经过不在同一直线上的三点,有且 只有一个平面.(不共线的三点确定一个平面)
B
αA
C
性质2作用:是确定平面的依据.
举例:教室的门如果锁上就固定不动了,如果不锁,门可 以转动,确定无数的平面。
教材分析 教法学法 教学过程
故事3.若把邮箱的侧面看作平面,把信也看作一 个平面,则两者有几个公共点?

平面基本性质第二课时PPT课件

平面基本性质第二课时PPT课件
因为点A、B、C分别在直线a、b上,所以它们在过a、 b的平面内。由由公理3,过A、B、C三点的平面只有一个, 过直线a、b的平面只有一个。
平面的基本性质 推论3:经过两条平行直线,有且只 有一个平面.
b
a
a // b 有且只有一个平面,使a ,b
推论3 经过两条平行直线,有且只有一个平面
(3)空间四点中,三点共线是这四个点共面的( ) A.充分但不必要条件 B.必要但不充分条件 C.充分必要条件 D.既非充分条件,也非必要条件
直 l在 线 内 平l, 面 , 记 l不 直 作 在 内 线平 l, ;
直 l 和 线 m 相 直 A , 交 线 l m 记 于 A ( A 是 作 点 A 的简
直 l于 线 平 相面 交 A , 于 l记 点 A 作
平与 面平 相面 交l, 与记 直 作 线 l。
公理1:如果一条直线上的两个点在 平面内,那么这条直线上所有的点 都在这个平面内.
AB
符号语言 作用
怎样的直线a我们就说它在平面外?
平面的基本性质
公理2:如果两个平面有一个公共点, 那么它们还有其他的公共点,且所 有的这些点的集合是一条过这个点 的直线
符号语言 作用
l
P
平面的基本性质 公理3:经过不在同一条直线上的三 个点,有且只有一个平面.
推论1 经过一条直线和这条直线外的一点,有且只有一个平面
求证:过点A和直线a可以确定一个平面
唯一性: 如果经过点A和直线a的平面还有一个平面β,那么
A∈β, a β,因为B∈a,C∈a,所以B∈β,C∈β.(公理1)故不
共线的三点A,B,C既在平面α内又在平面β内.所以平面α和平面 β重合.(公理3)
(A)0 (B)1 (C)2 (D)0或无数
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

的字母或两个相对顶点的字母来
命名,如右图中的平面 也可以
D

C
记作平面ABCD,平面AC或平面

BD.
A
B

动脑思考 探索新知
9.1 当平面水平放置的时候,通常把平行四边形的锐角画成45°,
横边画成邻边的2倍长.
当平面竖直放置的时候,通常把平面画成矩形.
D
A
B
平 面 的 基 本
C
性 质
巩固知识 典型例题
9.1
平 面 的 基 本 性 质
动脑思考 探索新知
平面性质2: 如果两个平面有一个公共点,那么它们还有其他公共点,并且
所有公共点的集合是过这个点的一条直线(如图).
此时称这两个平面相交,并把所有公共点组成的直线 l 叫做两个
平面的交线.平面 与平面 相交,交线为 l ,记作 l.
本章中的两个平面 是指不重合的两个平面, 两条直线是指不重合的 两条直线.



自我反思 目标检测
学习方法
学习行为
学习效果 9.1
平 面 的 基 本 性 质
自我反思 目标检测
9.1

画出两个相交平面.


基本ຫໍສະໝຸດ 性质继续探索 活动探究
读书部分:阅读教材相关章节
9.1
书面作业:教材习题9.1 A组(必做)

教材习题9.1 B组(选做)


实践调查:寻找生活中的实例

作业
用平面的性质解释
9.1
平 面 的 基 本 性 质
动脑思考 探索新知
9.1 画两个平面相交的图形时,一定要画出它们的交线.图形中被遮住
平 面 部分的线段,要画成虚线(如图(1)),或者不画(如图(2)).
的 基 本 性 质
创设情境 兴趣导入
在桌面上只放一颗或两颗尖朝上的图钉,是否能将一块 硬纸板架起?如果在桌面上放置三颗尖朝上的图钉,那么结 果会怎样?
利用三角架可以将照相机放稳 (如图),就是性质3的应用.
9.1
平 面 的 基 本 性 质
动脑思考 探索新知
根据上述性质,可以得出下面的三个结论.
9.1
1.直线与这条直线外的一点可以确定一个平面(如图(1)).
2.两条相交直线可以确定一个平面(如图(2)).

3.两条平行直线可以确定一个平面(如图(3)).
第九章 立体几何
9.1 平面的基本性质
创设情境 兴趣导入
观察平静的湖面、窗户的玻璃面、黑板面、课桌面、 墙面等,发现它们都有一个共同的特征:平坦、光滑, 给我们以平面的形象,但是它们都是有限的.
9.1
平 面 的 基 本 性 质
动脑思考 探索新知
平面的概念就是从这些场景中抽象出来的.数学中的平面是指光滑
此时称直线l在平面 内或平面 经过直线l.记作 l .
画直线l在平面
内的图形表示时,要 将直线画在平行四边 形的内部 .
9.1
平 面 的 基 本 性 质
创设情境 兴趣导入
观察教室里墙角上的一个点,它是相邻两个墙面的公共点, 可以发现,除这个点外两个墙面还有其他的公共点,并且这些 公共点的集合就是这两个墙面的交线.
并且可以无限延展的图形.
9.1 平静的湖面、窗户的玻璃面、黑板面、课桌面、墙面等,都是平面
的一部分.
平 我们知道,直线是可以无限延伸的,通常画出直线的一部分来表示
直线.同样,我们也可以画出平面的一部分来表示平面.

通常用平行四边形表示平面,并用小写的希腊字母 、、、

基 来表示不同的平面.如图,记作平面 .也可以用平行四边形的四个顶点






A
(1)
(2)


(3)

巩固知识 典型例题
例2 在长方体 ABCD A1B1C1D1 中,画出由A、C、D1 三点所确定的平面γ与长方体的表面的交线.
解 点 A、D1 为平面 与平面 A1D的公共点, 点 A、C 为平面 与平面 BD 的公共点, 点 C、D1 为平面 与平面 C1D的公共点.
9.1
平 面 的 基 本 性 质
理论升华 整体建构
平面的基本性质?
9.1

性质1:如果直线l上的两个点都在平面α内,那么直线l
上的所有点都在平面α内.

性质2:如果两个平面有一个公共点,那么它们还

有其他公共. 点,并且所有公共点的集合是过这个点的 一条直线.

性质3:不在同一条直线上的三个点,可以确定一 个平面.
9.1
例1 表示出正方体 ABCD A1B1C1D1(如图)的6个面.


的 解 这6个面可以分别表示为:平面AC 、平面 A1C1、
平面 AB1、平面 BC1、平面 CD1、平面DA1.




运用知识 巩固练习
1.举出生活中平面的实例.
9.1
略.


2.画出一个平面,写出字母并表述出来.


分别将这三个点两两连接,得到直线 AD1、AC、CD1 就是为由 A、C、D1三点所确定的平面γ与长方体的表面的 交线.
9.1
平 面 的 基 本 性 质
运用知识 强化练习
1.“平面与平面 只有一个公共点”的说法正确吗?
2.梯形是平面图形吗?为什么? 3.已知A、B、C是直线l上的三个点,D不是直线l上的点. 判断直线AD、BD、CD是否在同一个平面内.
9.1
平 面 的 基 本 性 质
动脑思考 探索新知
平面的性质3: 不在同一条直线上的三个点,可以确定一个平面(如图).
“确定一个平面” 指的是“存在着一个平 面,并且只存在着一个 平面”.
9.1
平 面 的 基 本 性 质
动脑思考 探索新知
平面的性质3: 不在同一条直线上的三个点,可以确定一个平面.

略.


创设情境 兴趣导入
9.1



把一根拉紧的细绳的两端固定在桌面上,发现这根绳子


就紧贴在桌面上.也就是细绳上所有的点都在桌面上


动脑思考 探索新知
直线与平面都可以看做点的集合.点A、B在直线l上,记作
Al、Bl;点A、B在平面内,记作 A、B.
平面的性质
1:如果直线l上的两个点都在平面 内,那么直线l上的 所有点都在平面 内.
相关文档
最新文档