气相色谱仪的定性、定量分析

合集下载

气相色谱分析法-定性定量分析

气相色谱分析法-定性定量分析

利用保留值定性(3)
色谱操作条件不稳定时的定性 相对保留值定性:相对保留值只受柱温和固定相性质的影响, 而柱长、固定相的填充情况和载气的流速均不影响相对保留 值的大小。 用已知标准物增加峰高法定性:在得到未知样品的色谱图后, 在未知样品中加入一定量的已知标准物质,然后在同样的色 谱条件下,作已知标准物质的未知样品的色谱图。对比这两 张色谱图,哪个峰增高了,则说明该峰就是加入的已知纯物 质的色谱峰。
f 'i f ' S 分别为组分i和内标物S的质量校正因子
Ai、AS分别为组分i和内标物S的峰面积
问题:内标法中,如以内标物为基准,则其相应 计算公式如何? 提示:此时 f ' S =1.0。
内标物的选择
内标物应是试样中不存在的纯物质; 内标物的性质应与待测组分性质相近,以使内标物的色谱峰 与待测组分色谱峰靠近并与之完全分离; 内标物与样品应完全互溶,但不能发生化学反应; 内标物加入量应接近待测组分含量。
一般来说,对浓度型检测器,常用峰高定量;对质量型检测器, 常用峰面积定量。
校正因子
校正因子分为相对校正因子和绝对校正因子。 绝对校正因子:表示单位峰面积或单位峰高所代表的物质质量。
mi fi = Ai

f i(h)
mi = hi
绝对校正因子的测定一方面要准确知道进入检测器的组分的 量mi,另一方面要准确测量出峰面积或峰高,并要求严格控制色 谱操作条件,这在实际工作中是有一定的困难的。
答:没有。由测定过程和计算公式我们可以发现,进样量的大小不影 响最终的测定结果。
内标法应用实例:甲苯试剂纯度的测定
标准溶液和试样溶液的配制 标准溶液的配制 甲苯试样溶液的配制 相对校正因子的测定 仪器开机、点火、调试; 标准溶液的分析 相对校正因子的计算: 甲苯试样中甲苯含量的测定 甲苯试样溶液的分析

气相色谱法实验报告

气相色谱法实验报告

气相色谱定性和定量分析实验报告班级 姓名 学号: 成绩:一、实验目的1.熟悉气相色谱仪的工作原理及操作流程;2.能够根据保留值对物质进行定性分析;3.能够对物质进行定量分析二、实验原理气相色谱法是一种用以分离、分析多组分混合物极有效的分析方法。

它是基于被测组分在两相间的分配系数不同,从而达到相互分离的目的。

在混合物分离以后,利用已知物保留值对各色谱峰进行定性是色谱法中最常用的一种定性方法。

它的依据是在相同的色谱条件下,同一物质具有相同的保留值,利用已知物的保留时间与未知组分的保留时间进行对照时,若两者的保留时间相同,则认为是相同的化合物。

气相色谱法分离分析醇系物的基本原理是基于醇系物中各组分在气相和固相两相间分配系数的不同。

当试样流经色谱柱时被相互分离,被分离组分依次通过检测器时,浓度(或质量)信号被转换为电信号输出到记录仪,获得醇系物的色谱流出曲线(如图1),完全分离时,可依据流出曲线上各组分对应的色谱峰面积进行定量。

色谱分析的定性方法有多种,当色谱条件固定且完全分离时,采用将未知物的保留值与已知纯试剂(标样)的保留值相对照的方法定性较为简单,两者相同或相近即为同一物质。

实际测定可采用相对保留值is r 代替保留值进行定性分析。

MRs M Ri Rs Ri is t t t t t t r --=='' 式中:t ’Ri ——被测组分的调整保留时间t ’Rs ——标准物质的调整保留时间t Ri ——被测组分保留时间t Rs ——标准物质的保留时间(热导池检测器的标准物质一般指定为:苯)t M ——死时间常用的色谱定量方法有归一化法、外标法、内标法。

归一化法是将样品中的所有色谱峰的面积之和除某个色谱峰的面积,即得色谱峰相应组分在混合物中的含量。

100%⨯=总峰面积的峰面积组分组分A A 但实际上相同质量的各组分所产生的信号峰面积并不完全相等,这样在计算时引入相对校正因子f ’is ,此时组分的含量表示为:%100332211⨯++++=nsn s s s is i i f A f A f A f A f A W 三、实验仪器及试剂仪器:GC7900气相色谱(TCD 检测器)、分析天平、1μL 微量进样器 试剂:甲醇(色谱纯)、乙醇(色谱纯)、异丙醇(色谱纯)、正丙醇(色谱纯)、乙酸甲酯(色谱纯)、高纯氮气(纯度为99.995%)四、实验步骤1、打开载气,设置载气流量;2、打开气相色谱电源开关,设置柱箱温度、进样器温度、检测器温度以及桥电流;3、打开电脑,打开工作站,查看基线,待基线稳定后开始注样;4、分别慢慢抽取适量乙醇和醇系物样品,快速排到滤纸上,针尖向上将气泡排出,0.2μL 和0.4μL 溶液,快速进样;5、改变柱温、桥电流、流速,取醇系物样品进样,出谱图;6、定量分析法进样;7、打开控制面板,将桥电流调为0,关闭工作站,关闭气相色谱开关;8、关闭气源,实验结束。

气相色谱仪用途及功能

气相色谱仪用途及功能

气相色谱仪用途及功能气相色谱仪(Gas Chromatograph,简称GC)是一种化学分离与分析仪器,广泛应用于化学、药学、环境保护、食品安全、材料科学等领域。

它利用样品在高温下汽化,与载气混合进入色谱柱,通过样品分子在固定相和流动相之间的相互作用,实现样品分离和定量分析。

1.化学分析和定性鉴定:气相色谱仪可以对物质进行分离和鉴定。

它可以根据物质在色谱柱中的停留时间(保留时间)以及样品的峰形、峰高等参数,来确定物质的组分和含量。

2.定量分析:气相色谱仪可以通过计算样品峰面积或峰高与标准品的对比,进行定量分析。

可以用于检测环境中的污染物、食品中的添加剂、药品中的药物成分等。

3.成分分析和研究:气相色谱仪可以分析多组分的混合物,并确定每个组分的含量以及它们之间的分子比例。

可以用于确定其中一种物质的化学成分,研究样品的组成和构成。

4.毛细管柱和毛细管电泳:气相色谱仪可以与毛细管柱联用,进行毛细管电泳分析,提高分离效果和分析灵敏度。

5.样品前处理:气相色谱仪可以进行样品的前处理,如萃取、浓缩、洗脱等,以提高分离和检测的效果。

6. 质量谱联用:气相色谱仪可以与质谱仪(Mass Spectrometer,MS)进行联用,将气相色谱仪分离的物质进一步进行鉴定和结构分析,提高分析的准确性和灵敏度。

7.可以对非挥发性样品进行分析:通过样品的衍生化、萃取和浓缩等方法,可以将非挥发性样品转化为挥发性样品,从而进行分析。

8.自动化和高通量分析:气相色谱仪可以与自动进样器、自动注射器等设备联用,实现样品的自动化处理和高通量分析,提高工作效率。

气相色谱仪以其高效、准确、灵敏的分析能力,广泛应用于科学研究、工业品质检测、法医学鉴定、环境监测、食品安全检测等领域。

凭借其高分辨率和定量能力,气相色谱仪已成为现代化学分析的重要工具之一,对许多领域的研究和发展起到了至关重要的作用。

气相色谱定性和定量分析实验报告

气相色谱定性和定量分析实验报告

气相色谱定性和定量分析实验报告气相色谱(Gas Chromatography,简称GC)是一种常用的分离和分析技术,广泛应用于化学、生物、环境等领域的定性和定量分析。

本实验旨在通过气相色谱仪对样品进行定性和定量分析,并探讨其在实际应用中的意义和局限性。

实验一:定性分析在定性分析中,我们使用了一台高效液相色谱仪(HPLC)进行实验。

首先,我们准备了一系列标准品和未知样品,包括有机化合物和无机化合物。

然后,将样品注入气相色谱仪中,并设置好适当的温度和流速条件。

样品在色谱柱中被分离,并通过检测器检测到其相对峰面积和保留时间。

通过对比标准品和未知样品的色谱图,我们可以确定未知样品中的化合物成分。

根据保留时间和相对峰面积的对比,我们可以推断未知样品中的化合物种类和含量。

这种定性分析方法可以帮助我们快速准确地确定样品中的化学成分,为后续的定量分析提供依据。

实验二:定量分析在定量分析中,我们使用了气相色谱-质谱联用仪(GC-MS)进行实验。

与定性分析类似,我们首先准备了一系列标准品和未知样品,并将其注入GC-MS 中。

通过GC-MS的联用分析,我们可以获得更加准确和详细的样品信息。

GC-MS技术结合了气相色谱和质谱技术的优势,可以对样品中的化合物进行高效、灵敏的定量分析。

通过质谱仪的检测,我们可以获得化合物的分子量和结构信息,进一步确定样品中的化合物种类和含量。

这种定量分析方法可以广泛应用于环境监测、食品安全、药物研发等领域,为科学研究和工业生产提供有力支持。

实验结果与讨论在实验中,我们成功地对标准品和未知样品进行了定性和定量分析。

通过对比色谱图和质谱图,我们准确地确定了未知样品中的化合物种类和含量。

实验结果表明,气相色谱技术在化学分析中具有较高的分辨率和灵敏度,能够有效地分离和检测复杂的样品。

然而,气相色谱技术也存在一些局限性。

首先,样品的挥发性和稳定性对分析结果有一定影响。

某些化合物可能在分析过程中发生分解或损失,导致定性和定量分析的误差。

气相色谱定性和定量分析

气相色谱定性和定量分析

气相色谱定性和定量分析一、目的要求1. 学习利用保留值和相对保留值进行色谱对照的定性方法。

2. 学习利用外标法进行定量分析。

3. 熟悉色谱仪器操作。

二、基本原理各种物质在一定的色谱条件(一定的固定相与操作条件等)下有各自确定的保留值,因此保留值可作为一种定性指标。

对于较简单的多组分混合物,若其中所有待测组分均为巳知,它们的色谱峰均能分开,则町将各个色谱峰的保留值与各相应的标准样品在同一条件下所得的保留值进行对照比较,就能确定各色谱峰所代表的物质,这就是纯物质对照法定性的原理。

该法是气相色谱分析中最常用的一种定性方法。

以保留值作为定性指标,虽然简便,但由于保留值的测定,受色谱操作条件的影响较大,而相对保留值,仅与所用的固定相和温度有关,不受其它色谱操作条件的影响,因而更适合用于色谱定性分析。

相对保留值r is 定义为:MR M R R R is t t t t t t r s i si --==//式中t M 、t M ’t Rs ’分别为死时间、被测组分i 及标准物质s 的调整保留时间。

还应注意,有些物质在相同的色谱条件下,往往具有相近的甚至相同的保留值,因此在进行具有相近保留值物质的色谱定性分析时,要求使用高柱效的色谱柱,以提高分离效率,并且采用双柱法(即分别在两根具有不同极性的色谱柱上测定保留值)。

在没有已知标准样品可作对照的情况下,可借助于保留指数 (Kov átts 指数)文献值进行定性分析。

对于组分复杂的混合物,采用更为有效的方法,即与其它鉴定能力强的仪器联用,如气相色谱/质谱,气相色谱/红外吸收光谱联用等手段进行定性分析。

三、仪器及试剂1.仪器气相色谱仪(岛津GC—17A);氮气钢瓶、氢气钢瓶;空气压缩机;氢火焰检测器;色谱柱;微量进样器2.试剂①苯、甲苯、正己烷(分析纯);②含苯、甲苯、正己烷的混合物四、实验条件1.毛细管色谱柱: DB-1型 0.25㎜×30m 非极性柱75 Kpa2.载气: N23.燃气: H60Kpa24.助燃气:空气 50Kpa五、实验步骤1.据实验条件,将色谱仪按仪器操作步骤调节至可进样状态,待仪器上的电路和气路系统达到平衡,色谱工作站屏幕上显示基线平直时,即可进样。

气相色谱仪的定性分析和定量分析有什么不同?

气相色谱仪的定性分析和定量分析有什么不同?

气相色谱仪的定性分析和定量分析有什么不同?当我们开始接触气相色谱仪的时候,就会知道气相色谱仪主要是利用色谱分离的分离技术和检测技术,对多组分的复杂混合物进行定性和定量分析的一种仪器。

就分类来说,由于气相色谱仪的分析方法包括定性分析和定量分析两个部分,所以气相色谱仪的类别可以分为定定性分析和定量分析两种类别。

那么问题来了,气相色谱仪的定性分析和定量分析究竟有什么不同呢?我们来给大家详细介绍以下:首先介绍定性分析,由于定性分析的应用在实际操作中会受到一些限制,所以它的应用范围远远没有定量分析那么广泛。

利用保留值进行定性分析是气相色谱仪分析中常用到的方法,保留值是保留时间和保留体积的总称。

当实验操作条件没有发生变化的时候,说明被测物的保留值只与化学性质有关,由此可用于定性分析。

如果被测样品中某一组分与一直标准品的保留值一样的时候,我们可初步判断这组分与标准品可能是一样化合物。

但同时我们需要注意一点,有些时候多种物质在一定的操作条件下是具备相同的保留值的,所以我们不能完全根据保留值相同来判断它们是否是同一种物品。

这种情况下我们选用其他具备不同极性的色谱柱来进行二次甚至是更多次的分析,如果经过多次分析后,保留值还是一样的,那么我们可以判断被测物是同一种物质。

然后介绍定量分析,由于在一定的范围内,色谱峰的峰面积和被测组分中的含量或浓度成线性关系,所以我们通过测量相应的峰面积来判断被测物的含量。

在定量分析中我们常用的方法是内标法和外标法。

内标法是指测量样品中某一组分或某几个组分的含量时,将一定量的某一纯组分加入样品中作为内标物,然后进行色谱分析,通过测量并对比内标物的峰面积和待测组分的峰面积,就可以求出待测组分在被测样品中的含量。

外标法则是用已知浓度的标准品进行色谱分析,得出关于峰面积和浓度的标准曲线,然后在完全相同的条件入被分析物,得到相应的峰面积,最后我们根据标准曲线计算待测样品的浓度。

以上就是气相色谱仪的定性分析和定量分析的不同之处。

气相色谱的定性与定量分析实验

气相色谱的定性与定量分析实验

气相色谱的定性与定量分析一、 实验目的:1、 学习计算色谱峰的分享度2、 掌握根据纯物质的保留值进行定性分析3、 掌握用归一化法定量测定混合物各组分的含量4、 学习气相色谱信的使用方法二、 方法原理1、 柱效能的测定:色谱柱的分享效能,主要由柱效和分离度来衡量。

柱效率是以样品中验证分离组分的保留值用峰宽来计算的理论塔板数或塔板高度表示的。

22211654.5⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=bR RW t W t n 理论塔板数: nL H =理论塔板高度: 式中R t 为保留值(S 或mm ):21W 为半峰宽(S 或mm ):b W 为峰底宽(S 或mm ):L 为柱长(cm )。

理论塔板数越大或塔板高度越小,说明柱效率越好。

但柱效率只反应了色谱对某一组分的柱效能,不能反映相邻组分的分离度,因此,还需计算最难分离物质对的分离度。

分离度是指色谱柱对样品中相邻两组分的分离程度,对一个混合试样成功的分离,是气相色谱法完成定性及定量分析的前提和基础。

分离度R 的计算方法是:)()(22112112W W t t R R R +-=或 2112)(2B b R R W W t t R +-=分离度数值越大,两组分分开程度越大,当R 值达到1.5时,可以认为两组分完全分开。

2、 样品的定性:用纯物质的保留值对照定性。

在一个确定的色谱条件下,每一个物质都有一个确定的保留值,所以在相同条件下,未知物的保留值和已知物的保留值相同时,就可以认为未知物即是用于对照的已知纯物质。

但是,有不少物质在同一条件下可能有非常相近的而不容易察觉差异的保留值,所以,当样品组分未知时,仅用纯物质的保留值与样品的组分的保留值对照定性是困难的。

这种情况,需用两根不同的极性的柱子或两种以上不同极性固定液配成的柱子,对于一些组成基本上可以估计的样品,那么准备这样一些纯物质,在同样的色谱条件下,以纯物质的保留时间对照,用来判断其色谱峰属于什么组分是一种简单而行方便的定性方法。

色谱定性与定量

色谱定性与定量

仪器分析中各分析定量定性的依据定量分析是依据统计数据,建立数学模型,并用数学模型计算出分析对象的各项指标及其数值的一种方法。

定性分析则是主要凭分析者的直觉、经验,凭分析对象过去和现在的延续状况及最新的信息资料,对分析对象的性质、特点、发展变化规律作出判断的一种方法。

1、气相色谱:色谱峰保留值和面积,这样气相色谱可根据这两个数据进行定性定量分析。

色谱峰保留值是定性分析的依据,而色谱峰面积则是定量分析的依据。

2、紫外光谱:最大吸收波长λ、摩尔吸收系数ε及吸收曲线的形状不同是进行物质定性分析的依据。

进行定量分析依据朗伯-比耳定律:A=εbc3、核磁:定量分析以结构分析为基础,在进行定量分析之前,首先对化合物的分子结构进行鉴定,再利用分子特定基团的质子数与相应峰谱的峰面积之间的关系进行定量测定。

定量分析的根据:吸收能量的大小取决于核的多少。

以磁场强度为横坐标提供定性分析所依据的参数,以吸收能量为纵坐标,纵坐标对应于不同H0的出峰面积就是定量分析参数。

4、质谱:利用电磁学原理,对物质气相离子依其质荷比(m/e)进行分离和分析的方法。

被分析的样品首先离子化,然后利用离子在电场或磁场中的运动性质,将离子按质荷比(m/e)分开并按质荷比大小排列成谱图形式,根据质谱图可确定样品成分、结构和相对分子质量。

5、原子吸收:原子吸收光谱法进行定量分析的依据是:试样中待测元素的浓度与待测元素吸收辐射的原子总数成正比,即A=k'C 。

定量分析方法有标准曲线法和标准加入法两种。

6、红外:红外光谱的定性主要根据图谱中的:基团的特征吸收频率红外光谱的定量是根据图谱中的:特征峰的强度7、离子:利用离子交换的原理,连续对多种阴离子进行定性和定量的分析。

保留时间定性,峰高或峰面积定量。

8、荧光:物质吸收的光,称为激发光;物质受激后所发射的光,称为发射光或荧光。

根据荧光的光谱和荧光强度,对物质进行定性或定量测定9、差热:定性分析:定性表征和鉴别物质依据:峰温、形状和峰数目方法:将实测样品DTA曲线与各种化合物的标准(参考)DTA曲线对照。

气相色谱的定性分析方法

气相色谱的定性分析方法


fm'

Ms Mi
(3)、相对响应值
相对响应值是物质 i 与标准物质 S 的响应值(灵敏度)
之比,单位相同时,与校正因子互为倒数,即
Si
1 fi
和只与试样、标准物质以及检测器类型有关,而与操
作条件和柱温、载气流速、固定液性质等无关,不受
操作条件的影响,因而具有一定的通用性,是一个能
二、气相色谱的定量分析方法
定量分析就是要确定样品中组分的准确含量。气相 色谱的定量分析与大多数的仪器分析方法一样,是一 种相对定量方法,而不是绝对定量方法。
气相色谱定量分析的依据是:在一定的条件下,被
测谱本组峰公分的式峰为i 通面:过积检A测i 成器正的比数。量因(或此浓气度相)色w谱i定与量该分组析分的色基 W i = fi Ai 析再必用式须适中测当的量的f 其 定i称峰量为面计组积算分方A的法i校和,正确将因定色子组谱。分峰由的面式校积可正换知因算,子为定f试量i ,样分
的组分的量 mi ,另一方面要准确测量出峰面积或峰高,
并要求严格控制色谱操作条件,这在实际工作中有一 定困难。因此,实际测量中通常不采用绝对校正因子, 而采用相对校正因子。
(2)、相对校正因子
相对校正因子是指组分 i 与另一标准物 S 的绝
对校正因子之比,用表示:
fi'
fi fs
mi / Ai ms / As
中组分的含量。
1、峰面积的测量
在使用积分仪和色谱工作站测量蜂高和峰面积时,仪器可根据 人为设定积分参数(半峰宽、峰高和最小峰面积等)和基线来计算 每个色谱峰的峰高和峰面积。然后直接打印出峰高和峰面积的结 果,以供定量计算使用。
当使用一般的记录仪记录色谱峰时,则需要用手工测量的方法 对色谱峰和峰面积进行测量。虽然目前已很少采用手工测量法去 测量色谱峰的峰高和峰面积。但是了解手工测量色谱峰峰高和峰 面积的方法对理解积分仪和色谱工作站的工作原理及各种积分参 数的设定是大有裨益的。所以,以下简单介绍两种常用的手工测 量法。

气相色谱仪的作用

气相色谱仪的作用

气相色谱仪的作用气相色谱仪(GC)是一种非常重要的分析仪器,常用于分离和测定复杂混合物中的化合物。

它通过气相色谱的原理和技术,在气流的作用下,将化合物按照其在固定相和移动相界面上的相对亲和性进行分离,并借助探测器进行检测和定量分析。

1.分离混合物成分:气相色谱仪可以对复杂样品进行分离,将其中的化合物成分逐个进行分离和还原,使各个成分能够被准确识别和定量。

这对于药品、化妆品、食品等行业的质量控制和研究具有重要意义。

2.定性分析:通过气相色谱仪,可以对分析样品中的化合物进行定性分析。

利用色谱柱与样品中化合物的相互作用,根据相对亲和性的差异,可以将各个化合物成分分离出来,并通过探测器得到各个化合物的峰值信号,再通过峰形和保留时间与标准物质进行对照,确认化合物的结构和性质。

3.定量分析:气相色谱仪可用于对目标分析物进行定量分析。

在定性分析的基础上,常用内标法或外标法确定目标物的浓度,这对于环境监测、质量控制、毒物分析等有重要意义。

4.研究反应过程:气相色谱仪也广泛应用于研究反应过程。

通过气相色谱仪可以对反应过程中的中间产物、反应物和产物进行在线监测,从而研究反应的机理、速率以及催化剂的作用。

5.质量控制:在制药、食品和化妆品等行业,气相色谱仪是一种常用的质量控制工具。

它可以用来检测产品中的杂质和残留物,确保产品的质量和安全性。

6.毒物分析:气相色谱仪也广泛应用于毒物分析领域。

通过气相色谱仪可以对毒物进行分离和检测,从而帮助识别和定量分析毒物,为毒物学研究和临床诊断提供支持。

总之,气相色谱仪是一种非常重要的分析仪器,它在许多领域都有广泛的应用。

它可以分离混合物、进行定性和定量分析,可用于研究反应过程、质量控制、毒物分析和环境监测。

对于提高分析的快速性、准确性和灵敏度,气相色谱仪起着举足轻重的作用。

第十一章 色谱分析法——定性定量分析

第十一章 色谱分析法——定性定量分析
知识目标:
气相色谱法的定性分析
1、知道气相色谱流出曲线及常用的基本术语。 2、知道气相色谱的定性和定量方法
一、色谱流出曲线
色谱流出曲线:以组分电信号为纵坐标,流出时间为横坐标所得的曲线称为色谱流 出曲线或色谱图。该曲线反映了试样在色谱柱分离的效果,是组分定性和定量的依 据,同时也是研究色谱动力学和热力学的依据。
空气峰有时有,有时没有。
tM
②保留时间(tR):组分从进样到柱后出现浓度极大值时所需的时间。
③调整保留时间(t R ’): (1) t′R = tR-tM (2)反映组分在固定相中停 留的时间
(3)在实验条件一定时, t′R 决定于组分的性质,是定性 的基本参数。
(2) 相对保留值r21 组分2与组分1调整保留值之比:
内标法 当组分不能全部流出色谱柱,或检测器对样品中某些组分不产生信号,或只测
定样品中某一组分,采用内标法可获得准确结果。
1、测定步骤 (1)称取样品m样(其中:样品中待测组分i的质量用mi表示) (2)选定内标物。称取内标物ms。 (3)将内标物加入到已准确称量的样品中去。 (4)进样,测定待测组分的峰面积Ai和内标物的峰面积As。
气相色谱的定量分析 一、定量依据
样品中组分的质量与组分色谱峰的面积或峰高成正比。
m i = f i ·A i 或 m i = f i ·h i

绝色

对谱

校峰

正面

因积

文献查出
①准确测定Ai和hi ②准确求出f i ③计算mi
峰 高
峰面积A 1、定义:色谱峰与峰底基线所围成区域的面积叫峰面积。
c.将所测组分的相对保留值ris与手册数据对比作出定性判断。

气相色谱定性定量分析方法

气相色谱定性定量分析方法
气相色谱定性定量分析方法
一、气相色谱定性分析
? 通常利用组分已知的标准物质在相同色谱 分析条件下的色谱峰的保留时间来确定
? 一定色谱条件下,每一种物质都 有一个确 定的保留值
二、气相色谱定量分析
? 气相色谱定量分析主要是确定样品中各种 组分的相对或绝对含量,方法有:
? 归一化法 ? 外标法 ? 内标法
准物质的相关色谱信息 ? 根据公? 归一化法 ? 外标法(标准曲线法) ? 内标准法 ? 标准加入法
(1)归一化法
以试样中被测组分经校正的峰面积(或峰高)占试样各组分 经校正的峰面积(或峰高)的总和的比例
?
i
?
mi m
?
m1 ?
mi m2 ? ?
ms fi hi m样品 f shs
内标法中常以内标物为基准,即fs=1.0,则:
?i
?
mi m
?
ms fi Ai m试 As
? 内标法最关键是选择合适的内标物,对内标物的 要求:
? 内标物应是试样中不存在的纯物质 ? 内植物的性质应与待测组分性质接近,内标物的色谱
峰应在待测组分色谱峰附近并完全分离 ? 加入内标物的量应接近待测组分的量 ? 内标物应与试样完全互溶,不可发生化学反应
1.定量校正因子
? 色谱定量分析是基于被测物质的量与其峰面积的 正比关系。但由于同一检测器对不同的物质具有 不同的响应值,所以 两个相等量的物质出的峰面 积往往不相等 ,或者说,相同的峰面积并不意味 着相等物质的量 。这样就不能用峰面积来直接计 算物质的量。
? 因此,在计算组分的量时需将面积乘上一个换算 系数,使组分的面积转换成相应物质的量。即必 须将峰面积 A乘上一个换算系数进行“校正”。
? ? mn

气相色谱的定性和定量分析

气相色谱的定性和定量分析

实验七 气相色谱的定性和定量分析一、实验原理对一个混合试样成功地分离,是气相色谱法完成定性及定量分析的前提和基础。

衡量一对色谱峰分离的程度可用分离度R 表示:()211221Y Y t t R R R -⨯-=,,式中,T R,2,Y 2和T R,1,Y 1分别是两个组分的保留时间和峰底宽,当R=1.5时,两峰完全分离;当R=1.0时,98%的分离。

在实际应用中,R=1.0一般可以满足需要。

用色谱法进行定性分析的任务是确定色谱图上每一个峰所代表的物质。

在色谱条件一定时,任何一种物质都有确定的保留值、保留时间、保留体积、保留指数及相对保留值等保留参数。

因此,在相同的色谱操作条件下,通过比较已知纯样和未知物的保留参数或在固定相上的位置,即可确定未知物为何种物质。

当手头上有待测组分的纯样时,作与已知物的对照进行定性分桥极为简单。

实验时,可采用单柱比较法、峰高加入法或双柱比较法。

单柱比较法是在相同的色谱条件下.分别对已知纯样及待测试样进行色谱分析.得到两张色谱图,然后比较其保留参数。

当两者的数值相同时,即可认为待测试样中有纯样组分存在。

双柱比较法是在两个极性完全不同的色谱住上,在各自确定的操作条件下,测定纯样和待测组分在其上的保留参数,如果都相同,则可准确地判断试样中有与此纯样相同的物质存在。

由于有些不同的化合物会在某一固定相上表现出相同的热力学性质,故双柱法定性比单柱法更为可靠。

在一定的色谱条件下,组分i 的质景m :或其在流动相中的浓度,与检测器的响应信号峰面积Ai 或峰高h ,成正比:2-10 或 2-11式中,f i A 和f i h 称为绝对校正因子。

式(2-10)和式(2-11)是色谱定量的依据。

不难看出,响应信号A 、h 及校正因了的淮确测量直接影响定定分析的准确度。

由于峰面积的大小不易受操作条件如校温、流动相的流速、进样速度等因素的影响,故峰面积更适于作为定量分析的参数。

测量峰面积的方法分为于上测量和自动测量。

气相色谱的定性和定量分析实验

气相色谱的定性和定量分析实验

气相色谱的定性和定量分析实验一、实验药品乙酸丁酯(AR)、正己烷(AR)、未知试样二、实验仪器SC3000气相色谱仪;注射器:1μL;容量瓶若干三、实验目的1、深入了解气相色谱仪的基本结构2、进一步熟悉气相色谱分离分析的基本原理3、学习计算色谱峰的分离度4、掌握根据保留值,作已知物对照定性的分析方法5、熟悉用归一化法定量测定混合物各组分的含量四、实验原理利用气相色谱仪,根据物质的沸点、极性、分子量等差别进行分离分析。

对—个混合试样成功地分离,是气相色谱法完成定性及定量分析的前提和基础。

衡量一对色谱峰分离的程度可用分离度R表示:式中,T R,2,w2和T R,1,w1分别是两个组分的保留时间和峰底宽(时间),当R=1.5时,两峰完全分离;当R=1.0时,98%的分离。

在实际应用中,R=1.0一般可以满足需要。

用色谱法进行定性分析的任务是确定色谱图上每一个峰所代表的物质。

在色谱条件一定时,任何一种物质都有确定的保留值、保留时间、保留体积、保留指数及相对保留值等保留参数。

因此,在相同的色谱操作条件下,通过比较已知纯样和未知物的保留参数或在固定相上的位置,即可确定未知物为何种物质。

在一定的色谱条件下,组分i的质量m:或其在流动相中的浓度,与检测器的响应信号峰面积Ai或峰高h,成正比:m i = f i A• A i(1)或m i = f i h• A i(2)式中,f i A和f i h称为绝对校正因子。

式(1)和式(2)是色谱定量的依据。

不难看出,响应信号A、h及校正因了的淮确测量直接影响定定分析的准确度。

由于峰面积的大小不易受操作条件如校温、流动相的流速、进样速度等因素的影响,故峰面积更适于作为定量分析的参数。

现代色谱仪中一般都配有准确测量色谱峰面积的电学积分仪。

由式(1),绝对校正因子可用下式表示:(3)式中,m i可用质量、物质的量及体积等物理量表示,相应的校正因子分别称为质量校正因子、摩尔校正因子和体积校正因子。

气相色谱的原理及定性定量分析

气相色谱的原理及定性定量分析

气相色谱的原理及定性定量分析基本原理气相色谱是将有机物分离的一种方法,它也可以对混合物的组成进行定性定量分析。

混合物是通过在流动相和固定相中的相作用而分离的。

流动相和固定相构成色谱法的基础。

流动相可以有气体和液体两种状态,固定相则有液体和固体两种状态。

流动相是气体的称作气相色谱。

流动相是液体的称做液相色谱。

气相色谱是一种分配色谱,其固定相是由特定的液体黏附在一些固体基质上组成的。

各种气相色谱仪虽然在功能、价格和操作上有所不同,但其都是由气流系统、分离系统、检测系统和数据处理系统所组成的。

如下图:气相色谱的气流系统主要包括气源和气体纯化及调节装置。

气源一部分是作为流动相的载气,我们所使用的载气是氮气。

气源的另一部分是作为后期检测所用的燃烧气体,主要是氢气和空气。

由于进入分离系统的气体纯度需要保证,所以不论气源纯度如何,都应通过气体净化装置才能进入色谱分离系统。

虽然根据检测器或色谱柱不同,气相色谱的气体纯度有所差异,但所有气体的纯度至少要达到99%以上,许多情况下应达99?99%。

气相色谱分离系统包括样品汽化室和色谱柱两部分。

气相色谱分离技术需要所测有机物样品必须在气态才能进行,因此,首先需要将液态或固态的样品加热 (100一300℃)汽化才能进入色谱柱进行分离。

这样气相色谱进样是用人工或自动注射的方式将有机样品首先注入汽化室。

气相色谱的定性定量分析气相色谱主要功能不仅是将混合有机物中的各种成分分离开来,而且还要对结果进行定性定量分析。

所谓定性分析就是确定分离出的各组分是什么有机物质,而定量分析就是确定分离组分的量有多少。

色谱在定性分析方面远不如其它的有机物结构鉴定技术,但在定量分析方面则远远优于其它的仪器方法。

有机物进入气相色谱后得到两个重要的测试数据:色谱峰保留值和面积,这样气相色谱可根据这两个数据进行定性定量分析。

色谱峰保留值是定性分析的依据,而色谱峰面积则是定量分析的依据。

㈠定性分析气相色谱的定性分析主要有保留值定性法、化学试剂定性法和检测器定性法。

2-气相色谱

2-气相色谱

正构烷烃的保留指数为碳数100,测定时,将碳 数为Z和Z +n的正构烷烃加入到样品 x 中进行色谱
分析,此时测得这三个物质的调整保留值。
例:乙酸正丁酯在阿皮松L柱上的流出曲线如下 图所示。由图中测得调整保留距离为:乙酸正 丁酯310.0 mm,正庚烷174.0 mm,正辛烷373.4 mm。求乙酸正定酯的保留指数。
lg 310.0 lg174.0 I x 100 [7 ] 775.6 lg 373.4 lg174.0
在与文献值对照时,一定 要重视文献值的实验条件, 如固定液、柱温等。而且 要用几个已知组分进行验 证。
与其它分析仪器联用定性
气相色谱-质谱(GC-MS) 、NMR联用; 气相色谱-富里叶变换红外光谱(GC-FTIR)联用; 与化学方法配合进行定性鉴定;
A 1.065h t R b
适用范围:狭窄峰。 (5)数字积分仪求峰面积 应用范围广,精度一般可达0.2~2%。
定量校正因子
绝对校正因 子 单位峰面积(或单位峰高)的组分的量
f i mi / Ai
相对校正因子
f i mi / Ai mi As fi f s ms / As ms Ai
f f
' V
2 常用的几种定量分析方法 (1)归一化法
依据:组分含量与峰面积成正比
f i ' Ai Wi ' 100% ' ' f1 A1 f 2 A2 f 中所有组分 均须出峰
操作条件如进样量、载气流速等 变化时对结果的影响较小。
f i' hi i 100% f i' hi
已知水与内标物甲醇的相对质量校正因子分别为0.70和0.75,计算样品中水分

气相色谱室作用

气相色谱室作用

气相色谱室作用
气相色谱室是一种实验室,主要用于进行气相色谱分析。

它的作用包括以下几个方面:
1. 分离和分析混合物:气相色谱室可以用于分离和分析气态或液态混合物中的组分。

通过将混合物注入气相色谱仪,利用色谱柱对不同组分的吸附或分配作用进行分离,然后检测和记录各组分的保留时间和浓度,从而实现对混合物的分析。

2. 定性和定量分析:气相色谱室可以进行定性和定量分析。

通过比较保留时间和标准物质的对照,可以确定混合物中各组分的身份。

同时,利用检测器的响应信号与组分浓度之间的关系,可以进行定量分析,测定各组分的含量。

3. 环境监测和质量控制:气相色谱室在环境监测和质量控制方面也有广泛应用。

它可以分析空气、水、土壤等样品中的污染物、有害物质和添加剂等,用于环境保护、食品安全、化工生产等领域的监测和控制。

4. 研究和开发:气相色谱室还可用于研究和开发新的分析方法、材料和产品。

通过对不同条件下的分离效果进行研究,可以优化色谱条件,提高分析的准确性和灵敏度。

气相色谱室是一个重要的分析实验室,它在化学、化工、环境、食品等
领域中发挥着重要的作用,为研究、开发和质量控制提供了有力的分析手段。

气相色谱仪的四种定量方法及操作规程

气相色谱仪的四种定量方法及操作规程

气相色谱仪的四种定量方法及操作规程气相色谱仪的四种定量方法气相色谱仪广泛应用在各个科研、生产领域,通过气相色谱仪进行气象色谱法的检测分析是常用的方式,其中如何定量了?下面我们就介绍一下四种定量方法。

色谱分析方法简称色谱法或层析法(CHROMATOGRAPHY)。

气相色谱仪是依据试样中各组分在气固或气液两相间的吸附或调配系数的不同随载气移动而进行分别的仪器。

分别后的组分按保留时间的先后次序进入检测器,并自动记录检测信号,依据组分的保留时间和响应值进行定性、定量分析。

气相色谱仪由气源、气路掌控系统、进样系统、色谱柱、检测器、电气系统、记录及处理系统构成。

通过气相色谱仪用物理方法把混合物分别开来的一种方法就叫做气相色谱法。

气相色谱法是在以适当的固定相做成的柱管内,利用气体(载气)作为移动相,使试样(气体、液体或固体)在气体状态下打开,在色谱柱内分别后,各种成分先后进入检测器,用记录仪记录色谱谱图。

在对气相色谱仪进行调试后,按各单体的规定条件调整气相色谱仪柱管、气相色谱仪检测器、温度和载气流量。

进样口温度一般应高于柱温30—50℃。

如用火焰电离检测器,其温度应等于或高于柱温,但不得低于100℃,以免水汽凝结。

色谱上分析成分的峰的位置,以滞留时间(从注入试样液到显现成分最高峰的时间)和滞留容量(滞留时间×载气流量)来表示。

这些在确定条件下,就能反应出物质所具有特别值,并据此确定试样成分。

定量方法可分以下四种:1、面积内标法取标准被测成分,按依次加添或削减的已知阶段量,各自分别加入各单体所规定的定量内标准物质中,调制标准溶液。

分别取此标准液的确定量注入气相色谱仪色谱柱,依据气相色谱仪上色谱图取标准被测成分的峰面积和峰高和内标物质的峰面积和峰高的比例为纵座标,取标准被测成重量和内标物质量之比,或标准被测成重量为横坐标,制成标准曲线。

然后按单体中所规定的方法调制试样液。

在调制试样液时,预先加入与调制标准液时等量的内标物质。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

常用峰面积定量被测组分经
校正过的峰面积(或峰高)占样品中各组分 经校正过的峰面积(或峰高)的总和的比例
来表示样品中各组分含量的定量方法。 当试样中所有组分均能流出色谱柱,且
完全分离,并在检测器上都能产生信号时, 可用归一化法计算组分含量。
4、标准曲线法 标准曲线法也称外标法或直接比较法, 是一种简便、快速的定量方法,具体方法与 分光光度分析中的标准曲线法相似。 优点:绘制好标准工作曲线后测定工作 就变得相当简单,可直接从标准曲线上读出
含量,因此特别适合于大批样品分析。缺点: 每次样品色谱分析的色谱操作条件(检测器 的响应性能、柱温、流动相流量及组成、进 样量、柱效等)很难完全相同,因此容易出 现圈套误差。
这个结论并不准确可靠。
(2)双柱法定性。若要得到更为准确可靠 的结论,可再用另一根极性完全不同的色谱 柱,做同样的对照比较。如果结论同上,那 么最终的定性结果相对更为可靠。
(3)色谱操作条件不稳定时的定性。这时 可以采用相对保留值定性或用已知标准物增
加峰高法定性。 ① 相对保留值定性; ② 用已知标准物增加峰高法定性。 2、利用保留指数定性 在利用已知标准物直接对照定性时,已
缺点是必须在所有样品中加入内标物, 选择合适的内标物比较困难,内标物的称量 要准确,操作较复杂。
3、标准加入法 标准加入法是一种将欲测组分的纯物质 加入到待测样品中,然后在相同的色谱条件 下,分别测定加入欲测组分纯物质前后欲测 组分的峰面积(或峰高),从而计算欲测组 分在样品中的含量的方法。
优点:不需要别处的标准物质作内标物, 只需要欲则组分的纯物质,进样量不必十分 准确,操作简单,是色谱分析中较常用的定 量分析方法。缺点:要求加入欲测组分前后 两次色谱测定的色谱操作条件完全相同,否 则将引起分析测定的误差。
优点是简便、精确,进样量的多少与测 定结果无关,操作条件(如流速,柱温)的
变化对定量结果的影响较小。但此法在实际 工作中仍有一些限制,比如,样品的所有组 分必须全部流出,且出峰。
2、内标法 所谓内标法就是将一定量选定的标准物 (称内标物)加入到一定量试样中,混合均
匀后,在一定操作条件下注入色谱仪进行分 析,出峰后分别测量组分和内标物的峰面积 (或峰高),按一定的计算公式计算组分的 含量。
知标准物质的获取往往是一个很困难的问题,
人们发展了利用文献值对照定性的方法,即 利用已知的标准物质的文献保留值与未知物 的测定保留值进行对照进行定性分析。
3、与其它方法结合的定性分析法(联机 定性)
二、气相色谱定量分析 在色谱分析中,在某些条件限定下,色 谱峰峰高或峰面积(检测器响应值)与所测 组分的质量(或浓度)成正比。 一般来说,对浓度型检测器(如TCD), 常用峰高定量;对质量型检测器(如FID),
项目模块4:气相色谱分析法
一、气相色谱定性方法 色谱定性分析就是确定各色谱峰所代表 的化合物,总的来说,这些方法都不能令人 满意。随着气相色谱-质谱、气相色谱-红外 光谱等联用技术,为未知化合物的定性分析 打开了一个广阔的前景。
1、根据色谱保留值进行定性分析 各种物质在一定的色谱条件下均有确定 不变的保留值,因此,保留值可作为一种定 性指标。 (1)标准对照法定性。利用已知标准物质 直接对照定性是一种最简单的定性方法。但
若试样中所有组分不能全部出峰,或只 要求测定试样中某个或某几个组分的含量时,
可以采用内标法定量。 优点是进样量的变化、色谱条件的微小
变化对内标法定量结果的影响不大,特别是 在样品前处理前加入内标物,然后再进行前 处理时,可部分补偿欲测组分在样品前处理 时的损失。若想要获得很高精度的结果时,
可以加入数种内标物,以提高定量分析的精 度。从总体来说,内标法比标准曲线法定量 的准确度和精密度都要好。
相关文档
最新文档