2018年高考文科数学分类汇编:专题九解析几何

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018年高考文科数学分类汇编:专题九解析几何

《2018年高考文科数学分类汇编》

第九篇:解析几何

一、选择题

1.【2018全国一卷4】已知椭圆C :

22

214

x y a +=的一

个焦点为(20),

,则C 的离心率为 A .13 B .12

C 2

D 22

2.【2018全国二卷6】双曲线的离

,则其渐近线方程为 A . B . C . D .

3.【2018全国二11】已知,是椭圆的两个

焦点,是上的一点,若,且,

则的离心率为 A . B .C D

4.【2018全国三卷8】直线分别与轴,轴交于A ,B 两点,点P 在圆上,则面积的取值范围是

22

22

1(0,0)x y a b a b -=>>32y x

=3y x

=2y =3y =1

F 2

F C P C 1

2

PF PF ⊥21

60PF F ∠=︒C 31-2331-31

20x y ++=x y

()2

222

x y -+=ABP

C .(0,2),(02)

D .(0,−2),(0,2)

8.【2018上海卷13】设P 是椭圆 ²5x + ²3y =1上的

动点,则P 到该椭圆的两个焦点的距离之和为( )

A.2√2

B.2√3

C.2√5

D.4√2

二、填空题

1.【2018全国一卷15】直线1y x =+与圆2

2230

x

y y ++-=交于A B ,两点,则AB =________.

2.【2018北京卷10】已知直线l 过点(1,0)且

垂直于x 轴,若l 被抛物线2

4y ax

=截得的线

段长为4,则抛物线的焦点坐标为

_________.

3.【2018北京卷12】若双曲线22

21(0)4

x y a a -=>的离心

率为

5

2

,则a =_________.

4.【2018天津卷12】在平面直角坐标系中,经

过三点(0,0),(1,1),(2,0)的圆的方程为__________.

5.【2018江苏卷8】在平面直角坐标系xOy 中,若

双曲线2

2

2

2

1(0,0)x y

a b a b

-=>>的右焦点(,0)F c 到一条渐近3

,则其离心率的值是 .

6.【2018江苏卷12】在平面直角坐标系xOy 中,A

为直线:2l y x =上在第一象限内的点,(5,0)B ,以

AB 为直径的圆C 与直线l 交于另一点D .若0AB CD ⋅=,则点A 的横坐标为 .

7.【2018浙江卷17】已知点P (0,1),椭圆

2

4

x +y 2=m (m >1)上两点A ,B 满足AP =2PB ,则当m =___________时,点B 横坐标的绝对值最大.

8.【2018上海卷2】2.双曲线2

214

x y -=的渐近线方

程为 .

9.【2018上海卷12】已知实数x ₁、x ₂、y ₁、y ₂

满足:

²²1x y +=₁₁,²²1x y +=₂₂,2

12

x x y y +=

₁₂₁,2

2

的最大值为__________

三、解答题

1.【2018全国一卷20】设抛物线

22C y x

=:,点()20A ,,

()

20B -,,过点A 的直线l 与C 交于M ,N 两点.

(1)当l 与x 轴垂直时,求直线BM 的方程; (2)证明:ABM ABN =∠∠.

2.【2018全国二卷20】设抛物线的焦点为

,过且斜率为的直线与交于,两点,.

(1)求的方程;

(2)求过点,且与的准线相切的圆的方程.

3.【2018全国三卷20】已知斜率为的直线与

椭圆

交于,两点.线段的中点

为.

2

4C y

x

=:F

F (0)k k >l C A B ||8

AB =l A B C k l 22

1

43

x y C +=:A B AB (1,)(0)M m m >

(1)证明:; (2)设为的右焦点,为上一点,且

.证明:.

4.【2018北京卷20】已知椭圆22

22:1(0)

x y M a b a b

+=>>的

6

22斜率为k 的直线l 与椭

圆M 有两个不同的交点A ,B .

(Ⅰ)求椭圆M 的方程; (Ⅱ)若1k =,求||AB 的最大值;

(Ⅲ)设(2,0)P -,直线PA 与椭圆M 的另一个交点为C ,直线PB 与椭圆M 的另一个交点为D .若C ,D 和点71(,)

44

Q -共线,求k .

5.【2018天津卷19】设椭圆

22

22

1(0)x y a b a b +=>>的右顶

点为A ,上顶点为B .已知椭圆的离心率为

5||13

AB =

(I )求椭圆的方程;

12

k <-F C P C FP FA FB ++=0

2||||||FP FA FB =+

相关文档
最新文档