最新 华理高数下答案
高等数学B(下)·平时作业2020秋华南理工大学网络教育答案

2020-2021-1高数下作业题2020.8
一、判断题(期末考试只有5小题)
1. (1)若是二阶线性齐次方程的两个特解, 那么,
就是该方程的通解. 错误
(2)若是二阶线性齐次方程的两个线性无关的特解, 那么,
就是该方程的通解. 正确
2.(1)若两个向量平行,则错误
(2)若两个向量垂直,则正确
3.(1)函数在点偏导数存在,则它在点全微分存在,反之亦然. 错误
(2)函数在点全微分存在,则它在点偏导数存在,反之不成立. 正确4. (1)设,则二重积分表示以曲面为顶、
以区域为底的曲顶柱体的体积. 错误
(2)设,则二重积分
表示以曲面为顶、以区域为底的曲顶柱体的体积. 正确
5. (1)是数项级数收敛的充分条件. 错误
(2)是数项级数收敛的必要条件. 正确
二、填空题(期末考试为选择题)
1. 属于____微分__________方程.
2. 已知平面与x,y,z轴分别交于(9,0,0)(0,2,0)(0,0,3),则该平面方程为
3. 函数定义域为__{(x,y)|x^2+y^2<25且x^2+y^2≠24}____
4.
5. 关于级数的敛散性情况为_当p>1时收敛,当p≤1时发散__
三、解答题(第1-5小题每题12分,第6小题15分,共75分)
1. 求微分方程的通解.
2.
3. 若,求函数的两个偏导数.
4. 求抛物面在点处的切平面方程.
5.
6. 求幂级数的和函数.。
华理高数答案(下)

第 9 章(之 1) (总第 44 次)
教学内容:§9.1 微分方程基本概念 *1. 微分方程 2( y ) 9 y y 5xy 的阶数是
3 7
( (D)7.
0.
解: 方程变形为
y
2 1 1 y 2 ,是一阶线性非齐次方程,其通解为 x x x
ye
2 2 1 1 x dx x dx c ( ) e dx 2 x x
1 x2
c 1 1 1 1 1 1 c ( 2 ) x 2 dx 2 c x 2 x 2 2 x x x 2 x x
y C cos 2 x 1 C sin 2 x ,实质上只有一个任意常数;
(D)中的函数确实有两个独立的任意常数,而且经验算它也确实是方程的解. *3.在曲线族 y c1e c2 e 中,求出与直线 y x 相切于坐标原点的曲线.
x x
2
解
根据题意条件可归结出条件 y(0) 0, y (0) 1,
2
解:分离变量 2 ye y dy xe 2 x dx ,两边积分就得到了通解
ey
2
1 1 1 ( xe 2 x e 2 x dx) ( xe 2 x e 2 x ) c . 2 2 2
(3) (2 x 1)e y y 2e y 4 0 .
ey d y dx 解: , y 2x 1 2e 4
2
为 y y (2 x yy ) .
2
华南理工大学高数习题册答案汇总

第七章 多元函数微分学作业1 多元函数1.填空题(1)已知函数22,y f x y x y x ⎛⎫+=- ⎪⎝⎭,则(),f x y =()()22211x y y -+; (2)49arcsin2222-+++=y x y x z 的定义域是(){}22,49x y x y ≤+≤; (3))]ln(ln[x y x z -=的定义域是(){}(){},,0,1,0,1x y x y x x y x x y x >>+⋃<<≤+;(4)函数⎪⎩⎪⎨⎧=≠=0,0,sin ),(x y x x xyy x f 的连续范围是 全平面 ;(5)函数2222y x z y x+=-在22y x =处间断.2.求下列极限(1)00x y →→;解:000016x t t y →→→→===-(2)22()lim (ex y x y x y -+→+∞→+∞+).解:3y x =22()2()lim (e lim (e 2x y x y x y x x y y x y x y xe ye -+-+--→+∞→+∞→+∞→+∞⎡⎤+=+-⎣⎦)) 由于1lim e lim lim 0tt t t t t t t e e-→+∞→+∞→+∞===,2222lim e lim lim lim 0tt t t t t t t t t t e e e -→+∞→+∞→+∞→+∞====,故22()2()lim (elim (e 20x y x y x yx x y y x y x y xe ye -+-+--→+∞→+∞→+∞→+∞⎡⎤+=+-=⎣⎦)) 3.讨论极限26300lim y x yx y x +→→是否存在.解:沿着曲线()()3,,0,0y kx x y =→,有336626262000lim lim 1x x y kx x y kx kx y x k x k →→=→==+++因k 而异,从而极限26300lim y x yx y x +→→不存在4.证明⎪⎩⎪⎨⎧=+≠++=0,00,2),(222222y x y x y x xyy x f 在点)0,0(分别对于每个自变量x 或y都连续,但作为二元函数在点)0,0(却不连续.解:由于(,0)0,(0,)0,f x f y ≡≡从而可知在点)0,0(分别对于每个自变量x 或y 都连续,但沿着曲线()(),,0,0y kx x y =→,有2222222000222lim lim 1x x y kx xy kx kx y x k x k →→=→==+++因k 而异, 从而极限()0lim ,x y f x y →→不存在,故作为二元函数在点)0,0(却不连续.作业2 偏导数1.填空题(1)设22),(y x y x y x f +-+=,则=)4,3(x f 25; (2)(3)设(),ln 2y f x y x x ⎛⎫=+⎪⎝⎭,则1x y f y==∂=∂12; (3)设2sin x u xz y =+,则42ux y z∂=∂∂∂ 0 ;(4)曲线22:44x y z y ⎧+=⎪Γ⎨⎪=⎩在点()2,4,5处的切线与Ox 轴正向的倾角是4π. 2.设2e xyu =, 证明 02=∂∂+∂∂yu y x u x. 证:因为222312,xxy yu ux e e x y y y∂∂-==∂∂ 所以222223221222220x x x xy y y y u u x x x x y xe ye e e x y y y y y ∂∂--+=+=+=∂∂3. 设xyz ln =,求22x z ∂∂,yx z∂∂∂2.解:ln ln x yz e⋅=,从而222ln ln ln ln ln ln ln 222ln ln ln ln ln ,,x y x y x y x z y z y y y y e e e y x x x x x x ⋅⋅⋅∂∂--⎛⎫=⋅=⋅+⋅= ⎪∂∂⎝⎭2ln ln ln ln ln ln ln 11ln ln 1x y x y x z y x y x e e y x y x y x y xy⋅⋅∂⋅+=⋅⋅+⋅⋅=∂∂4.设y x z u arctan =, 证明 0222222=∂∂+∂∂+∂∂zuy u x u . 解:因为()()2222222222211022,1uyz u yz x xyzz xy x y x x x y x y y ∂∂-⋅-=⋅⋅===∂+∂⎛⎫+++ ⎪⎝⎭()()2222222222221022,1u x xz u xz y xyzz yy x y y x x y x y y ∂--∂-⋅=⋅⋅==-=∂+∂⎛⎫+++ ⎪⎝⎭22arctan ,0,u x uz y x∂∂==∂∂ 所以()()2222222222222200u u u xyz xyzx y z x y x y ∂∂∂-++=++=∂∂∂++ 5.设函数()()2221sin ,0,0,x x y x f x y xx ⎧+≠⎪=⎨⎪=⎩.(1)试求(),f x y 的偏导函数; 解:当()()()3222221110,,42sin cos x x f x y x xyx x y xx x-≠=+++⋅()21,2sin y f x y x y x =,()()()322211,42sin cos x f x y x xy x y x x=+-+当()()()()222001sin 0,0,0,0,lim lim 00x x x x x y f x y f y x x f y x x→→+--≠===-()()()000,0,000,lim lim 0y y y f y y f y f y y y ∆→→+∆--===∆-∆,()()()322211,42sin cos x f x y x xy x y x x=+-+(2)考察偏导函数在()0,3点处是否连续.()()200331lim ,lim 2sin00,3y y x x y y f x y x y f x→→→→===,故(),y f x y 在()0,3点处连续, ()()()3222003311lim ,lim 42sin cos x x x y y f x y x xy x y x x →→→→⎡⎤=+-+⎢⎥⎣⎦不存在,从而(),x f x y 在()0,3点处不连续作业3 全微分及其应用1.填空题(1)),(y x f z =在点),(00y x 处偏导数存在是),(y x f z =在该点可微的必要 条件;(2)函数23z x y =在点()2,1-处,当0.02,0.01x y ∆=∆=-时有全增量z ∆=0.2040402004-,全微分d z =0.20-;(3)设),(y x f z =在点),(00y x 处的全增量为z ∆,全微分为dz ,则),(y x f 在点),(00y x 处的全增量与全微分的关系式是()z dz o dz ∆=+;(4)22yx x u +=在点)1,0(处的d u =dx ;(5)xy u cos )(ln =,则d u =cos cos (ln )ln ln sin ln x x y y xdx dy y y ⎡⎤-⋅+⎢⎥⎣⎦; (6)zyx u )(=,则d u =()ln zx z z x dx dy dz y x y y ⎛⎫-+⎪⎝⎭;(7)2221zy x u ++=,则d u = ()()3222212x y z -++ .2.证明:(),f x y =在点()0,0处连续,()0,0x f 与()0,0y f 存在,但在()0,0处不可微.证:由于(0,)0,(,0)0,f y f x ==从而(0,0)0,(0,0)0.y x f f ==但是limlimx x y y ∆→∆→∆→∆→=不存在,从而在()0,0处不可微.3.设函数()()222222221sin ,0,0,0x y x y x y f x y x y ⎧++≠⎪+=⎨⎪+=⎩试证:(1)函数(),f x y 在点()0,0处是可微的;证:因为 ()()()()22001sin0,00,00,0limlim 0,0,000x y x x x f x f x f f x x →→--====-- 又()()()()()22221sinlimlim0x x y y x y x y ∆→∆→∆→∆→∆+∆∆+∆==所以函数(),f x y 在点()0,0处是可微的(2)函数(),x f x y 在点()0,0处不连续.证:当()222222221210,,2sincos x x x y f x y x x y x y x y+≠=-+++ ()2222220000121lim ,lim 2sin cos x x x y y x f x y x x y x y x y ∆→∆→∆→∆→⎛⎫=- ⎪+++⎝⎭不存在, 故(),x f x y 在点()0,0处不连续作业4 多元复合函数的求导法则1.填空题(1)设2ln ,,32yz u v u v y x x===-,则 z x ∂=∂()()223222ln 3232y y y x x x y x ----; (2)设22,cos ,sin z x y xy x u v y u v =-==,则zv∂=∂()333sin cos sin 2sin sin 2cos u v v v v v v +--; (3)设()22,zu x y z x y =-=+,则u x ∂=∂()()222ln z x y x y x x y x y ⎡⎤+--+⎢⎥-⎣⎦;(4)设2sin z x y x ==,则dd zx =2x . 2.求下列函数的偏导数(1)设,,x y u f y z ⎛⎫=⎪⎝⎭其中f 具有一阶连续偏导数,求,u x ∂∂u y ∂∂和uz ∂∂; 解:111,f u f x y y ∂=⋅=∂121222222211,u x x u y yf f f f f f y y z y z z z z∂--∂--=⋅+⋅=+=⋅=∂∂ (2)设(),,,u f x y z =()(),,,z y t t y x ϕψ==,其中,,f ϕψ均可微,求u x ∂∂和uy∂∂. 解:因为1231212,,du f dx f dy f dz dz dy dt dt dy dx ϕϕψψ=++=+=+ 从而()1231212du f dx f dy f dy dy dx ϕϕψψ=++++⎡⎤⎣⎦()()1322231321f f dx f f f ϕψϕϕψ=+++++所以1322231321,u u f f f f f x yϕψϕϕψ∂∂=+=++∂∂ 3.验证下列各式(1)设()22yz f x y =-,其中()f u 可微,则211z z z x x y y y ∂∂+=∂∂; 证:因为222212,z xyf z y f x f y f f ''∂-∂==+∂∂ 所以222211121121z z z xyf y f zx x y y x x f y f f yf y ''⎛⎫∂∂∂-+=++== ⎪∂∂∂⎝⎭ (2)设()23y z xy x ϕ=+,其中ϕ可微,则220z zx xy y x y ∂∂-+=∂∂. 证:因为()()222,33z y z y y xy x xy x x y xϕϕ∂∂''=-+=+∂∂ 所以22z z x xy y x y ∂∂-+=∂∂()()2222233y y x y xy xy x xy y x x ϕϕ⎛⎫⎛⎫''-+-++ ⎪ ⎪⎝⎭⎝⎭()()22222033y y x y xy y x y xy y ϕϕ''=-+--+=4.设22,,y z xf x x ⎛⎫= ⎪⎝⎭其中函数f 具有二阶连续偏导数,求2z x y ∂∂∂. 解:因为221212222,z y y f x f f f xf f x x x ⎛⎫∂-=++⋅=+- ⎪∂⎝⎭所以22212212222222222z y y y y y y f xf f f xf f f x y y x x x x x x⎡⎤∂∂=+-=+⋅--⋅⎢⎥∂∂∂⎣⎦ 31222224y yf f x=-4.设)()(xy x x y u ψϕ+=其中函数ψϕ,具有二阶连续偏导数,试证:022222222=∂∂+∂∂∂+∂∂y u y y x u xy x u x . 证:因为222223432,u y y u y y y x x x x x x x ϕψψϕϕψ∂-∂'''''''=+-=++∂∂222322211,,u y y u u x y x x x y x y x xϕψϕϕψϕψ''''∂∂∂'''''''=---=+=+∂∂∂∂ 从而左边222234323222120y y y y y x xy y x x x x x x x x ϕψϕϕψϕϕψ''''⎛⎫⎛⎫⎛⎫''''''''''=+++---++= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭作业5 隐函数求导法1.填空题(1)已知3330x y xy +-=,则d d y x =22x yx y--; (2)已知20x y z ++-=,则x y ∂=∂(3)已知xzz y =,则d z =2ln ln z dy yz zdxxy yz y--;(4)已知222cos cos cos 1x y z ++=,则d z =sin 2sin 2sin 2xdx ydyz+-;(5)已知(),z f xz z y =-,其中f 具有一阶连续偏导数,则d z =12121zf dx f dyxf f ---.2.设(),0,F y z xy yz ++=其中F 具有二阶连续偏导数,求22zx∂∂.解:212120,yF z z z F F y y x x x F yF -∂∂∂⎛⎫+⋅+=⇒= ⎪∂∂∂+⎝⎭ ()()[]()22122122122221212x x x F z F y yz F yF F F yF F z y y x x F yF F yF '⋅+++-+⎡⎤⎛⎫∂∂⎣⎦=-=- ⎪∂∂++⎝⎭()()()()()2222112111222212221231212y F F F yF F F yF y F F F F F yF F yF -+++⎡⎤-⎣⎦=+++3.求由方程组222222320z x yx y z ⎧=+⎪⎨++=⎪⎩所确定的()y x 及()z x 的导数d d y x 及d d z x .解:由已知()2222222602460dz xdx ydydz xdx ydy xdx dz xdx zdz xdx ydy zdz -=⎧=+⎧⎪⇒⎨⎨+-+=++=⎪⎩⎩()()22606,132623220xdx z dz dz x dy x xy dx z dx y yz xdx ydy z xdx ydy -++=⎧+⎪⇒⇒==-⎨+++++=⎪⎩4.设函数()z f u =,又方程()()d xy u u P t t ϕ=+⎰确定u 是,x y 的函数,其中()f u 与()u ϕ均可微;()(),P t u ϕ'连续,且()1u ϕ'≠. 试证:()()0z zP y P x x y∂∂+=∂∂. 证:因为()(),z u z uf u f u x x y y∂∂∂∂''=⋅=⋅∂∂∂∂, ()()()(),1P x u u uu P x x x x u ϕϕ∂∂∂'=⋅+='∂∂∂- ()()()(),1P y u u uu P y y y y u ϕϕ-∂∂∂'=⋅-='∂∂∂- ()()()()()()()()()()011P x P y z zP y P x P y f u P x f u x y u u ϕϕ-∂∂''+=+=''∂∂-- 5.设函数()f u 具有二阶连续偏导数,而()e sin xz f y =满足方程22222e xz z z x y∂∂+=∂∂,求()f u . 解:因为()()()()222sin ,sin sin x xx z z f u e y f u e y f u e y x x∂∂''''==+∂∂ ()()()()222cos ,cos (sin )x x x z z f u e y f u e y f u e y y y∂∂''''==+-∂∂()()222222()e ,()0x x z zf u e f u f u f u x y∂∂''''+==⇒-=∂∂ 特征方程为()2121210,1,1,u u r r r f u c e c e --===-=+作业6 方向导数与梯度1.填空题(1)在梯度向量的方向上,函数的变化率 最大 ; (2)函数在给定点的方向导数的最大值就是梯度的 模 ; (3)函数2249z x y =+在点()2,1的梯度为grad z ={16,18};(4)函数xyz u =在点)1,1,1(处沿方向}cos ,cos ,{cos γβα=l的方向导数是cos cos cos αβγ++,且函数u 在该点的梯度是{1,1,1};(5)函数e cos()xu yz =在点)0,0,0(处沿方向}2,1,2{-=l的方向导数是23; (6)函数)ln(22z y x u ++=在点)1,0,1(A 处沿A 指向点)2,2,3(-B 方向的方向导数是12. 2.求222z y x u -+=在点)0,0,(a A 及点)0,,0(a B 处的梯度间的夹角.解:{}2,2,2{2,0,0}AAgradux y z a =-={}2,2,2{0,2,0}B Bgradu x y z a =-=夹角余弦为cos 02A B A Bgradu gradu gradu gradu πϕϕ⋅==⇒=⋅3.求二元函数22z x xy y =-+在点()1,1-沿方向{}2,1l =的方向导数及梯度,并指出z 在该点沿那个方向减少得最快沿那个方向z 的值不变 解:(){}(){}1,11,12,23,3gradz x y y x --=--=-25l ⎧=⎨⎩,{3,3}5zl ∂=-⋅=-∂z 在该点沿梯度相反方向,即方向减少得最快;沿与梯度垂直的那个方向,即±方向z 的值不变 4.设x轴正向到l 得转角为α,求函数()22220,0,x y f x y x y +>=+=⎩在点()0,0处沿着方向l 的方向导数.解:{}cos ,sin ,cos l αααα===由于该函数在点()0,0处不可微,从而不能用公式,只能由定义得出沿着方向l 的方向导数:()()00,0,0lim x y f x y f fl ρρρ→→→→-∂===∂1cos sin sin 22ααα==作业7 偏导数的几何应用1.填空题(1)已知曲面224z x y =--上点P 的切平面平行于平面221x y z ++=,则点P的坐标是(1,1,2);(2)曲面e 23zz xy -+=在点()1,2,0处的切平面方程是24x y +=;(3)由曲线223212x y z ⎧+=⎨=⎩绕y轴旋转一周所得到的旋转曲面在点(M处的指向内侧的单位法向量为0,⎧⎪⎨⎪⎩; (4)曲面2222321x y z ++=在点()1,2,2-处的法线方程是122146x y y -+-==-; (5)已知曲线23,,x t y t z t ===上点P 的切线平行于平面24x y z ++=,则点P的坐标是()1,1,1--或111,,3927⎛⎫--⎪⎝⎭. 2.求曲线22sin ,sin cos ,cos x t y t t z t ===在对应于的点π4t =处的切线和法平面方程.解:切点为{}224111,,,2sin cos ,cos sin ,2cos sin {1,0,1}222T t t t t t tπ⎛⎫=--=- ⎪⎝⎭,从而切线为11110222,11012x z x y z y +-=⎧---⎪==⎨-=⎪⎩, 法平面为110,022x z x z ⎛⎫---=-= ⎪⎝⎭3.求两个圆柱面的交线22221:1x y x z ⎧+=⎪Γ⎨+=⎪⎩在点M 处的切线和法平面的方程.解:1{2,2,0}|//{1,1,0}M n x y =,2{2,0,2}|//{1,0,1}M n x z ={}{}1,1,01,0,1{1,1,1}T =⨯=--==,法平面为0x y z --+= 4.求曲面()22210ax by cz abc ++=≠在点()000,,x y z 处的切平面及法线的方程. 解:000000{2,2,2}//{,,}n ax by cz ax by cz =切平面为0001ax x by y cz z ++=,法线为000000x x y y z z ax by cz ---== 5.求函数22221x y z a b ⎛⎫=-+ ⎪⎝⎭在点M 处沿曲线22221x y a b +=在此点的外法线方向的方向导数.解:2222,,MM x y gradza b a b ⎧⎪⎧⎫=--=--⎨⎬⎨⎩⎭⎪⎪⎩⎭2222,M x y n a b a b ⎧⎫==⎨⎬⎩⎭⎪⎪⎩⎭指向外侧为此点的外法线方向,方向导数为(2a z n gradz n n∂=⋅=-∂6.证明:曲面y z xf x ⎛⎫=⎪⎝⎭在任意点处的切平面都通过原点,其中f 具有连续导数. 证:设切点为()000,,x y z ,则000000000000,,1,y y y y y n f f f z x f x x x x x ⎧⎫⎛⎫⎛⎫⎛⎫⎛⎫⎪⎪''=--=⎨⎬⎪ ⎪ ⎪⎪⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎩⎭ 切平面为()()()000000000000y y y y f f x x f y y z z x x x x ⎡⎤⎛⎫⎛⎫⎛⎫''--+---=⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎣⎦令0x y z ===,得左边等于右边,从而原点在任意点处的切平面上,也即任意点处的切平面都通过原点。
(完整版)高等数学-微积分下-分节习题册答案-华南理工大学(33)

1、试将三重积分(),,f x y z dv Ω⎰⎰⎰化为三次积分,其中积分区域Ω分别为:1) 由双曲抛物面xy z =及平面10,0x y z +-==所围成的区域。
(),,f x y z dv Ω=⎰⎰⎰()110,,xxydx dy f x y z dz-⎰⎰⎰。
2) 由曲面2222,2z x y z x =+=-所围成的区域(),,f x y z dv Ω=⎰⎰⎰()2221212,,x x y dx f x y z dz --+⎰⎰。
2、计算下列三重积分 1)23xy z dv Ω⎰⎰⎰,其中Ω是由曲面xy z =与平面,1,0x y x z ===所围成的闭区域。
解:原式111235612000000111428364x xy xdx dy xy z dz dx x y dy x dx ====⎰⎰⎰⎰⎰⎰ 2)xzdxdydz Ω⎰⎰⎰,其中Ω是由平面,1,0z y y z ===及抛物柱面2y x =所围成的闭区域。
解:原式()221111127101111026yx x dx dy xzdz dx xy dy x x dx ---===-=⎰⎰⎰⎰⎰⎰ 3、利用柱面坐标计算()22x y dv Ω+⎰⎰⎰,其中Ω是由曲面222x y z +=及平面2z =所围成的区域。
解:原式22546222233000201622222123r r r r d dr r dz r dr πθπππ⎛⎫⎡⎤==-=-= ⎪⎢⎥⎝⎭⎣⎦⎰⎰⎰⎰4、利用球面坐标计算()222xy z dv Ω++⎰⎰⎰,其中Ω是由球面2221x y z ++=所围成的闭区域。
解:原式214024sin sin 55d d d d πππππθϕρϕρϕϕ===⎰⎰⎰⎰5、选用适当坐标计算Ω,其中Ω是由球面222x y z z ++=所围成区域。
解:原式522cos 3422001cos sin 2cos sin 42510d d d d ππππϕπϕπθϕρϕρπϕϕϕ⎡⎤===-=⎢⎥⎣⎦⎰⎰⎰⎰。
(完整版)高等数学-微积分下-分节习题册答案-华南理工大学(3)

1、解微分方程:lny xy y x '= 解:ln y y y x x '=,令y u y xu x=⇒=,原方程可化为 ()ln ln 1du du u x u u x u u dx dx+=⇒=- 变量分离两边积分得()()11ln ln 1ln ln 1du dx u x C u u x =⇒-=+-⎰⎰1ln 1ln 1Cx y u Cx Cx y xe x+-=⇒=+⇒= 2、求解初值问题(()()00,10y dx xdy x y -=>=。
解:dy y dx x ==,令y u y xu x =⇒=,原方程可化为du du u xu x dx dx +==变量分离两边积分得(1ln ln dx u x C x =⇒=+⎰⎰ln ln y x C x ⎛ +=+ ⎝ 由()10y =可得0C =,所求函数为y x x =。
3、做适当的变量代换,求下列方程的通解。
1)()2dy x y dx=+ 解:令u x y =+,则有1u y ''=+,原方程可化为21u u '-=关于u 这是一个变量可分离微分方程,变量分离两边积分得()21arctan arctan 1du dx u x C x y x C u =⇒=+⇒+=++⎰⎰()tan y x C x =+-2)求微分方程15dy y x dx x y -+=++ 解:解方程组: 1050y x x y -+=⎧⎨++=⎩得23x y =-⎧⎨=-⎩作变换: 23X x Y y =+⎧⎨=+⎩,则有 1,,5y x Y X dx dX dy dY x y X Y-+-===+++ 原方程化为:dY Y X dX X Y-=+ 令XY u =,则有 11du u X u dX u -+=+ 变量分离: 2111u du dX u X+=-- 两边积分: 2111u du dX u X +=--⎰⎰ 解得: ()21arctan ln 1ln 2u u X C --+=+ 原方程的通解为: ()()()()2222331arctan ln ln 2222x y y x C x x ++++--=++++ 3)()221x y y '+=解:令2u x y =+,则有12u y ''=+,原方程可化为: 222111222u u u u u+''-=⇒= 这是一个变量可分离微分方程,变量分离两边积分得2222122u du dx du x C u u ⎛⎫=⇒-=+ ⎪++⎝⎭⎰⎰⎰u x C =+2x y x C +=+4、求曲线()y y x =,使它正交于圆心在x 轴上且过原点的任何圆(注:两曲线正交是指交点处两曲线切线相互垂直)。
高等数学 下册 (殷锡铭 许树声 著) 华东理工出版社 课后答案 第10章解答

即
2 2 2 cos , 则 cos
2 , 2
0 ,所以
3 3 ,即 a 与 b 的夹角为 。 4 4
** 9.在 yz 平面内求模为 10 的向量 b,使它和向量 a 8i 4 j 3k 垂直。 解:∵ 向量 b 在 yz 平面内, ∵ b a,
即: a1b1 a2b2 a3b3
a1 a2 a3 b1 b2 b3 ,
2
2
2
2
2
2
33
ቤተ መጻሕፍቲ ባይዱ ∴
ai
2 i 1
3
bi
2 i 1
3
a b
i 1
3
i i
。
第 10 章(之 3)
教学内容:§10.3 平面与直线[10.3.1] 1.填空题 *(1) 平行于 x 轴,且过点 P (3,1,2) 及 Q(0,1,0) 的平面方程是______ 。 答: y z 1 **(2) 与 xoy 坐标平面垂直的平面的一般方程为______ 。 答: Ax By d 0
29
1 ,求: 3
(2) 5a 2b 与 a b 的夹角。 解: (1) a b
2
a b
a b
∴ a b
2 2 a b 2a b 4 2 5 2 2 4 5 cos 21 , 3
2
2
a b a b a b ,
2
2 2 2 b 2a b a b 2a b ,
高等数学 下册 (殷锡铭 许树声 著) 华东理工出版社 课后答案 第9章 khdaw

1第9章(之6)(总第49次)教学内容:§9.4.3二阶线性常系数微分方程的解法(A )**1.求下列方程的通解(1);08=+′′y y 解:,,082=+λi 222,1±=λ。
x c x c y 22sin 22cos 21+=(2)'6"+y y 解:62+λλ所以通解为(1)'8''−y y 解:∵82−λ通解为:)1('=c y 得到:1c (2)'4"+y y 解:42+λλ通解为:。
)5sin 5cos (212x c x c e y x +=−代入初始条件有:,πππe c c e y =⇒=+=−221)0()2(,)5cos 55sin 5()5sin 5cos (22('212212x c x c e x c x c e y x x +−++−=−−π得:。
特解为:。
πe c −=1)5sin 5cos (2x x e y x+−=−π2(3);10)0(',6)0(,03'4"===++y y y y y 解:,,0342=++λλ0)3)(1(=++λλ所以通解为。
x x e c e c y 321−−+=代入初始条件有:,6)0(21=+=c c y ,1033)0('21321=−−=−−=−−c c e c e c y x x 特解为:。
x x e e y 3814−−−=**3.求解初值问题1)0(1d 20≥⎪⎩⎪⎨⎧==++′∫x y x y y y x 解:将原方程对求导得x ′′+′+=y y y 201()且有′=−=−y y ()()01201微分方程(1)的通解为:,y e C x C x =+−()12代入初始条件,得,1)0(,1)0(−=′=y y 1,021==C C 故所求问题的解为:。
x e y −=***4.设函数二阶连续可微,且满足方程,求函数。
华南理工大学高数下答案(第九章曲线积分与曲面积分)

华南理工大学高数下答案(第九章曲线积分与曲面积分)、计算对弧长的曲线积分C,其中曲线C是y0某2a的一段弧a0某2aco2解:C的参数方程为y2acoin2原式202aco24a2cod4a244332、计算某yd,其中L星形线某aco3t,yain3t在第一象限的弧L0t272intcot解:原式2acotint3acotintdt3aa3060664443733、计算某yzd,其中为折线ABC,这里A,B,C依次为点0,0,0,1,2,3,1,4,3某t某1解:AB段参数方程y2t0t1,BC段参数方程y22t0t1 z3z3t原式AB某yzdBC某yzd3dt1212tdt1121412t6t18004、计算某2y2d,其中为螺旋线某tcot,ytint,zt上相应于t从0到1的弧。
解:方法一原式tt111112222tdtt2t2t2dt0202221t02111原式lnt4204220方法二、原式tt1112tdt22211u11201u1202211220原式方法三、原式lnu121202ln224tt34222因为tt422lnt11所以lntt421111lntln1ln原式422205、计算L,其中L:某2y2a某a02某aco2解:某ya某raco,曲线L的参数方程为yainco22原式22aco2a220cod2a26、计算L,其中L为圆周某2y2a2,直线y某,y0在第一象限内所围成的扇形的边界。
解:如右图,线段OA的参数方程为某t0t2yt某acot弧AB的参数方程为0t4yaint线段OB的参数方程为某t0tay0aat原式4eadtedt000a4etaet00ae1aaaaaee1ea24427、求曲线某at,ya2at,zt30t1的质量,其密度。
23解:m1aut2020a20a1u23aa388h3a1lnh823ln3a168、求半径为a,中心角为的均匀圆弧(线密度1)的质心。
华南理工大学高等数学统考试卷下

,考试作弊将带来严重后果!华南理工大学期末考试《高等数学(下)》试卷A15分,每小题3分)若(),z f x y =在点()00,x y 处可微,则下列结论错误的是 () )(),z f x y =在点()00,x y 处连续; ()(),,,x y f x y f x y 在点()00,x y 处连续; ()(),,,x y f x y f x y 在点()00,x y 处存在;曲面(),z f x y =在点()()0000,,,x y f x y 处有切平面二重极限22400lim x y xy x y →→+值为( ))0; (B) 1; (C)12; (D)不存在 已知曲面()22:10z x yz ∑=--≥,则222∑=())2π; (B) π; (C) 1; (D) 12π 已知直线34:273x y zL ++==--和平面:4223x y z ∏--=,则( ) )L 在∏内; (B) L 与∏平行,但L 不在∏内;L 与∏垂直; (D) L 与∏不垂直,L 与∏不平行(斜交)、 用待定系数法求微分方程232y y y x '''++=的一个特解时,应设特解的形式y = ( )(A) 2ax ;(B )2ax bx c ++;(C )2()x ax bx c ++;(D )22()x ax bx c ++(本大题共15分,每小题3本分). arctanxz y=,则dz = . 曲线L 为从原点到点(1,1)的直线段,则曲线积分L⎰的值等于3. 交换积分次序后,ln 10(,)e x dx f x y dy =⎰⎰4. 函数22z x xy y =-+在点(1,1)-沿方向{}2,1l =的方向导数为 5. 曲面23zz e xy -+=在点(1,2,0)处的法线方程是三、(本题7分)计算二重积分Dxyd σ⎰⎰,其中D 是由抛物线2y x =及直线2y x =-所围成的闭区域四、(本题7分)计算三重积分zdv Ω⎰⎰⎰,其中Ω是由柱面221x y +=及平面0,1z z ==所围成的闭区域五、(本题7分)计算x d y d zy d z d x z d ∑++⎰⎰,其中∑为旋转抛物面()221z x y z =+≤的上侧六、(本题7分)计算()()3133xy xy Lye x y dx xe x y dy +-+++-+⎰,其中L 为从点(),0a -沿椭圆y =-(),0a 的一段曲线七、(本题6分)设函数()22220,0,0x y f x y x y +≠=+=⎩,证明:1、(),f x y 在点()0,0处偏导数存在,2、(),f x y 在点()0,0处不可微八、(本题7分)设,,y z xf xy f x ⎛⎫= ⎪⎝⎭具有连续二阶偏导数,求2,z z y y x ∂∂∂∂∂九、(本题7分)设x y e =是微分方程()xy p x y x '+=的一个解,求此微分方程的通解十、(本题8分)在第一卦限内作椭球面2222221x y z a b c++=的切平面,使该切平面与三个坐标平面围成的四面体的体积最小,求切点的坐标十一、(非化工类做,本题7分)求幂级数()321111321nn x x x n +-++-++的收敛域及其和函数解:收敛域[1,1]-上()()321111321nn S x x x x n +=-++-++()()()21,00,arctan 1S x S S x x x '===+ 十二、(非化工类做,本题7分)设函数()f x 以2π为周期,它在[,]ππ-上的表达式为()1,00,0,,1,0x f x x x πππ<<⎧⎪=±⎨⎪--<<⎩求()f x 的Fourier 级数及其和函数在x π=-处的值解:()021120,sin n n n a b nxdx n πππ⎡⎤--⎣⎦===⎰ ()f x 的Fourier 级数为411sin sin 3sin 535x x x π⎡⎤+++⎢⎥⎣⎦和函数在x π=-处的值为0十一、(化工类做,本题7分)已知直线1210:320x y L x z +-=⎧⎨+-=⎩和212:123y z L x +--==证明:12//L L ,并求由1L 和2L 所确定的平面方程十二、(化工类做,本题7分)设曲线积分()2Lxy dx y x dy ϕ+⎰与路径无关,其中()x ϕ连续可导,且()00ϕ=,计算()()()1,120,0xy dx y x dy ϕ+⎰一1B 2D3B 4B5B二122ydx xdyx y-+ 21e - 310(,)ye e dyf x y dx ⎰4 512,021x y z --== 三解:2221458y y I dy xydx +-==⎰⎰四、解:11201,.22DI z dz or d zdz πππσ===⎰⎰⎰⎰五、解:32xyD I dv dxdy πΩ=-+=-⎰⎰⎰⎰⎰六、解:4(31)22aaDI dxdy x dx ab a π-=++=+⎰⎰⎰七、解:()()(),00,00,0lim0x x f x f f x→-==,()()()00,0,00,0lim0y y f y f f y →-==,0,00,0limx y f x y f x f y∆→∆→∆∆-∆-∆22200lim()x y x yx y ∆→∆→∆∆=∆+∆极限不存在故不可微八解:22212111222,2z z y x f f xf x yf f y y x x∂∂'''''''=+=+-∂∂∂ 九、解:()()1x xx e p x e -=,求10xx e y y e-'+=得x x e y ce -+=从而通解为xx e x y ce e -+=+十解:设切点()000,,x y z ,切平面方程为0002221xx yy zz a b c++=,四面体体积为2220006a b c V x y z =令2222221x y z F xyz a b c λ⎛⎫=+++- ⎪⎝⎭2200x y z x F yz a F F F λλ⎧=+=⎪⎨⎪===⎩()000,,x y z =⎝⎭ 十一、证:{}{}121,2,3,1,2,3s s =--=-,故12//L L由这两条直线所确定的平面方程为210x y +-=十二解:()()22,,xy y x x x ϕϕ'==()()()1,120,012xy dx y x dy ϕ+=⎰。
华南理工大学《高等数学》(下册)期末试题及答案三

华南理工大学《高等数学》(下册)期末试题及答案三华南理工大学《高等数学》(下册)期末试题及答案三《高等数学》(下册)测试题三一、填空题1.若函数f(x,y) 2x2 ax xy2 2y在点(1, 1)处取得极值,则常数a 5. 2.设f(x)1xedy,则 f(x)dxxy1e 1. 23.设S是立方体0 x,y,z 1的边界外侧,则曲面积分sx5dydz y6dzdx z7dxdy 3 .4.设幂级数n 0n 13na(x 1)ax的收敛半径为,则幂级数的收敛区间为 n nn 12,4 .5.微分方程y 3y 4y x2e 4x用待定系数法确定的特解(系数值不求)的形2 4x式为y xax bx ce.二、选择题sin2(x2 y2), 221.函数f(x,y) x y2,x2 y2 0,x2 y2 0,在点(0,0)处( D ).(A)无定义;(B)无极限;(C)有极限但不连续;(D)连续. 2.设z sec(xy 1),则z( B ). x(A)sec(xy 1)tan(xy 1);(B)ysec(xy 1)tan(xy 1);(C)ytan(xy 1);(D) ytan(xy 1).2222223.两个圆柱体x y R,x z R公共部分的体积V为( B ).22(A)2 (C)Rdx (B)y;8 dx0R RRy;y.RRdxy;4 dx (D)k4.若an 0,Snak 1n,则数列 Sn 有界是级数收敛的( A ). 1。
(完整版)高等数学-微积分下-分节习题册答案-华南理工大学(28)

1、选择题1)对于级数1n n a ∞=∑,"lim 0"n n a →∞=使它收敛的( B )条件。
A 、充分B 、必要C 、充要D 、非充分且非必要 2)“部分和数列{}n S 有界”,是正项级数1nn a∞=∑收敛的( C )条件。
A 、充分B 、必要C 、充要D 、非充分且非必要 3)若级数1nn a∞=∑绝对收敛,则级数1nn a∞=∑必定( A )。
A 、收敛B 、发散C 、绝对收敛D 、条件收敛 4)若级数1nn a∞=∑条件收敛,则级数1nn a∞=∑必定( B )。
A 、收敛B 、发散C 、绝对收敛D 、条件收敛2、用适当的方法判别下列级数的敛散性 1)()11ln 1n n ∞=+∑解:用比较判别法,和调和级数11n n∞=∑比较因为()11ln 1n n >+,级数()11ln 1n n ∞=+∑发散。
2)n ∞= 解:用比较判别法,因为431n n n →∞==,而级数4131n n ∞=∑收敛,级数1n ∞=3)2n n n ∞=+解:用比较判别法,因为2322lim 12n n n n n→∞→∞⎛⎫=+= ⎪⎝⎭级数3121n n∞=∑收敛,由比较判别法极限形式可得12n n n ∞=+收敛。
4)411!n n n ∞=+∑解:用比值判别法,因为()()()4444111!111limlim 01111!n n n n n n n n n →∞→∞+++++=⋅=<+++,级数411!n n n ∞=+∑收敛 5)()112n n n n ∞=++∑解:用比较判别法,因为()121lim lim 112n n n n n n n n →∞→∞+++==+,级数()112n n n n ∞=++∑发散。
6)()11,,0n a b na b∞=>+∑解:用比较判别法,因为11lim lim 1n n na b a b a n n →∞→∞+==+,级数11n na b ∞=+∑发散。
最新华东理工大学高等数学(下册)第11章作业答案

第 11 章(之1)(总第59次)教材内容:§11.1多元函数 1.解下列各题:**(1). 函数f x y x y (,)ln()=+-221连续区域是 ⎽⎽⎽⎽⎽⎽⎽ . 答:x y 221+>**(2). 函数f x y xy x y x y x y (,)=++≠+=⎧⎨⎪⎩⎪222222000, 则( )(A) 处处连续 (B) 处处有极限,但不连续(C) 仅在(0,0)点连续 (D) 除(0,0)点外处处连续 答:(A )**2. 画出下列二元函数的定义域: (1)=u y x -;解:定义域为:{}x y y x ≤),(,见图示阴影部分:(2))1ln(),(xy y x f +=;解:{}1),(->xy y x ,第二象限双曲线1-=xy 的上方,第四象限双曲线1-=xy 的下方(不包括边界,双曲线1-=xy 用虚线表示).(3)yx yx z +-=. 解:()()⎩⎨⎧-≠≥⇔⎩⎨⎧≠+≥+-⇔≥+-y x y x y x y x y x y x y x 000.***3. 求出满足22,y x x y y x f -=⎪⎭⎫ ⎝⎛+的函数()y x f ,. 解:令⎪⎩⎪⎨⎧=+=x yt y x s , ∴⎪⎩⎪⎨⎧+=+=t st y t s x 11∴()()()t t s t t s s t s f +-=+-=111,22222, 即 ()()y y x y x f +-=11,2. ***4. 求极限:()()220,0,11limyx xy y x +-+→.解:()()()()()22222222112111110yx xy y x yx xy xyyx xy ++++≤+++=+-+≤()011222→+++=xy y x (()()0,0,→y x ) ∴()()011lim220,0,=+-+→yx xy y x .**5. 说明极限()()22220,0, lim y x y x y x +-→不存在.解:我们证明()y x ,沿不同的路径趋于()0,0时,极限不同.首先,0=x 时,极限为()()1lim 2222220,0,0-=-=+-→=y y y x y x y x x ,其次,0=y 时,极限为()()1lim 2222220,0,0==+-→=x x y x y x y x y ,故极限()()22220,0,y y lim +-→x x y x 不存在.**6. 设112sin ),(-+=xy x y y x f ,试问极限),(lim )0,0(),(y x f y x →是否存在?为什么?解:不存在,因为不符合极限存在的前提,在)0,0(点的任一去心邻域内函数112sin ),(-+=xy x y y x f 并不总有定义的,x 轴与y 轴上的点处函数),(y x f 就没有定义.***7. 试讨论函数z x yxy=+-arctan1的连续性. 解:由于arctan x yxy+-1是初等函数,所以除xy =1以外的点都连续,但在xy =1上的点处不连续.**8. 试求函数f x y xyx y(,)sin sin =+22ππ的间断点.解:显然当(,)(,),x y m n m n Z =∈时,f x y (,)没定义,故不连续. 又f x y xyx y(,)sin sin =+22ππ是初等函数. 所以除点(,)m n (其中m n Z ,∈)以外处处连续.第 11 章(之2) (总第60次)教材内容:§11.2 偏导数 [§11.2.1]**1.解下列各题: (1)函数32),(y x y x f +=在)0,0(点处 ( )(A ))0,0(x f '和)0,0(y f '都存在; (B ))0,0(x f '和)0,0(y f '都不存在; (C ))0,0(x f '存在,但)0,0(y f '不存在; (D ))0,0(x f '不存在,但)0,0(y f '存在. 答:(D ).(2) 设z x y xy =+-()arcsin2,那么∂∂z y (!,)2= ( )(A) 0 ; (B) 1; (C)π2; (D)π4. 答:(D).(3)设()xy y x f =,,则=)0,0('x f ______,=)0,0('y f __________.解:由于0)0,(=x f ,0)0,0('=∴x f ,同理 0)0,0('=y f .**2. 设z x y x y e xy =-+++2322ln , 求 z z x y ,. 解:z x x y ye x xy=+++1322, z y x yxe y xy =-+++2322.**3. 求函数xyz arctan =对各自变量的偏导数. 解:2222,y x xz y x y z yx +=+-=.**4. 设f x y x x y x y x y (,)ln()=++≠+=⎧⎨⎩222222200,求f f x y (,),(,)0000.解:f x x x x x (,)limln 000022==→, f yy y (,)lim 000000=-=→.***5. 求曲线⎩⎨⎧=+-=122x y xy x z 在()1,1,1点处切线与y 轴的夹角.解:由于曲线在平面1=x 内,故由 ()()()121,11,1=+-=y x z y ,得切线与y 轴的夹角为 41arctan π=.[也可求出切向量为{}1,1,0]∴夹角={}{}422arccos12110,1,01,1,0arccos 22π==+.***6. 设函数ϕ(,)x y 在点)0,0(连续,已知函数f x y x y x y (,)(,)=-ϕ在点)0,0(偏导数)0,0(x f '存在,(1)证明ϕ(,)000=; (2)证明)0,0(y f '也一定存在.解:(1)lim(,)(,)lim (,)∆∆∆∆∆∆∆x x f x f x x x x→→-=000000ϕ, 因为)0,0(x f '存在,所以 lim (,)lim(,)∆∆∆∆∆∆∆∆x x x x x x x x→+→-⋅=-⋅0000ϕϕ 即 ϕϕ(,)(,)0000=-, 故 ϕ(,)000=.(2)由于ϕ(,)x y 在点)0,0(连续,且ϕ(,)000=,所以0→∆y 时,),0(y ∆ϕ是无穷小量,而yy ∆∆是有界量,所以0),0(lim )0,0(),0(lim00=∆∆∆=∆-∆→∆→∆yy y y f y f x y ϕ,即0)0,0(='y f .第 11 章(之3) (总第61次)教材内容:§11.2 偏导数 [§11.2.2 ~ 11.2.4]**1. 求函数()x y z x z y x f sh ch ,,-=的全微分,并求出其在点()2ln ,1,0=P 处的梯度向量.解:()()()x y d z x d z y x df sh ch ,,-=()zdzx xdy dx x y z xdxy xdy zdz x zdx sh sh ch ch ch sh sh ch +--=--+=∴()()dx z y x df 41,,2ln ,1,0=, ()()⎭⎬⎫⎩⎨⎧=∇0,0,41,,2ln ,1,0z y x f . **2.求函数xyyx z -+=1arctan的全微分: 解:xyyx d dz -+=1arctan)arctan (arctan y x d +=2211)(arctan )(arctan y dy x dx y d x d +++=+=**3. 设z xy xy =-sec ()ln()21,求d z .解:222)]1[ln()]1d[ln()(sec )](d[sec )]1[ln(d ----=xy xy xy xy xy z)]d d (1)(sec )d d )(tan()(sec 2)1[ln()]1[ln(1222y x x y xy xy y x x y xy xy xy xy +--+--= )1(ln )(cos )1()d d ](1)1)(tan()1ln(2[22--+---=xy xy xy y x x y xy xy xy .**4. 利用df f ≈∆,可推出近似公式:()()()y x df y x f y y x x f ,,,+≈∆+∆+, 并利用上式计算()()2203.498.2+的近似值.解:由于()()()y x df y x f y y x x f ,,,+≈∆+∆+, 设()22,y x y x f +=,03.0,02.0,4,3=∆-=∆==y x y x ,于是 ()2222,yx y y x x yx ydy xdx y x df +∆+∆=++=,()()22,,yx y y x x y x f y y x x f +∆+∆+≈∆+∆+,∴()()()()012.54303.0402.034303.498.2222222=++-++≈+.***5.已知圆扇形的中心角为60=α,半径为cm r 20=,如果α增加了 1,r 减少了1cm ,试用全微分计算面积改变量的近似值. 解:180212παrS =, ))(2(3602ααπd r dr dS +=,∴ )(4533.17)3601)20(360)1(60202(22cm dS S -=⨯+-⨯⨯⨯=≈∆π.***6. 计算函数()()z y x z y x f 32ln ,,++=在点()0,2,1=P 处沿给定方向k j i l-+=2 的方向导数Plf∂∂.解:zy x f zy x f zy x f z y x 323,322,321++=++=++=,⎭⎬⎫⎩⎨⎧-=61,61,62l e ,∴ 65161,61,6253,52,51=⎭⎬⎫⎩⎨⎧-⋅⎭⎬⎫⎩⎨⎧=⋅∇=∂∂l Pe f lf.***7. 函数z xy=++arctan 11在(0,0)点处沿哪个方向的方向导数最大,并求此方向导数的值. 解:∂∂z xx y y(,)(,)0020011111112=+++⎛⎝ ⎫⎭⎪⋅+=, ∂∂z yx y x y (,)(,)()00220011111112=+++⎛⎝ ⎫⎭⎪⋅-++⎡⎣⎢⎤⎦⎥=-,{}{}∂∂ααααϕz l =+-=-⋅=1212121122cos ()sin ,cos ,sin cos , 其中ϕ为{} l =cos ,sin αα与 g =-⎧⎨⎩⎫⎬⎭1212,的夹角,所以ϕ=0时,即l 与g 同向时,方向导数取最大值∂∂z l =22.**8. 对函数 xyze z y xf =),,( 求出 ),,(z y x f ∇ 以及 )3,2,1(f ∇.解: {}xyz xyz xyzxye xze yze f ,,=∇,{}2,3,6)3,2,1(6e f =∇.**9. 求函数z y x z y x f 1)(),,(+=在点)21,21,21(-+=e e P 处的梯度. 解:⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧++-++=∇--)ln()(,)(1,)(1211111y x z y x y x z y x z f z z z , {}24,2,2)21,21,21(e e e e ef -=-+∇.***10. 讨论函数⎪⎩⎪⎨⎧=+≠+++=0,00,1sin ),(22222222y x y x y x y x y x f 在点(0,0)处的连续性,可导性和可微性.解:因为 lim (,)lim sin(,)x y x y f x y x y x y f →→→→=++==022221000,所以f x y (,)在点(0,0)连续.因为 lim(,)(,)lim sin ()∆∆∆∆∆∆∆x x f x f x x x x →→+-=00200001, 极限不存在,f x y (,)在(0,0)处不可导,从而在(0,0)处不可微.第 11 章(之4)(总第62次)教材内容:§11.3 复合函数微分法;§11.4 隐函数微分法**1.解下列各题:(1) 若函数),(v u f 可微,且有x x x x x f ++=3422),(及122),(22 +-='x x x x f u ,则),(2 x x f v '= ( )(A) 1222++x x(B) xx x 21322++ (C) 1222+-x x(D) 1322++x x答:(A)(2)设函数z z x y =(,)由方程xy z x y z 2=++所确定,则∂∂zy=_________. 答: 2112xyz xy-- .(3)方程yzx z ∂∂=∂∂3,在变量代换y x u 3+=,y x v +=3下,可得新方程为_______. 答:0=∂∂uz.**2. 设u x y z x r y r z r =++===222,cos sin ,sin sin ,cos θϕθϕϕ求∂∂∂∂θ∂∂ϕu r u u ,,.解:()∂∂θϕθϕϕurx y z r =++=2222cos sin sin sin cos ,0)sin cos (2]sin )sin ([2=+-=ϕθθϕ∂θ∂r y r x u,0sin 2)cos sin (2)cos cos (2=-+=ϕϕθϕθ∂ϕ∂r z r y r x u.**3. 一直圆锥的底半径以3s cm /的速率增加,高h 以5s cm /的速率增加,试求r=15cm ,h=25cm 时其体积的增加速率. 解:h r V 231π=, s cm h r dtdVdtdhr dt dr rh dt dh h V dt dr r V dt dV /11252515313232πππ===+=⋅∂∂+⋅∂∂=*4. 设,3y e z x -=而4,sin t y t x ==,求dtdz. 解:32334cos y t t e dtdy z dt dx z dt dz xy x -=+=.**5. 若)(22y x f xy z -=,证明:z y z x y z y x x z xy 2222+=∂∂+∂∂. 解:22222,2ff xy xf z f f y x yf z y x '+='-=, 则 z y z x fy x xy yz x z xy y x 222222)(+=+=+. **6. 设 )cos ,,(2x xy ye xe f u x y =,求du yux u ,,∂∂∂∂. 解:3221)2sin cos (f x xy x y f ye f e xux y -++=∂∂ , 3221cos xf x f e f xe yux y ++=∂∂, [][]dy xf x f e f xe dx f x xy x y f ye f e du x y x y 32213221cos )2sin cos (+++-++=.**7. 求由方程y z z x ln =所确定的函数),(y x z z =的偏导数yz x z ∂∂∂∂,. 解:zx zyz y zx zFz Fx z x +=---=-=21,yz xy z z z x y Fz Fy z y +=---=-=2211.**8. 设,0),,(=+xz z y xy F 试求dz yzx z ,,∂∂∂∂. 解:,0),,(=+xz z y xy F 两边对x 求导,得 0)(321=+++x x xz z F F z yF , 解得 3231xF F zF yF z x ++-=,两边对y 求导,得 0)1(321=+++y y xz F z F xF . 解得3221xF F F xF z y ++-= ,所以dy xF F F xF dx xF F zF yF dz 32213231++-++-=.***9. 函数z z x y =(,)由方程F x x y z z xy (,,)+++=1所确定,其中F 具有连续一阶偏导数,F F 230+≠,求∂∂z x 和∂∂z y. 解:F x x y z F z y x x y F 1230d (d d d )(d d d )++++++=,d ()d ()d z F F yF x F xF yF F =-+++++1232323,∂∂z x F F yF F F =-+++12323, ∂∂z y F xF F F =-++2323. ***10. 求由方程z xyz aa 3330-=≠()所确定的隐函数z z x y =(,)在坐标原点处沿由向量{}a =--12,所确定的方向的方向导数. 解:当x y ==00,时,z a 00=≠.0,0)0,0(2)0.0()0,0(2)0.0(=-==-=xyz xz yz xyz yz xz ∂∂∂∂,0=∂∂∴az.***11. 设)0(,1,022≠+=+=-y x xv yu yv xu 求yv y u x v x u ∂∂∂∂∂∂∂∂,,,. 解: ⎪⎪⎩⎪⎪⎨⎧=∂∂+∂∂+=∂∂-∂∂+00x v x x u y v xv y x u x u ⎪⎪⎩⎪⎪⎨⎧+--=∂∂++-=∂∂⇒2222y x yu xv x v y x yv xu x u类似地 ⎪⎪⎩⎪⎪⎨⎧=∂∂+∂∂+=∂∂--∂∂00y v x y u y u y v y v y ux ⎪⎪⎩⎪⎪⎨⎧++-=∂∂+--=∂∂⇒2222y x yv xu yv y x xv yu y u第 11 章 (之5)(总第63次)教材内容:§11.5 多元函数微分法在几何上的应用**1. 曲面x y z xyz x z 2222426-+--+=在点)2,1,0(=A 处的切平面方程为 ( ) (A )31223110()()x y z -+--+= (B )3234x y z +-= (C )032213=--+-+z y x (D )x y z 31223=-=-- 答:(A).**2.设函数F x y z (,,)可微,曲面F x y z (,,)=0过点)0,1,2(-=M ,且F F F x y z (,,),(,,),(,,)210521022103-=-=--=-.过点M 作曲面的一个法向量,已知n 与x 轴正向的夹角为钝角,则n 与z 轴正向的夹角γ=______ . 答:π3.***3. 设曲线x t y t z t =+=-=+2131223,,在t =-1对应点处的法平面为S ,则点)1,4,2(-=P 到S 的距离d =______ .答:2.**4. 求曲线ct z t b y t a x L ===,sin ,cos :在点)2,0,(0c a M π=处的切线和法平面方程. 解:,0sin 00=-===t t t a dt dx,cos 00b t b dt dy t t =-=== cdtdzt ==0.∴切线方程为:⎪⎩⎪⎨⎧-==⇔-=-=-c c z by ax c c z b y a x ππ2200,法平面方程为:0)2(=-+c z c by π.***5. 求曲线6,11:==++xyz zx yz xy L 在点)3,2,1(0=M 处的切线和法平面方程.解:设 11),,(-++=zx yz xy z y x F ,6),,(-=xyz z y x G ,)()()(),(),(2x y z z x yz z y xz xz yz z x zy y x G F +-=+-+=++=∂∂,)()()(),(),(2z y x y x xz z x xy xy zx x y z x z y G F -=+-+=++=∂∂,)()()(),(),(2x z y z y xy y x zy zyxy z y y x x z G F -=+-+=++=∂∂.∴8),(),(,1),(),(,9),(),(0=∂∂-=∂∂-=∂∂M M M x z G F z y G F y x G F ,∴切线方程为938211--=-=--z y x , 法平面方程为 ()()()()()0948211=--+-+--z y x ,即 01298=-+-z y x .***6. 求曲面4416222x y z ++=在点1,22,1(-=P )处的法线在yOz 平面上投影方程.解:曲面在点1,22,1(-=P )处的法线方向向量{}{}2,2,248,24,8-=-=→n ,法线方程为:x y z -=-=+-1222212.法线在yOz 平面上投影方程为212220-+=-=z y x .***7.求曲线x t y t z t ===3223,,上的点,使曲线在该点处的切线平行于平面x y z +-=21.解:设所求的点对应于t t =0,则对应的切线方向向量为: {}3,4,3020t t s =→.因为→s 垂直于平面法向量{}1,2,1-=→n ,所以0383020=-+=⋅→→t t n s , 解得:t 013=和t 03=-.所求点为:127291,,⎛⎝ ⎫⎭⎪和(,,)--27189.**8.求曲面xyz 6=上平行于平面.06236=+--z y x 的切平面方程. 解:26,6xyy z xyx z -=∂∂-=∂∂, ∴由条件,得:⎪⎩⎪⎨⎧-=-==⇒⎪⎪⎪⎭⎪⎪⎪⎬⎫-=--=-=-32121366622z y x k k x y k yx∴切平面方程为:,0)3(2)2(3)1(6=+-+--z y x 即 018236=---z y x .***9.求函数22y x ez +=在点),(000y x M =沿过该点的等值线的外法线方向的方向导数.解:等值线方程为x y x y 220202+=+, 在),(000y x M =处的法线斜率为 00x y k =,即法线方向向量为 },1{00x y n =或},{00y x ,方向余弦为:cos cos αβ=+=+x x yy x y0020200202,∂∂zn e x x x y e y y x y x y x y =⋅⋅++⋅⋅+++0202020222000202000202=⋅++202020202e x y x y .***10. 求函数z y x =+sin 在⎪⎭⎫⎝⎛=1,2πP 点沿 a 方向的方向导数,其中 a 为曲线x t y t ==22sin ,cos π在t =π6处的切向量(指向t 增大的方向). 解:tan d d sin cos αππππ==-=-==y xt tt t 66222,1sin 11cos 22+-=+=ππαπα,,221sin 210sin 2cos 1,21,21,21,2=+==+=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛ππππ∂∂∂∂xy yz xy x xz ,,所以 ∂∂πππz a =⨯++⨯-+011122122()()1222+-=ππ.***11. 设f y z g z (,),()都是可微函数,求曲线x f y z y g z ==⎧⎨⎩(,)()在对应于z z =0点处的切线方程和法平面方程.解:z z =0对应点()f g z z g z z [(),],(),0000, 对应的切线方向向量:{}S f g z z g z f g z z g z y z ='+'[(),]()[(),],(),0000001.切线方程:x f g z z f g z z g z f g z z y g z g z z z y z -'+=-'=-[(),][(),]()[(),]()()0000000000,法平面方程: {}{}f g z z g z f g z z x f g z z y z [(),]()[(),][(),]0000000'+-+'-+-=g z y g z z z ()[()]()0000.****12. 在函数yx u 11+=的等值线中哪些曲线与椭圆16822=+y x 相切?解:对等值线 y x u 110+= 两边微分得 022=--ydy x dx , 即 22x y dx dy -=, 同样对16822=+y x 两边微分,有yx dx dy 8-=, 令y xxy 822-=-,得 y x 2=,代入16822=+y x ,得 32,34±=±=y x ,∴ 433110±=+=y x u .***13. 试证明曲面3a xyz =上任一点处的切平面在三个坐标轴上截距之积为定值.解:由3a xyz =, 得 xya z 3=,∴在点),,(000z y x 处法向量为:⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧-1,,02030203x y a y x a, ∴切平面为:0)()(0020300203=-+-+-z z y y y x a x x y x a ,又 ∵3000a z y x =, ∴ 切平面方程化为:1333000=++z zy y x x , ∴ 截距之积为: 30002727a z y x =(定值).***14. 证明曲面0,=⎪⎭⎫⎝⎛----c z b y c z a x F 的所有切平面都通过一个定点,这里F u v (,)具有一阶连续偏导数.解:曲面上点(,,)x y z 000处的切平面法向量:[]F z c F z c z c x a F y b F =-----+-⎧⎨⎩⎫⎬⎭10200201021,,()()()[]{}=-----+-10201020102()(),(),()()z c z c F z c F x a F y b F . 切平面方程为: ()()()()z c F x x z c F y y 010020--+--[]0)()()(02010=--+--z z F b y F a x .易知x a y b z c ===,,满足上述方程,即曲面的所有切平面都通过定点(,,)a b c .第 11 章 (之6)(总第64次)教学内容:§11.6泰勒展开1.填空:*(1)设u xy yx=+,则∂∂22u x =________ .答:32xy. *(2)设u x xy =ln ,则∂∂∂2ux y= _________.答:y1. *(3)设u x y y x =+22sin cos ,则∂∂∂2ux y= _________ .答: x y y x sin 2cos 2-.*(4)设u x yxy=+-arctan 1,则∂∂∂2u x y =_______ .答:0 .**(5)设z e y e y xx=+-sin cos ,则∂∂∂∂2222z x zy+= _________.答:0.**2.设z f x u =(,)具有连续的二阶偏导数,而u xy =,求∂∂22zx.解:z f yf x x u =+, z f yf y f xx xx xu uu =++22.**3.设z x xy =ln(),求∂∂∂32zx y.解一: z x yy =, z yyx =1, z yx 20=.解二: z xy x =+ln()1, z xx 21=, z yx 20=.**4.设)2,21(),()(4322xy z y x xf xy f y z 求+=. 解:)(3)()('43434324y x f y x y x f xy f y z x ++=,,4)("3)('124)('2)(")('4334343433333432423yx y x f y x y x f y x x y y x f yx xy f y xy f y z xy ⋅++⋅+⋅+=∴)2("24)2('12)2('4)2("32)2('32)2,21(f f f f f z xy ++++= )2("56)2('48f f +=.**5.函数y y x =()由方程x xy y 2221+-=所确定,求22d d xy. 解:xy yx y x y x x y -+=-+-=2222d d ,222)())(1())(1(d d x y y x y x y y x y -+-'--'+= 322)()2(2x y y xy x --+-=3)(2y x -=. ***6.求方程 zy ez x +=+ 所确定的函数),(y x z z =z=z(x,y)的所有的二阶偏导数.解:xz e x z z y ∂∂⋅=∂∂++1, ∴ 11-=∂∂+zy e x z .3222)1()1(--=-∂∂⋅-=∂∂++++z y zy zy z y e e e x ze x z, 因为 )1(y z e y z zy ∂∂+=∂∂+, ∴zy z y z y e e e y z +++-+-=-=∂∂1111. 则 3222)1()1()1(z y z y z y z y e e e yze y z ++++-=-+∂∂=∂∂, 322)1()1()1(z y z y z y z y e e e yze yx z ++++--=-+∂∂-=∂∂∂, 322)1()1(-=-∂∂=∂∂∂++++z y z y z y zy e e e x ze x y z .***7.对于由方程0),,(=z y x F 确定的隐函数),(y x z =,试求 22xz ∂∂.解:由公式zx F F x z-=∂∂两边对x 求偏导数,得。
华南理工网络教育高等数学B(下)参考答案

+ C ,其中 C为任意常数
(? ) .
2. 函数 f (x, y)
1ห้องสมุดไป่ตู้
定义域为 {x,y| + > 16 } .
x 2 y 2 16
3. 若D是由x y=2、x轴、y轴围成的闭区域,则在计算 f (x, y)d 等于
D
() .
4. 级数 (2 3n)收敛性为 发散 (填“收敛”、“发散”或“无法判断敛散性” ).
一、判断题
1. y y
y4
y
4
+xy
0 是三阶微分方程 .
2. y y
y4
y
4
+xy
0 是四阶微分方程 .
(? ) (? )
3. 设函数 f ( x, y) 在 ( x0, y0) 点的偏导数存在,则 f ( x, y) 在 (x0, y0) 点可微 .
4. 设函数 f ( x, y) 在 ( x0, y0) 点的可微,则 f ( x, y) 在 ( x0 , y0) 点偏导数存在 .
D
解: D区域为如右图所示的阴影部分
原式 =
=
=
=
∴二重积分
=
6. 计算二重积分 x2d , 其中 D 是由圆 x2 y2 4 和 x2 y2 16 之间的环形区域 .
D
解: D区域为右图所示的阴影部分
由于是环形区域,所以可以用极坐标来表示
即 2 ≤r ≤4 ,0≤ ≤2 ,而被积函数则可
写成 f(r
由公式 y =
(C+
) 可得该方程的通解
y=
( C+
)
=
(C+ )
∴ 该微分方程的通解是 y =
(完整版)华南理工大学《高等数学》(下册)期末试题及答案三

《高等数学》(下册)测试题三一、填空题1.若函数22(,)22f x y x ax xy y =+++在点(1,1)-处取得极值,则常数a =5-. 2.设1()e d x yxf x y =⎰,则1()f x dx =⎰12e -. 3.设S 是立方体1,,0≤≤z y x 的边界外侧,则曲面积分567d d d d d d sx y z y z x z x y ++=⎰⎰Ò 3 . 4.设幂级数nnn a x ∞=∑的收敛半径为3,则幂级数11(1)n n n na x ∞+=-∑的收敛区间为()2,4-.5.微分方程2434exy y y x -'''+-=用待定系数法确定的特解(系数值不求)的形式为()24e x y x ax bx c -=++.二、选择题1.函数22222222sin 2(),0,(,)0,2,x y x y f x y x yx y ⎧++≠⎪=+⎨⎪+=⎩在点(0,0)处( D ).(A )无定义; (B )无极限;(C )有极限但不连续; (D )连续. 2.设sec(1)z xy =-,则zx∂=∂( B ). (A )sec(1)tan(1)xy xy --; (B )sec(1)tan(1)y xy xy --; (C )2tan (1)y xy -; (D )2tan (1)y xy --.3.两个圆柱体222x y R +≤,222x z R +≤公共部分的体积V 为( B ).(A)02d Rx y ⎰; (B)08d Rx y ⎰;(C)d RRx y -⎰; (D)4d R Rx y -⎰.4.若0n a ≥,1nn kk S a==∑,则数列{}n S 有界是级数收敛的( A ).(A )充分必要条件; (B )充分条件,但非必要条件; (C )必要条件,但非充分条件; (D )既非充分条件,又非必要条件.5.函数sin y C x =-(C 为任意常数)是微分方程22d sin d yx x=的( C ).(A )通解; (B )特解; (C )是解,但既非通解也非特解; (D )不是解. 三、求曲面e e4x y zz+=上点0(ln 2,ln 2,1)M 处的切平面和法线方程.解:{}{}022M 11e ,e ,e e 2,2,4ln 2//1,1,2ln 2xy x y z z z zx y n z z z z ⎧⎫=--=--⎨⎬⎩⎭r 切平面为()ln 2ln 22ln 212ln 20x y z x y z -+---=+-= 法线为1ln 2ln 22ln 2z x y --=-=-四、求通过直线 0:20x y L x y z +=⎧⎨-+-=⎩的两个互相垂直的平面,其中一个平面平行于直线1:L x y z ==.解:设过直线L 的平面束为()20,x y z x y λ-+-++= 即()(){}1120,1,1,1x y z n λλλλ+--+-==+-r第一个平面平行于直线1:L x y z ==,即有{}{}111,1,11,1,1210,2n s λλλλ⋅=+-⋅=+==-r r从而第一个平面为{}1111120,324,1,3,223x y z x y z n ⎛⎫⎛⎫--++-=-+==- ⎪ ⎪⎝⎭⎝⎭r 第二个平面要与第一个平面垂直,也即{}{}11,3,21,1,11332260,3n n λλλλλλ⋅=-⋅+-=+-++=-+==r r从而第二个平面为4220x y z ++-=五、求微分方程430y y y '''-+=的解,使得该解所表示的曲线在点(0,2)处与直线2240x y -+=相切.解:直线2240x y -+=为2,1y x k =+=,从而有定解条件()()01,02y y '==, 特征方程为()()212430,310,3,1r r r r r r -+=--===方程通解为312xx y c ec e =+,由定解的初值条件122c c +=3123x x y c e c e '=+,由定解的初值条件1231c c +=从而1215,22c c =-=,特解为31522x x y e e =-+ 六、设函数()f u 有二阶连续导数,而函数(e sin )xz f y =满足方程22222e xz z z x y∂∂+=∂∂ 试求出函数()f u .解:因为()()()()222sin ,sin sin xx x z z f u e y f u e y f u e y x x∂∂''''==+∂∂ ()()()()222cos ,cos (sin )xx x z z f u e y f u e y f u e y y y∂∂''''==+-∂∂ ()()222222()e ,()0x x z zf u e f u f u f u x y∂∂''''+==⇒-=∂∂ 特征方程为()2121210,1,1,uur r r f u c e c e --===-=+ 七、计算曲面积分222(cos cos cos )dS xy yx z αβγ∑++⎰⎰Ò, 其中∑是球体2222x y z z ++≤与锥体z ≥Ω的表面,cos α,cos β,cos γ是其外法线方向的方向余弦.解:两表面的交线为222222122122,0,1,1x y z z x y z z z z z z ⎧++=⎧+=⎪⇒===⇒⎨⎨==⎩⎪⎩原式()222xy z dv Ω=++⎰⎰⎰,投影域为22:1D x y +≤,用柱坐标:02,01,1r r z θπΩ≤≤≤≤≤≤原式)()2111122222rrd rdr rz dz r r z zπθπ=+=+⎰⎰⎰()(12220211r r r r dr π⎡⎤=+-⎢⎥⎣⎦⎰()()()113134220013122t t dt r r r dr ππ⎡⎤=--+-+--⎢⎥⎣⎦⎰⎰()()11532452200221113125345t t r r r ππ⎡⎤⎛⎫=--⋅-+-- ⎪⎢⎥⎝⎭⎣⎦21181127022154551010πππππ⎡⎤⎛⎫=--+--=+= ⎪⎢⎥⎣⎦⎝⎭另解:用球坐标:02,0,02cos 4πθπϕρϕΩ≤≤≤≤≤≤原式()2cos 24222000sin 2cos sin d d d πϕπθϕρϕρϕρϕρ=+⎰⎰⎰()2cos 443302sin 2cos sin d d πϕπϕρϕρϕϕρ=+⎰⎰()545735022cos cos 2cos cos 5d ππϕϕϕϕ⎛⎫=--+ ⎪⎝⎭⎰1684579494216555658t t t t dt ππ⎛⎛⎫=-=⋅-⋅ ⎪⎭⎝6831161010t t π⎛=- ⎝2710π=八、试将函数2()e d xt f x t -=⎰展成x 的幂级数(要求写出该幂级数的一般项并指出其收敛区间). 解:()220n=01()e d d n!n xxt n f x t t t ∞-⎛⎫-==⎪ ⎪⎝⎭∑⎰⎰()()()21n=01,,!21nn x x n n ∞+-=∈-∞+∞+∑九、判断级数)0,0(1>>∑∞=βαβαn nn 的敛散性.解:()11lim lim 1n n n n n nu n u n ααβρββ++→∞→∞==⋅=+ 当01,1βρ<<<,级数收敛;当1,1βρ>>,级数发散; 当1,1βα=>时级数收敛;当1,01βα=<≤时级数发散十、计算曲线积分222(1e )d (e 1)d y y Lx x x y ++-⎰,其中L 为22(2)4x y -+=在第一象限内逆时针方向的半圆弧.解:再取1:0,:04L y x =→,围成半圆的正向边界 则 原式11222(1e )d (e 1)d y y L L L x x x y +=-++-⎰⎰()44200101122D dxdy x dx x x ⎛⎫=-+=-+=- ⎪⎝⎭⎰⎰⎰十一、求曲面S :222124x z y ++=到平面π:2250x y z +++=的最短距离.解:问题即求d =在约束222124x z y ++=下的最小值 可先求()()22,,9225f x y z d x y z ==+++在约束222124x z y ++=下的最小值点 取()()2222,,225124x z L x y z x y z y λ⎛⎫=++++++- ⎪⎝⎭()()42250,422520,x y L x y z x L x y z y λλ=++++==++++=()22222250,1224z z x z L x y z y λ=++++=++=0λ≠时212,41,,12x y z y y x z ====±==±,211521151111,,13,1,,123233d d +++---+⎛⎫⎛⎫==---== ⎪ ⎪⎝⎭⎝⎭这也说明了0λ=是不可能的,因为平面与曲面最小距离为13。
华南理工大学高数(下)习题册答案汇总

第七章 多元函数微分学作业1 多元函数1.填空题(1)已知函数22,y f x y x y x ⎛⎫+=- ⎪⎝⎭,则(),f x y =()()22211x y y -+; (2)49arcsin2222-+++=y x y x z 的定义域是(){}22,49x y x y ≤+≤; (3))]ln(ln[x y x z -=的定义域是(){}(){},,0,1,0,1x y x y x x y x x y x >>+⋃<<≤+;(4)函数⎪⎩⎪⎨⎧=≠=0,0,sin ),(x y x x xyy x f 的连续范围是 全平面 ;(5)函数2222y x z y x+=-在22y x =处间断.2.求下列极限`(1)00x y →→;解:000031lim 6x t t y t →→→→===-(2)22()lim (ex y x y x y -+→+∞→+∞+).解:3y x =22()2()lim (e lim (e 2x y x y x yx x y y x y x y xe ye -+-+--→+∞→+∞→+∞→+∞⎡⎤+=+-⎣⎦)) 由于1lim e lim lim 0tt t t t t t t e e-→+∞→+∞→+∞===,2222lim e lim lim lim 0tt t t t t t t t t t e e e -→+∞→+∞→+∞→+∞====,故22()2()lim (elim (e 20x y x y x y x x y y x y x y xe ye -+-+--→+∞→+∞→+∞→+∞⎡⎤+=+-=⎣⎦)) 3.讨论极限26300lim y x yx y x +→→是否存在.解:沿着曲线()()3,,0,0y kx x y =→,有336626262000lim lim 1x x y kx x y kx kx y x k x k →→=→==+++因k 而异,从而极限26300lim y x yx y x +→→不存在 !4.证明⎪⎩⎪⎨⎧=+≠++=0,00,2),(222222y x y x y x xyy x f 在点)0,0(分别对于每个自变量x 或y都连续,但作为二元函数在点)0,0(却不连续.解:由于(,0)0,(0,)0,f x f y ≡≡从而可知在点)0,0(分别对于每个自变量x 或y 都连续,但沿着曲线()(),,0,0y kx x y =→,有2222222000222lim lim 1x x y kx xy kx kx y x k x k →→=→==+++因k 而异, 从而极限()0lim ,x y f x y →→不存在,故作为二元函数在点)0,0(却不连续.;作业2 偏导数1.填空题(1)设22),(y x y x y x f +-+=,则=)4,3(x f 25; (2)(3)设(),ln 2y f x y x x ⎛⎫=+⎪⎝⎭,则1x y f y==∂=∂12; (3)设2sin x u xz y =+,则42ux y z∂=∂∂∂ 0 ;(4)曲线22:44x y z y ⎧+=⎪Γ⎨⎪=⎩在点()2,4,5处的切线与Ox 轴正向的倾角是4π. ¥2.设2exy u =, 证明 02=∂∂+∂∂yu y x u x.证:因为222312,xxy yu ux e e x y y y ∂∂-==∂∂ 所以222223*********x x x xy y y y u u x x x x y xe ye e e x y y y y y∂∂--+=+=+=∂∂3. 设xyz ln =,求22x z ∂∂,yx z∂∂∂2.解:ln ln x yz e⋅=,从而222ln ln ln ln ln ln ln 222ln ln ln ln ln ,,x y x y x y x z y z y y y y e e e y x x x x x x ⋅⋅⋅∂∂--⎛⎫=⋅=⋅+⋅= ⎪∂∂⎝⎭—2ln ln ln ln ln ln ln 11ln ln 1x y x y x z y x y x e e y x y x y x y xy⋅⋅∂⋅+=⋅⋅+⋅⋅=∂∂4.设y x z u arctan =, 证明 0222222=∂∂+∂∂+∂∂zuy u x u . 解:因为()()2222222222211022,1uyz u yz x xyzz xy x y x x x y x y y ∂∂-⋅-=⋅⋅===∂+∂⎛⎫+++ ⎪⎝⎭()()2222222222221022,1u x xz u xz y xyzz yy x y y x x y x y y ∂--∂-⋅=⋅⋅==-=∂+∂⎛⎫+++ ⎪⎝⎭22arctan ,0,u x uz y x∂∂==∂∂ 所以()()2222222222222200u u u xyz xyzx y z x y x y ∂∂∂-++=++=∂∂∂++ 5.设函数()()2221sin ,0,0,x x y x f x y xx ⎧+≠⎪=⎨⎪=⎩.(1)试求(),f x y 的偏导函数; 解:当()()()3222221110,,42sin cos x x f x y x xyx x y xx x-≠=+++⋅()21,2sin y f x y x y x =,()()()322211,42sin cos x f x y x xy x y x x=+-+(当()()()()222001sin 0,0,0,0,lim lim 00x x x x x y f x y f y x x f y x x→→+--≠===-()()()000,0,000,limlim 00y y y f y y f y f y y y ∆→→+∆--===∆-∆,()()()322211,42sin cos x f x y x xy x y x x=+-+(2)考察偏导函数在()0,3点处是否连续.()()200331lim ,lim 2sin00,3y y x x y y f x y x y f x→→→→===,故(),y f x y 在()0,3点处连续, ()()()3222003311lim ,lim 42sin cos x x x y y f x y x xy x y x x →→→→⎡⎤=+-+⎢⎥⎣⎦不存在,从而(),x f x y 在()0,3点处不连续作业3 全微分及其应用1.填空题(1)),(y x f z =在点),(00y x 处偏导数存在是),(y x f z =在该点可微的必要 条件;(2)函数23z x y =在点()2,1-处,当0.02,0.01x y ∆=∆=-时有全增量)z ∆=0.2040402004-,全微分d z =0.20-;(3)设),(y x f z =在点),(00y x 处的全增量为z ∆,全微分为dz ,则),(y x f 在点),(00y x 处的全增量与全微分的关系式是()z dz o dz ∆=+;(4)22yx x u +=在点)1,0(处的d u =dx ;(5)xy u cos )(ln =,则d u =cos cos (ln )ln ln sin ln x x y y xdx dy y y ⎡⎤-⋅+⎢⎥⎣⎦; (6)zyx u )(=,则d u =()ln z x z z x dx dy dz y x y y ⎛⎫-+⎪⎝⎭;(7)2221zy x u ++=,则d u = ()()3222212x y z -++ .2.证明:(),f x y =在点()0,0处连续,()0,0x f 与()0,0y f 存在,但在()0,0处不可微.证:由于(0,)0,(,0)0,f y f x ==从而(0,0)0,(0,0)0.y x f f ==但是limlimx x y y ∆→∆→∆→∆→=不存在,从而在()0,0处不可微.;3.设函数()()222222221sin ,0,0,0x y x y x y f x y x y ⎧++≠⎪+=⎨⎪+=⎩试证:(1)函数(),f x y 在点()0,0处是可微的;证:因为 ()()()()2201sin0,00,00,0limlim 0,0,000x y x x x f x f x f f x x →→--====--又()()()22221sinlimlim0x x y y x y x y ∆→∆→∆→∆→∆+∆∆+∆==)所以函数(),f x y 在点()0,0处是可微的(2)函数(),x f x y 在点()0,0处不连续.证:当()222222221210,,2sincos x x x y f x y x x y x y x y +≠=-+++()2222220000121lim ,lim 2sin cos x x x y y x f x y x x y x y x y ∆→∆→∆→∆→⎛⎫=- ⎪+++⎝⎭不存在, 故(),x f x y 在点()0,0处不连续作业4 多元复合函数的求导法则1.填空题(1)设2ln ,,32yz u v u v y x x===-,则 z x ∂=∂()()223222ln 3232y y y x x x y x ----; |(2)设22,cos ,sin z x y xy x u v y u v =-==,则zv∂=∂()333sin cos sin 2sin sin 2cos u v v v v v v +--; (3)设()22,zu x y z x y =-=+,则u x ∂=∂()()222ln z x y x y x x y x y ⎡⎤+--+⎢⎥-⎣⎦;(4)设2sin z x y x ==,则dd zx =2x . 2.求下列函数的偏导数(1)设,,x y u f y z ⎛⎫=⎪⎝⎭其中f 具有一阶连续偏导数,求,u x ∂∂u y ∂∂和uz ∂∂; 解:111,f u f x y y ∂=⋅=∂121222222211,u x x u y yf f f f f f y y z y z z z z∂--∂--=⋅+⋅=+=⋅=∂∂ (2)设(),,,u f x y z =()(),,,z y t t y x ϕψ==,其中,,f ϕψ均可微,求u x ∂∂和uy∂∂. 解:因为1231212,,du f dx f dy f dz dz dy dt dt dy dx ϕϕψψ=++=+=+ 从而()1231212du f dx f dy f dy dy dx ϕϕψψ=++++⎡⎤⎣⎦~()()1322231321f f dx f f f ϕψϕϕψ=+++++所以1322231321,u u f f f f f x yϕψϕϕψ∂∂=+=++∂∂ 3.验证下列各式 (1)设()22yz f x y =-,其中()f u 可微,则211z z z x x y y y ∂∂+=∂∂; 证:因为222212,z xyf z y f x f y f f''∂-∂==+∂∂ 所以222211121121z z z xyf y f zx x y y x x f y f f yf y''⎛⎫∂∂∂-+=++== ⎪∂∂∂⎝⎭ (2)设()23y z xy x ϕ=+,其中ϕ可微,则220z zx xy y x y ∂∂-+=∂∂. 证:因为()()222,33z y z y y xy x xy x x y xϕϕ∂∂''=-+=+∂∂ 所以22z z x xy y x y ∂∂-+=∂∂()()2222233y y x y xy xy x xy y x x ϕϕ⎛⎫⎛⎫''-+-++ ⎪ ⎪⎝⎭⎝⎭()()22222033y y x y xy y x y xy y ϕϕ''=-+--+=-4.设22,,y z xf x x ⎛⎫= ⎪⎝⎭其中函数f 具有二阶连续偏导数,求2z x y ∂∂∂.解:因为221212222,z y y f x f f f xf f x x x ⎛⎫∂-=++⋅=+- ⎪∂⎝⎭所以22212212222222222z y y y y y y f xf f f xf f f x y y x x x x x x⎡⎤∂∂=+-=+⋅--⋅⎢⎥∂∂∂⎣⎦ 31222224y yf f x=-4.设)()(xy x x y u ψϕ+=其中函数ψϕ,具有二阶连续偏导数,试证:022222222=∂∂+∂∂∂+∂∂y u y y x u xy x u x . 证:因为222223432,u y y u y y y x x x x x x x ϕψψϕϕψ∂-∂'''''''=+-=++∂∂222322211,,u y y u u x y x x x y x y x xϕψϕϕψϕψ''''∂∂∂'''''''=---=+=+∂∂∂∂ 从而左边222234323222120y y y y y x xy y x x x x x x x x ϕψϕϕψϕϕψ''''⎛⎫⎛⎫⎛⎫''''''''''=+++---++= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭作业5 隐函数求导法1.填空题*(1)已知3330x y xy +-=,则d d y x =22x yx y --;(2)已知20x y z ++-=,则x y ∂=∂(3)已知xzz y =,则d z =2ln ln z dy yz zdxxy yz y--;(4)已知222cos cos cos 1x y z ++=,则d z =sin 2sin 2sin 2xdx ydyz+-;(5)已知(),z f xz z y =-,其中f 具有一阶连续偏导数,则d z =12121zf dx f dyxf f ---.2.设(),0,F y z xy yz ++=其中F 具有二阶连续偏导数,求22zx∂∂.解:212120,yF z z z F F y y x x x F yF -∂∂∂⎛⎫+⋅+=⇒= ⎪∂∂∂+⎝⎭ ()()[]()22122122122221212x x x F z F y yz F yF F F yF F z y y x x F yF F yF '⋅+++-+⎡⎤⎛⎫∂∂⎣⎦=-=- ⎪∂∂++⎝⎭()()()()()2222112111222212221231212y F F F yF F F yF y F F F F F yF F yF -+++⎡⎤-⎣⎦=+++3.求由方程组222222320z x yx y z ⎧=+⎪⎨++=⎪⎩所确定的()y x 及()z x 的导数d d y x 及d d z x .$解:由已知()2222222602460dz xdx ydy dz xdx ydy xdx dz xdx zdz xdx ydy zdz -=⎧=+⎧⎪⇒⎨⎨+-+=++=⎪⎩⎩ ()()22606,132623220xdx z dz dz x dy x xy dx z dxy yz xdx ydy z xdx ydy -++=⎧+⎪⇒⇒==-⎨+++++=⎪⎩4.设函数()z f u =,又方程()()d xy u u P t t ϕ=+⎰确定u 是,x y 的函数,其中()f u 与()u ϕ均可微;()(),P t u ϕ'连续,且()1u ϕ'≠. 试证:()()0z zP y P x x y∂∂+=∂∂. 证:因为()(),z u z uf u f u x x y y∂∂∂∂''=⋅=⋅∂∂∂∂, ()()()(),1P x u u u u P x x x x u ϕϕ∂∂∂'=⋅+='∂∂∂- ()()()(),1P y u u uu P y y y y u ϕϕ-∂∂∂'=⋅-='∂∂∂- ()()()()()()()()()()011P x P y z zP y P x P y f u P x f u x y u u ϕϕ-∂∂''+=+=''∂∂--5.设函数()f u 具有二阶连续偏导数,而()e sin x zf y =满足方程22222e x z zz x y∂∂+=∂∂,求()f u . 】解:因为()()()()222sin ,sin sin x xx z z f u e y f u e y f u e y x x∂∂''''==+∂∂()()()()222cos ,cos (sin )x xx z z f u e y f u e y f u e y y y∂∂''''==+-∂∂()()222222()e ,()0x x z zf u e f u f u f u x y∂∂''''+==⇒-=∂∂ 特征方程为()2121210,1,1,u u r r r f u c e c e --===-=+作业6 方向导数与梯度1.填空题(1)在梯度向量的方向上,函数的变化率 最大 ; (2)函数在给定点的方向导数的最大值就是梯度的 模 ; (3)函数2249z x y =+在点()2,1的梯度为grad z ={16,18};(4)函数xyz u =在点)1,1,1(处沿方向}cos ,cos ,{cos γβα=l的方向导数是@cos cos cos αβγ++,且函数u 在该点的梯度是{1,1,1};(5)函数e cos()xu yz =在点)0,0,0(处沿方向}2,1,2{-=l 的方向导数是23;(6)函数)ln(22z y x u ++=在点)1,0,1(A 处沿A 指向点)2,2,3(-B 方向的方向导数是12. 2.求222z y x u -+=在点)0,0,(a A 及点)0,,0(a B 处的梯度间的夹角.解:{}2,2,2{2,0,0}AAgradux y z a =-={}2,2,2{0,2,0}B Bgradu x y z a =-=夹角余弦为cos 02A B A Bgradu gradu gradu gradu πϕϕ⋅==⇒=⋅3.求二元函数22z x xy y =-+在点()1,1-沿方向{}2,1l =的方向导数及梯度,并指出z 在该点沿那个方向减少得最快沿那个方向z 的值不变解:(){}(){}1,11,12,23,3gradz x y y x --=--=-5l =⎨⎩,{3,3}zl∂=-⋅=∂ )z 在该点沿梯度相反方向,即方向减少得最快;沿与梯度垂直的那个方向,即±方向z 的值不变 4.设x轴正向到l 得转角为α,求函数()22220,0,x y f x y x y +>=+=⎩在点()0,0处沿着方向l 的方向导数.解:{}cos ,sin ,cos l αααα===由于该函数在点()0,0处不可微,从而不能用公式,只能由定义得出沿着方向l 的方向导数:()()00,0,0lim x y f x y f fl ρρρ→→→→-∂===∂1cos sin sin 22ααα==作业7 偏导数的几何应用1.填空题(1)已知曲面224z x y =--上点P 的切平面平行于平面221x y z ++=,则点P的坐标是(1,1,2); !(2)曲面e 23zz xy -+=在点()1,2,0处的切平面方程是24x y +=;(3)由曲线223212x y z ⎧+=⎨=⎩绕y轴旋转一周所得到的旋转曲面在点(M处的指向内侧的单位法向量为0,⎧⎪⎨⎪⎩; (4)曲面2222321x y z ++=在点()1,2,2-处的法线方程是122146x y y -+-==-; (5)已知曲线23,,x t y t z t ===上点P 的切线平行于平面24x y z ++=,则点P的坐标是()1,1,1--或111,,3927⎛⎫--⎪⎝⎭. 2.求曲线22sin ,sin cos ,cos x t y t t z t ===在对应于的点π4t =处的切线和法平面方程.解:切点为{}224111,,,2sin cos ,cos sin ,2cos sin {1,0,1}222T t t t t t tπ⎛⎫=--=- ⎪⎝⎭,从而切线为11110222,11012x z x y z y +-=⎧---⎪==⎨-=⎪⎩,法平面为110,022x z x z ⎛⎫---=-= ⎪⎝⎭3.求两个圆柱面的交线22221:1x y x z ⎧+=⎪Γ⎨+=⎪⎩在点M 处的切线和法平面的方程.解:1{2,2,0}|//{1,1,0}M n x y =,2{2,0,2}|//{1,0,1}M n x z =&{}{}1,1,01,0,1{1,1,1}T =⨯=--==,法平面为0x y z --+= 4.求曲面()22210ax by cz abc ++=≠在点()000,,x y z 处的切平面及法线的方程. 解:000000{2,2,2}//{,,}n ax by cz ax by cz =切平面为0001ax x by y cz z ++=,法线为000000x x y y z z ax by cz ---== 5.求函数22221x y z ab ⎛⎫=-+ ⎪⎝⎭在点M 处沿曲线22221x y a b +=在此点的外法线方向的方向导数.解:2222,,MM x y gradza b a b ⎧⎪⎧⎫=--=--⎨⎬⎨⎩⎭⎪⎪⎩⎭2222,M x y n a b a b ⎧⎫==⎨⎬⎩⎭⎪⎪⎩⎭指向外侧为此点的外法线方向,方向导数为(2a z ngradz n n ∂=⋅=-∂6.证明:曲面y z xf x ⎛⎫=⎪⎝⎭在任意点处的切平面都通过原点,其中f 具有连续导数. —证:设切点为()000,,x y z ,则000000000000,,1,y y y y y n f f f z x f x x x x x ⎧⎫⎛⎫⎛⎫⎛⎫⎛⎫⎪⎪''=--=⎨⎬ ⎪ ⎪ ⎪ ⎪⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎩⎭切平面为()()()000000000000y y y y f f x x f y y z z x x x x ⎡⎤⎛⎫⎛⎫⎛⎫''--+---=⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎣⎦令0x y z ===,得左边等于右边,从而原点在任意点处的切平面上,也即任意点处的切平面都通过原点。
高等数学-微积分下-分节习题册答案-华南理工大学(3)(可编辑修改word版)

yxyy11、解微分方程: xy'=y lnyx解:y'=ylny,令u =y⇒y =xu ,原方程可化为x x xu +xdu=u ln u ⇒xdu=u (ln u -1)dx dx1 1变量分离两边积分得⎰u (ln u -1)du =⎰x dx ⇒ ln (ln u -1)= ln x +Cln u -1 =Cx ⇒ lny=Cx + 1 ⇒y =xe Cx+1x2、求解初值问题(y+dx -xdy = 0 (x > 0), y (1)= 0 。
dy解:dx=yxu +xdu=u,令u =⇒y=xu ,原方程可化为x⇒xdudx dx变量分离两边积分得⎰ 1 du =⎰1 dx ⇒ ln (u = ln x +C⎛ln +x = ln x +C⎝由 y (1)= 0 可得C = 0 ,所求函数为x3、做适当的变量代换,求下列方程的通解。
1)dy=(x +y )2dx解:令u =x +y ,则有u'=1 +y',原方程可化为u'-1 =u2=x 。
关于u 这是一个变量可分离微分方程,变量分离两边积分得⎰1 +u2du = ⎰dx ⇒ arctan u =x +C ⇒ arctan (x+y )=x +Cy = tan (x+C )-x2)求微分方程dy= y -x + 1dx x +y + 5⎧y -x +1= 0 ⎧x =-2解:解方程组:⎨x +y + 5 = 0得⎨y =-3⎩⎩2⎨2⎝ ⎭u 2作变换:⎧ X = x + 2⎩Y = y + 3,则有dx = dX, dy = dY ,y - x + 1 =Y - Xx + y + 5 X + Y原方程化为:YdY =Y - X dX X + Y du u -1令u =,则有XX + u = dX1 + u 变量分离: 1 + u -1 - u2 1 + u du = 1dXX 1 两边积分:解得:⎰ -1 - u 2 du = ⎰ X dX-arctan u - 1ln (1 + u 2 ) = ln X + C原方程的通解为:3) ( x + 2 y )2y ' = 1-arctan y + 3 - 1 ln x + 2 2 ( x + 2)2 + ( y + 3)2( x + 2)2= ln ( x + 2) + C解:令u = x + 2 y ,则有u ' = 1 + 2 y ' ,原方程可化为:1 u ' - 1 = 12 2 u 2⇒ ' = 2 + u 2u 这是一个变量可分离微分方程,变量分离两边积分得u 2 ⎛2 ⎫ ⎰ 2 + u 2 du = ⎰ dx ⇒ ⎰ 1 - 2 + u 2 ⎪ du = x + Cu - 2 arctanu= x + C 2x + 2 y - 2 arctan x + 2 y= x + C4、求曲线 y = y ( x ) ,使它正交于圆心在 x 轴上且过原点的任何圆(注:两曲线正交是指交点处两曲线切线相互垂直)。
华南理工数学试题及答案

华南理工数学试题及答案一、单项选择题(每题4分,共40分)1. 函数f(x)=x^2+2x+1的最小值是()。
A. 0B. 1C. 2D. 3答案:B2. 极限lim(x→0) (sin(x)/x)的值是()。
A. 0B. 1C. πD. 2答案:B3. 矩阵A=\[\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}\]的行列式是()。
A. -2B. 2C. 5D. 8答案:A4. 函数y=e^x的反函数是()。
A. ln(x)B. e^xC. x^eD. x^2答案:A5. 曲线y=x^3-3x^2+2在点(1,0)处的切线斜率是()。
A. 0B. 1C. -1D. 2答案:C6. 函数f(x)=x^3-6x^2+11x-6的零点个数是()。
A. 1B. 2C. 3D. 4答案:C7. 函数f(x)=x^2-4x+4的值域是()。
A. [0, +∞)B. (-∞, 0]C. (-∞, 4]D. [4, +∞)答案:A8. 极限lim(x→∞) (x^2-3x+2)/(x^2+2x+1)的值是()。
A. 1B. 0C. 2D. -1答案:A9. 函数y=ln(x)的定义域是()。
A. (0, +∞)B. (-∞, 0)C. (-∞, +∞)D. [0, +∞)答案:A10. 函数f(x)=x^2-4x+3的对称轴是()。
A. x=2B. x=-2C. x=1D. x=-1答案:A二、填空题(每题4分,共20分)1. 函数f(x)=x^3-3x的导数是______。
答案:3x^2-32. 函数f(x)=x^2-4x+4的极小值是______。
答案:03. 函数f(x)=x^2-6x+8的零点是______。
答案:2和44. 函数y=e^x的不定积分是______。
答案:e^x+C5. 函数f(x)=x^3-3x^2+2的单调递增区间是______。