全等三角形判定的条件
三角形全等的判定方法5种例题+练习全面
教学内容全等三角形的判定教学目标掌握全等三角形的判定方法重点全等三角形的判定探索三角形全等的条件(5种)1边角边(重点)两边及其夹角分别分别相等的两个三角形全等,可以简写成“边角边”或“SAS”.注:必须是两边及其夹角,不能是两边和其中一边的对角.原因:如图:在A ABC和A ABD中,/ A= / A,AB=AB,BC=BD,显然这两个三角形不全等.A例 1 如图,AC=AD, / CAB= / DAB,求证:A ACB义A ADB.AD例 2 如图,在四边形 ABCD 中,AD〃BC, / ABC= /DCB, AB=DC, AE=DF 求证:BF=CE.例3.(1)如图①,根据“SAS",如果BD=CE, =,那么即可判定4BDC24CEB; (2)如图②,已知BC=EC, NBCE二ACD,要使4ABC2△口£&则应添加的一个条件为例4. 如图,已知AD=AE,N1=N2, BD=CE,则有4ABD2,理由是△ABE义,理由是.例5.如图,在4ABC和4DEF中,如果AB=DE, BC=EF,只要找出N=N 或〃,就可得到4ABC2△DEF.A D例6.如图,已知AB〃DE, AB=DE, BF=CE,求证:4ABC24口£艮例 7.如图,点B 在线段AD 上,BC〃DE, AB=ED, BC=DB. 求证:NA二NE 例8.如图,点E, F 在BC 上,BE=CF, AB=DC, NB=NC.求证: NA=ND.2.角边角两角及其夹边分别相等的两个三角形全等(可以简写成“角边角”或“ASA”)例1.如图,在4ABC中,点D是BC的中点,作射线AD,线段AD及其延长线上分别取点E, F,连接CE,BF.添加一个条件,使得4BDF24CDE,你添加的条件是:.(不添加辅助线)例2. 如图,已知人口平分/8人&且N ABD=N ACD,则由“AAS”可直接判定△^A.B例 3.如图,在 RtA ABC 中,N ACB=90°, BC=2cm, CD^AB,在AC 上取一点E,使EC二BC, 过点E作EF^AC交CD的延长线于点F,若EF=5cm,那么AE=cm.例4.如图,AD〃BC,N ABC的角平分线BP与/8人口的角平分线AP相交于点P,作PE L AB于点E.若PE=2,则两平行线AD与BC间的距离为.例 5.如图,已知EC=AC, ZBCE=ZDCA, NA=NE.求证:BC=DC.例6.如图,在4ABC中,D是BC边上的点(不与B, C重合),F, E分别是AD及其延长线上的点,CF〃BE.请你添加一个条件,使4BDE24CDF (不再添加其他线段,不再标注或使用其他字母),并给出证明.(1)你添加的条件是:;(2)证明:例7.如图,A在DE上,F在AB上,且BC=DC,N1=N2=N3,则DE的长等于()A. DCB. BCC. ABD. AE+AC【基础训练】1 .如图,已知 AB = DC,NABC=NDCB,则有4ABC2,理由是;且有2 .如图,已知AD=AE,N1 = N2, BD = CE,则有4ABD2,理由是;△ ABF /,理由是.3 .如图,在4ABC 和ABAD 中,因为 AB = BA,NABC=NBAD, =,根 据“SAS”可以得到4ABC2ABAD.4 .如图,要用“SAS”证4ABC2AADE,若AB=AD, AC=AE,则还需条件( ).5 .如图,OA=OB, OC = OD,NO=50°,N D = 35°,则NAEC 等于( ).A. 60°B. 50°C. 45°D. 30°A.NB = ND C.N1 = N2 BNC=NED.N3 = N4(第4皿(第56.如图,如果AE=CF, AD〃BC, AD = CB,那么^ADF和ACBE全等吗?请说明理由.律f题)7.如图,已知AD与BC相交于点O,NCAB = NDBA, AC = BD.求证: (1)NC=ND;(2)AAOC^ABOD.C第T题)8.如图,AACD和4BCE都是等腰直角三角形,NACD=NBCE=90°, AE交DC于F, BD分别交CE、AE于点G、H.试猜测线段AE和BD的位置和数量关系,并说明理由.(第8题)9.如图,在4ABC 中,AB=AC, AD 平分/BAC.求证:NDBC=NDCB.(第KJ题)10.如图,4ABC是等边三角形,D是AB边上的一点,以CD为边作等边三角形CDE,使点E、A在直线DC的同侧,连接AE.求证:AE〃BC.(第门题)角角边两角分别相等且其中一组等角的对边相等的两个三角形全等,可以简写成“角角边”或“AAS”. 例1、如图,在4ABC中,N ABC=45°, H是高AD和高BE的交点,试说明BH=AC.例 2、如图,N ACB=90°, AC二BC, BE±CE, AD±CE 于 D, AD=2.5cm, DE=1.7cm. 求BE的长.例3、如图,在4ABC中,AC±BC, CE±AB于E, AF平分/CAB交CE于点F,过F作FD〃 BC交AB于点D.求证:AC=AD.例 3.如图,AD 平分/BAC, DEXAB 于 E, DFXAC 于 F,且 DB二DC,求证:EB=FC例4.如图,在4ABC中,D是BC的中点,DELAB, DFXAC,垂足分别是E, F, BE=CF. 求证:AD 是4ABC的角平分线.例5.如图,在4ABC中,AB二CB,N ABC=90°, D为AB延长线上的一点,点E在BC 边上,连接 AE, DE, DC, AE二CD.求证:NBAE二NBCD.例6.如图,D是BC上一点,DEL AB, DF±AC, E, F分别为垂足,且AE=AF.(1)AAED与4AFD全等吗?为什么?(2)AD平分/BAC吗?为什么?例 7.如图,已知 ACLBC, BDLAD, BC 与 AD 交于 O, AC=BD.试说明:ZOAB=ZOBA.例8.如图,NACB 和/ADB都是直角,BC二BD, E是AB上任意一点.求证:CE=DE.例 9.如图,已知RtAABC^RtAADE,ZABC=Z ADE=90°, BC 与 DE 相交于点 F, CD, EB.连接(1)图中还有几对全等三角形,请你一一列举;(2)求证:CF=EF.例10.如图,在四边形ABCD中,AC 平分/BAD,并且CB=CD.求/ABC+NADC的度数.例11. (1)如图①,A, E, F, C四点在一条直线上,AE二CF,过点E, F分别作DELAC, 8尸,八0连接BD交AC于点G,若AB二CD,试说明FG=EG.(2)若将4DCE沿AC方向移动变为如图②的图形,(1)中其他条件不变,上述结论是否仍成立?请说明理由.B BD D①. ②课后练习:1.如图,点C在线段AB的延长线上,AD = AE, BD = BE, CD = CE,则图中共有对全等三角形,它们是2.如图,若AB = CD, AC=BD,则可用“SSS”证 23.如图,已知 AB = DC, BE=CF,若要利用“SSS”得到4ABE2△DCF,还需增加的一个条件是.i第3题)(第-I题)4.如图所示是一个由四根木条钉成的框架,拉动其中两根木条后,它的形状将会改变,若想固定其形状不变,需要加钉一根木条,可钉在().A. AE 上B. EF 上C. CF 上D. AC 上5.如图,已知E、C两点在线段BF上,BE=CF, AB=DE, AC=DF.求证:AABC2A DEF.& E C F(第三⑦6.如图,在4ABC和4DCB中,AC与BD相交于点O, AB=DC, AC=BD.(1)求证:4ABC 2ADCB;(2)AOBC的形状是.(直接写出结论,不需证明)<第6题)7、如图,在口ABCD中,点E、F分别是AD、BC的中点,AC 与EF相交于点O.(1)过点B作AC的平行线BG,延长EF交BG于点H;(2)在(1)的图中,找出一个与4BFH全等的三角形,并证明你的结论.8、如图,已知BD±AB, DC,AC,垂足分别为点B、C, CD=BD, AD 平分/BAC吗,为什么?9.如图,四边形ABCD是正方形,点G是BC上的任意一点,DELAG于E, BF#DE,交 AG于F.那NAF与BF+EF相等吗?请说明理由.B G C10.如图,BD、CE分别是4ABC的边AC和边AB上的高,如果BD = CE,试证明AB = AC.11.如图,在RtAABC和RtABAD中,AB为斜边,AC=BD, BC、AD相交于点E (1)请说明AE=BE 的理由;(2)若N AEC=45°, AC = 1,求 CE 的长.12.如图,在4ABC中,D是BC的中点,DELAB, DFLAC,垂足分别是点E、F, BE= CF.(1)图中有几对全等的三角形?请一一列出;(2)选择一对你认为全等的三角形进行证明.4练习21.如图,已知NB = NDEF, AB=DE,要证明△ ABC2△DEF.(1)若以“ASA”为依据,还缺条件;(2)若以“AAS”为依据,还缺条件£(第1期】《第2题)2.如图,已知AD平分/BAC,且NABD=NACD,则由“AAS”可直接判定△2 △.3.如图,已知AB=AC,要根据“ASA”得到以BE2AACD,应增加一个条件是 _______________(第3 (第4(第54.如图,点P是/AOB的平分线OC上的一点,PD±OA, PE LOB,垂足分别为点D、E, 则图中有对全等三角形,它们分别是.5.如图,某同学把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的方法是().A.带①去B.带②去C.带③去D.带①和②去6.如图,已知AC平分/8八口,/1 = /2, AB与AD相等吗?请说明理由.C£第67.如图,点B、E、F、C在同一直线上,已知NA=ND, 需要补充的一个条件是.(写出一个即可)NB = NC,要使4ABF 2ADCE,8.如图,在4ABC中,N ABC=45°, H是高AD和高BE的交点,试说明BH=AC.A9.如图,已知点A、D、B、E在同一条直线上,且AD=BE,NA=NFDE,则AABC2A DEF.请你判断上面这个判断是否正确,如果正确,请给出说明;如果不正确,请添加一个适当条件使它成为正确的判断,并加以说明.10.已知:如图,AB=AE,N1 = N2,NB = NE.求证:BC=ED.21。
(完整版)全等三角形证明方法(最新整理)
全等三角形的证明方法一、三角形全等的判定:(1)三组对应边分别相等的两个三角形全等(SSS);(2)有两边及其夹角对应相等的两个三角形全等(SAS) ;(3)有两角及其夹边对应相等的两个三角形全等(ASA) ;(4)有两角及一角的对边对应相等的两个三角形全等(AAS) ;(5)直角三角形全等的判定:斜边及一直角边对应相等的两个直角三角形全等(HL).二、全等三角形的性质:(1)全等三角形的对应边相等;全等三角形的对应角相等;(2)全等三角形的周长相等、面积相等;(3)全等三角形的对应边上的高对应相等;(4)全等三角形的对应角的角平分线相等;(5)全等三角形的对应边上的中线相等;三、找全等三角形的方法:(1)可以从结论出发,看要证明相等的两条线段(或角)分别在哪两个可能全等的三角形中;(2)可以从已知条件出发,看已知条件可以确定哪两个三角形相等;(3)从条件和结论综合考虑,看它们能一同确定哪两个三角形全等;(4)若上述方法均不行,可考虑添加辅助线,构造全等三角形。
三角形全等的证明中包含两个要素:边和角。
①积极发现隐含条件:公共角对顶角公共边②观察发现等角等边:等边对等角同角的余角相等同角的补角相等等角对等边等角的余角相等等角的补角相等③推理发现等边等角:图1:平行转化图2 :等角转化图3:中点转化图4 :等量和转化图5:等量差转化图6:角平分线性质转化图7:三线合一转化图8:等积转化图9:中垂线转化图10:全等转化图11:等段转化四、构造辅助线的常用方法:1、关于角平分线的辅助线:当题目的条件中出现角平分线时,要想到根据角平分线的性质构造辅助线。
角平分线具有两条性质:①角平分线具有对称性;②角平分线上的点到角两边的距离相等。
关于角平分线常用的辅助线方法:(1)截取构造全等:如下左图所示,OC是∠AOB的角平分线,D为OC上一点,F为OB上一点,若在OA上取一点E,使得OE=OF,并连接DE,则有△OED≌△OFD,从而为我们证明线段、角相等创造了条件。
全等三角形的判定方法五种的证明
全等三角形的判定方法五种的证明全文共四篇示例,供读者参考第一篇示例:全等三角形(即三角形的所有对应边和角都相等)在几何学中具有重要意义,因为它们有着很多共性特征和性质。
在实际问题中,我们常常需要判定两个三角形是否全等,以便解决一些几何问题。
下面我们将介绍五种判定方法,并给出它们的证明。
一、SSS法则(边边边全等)首先我们来介绍SSS法则,即如果两个三角形的三条边分别相等,则这两个三角形全等。
设有两个三角形ABC和DEF,已知AB=DE,AC=DF,BC=EF。
我们要证明三角形ABC全等于三角形DEF。
【证明过程】由已知条件可知,三角形ABC和三角形DEF的三边分别相等。
所以可以得到以下对应关系:AB=DEAC=DFBC=EF三角形的两边之和大于第三边,所以我们有以下结论:AB+AC>BCDE+DF>EF由于AB=DE,AC=DF,BC=EF,所以根据上述两个不等式可得:AB+AC>BCAB+AC>BC所以三角形ABC与三角形DEF全等。
由于∠C=∠F,所以我们有以下结论:∠A+∠C+∠B=180°∠A+∠F+∠E=180°由于∠C=∠F,所以可以将两个等式相减,得到:∠B-∠E=0∠B=∠E四、HL法则(斜边-直角-斜边全等)由于∠A=∠D,∠B=∠E,所以可以使用AA法则证明三角形ABC 与三角形DEF全等。
我们介绍了五种全等三角形的判定方法以及它们的证明。
这些方法在解决几何问题中起着至关重要的作用,希望大家能够掌握并灵活运用这些方法。
如果遇到类似的题目,可以根据不同情况灵活选择合适的方法来判定三角形的全等关系。
通过不断练习和思考,相信大家能够在几何学习中取得更好的成绩。
【2000字】第二篇示例:全等三角形是指具有完全相同的三边和三角形的一种特殊情况。
在几何学中,全等三角形之间具有一些特殊的性质和关系。
正确判断两个三角形是否全等是解决几何问题的关键。
三角形全等的判定
三角形全等的判定一、判定两个三角形全等的方法一般有以下4种:1、三边对应相等的两个三角形全等(可以简写成“边边边”或“SSS”)。
2、两边和它们的夹角对应相等的两个三角形全等(可以简写成“边角边”或“SAS”)。
3、两角和它们夹边对应相等的两个三角形全等(可以简写成“角边角”或“ASA”)。
4、两个角和其中一个角的对边对应相等的两个三角形全等(可以简写成“角角边”或“AAS”)。
二、判别两个直角三角形全等时,除了可以应用以上4种判别方法外,还可以应用“斜边、直角边”:斜边和一条直角边对应相等的两个直角三角形全等(可以简写成“斜边、直角边”或“HL”)。
三、尺规作图运用尺规作图作相等角、相等线段以及全等三角形。
四、应用三角形的判定方法三角形全等是证明线段相等,角相等最基本、最常用的方法,这不仅因为全等三角形有很多重要的角相等、线段相等的特征,还在于全等三角形能把已知的线段相等、角相等与未知的结论联系起来.那么我们应该怎样应用三角形全等的判别方法呢?(1)条件充足时直接应用在证明与线段或角相等的有关问题时,常常需要先证明线段或角所在的两个三角形全等,而从近年的中考题来看,这类试题难度不大,证明两个三角形的条件比较充分.只要同学们认真观察图形,结合已知条件分析寻找两个三角形全等的条件即可证明两个三角形全等.(2)条件不足,会增加条件用判别方法此类问题实际是指条件开放题,即指题中没有确定的已知条件或已知条件不充分,需要补充使三角形全等的条件.解这类问题的基本思路是:执果索因,逆向思维,逐步分析,探索结论成立的条件,从而得出答案.(3)条件比较隐蔽时,可通过添加辅助线用判别方法在证明两个三角形全等时,当边或角的关系不明显时,可通过添加辅助线作为桥梁,沟通边或角的关系,使条件由隐变显,从而顺利运用全等三角形的判别方法证明两个三角形全等.常见的隐藏条件有:①公共边,公共角,对顶角;②线段的相加减;③角度的互余,互补,三角形的外角等于与它不相邻的内角和。
全等三角形证明方法
全等三角形证明一、三角形全等的判定:1、三组对应边分别相等的两个三角形全等(SSS)。
2、有两边及其夹角对应相等的两个三角形全等(SAS)。
3、有两角及其夹边对应相等的两个三角形全等(ASA)。
4、有两角及一角的对边对应相等的两个三角形全等(AAS)。
5、直角三角形全等条件有:斜边及一直角边对应相等的两个直角三角形全等(HL)。
二、全等三角形的性质:①全等三角形的对应边相等;全等三角形的对应角相等。
②全等三角形的周长、面积相等。
③全等三角形的对应边上的高对应相等。
④全等三角形的对应角的角平分线相等。
⑤全等三角形的对应边上的中线相等。
三、找全等三角形的方法:(1)可以从结论出发,看要证明相等的两条线段(或角)分别在哪两个可能全等的三角形中;(2)可以从已知条件出发,看已知条件可以确定哪两个三角形相等;(3)从条件和结论综合考虑,看它们能一同确定哪两个三角形全等;(4)若上述方法均不行,可考虑添加辅助线,构造全等三角形。
三角形全等的证明中包含两个要素:边和角。
缺个角的条件:1、公共角2、对顶角3、两全等三角形的对应角相等4、等腰三角形5、同角或等角的补角(余角)6、等角加(减)等角7、平行线8、等于同一角的两个角相等缺条边的条件:1、公共边2、中点3、等量和4、等量差5、角平分线性质6、等腰三角形7、等面积法8、线段垂直平分线上的点到线段两端距离相等9、两全等三角形的对应边相等10、等于同一线段的两线段相等四、构造辅助线的常用方法:1、关于角平分线的辅助线当题目的条件中出现角平分线时,要想到根据角平分线的性质构造辅助线。
角平分线具有两条性质:①角平分线具有对称性;②角平分线上的点到角两边的距离相等。
关于角平分线常用的辅助线方法:(1)截取构全等如下左图所示,OC是∠AOB的角平分线,D为OC上一点,F为OB上一点,若在OA 上取一点E,使得OE=OF,并连接DE,则有△OED≌△OFD,从而为我们证明线段、角相等创造了条件。
不能判定全等三角形的条件
不能判定全等三角形的条件要判断两个三角形是否全等,需要满足以下条件:1.三边对应相等(边边边法则):两个三角形的三条边分别对应相等,即边长相等。
若三边对应相等,则可以判断两个三角形全等。
2.两边对应相等且夹角相等(边角边法则):如果两个三角形的两边对应相等且夹角相等,即两边长度和夹角大小相等,则可以判断两个三角形全等。
3.两角对应相等且边对应相等(角边角法则):如果两个三角形的两角对应相等且边对应相等,即两角的大小和两边的长度相等,则可以判断两个三角形全等。
这些条件是判定两个三角形全等的基本条件,但同时需要注意一些特殊情况和限制条件:1. SAS(边角边)法则只适用于非直角三角形,对于直角三角形需要使用其他法则进行判断。
2. SSS(边边边)法则适用于任何三角形,但要注意两个三角形的边对应相等。
3. AAA(角角角)法则不能用于判定全等三角形,因为只知道三个角相等并不能确定三角形的形状和大小。
4.在判定全等三角形时,两个三角形的对应边和对应角要一一对应,并且对应相等。
5.在给定的信息条件下,可能存在不止一个解,需要根据具体题目情况进行判断。
除了以上基本条件外,还有一些特殊情况和实际应用需要注意:1.直角三角形:对于直角三角形,可以通过两边长度相等和一个角为90度来判断全等。
2.等腰三角形:对于等腰三角形,可以通过两边对应相等和一个角对应相等来判断全等。
3.三角形的旋转和镜像:两个三角形的形状可以相同但是位置不同,需要注意在进行判断时要考虑旋转和镜像的可能性。
4.实际应用:全等三角形的判断在建筑设计、地理测量、工程建设等领域中常常会用到,在计算和实际情况中需注意判断条件和实际应用的结合。
总之,判断两个三角形是否全等需要根据不同的条件和限制情况进行综合判断。
在实际问题中,可以根据已知条件和问题的要求来选择合适的法则进行判断,并注意特殊情况和实际应用的考虑。
全等三角形的性质和判定
全等三角形的性质和判定要点一、全等三角形的概念能够完全重合的两个三角形叫全等三角形。
要点二、对应顶点,对应边,对应角1. 对应顶点,对应边,对应角定义两个全等三角形重合在一起,重合的顶点叫对应顶点,重合的边叫对应边,重合的角叫对应角.要点诠释:在写两个三角形全等时,通常把对应顶点的字母写在对应位置上,这样容易找出对应边、对应角.如下图,△ABC 与△DEF 全等,记作△ABC ≌△DEF ,其中点A 和点D ,点B 和点E ,点C 和点F 是对应顶点;AB 和DE ,BC 和EF,AC 和DF 是对应边;∠A 和∠D ,∠B 和∠E ,∠C 和∠F 是对应角.要点三、全等三角形的性质 全等三角形的对应边相等;全等三角形的对应角相等.要点四、全等三角形的判定(SSS 、SAS 、ASA 、AAS 、HL )全等三角形判定一(SSS ,SAS)全等三角形判定1-—“边边边”三边对应相等的两个三角形全等。
(可以简写成“边边边”或“SSS ”)。
要点诠释:如图,如果''A B =AB,''A C =AC ,''B C =BC ,则△ABC ≌△'''A B C .要点二、全等三角形判定2——“边角边”1. 全等三角形判定2-—“边角边"两边和它们的夹角对应相等的两个三角形全等(可以简写成“边角边"或“SAS ”).要点诠释:如图,如果AB = ''A B ,∠A =∠'A ,AC = ''A C ,则△ABC ≌△'''A B C . 注意:这里的角,指的是两组对应边的夹角.2。
有两边和其中一边的对角对应相等,两个三角形不一定全等。
如图,△ABC 与△ABD 中,AB =AB ,AC =AD ,∠B =∠B ,但△ABC 与△ABD 不完全重合,故不全等,也就是有两边和其中一边的对角对应相等,两个三角形不一定全等。
全等三角形判定知识讲解
全等三角形判定一(SSS,ASA ,AAS )(基础)【要点梳理】要点一、全等三角形判定1——“边边边”全等三角形判定1——“边边边”三边对应相等的两个三角形全等.(可以简写成“边边边”或“SSS ”).要点诠释:如图,如果''A B =AB ,''A C =AC ,''B C =BC ,则△ABC ≌△'''A B C .要点二、全等三角形判定2——“角边角”全等三角形判定2——“角边角”两角和它们的夹边对应相等的两个三角形全等(可以简写成“角边角”或“ASA ”). 要点诠释:如图,如果∠A =∠'A ,AB =''A B ,∠B =∠'B ,则△ABC ≌△'''A B C .要点三、全等三角形判定3——“角角边”1.全等三角形判定3——“角角边”两个角和其中一个角的对边对应相等的两个三角形全等(可以简写成“角角边”或“AAS ”) 要点诠释:由三角形的内角和等于180°可得两个三角形的第三对角对应相等.这样就可由“角边角”判定两个三角形全等,也就是说,用角边角条件可以证明角角边条件,后者是前者的推论.2.三个角对应相等的两个三角形不一定全等.如图,在△ABC 和△ADE 中,如果DE ∥BC ,那么∠ADE =∠B ,∠AED =∠C ,又∠A =∠A ,但△ABC 和△ADE 不全等.这说明,三个角对应相等的两个三角形不一定全等.【典型例题】类型一、全等三角形的判定1——“边边边”1、已知:如图,△RPQ 中,RP =RQ ,M 为PQ 的中点.求证:RM 平分∠PRQ .举一反三:【变式】(2015•武汉模拟)如图,在△ABC和△DCB中,AB=DC,AC=DB,求证:△ABC≌△DCB.类型二、全等三角形的判定2——“角边角”2、如图,点P在∠AOB的平分线上,若使△AOP≌△BOP,则需添加的一个条件是.(1)小明添加的条件是:AP=BP.你认同吗?(2)你添加的条件是,请用你添加的条件完成证明.举一反三:【变式】如图,AB∥CD,AF∥DE,BE=CF.求证:AB=CD.类型三、全等三角形的判定3——“角角边”3、已知:如图,AB⊥AE,AD⊥AC,∠E=∠B,DE=CB.求证:AD=AC.举一反三:【变式】如图,AD是△ABC的中线,过C、B分别作AD及AD的延长线的垂线CF、BE.求证:BE=CF.4、已知:如图,AC与BD交于O点,AB∥DC,AB=DC.(1)求证:AC与BD互相平分;(2)若过O点作直线l,分别交AB、DC于E、F两点,求证:OE=OF.【巩固练习】一、选择题1. 能确定△ABC≌△DEF的条件是()A.AB=DE,BC=EF,∠A=∠EB.AB=DE,BC=EF,∠C=∠EC.∠A=∠E,AB=EF,∠B=∠DD.∠A=∠D,AB=DE,∠B=∠E2.(2015•杭州模拟)用直尺和圆规作已知角的平分线的示意图,则说明∠CAD=∠DAB的依据是()A. SSS B. SAS C.ASA D. AAS3.AD是△ABC的角平分线,作DE⊥AB于E,DF⊥AC于F,下列结论错误的是()A.DE=DF B.AE=AF C.BD=CD D.∠ADE=∠ADF 4.(2016•黔西南州)如图,点B、F、C、E在一条直线上,AB∥ED,AC∥FD,那么添加下列一个条件后,仍无法判定△ABC≌△DEF的是()A .AB=DEB .AC=DFC .∠A=∠D D .BF=EC5. 某同学把一块三角形的玻璃打碎成了3块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的方法是( )A.带①去B.带②去C.带③去D.①②③都带去6.如图,∠1=∠2,∠3=∠4,下面结论中错误的是( )A .△ADC ≌△BCDB .△ABD ≌△BAC C .△ABO ≌△CDOD .△AOD ≌△BOC二、填空题7.(2014秋•石林县校级月考)如图,AC=AD ,BC=BD ,则△ABC≌△ ;应用的判定方法是(简写) .8. 在△ABC 和△'''A B C 中,∠A =44°,∠B =67°,∠'C =69°,∠'B =44°,且AC = ''B C ,则这两个三角形_________全等.(填“一定”或“不一定”)9. 已知,如图,AB ∥CD ,AF ∥DE ,AF =DE ,且BE =2,BC =10,则EF =________.10. 如图,AB∥CD,AD∥BC,OE =OF ,图中全等三角形共有______对.11.(2016•通州区一模)在学习“用直尺和圆规作射线OC ,使它平分∠AOB”时,教科书介绍如下:*作法:(1)以O 为圆心,任意长为半径作弧,交OA 于D ,交OB 于E ;(2)分别以D ,E 为圆心,以大于DE 的同样长为半径作弧,两弧交于点C ;(3)作射线OC .则OC 就是所求作的射线.小明同学想知道为什么这样做,所得到射线OC 就是∠AOB 的平分线.小华的思路是连接DC 、EC ,可证△ODC ≌△OEC ,就能得到∠AOC=∠BOC .其中证明△ODC ≌△OEC 的理由是 .12. 已知:如图,∠B =∠DEF ,AB =DE ,要说明△ABC ≌△DEF ,(1)若以“ASA ”为依据,还缺条件(2)若以“AAS ”为依据,还缺条件三、解答题13.阅读下题及一位同学的解答过程:如图,AB 和CD 相交于点O ,且OA =OB ,∠A =∠C .那么△AOD 与△COB 全等吗?若全等,试写出证明过程;若不全等,请说明理由.答:△AOD ≌△COB .证明:在△AOD 和△COB 中,⎪⎩⎪⎨⎧∠=∠=∠=∠),(),(),(对顶角相等已知已知COB AOD OB OA C A∴ △AOD ≌△COB (ASA ).问:这位同学的回答及证明过程正确吗?为什么?14. 已知如图,E 、F 在BD 上,且AB =CD ,BF =DE ,AE =CF ,求证:AC 与BD 互相平分.15. 已知:如图, AB ∥CD, OA = OD, BC 过O 点, 点E 、F 在直线AOD 上, 且∠E =∠F. 求证:EB=CF.全等三角形判定二(SAS )(基础)要点一、全等三角形判定4——“边角边”1. 全等三角形判定4——“边角边”两边和它们的夹角对应相等的两个三角形全等(可以简写成“边角边”或“SAS ”).要点诠释:如图,如果AB = ''A B ,∠A =∠'A ,AC = ''A C ,则△ABC ≌△'''A B C . 注意:这里的角,指的是两组对应边的夹角.2. 有两边和其中一边的对角对应相等,两个三角形不一定全等.如图,△ABC 与△ABD 中,AB =AB ,AC =AD ,∠B =∠B ,但△ABC 与△ABD 不完全重合,故不全等,也就是有两边和其中一边的对角对应相等,两个三角形不一定全等.要点二、判定方法的选择已知条件可选择的判定方法一边一角对应相等SAS AAS ASA两角对应相等ASA AAS两边对应相等SAS SSS要点三、如何选择三角形证全等1.可以从求证出发,看求证的线段或角(用等量代换后的线段、角)在哪两个可能全等的三角形中,可以证这两个三角形全等;2.可以从已知出发,看已知条件确定证哪两个三角形全等;3.由条件和结论一起出发,看它们一同确定哪两个三角形全等,然后证它们全等;4.如果以上方法都行不通,就添加辅助线,构造全等三角形.要点四、全等三角形证明方法1.证明线段相等的方法:(1) 证明两条线段所在的两个三角形全等.(2) 利用角平分线的性质证明角平分线上的点到角两边的距离相等.(3) 等式性质.2.证明角相等的方法:(1) 利用平行线的性质进行证明.(2) 证明两个角所在的两个三角形全等.(3) 利用角平分线的判定进行证明.(4) 同角(等角)的余角(补角)相等.(5) 对顶角相等.3.证明两条线段的位置关系(平行、垂直)的方法;可通过证明两个三角形全等,得到对应角相等,再利用平行线的判定或垂直定义证明. 4.辅助线的添加:(1)作公共边可构造全等三角形;(2)倍长中线法;(3)作以角平分线为对称轴的翻折变换全等三角形;(4)利用截长(或补短)法作旋转变换的全等三角形.类型一、全等三角形的判定4——“边角边”1、在△ABC中,AB=AC,点E,F分别在AB,AC上,AE=AF,BF与CE相交于点P.求证:△EBC≌△FCB.2、如图,将两个一大、一小的等腰直角三角尺拼接(A、B、D三点共线,AB=CB,EB=DB,∠ABC=∠EBD=90°),连接AE、CD,试确定AE与CD的位置与数量关系,并证明你的结论.举一反三:【变式】(2014•雁塔区校级模拟)如图,由∠1=∠2,BC=DC、AC=EC,最后推出△ABC≌△EDC 的根据是()A.SAS B. ASA C. AAS D. SSS类型二、全等三角形的性质和判定综合3、(2014•如东县模拟)如图1,已知△ABC的六个元素,则图2甲、乙、丙三个三角形中和图1△ABC全等的图形是()A.甲乙B.丙C.乙丙D.乙举一反三:【变式】如图,已知:AE⊥AB,AD⊥AC,AB=AC,∠B=∠C,求证:BD=CE.【巩固练习】一、选择题1.在△ABC 中,∠B=∠C,与△ABC 全等的三角形有一个角是100°,那么在△ABC 中与这100°角对应相等的角是( )A. ∠AB. ∠BC. ∠CD. ∠B 或∠C2.(2015•莆田)如图,AE ∥DF ,AE=DF ,要使△EAC ≌△FDB ,需要添加下列选项中的( )A .AB=CDB . EC=BFC . ∠A=∠D D . AB=BC3.(2016•东城区一模)如图,有一池塘,要测池塘两端A ,B 间的距离,可先在平地上取一个不经过池塘可以直接到达点A 和B 的点C ,连接AC 并延长至D ,使CD=CA ,连接BC 并延长至E ,使CE=CB ,连接ED .若量出DE=58米,则A ,B 间的距离为( )A .29米B .58米C .60米D .116米4.如图,AB 、CD 、EF 相交于O ,且被O 点平分,DF =CE ,BF =AE ,则图中全等三角形的对数共有( )A. 1对B. 2对C. 3对D. 4对5.如图,将两根钢条'AA ,'BB 的中点O 连在一起,使'AA ,'BB 可以绕着点O 自由转动,就做成了一个测量工件,则''A B 的长等于内槽宽AB ,那么判定△OAB≌△''OA B 的理由是( )A.边角边B.角边角C.边边边D.角角边6.如图,已知AB⊥BD 于B ,ED⊥BD 于D ,AB =CD ,BC =ED ,以下结论不正确的是( )A.EC⊥ACB.EC=ACC.ED +AB =DBD.DC =CB二、填空题7.如图,AB=CD,AC=DB,∠ABD=25°,∠AOB=82°,则∠DCB=_________.8.(2016春•灵石县期末)如图,黄芳不小心把一块三角形的玻璃打成三块碎片,现要带其中一块去配出与原来完全一样的玻璃,正确的办法是带第块去配,其依据是根据定理(可以用字母简写)9.(2015•齐齐哈尔)如图,点B、A、D、E在同一直线上,BD=AE,BC∥EF,要使△ABC≌△DEF,则只需添加一个适当的条件是.(只填一个即可)10.如图,AC=AD,CB=DB,∠2=30°,∠3=26°,则∠CBE=_______.11.如图,点D在AB上,点E在AC上,CD与BE相交于点O,且AD=AE,AB=AC,若∠B =20°,则∠C=_______.12.已知,如图,AB=CD,AC=BD,则△ABC≌,△ADC≌ .三、解答题13.(2015•重庆校级三模)如图已知,AB∥DC,AB=DC,AE=CF.求证:△ABF≌△CDE.14.(2016•曲靖)如图,已知点B,E,C,F在一条直线上,AB=DF,AC=DE,∠A=∠D.(1)求证:AC∥DE;(2)若BF=13,EC=5,求BC的长.【课后作业】1.(2020•徐州)若一个三角形的两边长分别为3cm、6cm,则它的第三边的长可能是()A.2cm B.3cm C.6cm D.9cm2.(2020•大连)如图,△ABC中,∠A=60°,∠B=40°,DE∥BC,则∠AED的度数是()A.50°B.60°C.70°D.80°3.(2020•永州)如图,已知AB=DC,∠ABC=∠DCB,能直接判断△ABC≌△DCB的方法是()A.SAS B.AAS C.SSS D.ASA4.(2020秋•滦南县期末)如图,已知AC=DB,下列四个条件:①∠A=∠D;②∠ABD=∠DCA;③∠ACB=∠DBC;④∠ABC=∠DCB.其中能使△ABC≌△DCB的有()A.1个B.2个C.3个D.4个5.(2020秋•天河区期末)如图,AE∥DF,AE=DF.添加下列的一个选项后.仍然不能证明△ACE≌△DBF的是()A.AB=CD B.EC=BF C.∠E=∠F D.EC∥BF6.(2020•齐齐哈尔)如图,已知在△ABD和△ABC中,∠DAB=∠CAB,点A、B、E在同一条直线上,若使△ABD≌△ABC,则还需添加的一个条件是.(只填一个即可)7.(2020秋•花都区期末)如图,D、C、F、B四点在同一条直线上,BC=DF,AC⊥BD于点C,EF⊥BD于点F,如果要添加一个条件,使△ABC≌△EDF,你添加的条件是(注:只需写出一个条件即可).8.(2020•无锡)如图,已知AB∥CD,AB=CD,BE=CF.求证:(1)△ABF≌△DCE;(2)AF∥DE.9.(2020•温州)如图,在△ABC和△DCE中,AC=DE,∠B=∠DCE=90°,点A,C,D依次在同一直线上,且AB∥DE,求证:△ABC≌△DCE.。
三角形全等的判定(SAS)
D
例1
已知: 如图,AC=AD ,∠CAB=∠DAB. 求证: △ACB ≌ △ADB.
C
证明: △ACB ≌ △ADB. 这两个条件够吗?
A
B
还要什么条件呢? 还要一条边
D
例1已知:
证明:
如图,AC=AD ,∠CAB=∠DAB. 求证: △ACB ≌ △ADB.
C
在△ACB 和 △ADB中 AC = A D (已知)
3.如图,要证△ACB≌ △ADB ,至少选 用哪些条件可
证得△ACB≌ △ADB △ACB≌ △ADB
C
A S B AB=AB ∠CBA= ∠ DBA BC=BD D S A
作业:
1、一张试卷 2、笔记补充完整
谢 谢 !
三角形全等的判定定理
SAS
我们学过哪几种判定三角形全等的方法?
1、全等三角形概念:三条边对应相 等,三个角对应相等。 2、全等三角形判定条件(一) 三边对应相等的两个三角形全等。 简称“边边边”或“SSS”
问题:如图有一池塘。要测池塘两端A、B的距离,可 无法直接达到,因此这两点的距离无法直接量出。你能想 出办法来吗?
要证△BOD≌ △COE需添加什么条件?
A
△BOD≌ △COE
D E
O
S
A
S
B
C
OB=OC ∠BOD= ∠ COE OD=OE
3.如图,要证△ACB≌ △ADB ,至少选 用哪些条件才可以?
证得△ACB≌ △ADB △ACB≌ △ADB
C
A S A
S B AB=AB ∠CAB= ∠ DAB AC=AD D
△ABD≌ △ACD
D B S A S AB=AC C
13.2.4三角形全等的判定(角边角或角角边)
B E ∵BC EF C F
在△ABC和△DEF中,
A
D
B
\
C
E
\
F
练习
∴ △ABC≌△DEF (A.S.A.)
例1、已知:点D在AB上,点E在AC上,BE和 CD相交于点O,AB=AC,∠B=∠C。 求证: △ABE≌△ACD
A
证明:在△ABE和△ACD中 ∠A=∠A(公共角) ∵ AB=AC(已知)
C
A
O
B
D
探究2
在△ABC和△DEF中,∠A=∠D,∠B=∠E , BC=EF,△ABC与△DEF全等吗?能利用角边 角条件证明你的结论吗?
A D
C E B
F
探究反映的规律是:
有两角和其中一个角的对边分别对应相等的 两个三角形全等(简写成“角角边”或 “A.A.S.”)
用数学符号表示
在△ABC和△A`B`C`中 ∠A=∠A` A
例2.如图,已知AB=AC,∠ADB= ∠AEC,求证:△ABD≌△ACE
证明:∵ AB=AC, ∴ ∠B= ∠C(等边对等角) ∵ ∠ADB= ∠AEC, AB=AC,
A
∴ △ABD≌△ACE(A.A.S.)
B
D
E
C
练习:
1.如图,AB⊥BC, AD⊥DC, ∠1=∠2.求证AB=AD
2:如图,已知∠ABC=∠D, ∠ACB=∠CBD判断图中的 两个三角形是否全等, 并说明理由.
不全等。因为虽然有两组内角相等, 且BC=BC,但BC不都是两个三角形两 组内角的夹边,所以不全等。
作业:
1.如图已知∠ABC=∠DCB, ∠ACB= ∠DBC, 求证:△ABC≌△DCB, AB=DC
三角形全等的判定条件
三角形全等的判定条件
全等三角形判定条件(六种)是:
1、定义法:两个完全重合的三角形全等。
2、SSS:三个对应边相等的三角形全等。
3、SAS:两边及其夹角对应相等的三角形全等。
4、ASA:两角及其夹边对应相等的三角形全等。
5、AAS:两角及其中一角的对边对应相等的三角形全等。
6、HL:斜边和一条直角边对应相等的两个直角三角形全等。
经过翻转、平移、旋转后,能够完全重合的两个三角形叫做全等三角形,而该两个三角形的三条边及三个角都对应相等。
全等三角形指两个全等的三角形,它们的三条边及三个角都对应相等。
三角形全等的判定
三角形全等的判定+性质+辅助线技巧三角形全等的判定+性质+辅助线技巧在初中三角形问题集中体现在“全等”和“相似”两大问题上,非常考验大家的解题能力、思维能力、耐性与定力。
有时证不出来,急不可耐、恨它恨的牙痒痒。
豆姐这次整理了全等三角形判定、性质,最重要的是后面附上了所有证明全等三角形,包括添加各种辅助线的方法,认真看完这篇文章,保证关于三角形全等所有的题型你都会做!一、三角形全等的判定1.三组对应边分别相等的两个三角形全等(SSS)。
2.有两边及其夹角对应相等的两个三角形全等(SAS)。
3.有两角及其夹边对应相等的两个三角形全等(ASA)。
4.有两角及一角的对边对应相等的两个三角形全等(AAS)。
5.直角三角形全等条件有:斜边及一直角边对应相等的两个直角三角形全等(HL)。
二、全等三角形的性质①全等三角形的对应边相等;全等三角形的对应角相等。
②全等三角形的周长、面积相等。
③全等三角形的对应边上的高对应相等。
④全等三角形的对应角的角平分线相等。
⑤全等三角形的对应边上的中线相等。
三、找全等三角形的方法(1)可以从结论出发,看要证明相等的两条线段(或角)分别在哪两个可能全等的三角形中;(2)可以从已知条件出发,看已知条件可以确定哪两个三角形相等;(3)从条件和结论综合考虑,看它们能一同确定哪两个三角形全等;(4)若上述方法均不行,可考虑添加辅助线,构造全等三角形。
三角形全等的证明至少需要三个条件(包含两个要素:边和角),其中必须有边的条件。
缺个角的条件:缺条边的条件:四、构造辅助线的常用方法1.关于角平分线的辅助线当题目的条件中出现角平分线时,要想到根据角平分线的性质构造辅助线。
角平分线具有两条性质:①角平分线具有对称性;②角平分线上的点到角两边的距离相等。
关于角平分线常用的辅助线方法:(1)截取构全等如下左图所示,OC是∠AOB的角平分线,D为OC上一点,F为OB上一点,若在OA上取一点E,使得OE=OF,并连接DE,则有△OED≌△OFD,从而为我们证明线段、角相等创造了条件。
八年级数学上册三角形全等的判定知识点
八年级数学上册三角形全等的判定知识点01三角形全等的判定1.三组对应边分别相等的两个三角形全等(SSS)。
2.有两边及其夹角对应相等的两个三角形全等(SAS)。
3.有两角及其夹边对应相等的两个三角形全等(ASA)。
4.有两角及一角的对边对应相等的两个三角形全等(AAS)。
5.直角三角形全等条件有:斜边及一直角边对应相等的两个直角三角形全等(HL)。
02全等三角形的性质①全等三角形的对应边相等;全等三角形的对应角相等。
②全等三角形的周长、面积相等。
③全等三角形的对应边上的高对应相等。
④全等三角形的对应角的角平分线相等。
⑤全等三角形的对应边上的中线相等。
03找全等三角形的方法(1)可以从结论出发,看要证明相等的两条线段(或角)分别在哪两个可能全等的三角形中;(2)可以从已知条件出发,看已知条件可以确定哪两个三角形相等;(3)从条件和结论综合考虑,看它们能一同确定哪两个三角形全等;(4)若上述方法均不行,可考虑添加辅助线,构造全等三角形。
三角形全等的证明中包含两个要素:边和角。
缺个角的条件:缺条边的条件:04构造辅助线的常用方法1.关于角平分线的辅助线当题目的条件中出现角平分线时,要想到根据角平分线的性质构造辅助线。
角平分线具有两条性质:①角平分线具有对称性;②角平分线上的点到角两边的距离相等。
关于角平分线常用的辅助线方法:(1)截取构全等如下左图所示,OC是∠AOB的角平分线,D为OC上一点,F为OB上一点,若在OA上取一点E,使得OE=OF,并连接DE,则有△OED≌△OFD,从而为我们证明线段、角相等创造了条件。
例:如上右图所示,AB//CD,BE平分∠ABC,CE平分∠BCD,点E在AD上,求证:BC=AB+CD。
提示:在BC上取一点F使得BF=BA,连结EF。
(2)角分线上点向角两边作垂线构全等利用角平分线上的点到两边距离相等的性质来证明问题。
如下左图所示,过∠AOB的平分线OC上一点D向角两边OA、OB作垂线,垂足为E、F,连接DE、DF。
rt三角形全等判定定理
rt三角形全等判定定理
三组对应边分别相等的两个三角形全等、有两边及其夹角对应相等的两个三角形全等、有两角及其夹边对应相等的两个三角形全等、有两角及其一角的对边对应相等的两个三角形全等、斜边及一直角边对应相等的两个直角三角形全(rt三角形全等)等。
一、判定定理
1、三组对应边分别相等的两个三角形全等(简称SSS或“边边边”),这一条也说明了三角形具有稳定性的原因。
2、有两边及其夹角对应相等的两个三角形全等(SAS或“边角边”)。
3、有两角及其夹边对应相等的两个三角形全等(ASA或“角边角”)。
4、有两角及其一角的对边对应相等的两个三角形全等(AAS或“角角边”)。
5、直角三角形全等条件有:斜边及一直角边对应相等的两个直角三角形全等(HL或“斜边,直角边”)。
二、全等三角形的性质
1、全等三角形的对应角相等。
2、全等三角形的对应边相等。
3、能够完全重合的顶点叫对应顶点。
4、全等三角形的对应边上的高对应相等。
5、全等三角形的对应角的角平分线相等。
6、全等三角形的对应边上的中线相等。
7、全等三角形面积和周长相等。
8、全等三角形的对应角的三角函数值相等。
三、证明三角形全等的题步骤
1、读题,明确题中的已知和求证。
2、要观察待证的线段或角,在哪两个可能全等的三角形中。
3、分析要证两个三角形全等,已有什么条件,还缺什么条件。
4、有公共边的,公共边一定是对应边,有公共角的,公共角一定是对应角,有对顶角,对顶角也是对应角。
5、先证明缺少的条件,再证明两个三角形全等。
“三角形全等的条件”学习要点及注意事项
“三角形全等的条件”学习要点及注意事项 2014.5.9一、三角形全等的条件:1、三边对应相等的两个三角形全等,简写为“边边边”,或SSS ;2、两角及其夹边对应相等的两个三角形全等,简写为“角边角”,或ASA ;3、两角及其中一角的对边对应相等的两个三角形全等,简写为“角角边”,或AAS ;4、两边及其夹角对应相等的两个三角形全等,简写为“边角边”,或SAS ;注意:(1)条件中的边、角一定是三角形中的边、角!(2)条件中只有对应相等的边、对应相等的角;(3)“边边角”不能保证两个三角形全等!!二、过程的书写要求:先交待所要证的两个三角形,其次用单边大括号把三个条件写在一起,得出两个三角形全等,并在后面注明理由;例:如图 ,AB=AC , ∠CDA =∠BEA, △ACD 与△ABE 全等吗?为什么?解: 在△ACD 和△ABE 中,∠CDA =∠BEA (已知)∵ ∠ A = ∠A (公共角) AB= AC (已知)∴ △ACD ≌△ABE (AAS )注意事项:(1)按判定条件的顺序书写,例如上例中,利用的是“AAS ”,书写时先写两个角的条件,再写边的条件;(2)如果所需的条件不是题中直接给出,则先证明,再按上面要求书写;例:如图,O 是AB 的中点,∠A =∠B , △AOC 与△BOD 全等吗?为什么?解: △AOC ≌△BOD 理由:∵ O 是AB 的中点,∴ AO=BO在 △AOC 与△BOD 中,∠A =∠ B (已知) ∵ AO=BO (已证) ∠AOC= ∠BOD (对顶角相等)∴ △AOC ≌△BOD (ASA )说明:(1)条件中一定是相等的边、角,所以要把“中点”的条件转化为相等的边;(2)对顶角相等是能直接得到的结论,不需要先证明;(3)除对顶角相等可以直接写在条件中外,公共边、公共角也能直接作为条件写;A OD C B AE C DB。
全等三角形的判定小结
变式:请问线段
BC与线段DE有什
么关系?
C
B
A
E
D
连接CE,BD,若设
C是AD的中点,那
么BD与CE有什么关
系?
C
B
A
E
3、已知:ΔABC和ΔBDE是等边三角形,
点D在AE的延长线上。
求证:BD + DC = AD
A
E
B
C
D
4
1、两个三角形全等,必须有一边相等; 2、只要有两角一边相等,就可以判断 两个三角形全等。
1、已知: 如图,AC=AD .请你添加一个 条件使 △ACB≌△ADB.
C
A
1、找第三边(SSS); 2、找两边的夹角 (SAS); 3、看是否为直角三角形 (HL).
B D
2、已知: 如图,AB平分∠CAD .请你添 加一个条件使 △ACB≌△ADB.
SSS(边边边) SAS(边角边)ASA(角边角) AAS(角角边)HL(斜边直角边)
有三边对应 相等的两个三 角形全等.
有两边和它们 的夹角对应相 等的两个三角 形全等.
有两角和它们 有两角和及其
的夹边对应相 中一个角所对的
等的两个三角 边对应相等的两
形全等.
个三角形全等.
直角三角形斜边 和一条直角边对 应相等的两个直 角三角形全等.
8、旋转——角相等,边相等。
11
1.如图,已知AB=AC,AD=AE,AB、DC相交于点M,
AC、BE相交于点N,∠1=∠2,求证:(1)
△ABE ≌ △ACD (2)AM=AN. A
12
D
E
M
NBC来自创造条件! ? 132、如图,已知AB=AD,AC=AE, ∠BAC=∠DAE=900. 求证:△ABC≌△ADE.
三角形全等判定法则
三角形全等判定法则“嘿,同学们,今天咱们来好好讲讲三角形全等判定法则啊。
”三角形全等判定法则呢,一共有五个。
第一个是边边边,也就是 SSS。
就是说如果两个三角形的三条边都分别相等,那这两个三角形就全等啦。
比如说啊,有两个三角形,它们的三条边分别都是 5 厘米、6 厘米、7 厘米,那这两个三角形肯定就是全等的咯。
第二个是边角边,即 SAS。
就是如果两个三角形的两条边以及它们的夹角相等,那就全等。
举个例子吧,就像有个三角形 ABC,AB 边是 3 厘米,AC 边是 4 厘米,角 A 是 60 度,另一个三角形 DEF,DE 边是 3 厘米,DF 边是 4 厘米,角 D 也是 60 度,那这两个三角形就是全等的啦。
第三个是角边角,也就是 ASA。
就是如果两个三角形的两个角以及它们夹的边相等,那就全等喽。
比如一个三角形 XYZ,角 X 是 40 度,角 Y 是60 度,XY 边是 5 厘米,另一个三角形 MNP,角 M 是 40 度,角 N 是 60 度,MN 边也是 5 厘米,这俩就全等。
第四个是角角边,AAS。
就是如果两个三角形的两个角以及其中一个角的对边相等,那也全等。
像三角形 ABC,角 A 是 30 度,角 B 是 50 度,BC 边是 6 厘米,三角形 DEF,角 D 是 30 度,角 E 是 50 度,EF 边是 6 厘米,这两个就全等。
最后一个是直角三角形的特殊判定,叫斜边直角边,HL。
就是如果两个直角三角形的斜边和一条直角边相等,那它们就全等。
比如说一个直角三角形,斜边是 10 厘米,一条直角边是 8 厘米,另一个直角三角形斜边也是10 厘米,一条直角边也是 8 厘米,那它们就是全等的。
在实际应用中呢,这些判定法则可有用啦。
比如说工程师盖房子的时候,要保证一些结构是全等的,那就得用这些法则来测量和判断。
还有我们做数学题的时候,经常会遇到证明两个三角形全等的题目,那就要根据题目给的条件,选择合适的判定法则来证明。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2、这条长3cm的边是600角的对边
归纳
一个角对应相等 一条边对应相等
两个角对应相等
两条边对应相等 一个角,一条边
角及其对边 角及其邻边
3、再增加一个条件有哪几种情况?
(1)、两边一角; (2)、两角一边; (3)、边边边; (4)、角角角 ?
因为一个图形经过平移、翻折、旋转后,位置 变化了,但形状、大小都没有改变.
A
D
C
BF
E
观察图形思考:
顶你 点能 、找
如上图, △ABC 与△DEF 全等, 当△ABC 与△DEF 重合时 ①与顶点A重合的点是哪个点? 点D
对 应 角 、
出 图 中 所
能够互相重合的顶点叫做对应顶点
对有
②与∠A重合的角是哪个角? ∠D 应 的
记两个三角形全等时,通常把表示对 应顶点的字母写在对应的位置上.
1.全等三角形对应边相等 2.全等三角形对应角相等
课前练一练:
1、如图,△ABC≌△DCB,如果AB=4㎝, ∠ABC=70°,∠ACB=30 °则DC= 4㎝, ∠DCB= 70°, ∠DBC= 30° 。
A
D
O
B
C
2.已知△ADF≌△CBE,则结论:①AF=CE ;
(1)面积相等的两个三角形一定全等吗?
想一想:
(2)周长相等的两个三角形一定全等吗?
3
5
4
55 2
再想一想:
1.全等三角形对应边相等 2.全等三角形对应角相等
我们知道:若两个三角形的三条边、三个角分别 对应相等,则这两个三角形全等?
我们确实可以减 少一些条件:
我们知道:由于三角形的内角和等于1800,如果 两个角对应相等,那么另一个角必然 也相等。这样我们只要三条边,两个 角相等五个条件就够了?
②∠BEC=∠DFA ③BE=CF ④DF=BE,正确的个数 是( C )
(A)1个(B)2个( C)3个(D)4个
A
D
E 12 F
B
C
6 β4 α5γ
某检查人员到工厂检查
三角形模型尺寸是否合
格。其中标准模型尺寸
如图,如果你是检查人
员,你至少需要量出几 个数据,才能判断出两个 三角形模型全等呢?
想一想:
能够互相重合的角叫做对应角
③与边AB重合的边是哪条边?
边对
DE
吗 ?
应
能够互相重合的边叫做对应边
A
D
C
BF
E
对应角
∠A与∠D ∠C与∠F ∠B与∠E
对应边
AC与DF CB与FE
AB与DE
顶你 点能 、找 对出 应图 角中 、所 对有 应的 边对 吗应 ?
A
D
C
BF
E
△ABC和△DEF全等,记作△ABC≌△DEF”.
1、回顾全等三角形的性质
2、经过探索发现要判定两个三角形全等 不需要满足三条对应边,三个对应角 同时对应相等
3、经过探索发现要判定两个三角形全等 仅仅一个或两个条件对应相等是不够的
1、当两个三角形只有一组对应边相等(3cm) 或一组对应角相等(600)时,它们全等吗?
2、两个三角形中, (1)有两组对应边分别相等(假如为3cm和5cm),它们全等吗?
(2)有两组对应角分别相等(分别为500和700), 它们全等吗?
(两组边相等)
(3)有一组对应边、一组对应角角分别相等 (分别为600和3cm),它们全等吗?