平面向量PPT课件
第六章第二节平面向量的基本定理及坐标表示课件共49张PPT
设正方形的边长为
1
,
则
→ AM
= 1,12
,
→ BN
=
-12,1 ,A→C =(1,1),
∵A→C =λA→M +μB→N
=λ-12μ,λ2 +μ ,
λ-12μ=1, ∴λ2 +μ=1,
解得λμ= =6525, .
∴λ+μ=85 .
法二:由A→M
=A→B
+12
→ AD
,B→N
=-12
→ AB
+A→D
栏目一 知识·分步落实 栏目二 考点·分类突破 栏目三 微专题系列
栏目导引
课程标准
考向预测
1.理解平面向量的基本定理及其意义. 考情分析: 平面向量基本定理及
2.借助平面直角坐标系掌握平面向量 其应用,平面向量的坐标运算,向
的正交分解及其坐标表示.
量共线的坐标表示及其应用仍是
3.会用坐标表示平面向量的加法、减 高考考查的热点,题型仍将是选择
A.(-2,3)
B.(2,-3)
C.(-2,1)
D.(2,-1)
D [设 D(x,y),则C→D =(x,y-1),2A→B =(2,-2),根据C→D =2A→B , 得(x,y-1)=(2,-2),
即xy= -21, =-2, 解得xy= =2-,1, 故选 D.]
2.(2020·福建三明第一中学月考)已知 a=(5,-2),b=(-4,-3),若
解析: ∵ma+nb=(2m+n,m-2n)=(9,-8), ∴2mm-+2nn==9-,8, ∴mn==52., ∴m-n=2-5=-3. 答案: -3
考点·分类突破
⊲学生用书 P93
平面向量基本定理及其应用
(1)(多选)(2020·文登区期中)四边形 ABCD 中,AB∥CD,∠A=90°,
平面向量概念PPT课件
思 考:
1.反应前后溶液及铜丝有 那些变化?
铜与浓硫酸反应
2.实验发生后品红溶液有 何变化?
3.盛品红溶液试管口的棉 花起什么作用?
二、浓硫酸的化学性质
1、酸性 2、特性
A.吸水性
浓硫酸能够吸收现成的由水分子组成的水——物质本身含水。
问:在盛有少量硫酸铜晶体的试管中注入浓硫 酸,会有什么现象发生? 蓝色会褪去。
应用:做干燥剂
CO2、Cl2、H2、O2、NO2、SO2、HCl等
不能干燥 碱性气体:NH3 还原性气体:H2S、HBr、HI
实验
在烧杯中放入少量蔗糖,用少量水调成糊状, 注入浓硫酸,用玻棒搅拌。
“黑面包”实验
2)与非金属反应
答:平行关系.
b
c
平行向量:方向相同或相反的非零向量.
记作:a // b // c
因为零向量的方向不确定,所以规定零向量与 任一向量平行.
<>
返回
退出
例1:在梯形中找到平行向量.
D
C
F
E
A
B
AB、DC、EF 是一组平行向量。
练习
<>
返回
退出
问题4: AB 与 BA 这两个向量的长度相等吗?
想 这两个向量平行吗? 一 想 这两个向量相等吗? ?
例3:在4 5达到方格中有一个向量AB,以图中 的格点为起点和终点作向量,其中与AB相等的 向量有多少个?与AB长度相等的共线向量有多少个?
B
相等的有 7个
长度相等
A
的有15个
平面向量基本定理PPT课件
(2)平面向量基本定理体现了转化与化归的数学思想,用向量解
决几何问题时,我们可以选择适当的基底,将问题中涉及的向
量向基底化归,使问题得以解决.
→
→
设AB=a,AD=b,
→ → → → 1→ 1
则AE=AD+DE=AD+2AB=2a+b,
1
→ → → → 1→
AF=AB+BF=AB+2AD=a+2b,
→
所以BF=BA+AF=BA+λAC=a+λ(c-a)=
(1-λ)a+λc.
4
→ 1 4
又BF=5a+5c,所以 λ=5,
→ 4→
所以AF=5AC,所以 AF∶CF=4∶1.
反思感悟
(1)平面向量基本定理的实质是向量的分解,即平面内任一向量
都可以沿两个不共线的方向分解成两个向量和的形式,且分解
是唯一的.
任一向量a ,有且只有一对实数1、2,可使
a 1 e1 +2 e2
若e1,不共线,我们把
e2
e1,
e2 叫做表示这一平面内所有向量的一个基底.
谢谢
人教2019A版必修 第二册
6.3.1 平面向量基本定理
回顾:向量共线定理:
a(a 0)与b共线 有且只有唯一一个实数, 使b a.
位于同一直线上的向量可以由位于这条直线上的一个
非零向量表示。
思考:平面内任一向量是否可以由同一平面内的两个
不共线向量表示呢?
创设问题情境
我们知道,已知两个力,可以求出它们的合力;反过来,练习2 如图,在△OAB中源自OC为中线,点D为线段OB靠近O点
1
的三等分点,AD交OC于点M,若 OM OA xOB ,求x的值.
6.2平面向量的运算课件共40张PPT
→
→
→
→
即时训练 3-2:在四边形 ABCD 中,=,若||=||,则四边形 ABCD 的
形状为
.
→
→
解析:由=,可得四边形 ABCD 为平行四边形,
→
→
由||=||,可得邻边相等,此平行四边形是菱形,
所以四边形 ABCD 为菱形.
答案:菱形
→
→
→
→
[备用例 3] 若 O 是△ABC 所在平面内一点,且满足|-|=|-+
探究点二
向量加法运算律的应用
[例 2] 化简:
→
→
(1)+;
→
→
→
→
→
解:(1)+=+=.
[例 2] 化简:
→
→
→
(2)++;
→
→
→
→
→
→
解:(2)++=++
→
→
→
=(+)+
→→Biblioteka =+=0.
[例 2] 化简:
→
→
→
→
→
→
→
→
→
→
→
→
解:(2)原式=--+=(-)+(-)=+=0.
→
→
→
[备用例 2] 化简:--.
→
→
→
→
→
→
解:法一 --=-=.
→
→
→
→
→
→
→
→
→
→
→
→
→
→
平面向量PPT课件
01
A
01
B
01
课后作业
练习:
3.(1)用有向线段表示两个相等的向量,如果有相同的起点,那么它们的终点是否相同?
(2)用有向线段表示两个方向相同但长度不同的向量,如果有相同的起点,那么它们的终点是否相同?
是
不是
2.如图,D,E,F分别是各边的中点,写出图中与 相等的向量.
(无数个)
问题6:零向量可用 表示那么单位向量能否用 表示?
(不能)
问题7:单位向量是否一定相等?它的大小是否一定相等?
(不一定,一定)
问题8:零向量小于单位向量吗?
(不,向量不能比较大小)
问题:一组向量它们的方向相同或相反,那么这组向量有什么关系?
01
问题:若两个向量相等,那么它们必须具备什么条件? (长度相等,方向相同)
A
F
C
E
B
D
位移是一个既有大小又有方向的量,这种量就是本章所要研究的向量。
如图中的小船,由A地向西北方向航行15n mile (海里)到达B地。在这里,如果仅指出“由A地航行15n mile”,而不指明“向西北方向”航行,那么小船就不一定到达B地了。
向量表示法:
定义:既有大小又有方向的量.
有向线段法——-有向线段的方向表示向量的大小,箭头所指的方向表示向量的方向. 其他表示法——-用字母a,b,c等表示,或用表示向量的有向线段的起点和终点字母表示. 有关向量的概念: 向量长度:向量的大小,亦称模. 零向量:长度为零的向量. 单位向量:长度等于1个单位长度的向量. 相等向量:长度相等且方向相等的向量.
(11个)
(存在)
01
向量及其表示方法.
两个特殊向量:零向量,单位向量.
6.1 平面向量的概念 课件(共21张PPT)
(2)相等向量—长度相等且方向相同的向量,记作 a=b .
(3)共线向量—就是平行向量.
二、探究本质 得出新知
问题12:平行向量所在直线是否一定平行?共线向量所在直线 是否一定共线?
提示:不一定
总结:向量可以自由平移.
三、举例应用 掌握定义
例1.一辆汽车从点出发向西行驶了100千米到达B点,然后又 改变方向向西偏北 50 走了200千米到达C点,最后又改变方向, 向东行驶了100千米到达点D. (1)作出向量 AB, BC,CD ; (2)求 AD .
其中正确的有( A )
A.2个
B.3个
C.4个
D.5个
解:①正确;
②由 a = b 得 a 与 b的模相等,但不确定方向,故②错误;
③错误; ④所有单位向量的模都相等,都为1,但方向不确定,故④不 正确;⑤正确.故选A.
四、学生练习 加深理解
3.如图,D, E, F 分别是 ABC 的边 AB, BC,CA的中点,在以 A, B,C, D, E, F 为起点和终点的向量中.
(1)找出与向量 EF 相等的向量; (2)找出与向量 DF 共线的向量.
四、学生练习 加深理解
解:(1)因为 E, F分别为 BC,CA 的中点,所以 EF//BA ,
且
EF
1 2
BA
.又因为
D
是BA
的中点,所以
EF
BD
DA,所以
与 EF 向量相等的向量为BD, DA .
(2)因为 D, F 分别为 BA, AC 的中点,
第六章 平面向量及其应用
6.1 平面向量的概念
一、创设情境 引入新课
问题1:道路标识牌上的箭头和数字指的是什么? 问题2:老鼠由点A向东北方向逃窜,猫快速由点B向正东
平面向量ppt课件
AB
A 4cm B
T
有向线段要素:起点、大小、方向.
方向、大概路程
2、定义:既有大小又有方向的量叫向量. 要素:大小、方向
3、向量的大小也叫做向量的长度(或向量的模). 4、向量的表示法:
几何表示法: 用有向线段表示 .
符号表示法: AB或a、b 记作: AB 、a 、b
思考:
1、如图四边形ABCD和四边形EFGH分别是平行四边形和
问题 1.将定点A平移5cm,你能唯一确定点A平移后的
位置吗? 没有给定平移方向
2.将定点A沿北偏东60°的方向平移,你能唯一 确定点A平移后的位置吗? 没有给定平移距离
3.将定点A沿北偏东60°的方向平移5cm,你能 唯一确定点A平移后的位置吗?
给定了方向和大小
60o
A
A1 5cm
1、规定了方向的线段叫做 有向线段.
梯形,在梯形中EF∥GH。图中有向线段都表示向量,它
们的起点和终点分别是所在四边形的顶点。
D
C
H
G
A
BE
F
⑴用符号表示各个向量;
⑵每个四边形对边上的两个向量,它们的方向是相同
还是相反?它们的长度是否相等?
D
C
H
G
A
BE
F
方向相同且长度相等的两个向量叫做相等的向量。
AB = DC
方向相反且长度相等的两个向量叫做互为相反的向量。
A
D
B
E
C
平面向量 向量的定义 既有大小又有方向的量叫向量
要素:大小、方向
几何表示法:用有向线段表示 向量的表示
字母表示法:AB或 a 、b 、c
向量的长度(模) 向量的大小
平面向量优秀课件
(7)若 | a | = | b |,则a b
作图题
已知△ABC和点P,如图,以点P为起点,分 别画有向线段表示下列向量:
(1)与AB相等的向量;
(2)与BC互为相反向量的向量; (3)与AC互为相反向量的向量;
向量
内容小结
定义
几何表示法
表示
向量的有 关概念
符号表示法 向量的长度
向量间的 关系
相等向量
互为相反 向量
平行向量
简答题 如图所示,四边形ABCD是正方形,图中有 向线段都表示向量。
(1)所有与AB相等的向量; (2)所有与AD互为相反向量的向量; (3)所有的平行向量
22.7(2) 平面向量
概念
向量:既有大小、又有方向的量
思考:下列哪些量是向量:
(1)温度 (2)重力 (3)时间
概念
向量的长度(向量的模):向量的大小 思考:向量能比较大小吗? 向量的模能比较大小吗?
向量的表示方法
图中向量可表示为:有向线段 AB ,
B
其中 A为始点,B为终点.
始点 A和终点 B间的距离表示向量
(2)在直线平行的概念中,平行与重合 是两个互不相容的概念,即互相重合的两 条直线不能作为互相平行的直线,互相平 行的两条直线一定不重合。
▪ 书本练习2
过关大考验
★
判断题
★★
简答题
★ ★★
作图题
判断题
(1)平行向量的方向一定相同; (2)不相等的向量一定不平行; (3)若两个向量在同一直线上,则这两个 向量一定是平行向量; (4)相等向量一定是平行向量; (5)平行向量一定是相等向量;
相等向量、相反向量和平行向量
中职数学基础模块下册《平面向量的概念》课件
向量的投影可以看作是向量在某个方 向上的分量,通过计算向量的数量积 可以得到向量的投影。
速度和加速度的计算
在运动学中,速度和加速度可以表示 为位置向量的时间导数,通过计算向 量的数量积可以得到速度和加速度的 大小。
THANKS
感谢观看
数量积的几何意义
01
数量积表示向量a与向量b的长度 和它们之间的夹角的余弦值的乘 积。
02
当两向量同向时,数量积为两向 量长度之积;当两向量反向时, 数量积为两向量长度之差的绝对 值。
数量积的应用举例
力的合成与分解
向量的投影
在物理中,力可以视为向量,力的合 成与分解可以通过计算向量的数量积 来实现。
详细描述
向量模是表示向量长度的概念, 记作|a|。向量模具有非负性、齐 次性、三角形不等式等性质。
向量模的计算方法
总结词
掌握向量模的计算方法是实际应用中必不可少的技能。
详细描述
向量模的计算公式为|a| = 根号(x^2 + y^2),其中x和y分别是向量在x轴和y轴上的分量。此外,还有 向量模的运算性质,如|a+b|≤|a|+|b||a-b|≤|a|+|b||a-b|≥||a|-|b||等,这些性质在实际问题中具有广泛 的应用。
平面向量数乘的定义与性质
总结词
数乘是标量与向量的乘积,结果仍为 向量,满足分配律。
详细描述
数乘是实数与向量的乘积,其实质是 标量与向量的乘积。数乘的结果仍为 向量,且满足分配律,即 m(a+b)=ma+mb。
平面向量加法与数乘的几何意义
总结词
平面向量加法的几何意义是将两个向量首尾相接, 按平行四边形法则或三角形法则确定的合成向量; 数乘的几何意义是改变向量的模长和方向。
6.1平面向量的概念课件共34张PPT
探究点二 相等向量与共线向量
如图,O是正六边形DEF的中心,分别写出图中与向量
→ OA
,
O→B,O→C相等的向量,与向量A→D共线的向量.
解析: 与O→A相等的向量有C→B,D→O,E→F; 与O→B相等的向量有F→A,E→O,D→C; 与O→C相等的向量有A→B,F→O,E→D. 与向量A→D共线的向量有9个:D→A,E→F,F→E,A→O,O→A,O→D,D→O,B→C, → CB.
探究点三 向量的表示及应用 在蔚蓝的大海上,有一艘巡逻艇在执行巡逻任务.它首先从A点出
发向西航行了200 km到达B点,然后改变航行方向,向西偏北50°航行了 400 km到达C点,最后又改变航行方向,向东航行了200 km到达D点.此时, 它完成了此片海域的巡逻任务.
(1)作出A→B,B→C,C→D; (2)求|A→D|.
[对点训练] 在等腰梯形ABCD中,AB∥CD,对角线AC与BD相交于点O,EF是过点O 且平行于AB的线段,在所标的方向向量中: (1)写出与A→B共线的向量; (2)写出与E→F方向相同的向量; (3)写出与O→B,O→D的模相等的向量; (4)写出与E→O相等的向量.
解析: 在等腰梯形ABCD中,AB∥CD∥EF,AD=BC. (1)题干图中与A→B共线的向量有D→C,E→O,O→F,E→F. (2)题干图中与E→F方向相同的向量有A→B,D→C,E→O,O→F. (3)题干图中与O→B的模相等的向量为A→O,与O→D的模相等的向量为O→C. (4)题干图中与E→O相等的向量为O→F.
→ 2.已知D为平行四边形ABPC两条对角线的交点,则|P→D|的值为( )
|AD|
A.12
B.13
C.1
D.2
平面向量实用PPT课件PPT课件
AQ
4 3
13
9
9 第26页/共63页
例4:已知点M(-1,0),N(1,0),且点P使 MP MN, PM PN, NM PN成公差小于零的等差数列。
(1)求点P的横坐标所满足的方程。 (2)若 为 PM与 PN的夹角,求 的取值范围。
MP MN x 1, y 2,0 2x 2 PM PN x 1,y1 x,y x2 y2 1 NM NP 2,0 x 1, y 2x 2
a
B
③几何图形:用有箭头的线段来表示; A
3.向量的模:向量的大小叫作向量的模,记作
|
a |或
AB
4.零向量:规定模为零的向量叫作零向量;记作 0
零向量的方向是不确定的!
第1页/共63页
5.向量相等:
如果向量 a和
相等的向量,
记b 的作模a 相 b等 且方向相同,那a么这两个向量叫作
规定:零向量都是相等的。
AB 4,8, AC 6,4
直线AB的方程:y=2(x-1)
1
点P(4,6) Qx, y
cosBAC
65
直线AC的方程:y=-2/3(x-1)
SABC
1 2
AB
AC sinBAC
32
Q x, 2 x 1
3
SAPQ
x
1 2
SABC
12
16
4 x
1
AP
2
12
16
AQ 13
s
inBAC x 5,3
则平行四边形的对角线所表示的向量 OC c
就叫做向量 a 和 b 的和,记作 c a b
求向量和的运算,叫做向量的加法.
第4页/共63页
2024版中职数学平面向量的概念ppt课件
01向量的定义向量是既有大小又有方向的量,通常用有向线段表示。
02向量的表示方法向量可以用小写字母或大写字母加箭头表示,如$vec{a}$或$overset{longrightarrow}{AB}$。
03向量的模向量的大小称为向量的模,记作$|vec{a}|$,模长是一个非负实数。
向量定义及表示方法03向量的模长等于有向线段的长度,可以通过勾股定理或三角函数计算。
向量的模长向量与正方向(通常是x 轴正方向)的夹角称为向量的方向角,记作$theta$,取值范围是$[0, pi]$或$[0, 180^circ]$。
方向角向量与坐标轴正方向的夹角的余弦值称为向量的方向余弦,可以通过方向角计算得到。
方向余弦向量模长与方向角模长为0的向量称为零向量,记作$vec{0}$,零向量没有方向。
零向量单位向量相反向量模长为1的向量称为单位向量,单位向量具有确定的方向。
与给定向量大小相等、方向相反的向量称为相反向量,记作$-vec{a}$。
030201零向量、单位向量和相反向量向量共线与平行关系向量共线如果两个向量在同一直线上或者平行于同一直线,则称这两个向量共线。
共线向量满足$vec{a} = kvec{b}$($k$为实数)。
向量平行如果两个向量的方向相同或相反,则称这两个向量平行。
平行向量满足$vec{a} parallel vec{b}$。
共线与平行的关系在平面内,共线的向量一定平行,但平行的向量不一定共线。
加法定义两个向量相加,即将它们的对应分量相加得到新的向量。
几何意义向量的加法满足平行四边形法则或三角形法则,即两个向量相加的结果可以表示为以这两个向量为邻边的平行四边形的对角线,或者可以表示为将其中一个向量的终点连接到另一个向量的起点的向量。
01减法定义02几何意义两个向量相减,即将被减数的各分量减去减数的对应分量得到新的向量。
向量的减法可以表示为将减数向量的终点连接到被减数向量的起点的向量,这个向量与减数向量方向相反,大小相等。
平面向量的概念PPT课件
04
平面向量数量积概念及性 质
数量积定义及几何意义
数量积定义
两个向量的数量积是一个标量,等于它们模长的乘积与它们夹 角余弦的乘积。
几何意义
数量积反映了两个向量的相对位置和角度关系,正值表示同向, 负值表示反向,零表示垂直。
数量积性质及运算规律
性质
满足交换律、分配律、结合律,与标量乘法相容等。
运算规律
向量坐标与点坐标关系
向量坐标
向量坐标是由起点指向终点的有 向线段,在直角坐标系中可以用
两个坐标值表示。
点坐标
点坐标是直角坐标系中点的位置表 示,同样可以用两个坐标值表示。
关系
向量坐标与点坐标密切相关,向量 的起点和终点坐标可以决定向量的 坐标,而点的坐标可以用来表示向 量的起点或终点。
向量运算坐标表示法
坐标法求解向量问题
求解向量坐标
通过已知点的坐标和向量的关系,可以 求解向量的坐标。
求解向量模长
通过向量的坐标可以计算向量的模长, 进而求解与模长相关的问题。
求解向量夹角
通过向量的坐标可以计算向量的夹角, 进而求解与夹角相关的问题。
求解向量运算结果
通过向量的坐标表示法可以求解向量的 加法、减法和数乘运算结果。
向量运算满足基本定律
加法结合律
(a + b) + c = a + (b + c)
数乘结合律
(kl)a = k(la)
加法交换律
a+b=b+a
数乘分配律
k(a + b) = ka + kb
向量共线定理,使得b = λa
03
平面向量坐标表示法
直角坐标系中向量表示方法
数学人教A版(2019)必修第二册6.1平面向量的概念(共24张ppt)
下
课
2.数量
只有大小,没有方向的量叫做数量(物理学中称为标量)
注:向量只与大小和方向有关
新知学习
一、向量的概念
概念辨析练习:
判断以下量是向量还是数量。
1.重力
(向量)
2.年龄
(数量)
3.加速度
(向量)
4.距离
(数量)
5.弹力
(向量)
6.温度
(数量)
7.身高
(数量)
新知学习
二、向量的表示
探究:由于实数与数轴上的点一一对应,数量常常用数轴上的一个点表示,
人教版A版必修第二册
第六章 平面向量及其应用
6.1平面向量的概念
6.1.1向量的实际背景与概念
6.1.2向量的几何表示
6.1.3相等向量与共线向量
学习目标
1.了解平面向量的实际背景,理解平面向量的概念;
2.掌握平面向量的表示方法,理解向量的模的概念;
3.理解零向量、单位向量、相等向量、共线向量的概念.
B. || = ||
C. >
D. <
课堂小结
课堂小结
定义 有大小、有方向、能自由平移
向
量
表示
几何表示法:有向线段
字母表示法:、、
Ԧ
长度(模)||向量的有Fra bibliotek概念 特殊向量
零向量 0
单位向量
向量间的关系
平行(共线)向量
相等向量
相反向量
课后作业
完成课时作业(一)A组、B组
不正确,两个向量不能比较大小,但两个向量的模可以比较大小
> 无意义,|| > ||有意义
思考2:向量的模可以为0吗?可以为1吗?可以为负数吗?
6.1平面向量的概念课件共45张PPT
即时训练1-1:判断下列命题是否正确,若不正确,请简述理由.
(2)单位向量都相等;
解:(2)不正确,单位向量的模均相等且为1,但方向并不确定.
即时训练 1-1:判断下列命题是否正确,若不正确,请简述理由.
→
→
(3)四边形 ABCD 是平行四边形当且仅当=;
(4)一个向量方向不确定当且仅当模为 0;
有紧紧抓住概念的核心才能顺利解决与向量概念有关的问题.
即时训练 1-1:判断下列命题是否正确,若不正确,请简述理由.
→
→
(1)向量与是共线向量,则 A,B,C,D 四点必在同一直线上;
解:(1)不正确,共线向量即平行向量,只要求方向相同或相反即可,并不
→
→
要求两个向量,在同一直线上.
(3)两个特殊向量:
①零向量与非零向量:
长度为0的向量叫做零向量.印刷时用加粗的阿拉伯数字零表示,即0;书写
→
时,可写为.长度不为 0 的向量称为非零向量.
②单位向量:长度等于1个单位长度的向量,叫做单位向量.
2.向量间的关系
(1)平行向量(共线向量):方向相同或相反的非零向量叫做平行向量,向量
图所示的向量中,
→
→
(1)分别找出与, 相等的向量;
→
→
→
→
解:(1)=,=.
[例 2] O 是正方形 ABCD 对角线的交点,四边形 OAED,OCFB 都是正方形,在如
图所示的向量中,
→
(2)找出与共线的向量;
→
→
→
→
解:(2)与共线的向量有,,.
[例 2] O 是正方形 ABCD 对角线的交点,四边形 OAED,OCFB 都是正方形,在如
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2021
应用举例
D A
C 1.点A相对于点D的位置差别的有 向线段是 DA 。
2.点C相对于点D的位置差别的有 向线段是 DC 。
B
2021
书P104
练习
2021
A D
实战练演习练
B C
已知平行四边形ABCD,写出满
足下列要求的有向线段。
(1)与有向线段AB方向相同且长度相
等的是
3、有向线段AB的符号表示:AB
2021
思考
1.线段AB与线段BA一样吗?
2.“有向线段AB”与“有向 线段BA ”一样吗?如果不 一样,有什么差别?
2021
P
A 北M
30
N
应用举例
用有向线段表示两个点 的位置差别(比例尺选用 1:100)。 1. 点P在点A的正北3米处。 2. 点M在点N的北偏东30度
DA = BC
方向相同或方向相反的两个向量叫做平行向量。
EF ∥ HG AB∥ DC DA∥ BC
2021
向量的关系
H
G
D
C
A
BE
F
思考:向量 AB 与向量 BA 是什么关
系的向量?试用符号表示出来.
2021
作图题 已知△ABC和点P,如图,以点P为起点,分 别画有向线段表示下列向量:
(1)与AB相等的向量;
2021
描述物体的一次位置移动需哪几个量?
移到的距离、移到的方向
为什么只需这两个量?
一次“位置移动”是由两个点的相对位置确 定的,反映了“两个点的位置差别”。要描 述两个点的位置差别(或相对位置),只需 指出这两点的距离,以及从其中一个点到另 一点的方向。
2021
请尝试画出小明所指路线的示意图。 能以实际距离画图吗?
E A’
F
向线段EF表示的平移移动后 所得的线段A’B’。
1、作有向线段 AA'、BB ' ,使它们分别与有向线 段 E同F 向且等长; 2、联结A’B’
A’B’就是所求作的线202段1 。
例题
C
求作△ABC按有向线
B C’ 段EF表示的平移移动后
A
所得的△A’B’C’。
B’ A’
E
F
△A’B’C’就是所求作的三角形
2021
练习:
一、判断下列语句是否正确。
1、用有向线段表示向量时,起点不同但“同向且等长” 的有向线段表示相等的向量。 2、表示两个向量的有向线段具有同一起点,那么
2021
画有向线段的步骤
1、定比例尺(1:1时可省略) 2、取定起点,以起点为端点按指定方向画一条 射线; 3、按比例尺确定的长度在射线上从端点开始截 取一条线段; 4、在截得的线段的另一个端点处画上一个箭头; 5、写出结论。
2021
例题
B
B’ A
如图,已知线段AB与有 向线段EF,求作线段AB按有
DC
。
(2)与有向线段AB方向相反且长度相
等的是 BA、CD 。
。
2021
思考
有一个图形,按下述方法平移:“向 南偏东30°方向移动4cm”,请问这个平 移运动可以用有向线段来表示吗?
2021
动手操作
C
E
B C’ A
F
B’ A’
图形上的任意一对对应点所作的有向线段都是“同
向且等长”,故这个平移可用有向线段EF表示。
可见,描述图形的平移只需平移距离与方向两 个要素。
2021
应用举例
求作一条表示平移“向北偏西30°移动
3cm” 的有向线段。
.M
(1)在平面内任取一点M,按照北偏西30°的 方向作射线MT;
(2)在射线MT上截取线段MN,使MN=3cm;
N
(3)在N点处画上箭头
MN就是所求作的表示这个平移的有向线段
2021
向量的表示方法
1、向量可以用有向线段直观表示:
①有向线段的长度表示向量的长度;
②有向线段的方向表示向量的方向。
2、符号表示方法: a
b
c
①向量 AB ,长度记为 AB
②向量 a b c ,长度记为 a 、b 、c
2021
例题 如图四边形ABCD和四边形EFGH分别是
平行四边形和梯形,在梯形中EF∥GH。图中有
1:20000
A.
B.
.C
(图1)中在的平线面段上A任B、取一线点段AB表C示都游带客有问一路个时所箭在头的,位 置A表B,=示1从厘线点米段A,向具在南点有画B方一处向条画性射一线个。,箭并头在。射线上截取线段
( 这就是小明指路的示意图
2021
概念总结
1、规定了方向的线段叫做有向线段。
2、线段的两个端点分别叫做有向线段 的起点和终点。
(2)与BC互为相反向量的向量; (3)与AC互为相反向量的向量;
2021
讨论
两条直线平行与两个向量平行的异同?
(1)当两个向量平行时,这两个向量所在的直线平 行或重合。 (2)在直线平行的概念中,平行与重合是两个互不 相容的概念,即互相重合的两条直线不能作为互相 平行的直线,互相平行的两条直线一定不重合。
向线段都表示向量,它们的起点和终点分别是所
在四边形的顶点。
D
C
H
G
A
BE
F
⑴用符号表示各个向量;
⑵每个四边形对边上的两个向量,它们的方向
是相同还是相反?它们的长度是否相等?
2021
向量的关系
H
G
D
C
A
BE
F
方向相同且长度相等的两个向量叫做相等的向量。
AB = DC
方向相反且长度相等的两个向量叫做互为相反的向量。
2021
世界上确实存在着“既有大小、又有方 向的量”,表明我们有必要对这种量进行 学习和研究.
2021
概念
向量(vector):既有大小、又有方向的量
思考:下列哪些量是向量:
(1)温度 (2)重力 (3)时间
2021
概念
向量的长度(向量的模):向量的大小 思考:向量能比较大小吗? 向量的模能比较大小吗?
2021
1、你知道有向线段的概念了吗?如何表示? 2、你知道有向线段与线段的区别吗? 2、你会用有向线段表示位置差别吗? 3、你会根据有向线段平移图形吗?
2021
22.7(2)平面向量
2021
一个重为40牛的重物在水平方向受到水平拉力 F1和摩擦力f的作用在水平地面上保持静止状态, 摩擦力f的大小和方向如图所示,如果它还受到 一个竖直向上大小为30牛的拉力F2 ,请在图中 用力的图示法分别画出拉力F1、F2以及它所受 的重力G。
22.7(1)有向线段
2021
【一情、景情一景】引出入操
• 小明向东走
• 小立走八步
A
B
• 小方向东走八步
2021
【情景二】指路
一位来上海观光的游
北
客在西藏路上向小明
问路:“到外滩怎么
走?
“从这沿西藏路向南走大约200米到第一百货公 司,再沿着南京路向东走2000米就到了。”
2021
【生活中应用的一些例子】