围堰边坡稳定渗流计算书
某水电站围堰抗滑稳定计算(含格式)
参照规范要求
参数数值 0.74 10.00% 1.00 1.64
备注 估算 参照规范要求
浸润线以下,水面以上部分:rs=rd+nrw 序号 1 2 3 参数名称 饱和容重 孔隙率 水的容重 参数符号 rs n rw rd 参数数值 1.74 10.00% 1.00 1.64 估算 参照规范要求 备注
参数符号 rb rd w
参数数值 2.43 2.25 8%
备注
参照规范要求
下游静水位以下部分:计算公式 ru=rd-(1-n)rw
附表一/1
围堰稳定计算
2
序号 1 2 3 4 序号 1 2 3
参数名称 浮容重 孔隙率 水的容重 填筑干容重 参数名称 饱和容重 孔隙率 水的容重
参数符号 ru n rw rd 参数符号 rs n rw rd
切向分力:∑Ti=b∑rihisinai 详细计算见下表:
4 填筑干容重 1.1.3堰壳堆石体容重计算 水上部分: 序号 1 计算公式 rd=rm(1-n),
参数名称 干容重
参数符号 rd
参数数值 3.06 2.45 25%
备注
rm 2 块石容重 3 空隙率 n 水位以下部分:计算公式 ru=rd-(1-n)rw 序号 1 2 3 参数名称 浮容重 孔隙率 水的容重 参数符号 ru n rw rd
参数名称 湿容重
参数符号 rb
参数数值 1.89 1.64 15%
备注
按规范要求击实度应大于92%~95%,取93%,则干密度=最 rd 填筑干容重 2 击实试验最大干容重:1.64g/cm3 大干密度*击实度=1.64*0.93=1.5252;干容重为14.947;湿密 -6 填筑市时的含水量 w 3 渗透系数:k=1.1×10 cm/s 度为1.7209,湿容重为16.865;饱和密度为1.9538,饱和容重为 0 ' 内摩擦角:26 24 19.147;浮容重为9.348; 下游静水位以下部分:计算公式 ru=rd-(1-n)rw (二)堰壳填料及反滤料 1.堰壳填料 围堰3855m高程以下部位堰壳填筑料选择河床右岸河床扩挖砂石料及进水口开挖弃 参数名称 参数符号 序号 料,3855m高程以上部位堰壳填料选择基坑开挖弃料及上下游弃料场弃料. ru 浮容重 坝址基坑砂砾料特性: 1 孔隙率 n 卵砾石含量:76.42% 2 rw 水的容重 不均匀系数:Cu=226.8 3 rd 填筑干容重 天然干容重:2.25 4 含泥量:0.8% 渗透系数:k=0.25cm/s 内摩擦角:41 2.反滤料 要求:继配性能好,粒经小于0.1mm的颗粒不宜大于5%~10%,渗透系数大于 防渗体土料渗透 系数50~100倍即5.5×10-5cm/s~1.1×10 -4cm/s. (三)灌浆固壁土料 固壁土料场选择在斯岗村土料场,位于拉萨河下游60km的彭波曲河口,属达孜县平措区境 内.
土石防水围堰计算书
土石防水围堰计算书计算依据:1、《公路桥涵地基与基础设计规范》JTG D63-20072、《海港水文规范》JTJ 213-98中华人民共和国交通部发布3、《碾压式土石坝设计规范》DLT 5395-2007一、基本参数围堰顶部宽度B(m): 5 围堰土堤高度H(m):7围堰外侧水深hw(m): 6 围堰内侧坡角α(°):33.69 围堰外侧坡角β(°):26.57 围堰顶部均布荷载q(kN/m2):20围堰底面地基土类型:粉砂基础底面与地基土之间的摩擦系数μ:0.3波浪力对围堰产生的倾覆力矩910.46 波浪力P WF(kN/m):104.67M WF(kN*m):填土名称页岩土填土的重度γ(kN/m3) 21填土的内摩擦角φ(°)25 填土的粘聚力c(kPa) 15 计算简图土和块石防水围堰_剖面图二、围堰土堤稳定性计算1、围堰土堤边坡按直线滑动法验算稳定性土和块石防水围堰_直线滑动面法受力简图K min1=(W1×cosα1×tanφ+c×L1)/(W1*sinα1)=(555.11×cos22.69°×tan25.00° +15.00×17.41)/(555.11×sin22.69°)=2.34≥1.25K min2=(W2×cosα2×tanφ+c×L2)/(W2×sinα2)=(674.28×cos17.57°×tan25.00°+15.00×20.98)/(674.28×sin17.57°)=3.02≥1.25其中:W i--滑动面上的土体重和围堰顶所受荷载,kN;满足要求!2、围堰土堤抗倾覆稳定验算土和块石防水围堰_抗倾覆验算受力简图围堰土堤重和顶部所受荷载:W=γ×H(2B+H×ctgα+H×ctgβ)/2+q×B=21.00×7.00×(2×5.00+7.00×ctg33.69°+7.00×ctg26.57°)/2+20.00×5.00=2635.53kNk0=(W×b+ E y×a)/( E x×h+M WF+M others)=(2635.53×14.04+359.92×16.83)/(180.00×2.00+910.46)=33.89≥1.30满足要求!3、围堰土堤抗整体滑动稳定验算k c=μ×∑Pi/∑Ti=(0.30×2995.45)/(180.00+104.67)=3.16≥1.30其中:∑Pi--围堰土堤对地基土层的竖向作用力总和,kN;∑Ti--围堰土堤各水平力总和,kN;满足要求!三、围堰土堤断面抗剪强度计算土和块石围堰的抗剪切能力来自土体断面上的摩擦力,其强度为Hγμ应大于剪应力:围堰填土土面间的摩擦系数:μ=tanφ= tan25.00°=0.47抗剪切强度:Hγμ=7.00×21.00×0.47=68.55kN/m2剪应力:τ=3/2(H2/2/B)= 3H2/4/B =3×7.002/4/5.00=7.35kN/m2Hγμ=68.55kN/m2≥3H2/4/B=7.35kN/m2满足要求!。
围堰计算书
工程设计证书号:A132019934金庭环岛路B取土区施工围堰计算报告江苏宏鑫路桥建设有限公司2012年02月目录1 工程概况 (1)2 计算依据 (1)3 设计条件 (1)4 钢桩嵌固深度计算 (3)5 排桩结构内力计算 (5)6 围堰挡水的整体抗滑稳定计算 (5)7 土堤坝边坡抗滑稳定计算 (6)1 工程概况本工程围堰是以钢排桩为骨架、结合土堤坝的复合挡水结构型式。
依据相关资料,分别复核验算了钢管(板)桩嵌固深度,钢排桩结构内力,围堰挡水的整体稳定性,土堤坝边坡稳定和渗透稳定性。
2 计算依据(1)围堰设计图(2)岩土工程勘察报告(3)建筑基坑支护技术规程JGJ 120-99(4)水电水利工程围堰设计导则DL/T 5087-1999(5)堤防工程设计规范GB50286-983 设计条件工程等别及标准按照中华人民共和国能源部水利部《水利水电工程施工组织设计规范SDJ338-89(试行)》的有关规定,本取土工程的围堰工程级别,根据工程保护对象、失事后果、使用年限和工程规模确定。
考虑到本工程的保护面积较大;使用年限一般在1年左右,跨越1个主汛期;围堰一旦失事,将直接影响取土工程和周边沿湖工程的工期,围堰修复及产生的排水费用也较大等情况,本工程围堰建筑物级别选为Ⅳ级。
根据规范,对应本围堰建筑物的类型和级别,设计洪水位标准可取10年一遇洪水即2.37m。
本工程区地震基本烈度Ⅵ度。
围堰断面围堰顶高程、顶宽确定⑴顶高程堰顶高程按设计水位加风壅水高加设计波浪爬高和安全超高确定。
设计水位:2.37m。
设计风速取8级风(17.9m/s)安全超高:按照《施工组织设计规范》的规定,Ⅳ级建筑物,安全超高值为0.5m。
A区围堰:风壅水高及波浪爬高:工程区主风向为东南风,风区长度约5km;堰坡为土坡,坡比为2.5,水域平均水深取1.50m。
经核算风壅水高0.20m,波浪爬高为0.97m,围堰顶高程=2.37+0.20+0.97+0.5=4.04m,设计围堰顶高程为4.10m。
围堰边坡稳定渗流计算书
目录1.计算总说明............................... ..................... .. (2)2.设计基本资料...................... ..................... . (3)3.计算过程 (4)4.计算结果分析与结论...................... ..................... . (5)1、计算总说明1.1 计算目的与要求施工单位对充(吹)填砂取样实验,充(吹)填砂的内摩擦角与原设计计算采用的数值有差异,需用施工单位现场的实验数值对围堰边坡稳定计算进行复核。
根据充(吹)填砂施工单位实验数值,充(吹)填砂采用水下摩擦角16°,水上摩擦角20°进行边坡稳定复核。
由于东、西岸围堰设计断面一致,基础均为中、粗砂,可以采用东、西岸围堰最大断面进行复核,即东岸围堰6-6断面。
1.2 主要计算原则和方法从受力性能上说,袋装砂实质上是一种加筋土坝。
计算采用瑞典圆弧法。
计算采用北京理正边坡稳定分析软件6.0版,边坡稳定分析采用凝聚力C p 模型计算。
p C式中,C p ——拟凝聚力,R f ——单位厚度土工合成材料试样(纵向)中筋材的极限抗拉强度;S y——土工合成材料层间距;K p——被动土压力系数。
单位厚度土工合成材料试样(纵向)中筋材的极限抗拉强度为30kn。
施工时,根据实际水位,水上土工合成材料层间距为0.7m,水下土工合成材料层间距0.5m,为简化计算,水上、水下土工合成材料层间距均按0.7m计。
砂的内摩擦角水上水下统一按16度计。
C p=30*1.33/2*0.7=28.5kpa。
1.3 主要计算内容根据GB50286-2013《堤防工程设计规范》,抗滑稳定计算分为正常运用条件和非常运用条件。
正常运用条件计算工况如下:1)临水侧为设计洪水位和防洪高水位,稳定渗流期的背水侧堤坡的稳定;2)设计洪水位和防洪高水位骤降期,临水侧堤坡的稳定。
渗流分析 稳定计算 理正
理正软土地基堤坝设计软件计算项目:简单软土地基堤坝设计 1计算时间: 2014-08-17 10:01:01 星期日============================================================================原始条件:计算目标: 只计算稳定堤坝设计高度: 10.000(m)堤坝设计顶宽: 4.000(m)竣工后左侧工作水位高: 9.000(m)竣工后右侧工作水位高: 0.000(m)竣工后经过 2.000 个月注水到工作水位堤坝左侧坡面线段数: 1坡面线号水平投影(m) 竖直投影(m)1 20.000 10.000堤坝右侧坡面线段数: 1坡面线号水平投影(m) 竖直投影(m)1 20.000 10.000工后沉降基准期结束时间: 2(月) 荷载施加级数: 1序号起始时间 (月) 终止时间(月) 填土高度(m) 是否作稳定计算1 0.000 6.000 10.000 否堤坝土层数: 1 超载个数: 1层号层厚度(m) 重度(kN/m3) 饱和重度(kN/m3) 内聚力(kPa) 内摩擦角(度) 水下内聚力(kPa) 水下内摩擦角(度)1 10.000 14.000 18.500 25.000 20.000 20.000 15.000超载号定位距离(m) 分布宽度(m) 超载值(kPa) 沉降计算是否考虑稳定计算是否考虑1 4.000 12.000 80.000 否是地基土层数: 1 地下水埋深: 1.000(m)层号土层厚度重度饱和重度地基承载力快剪C 快剪Φ 固结快剪竖向固结系水平固结系排水层(m) (kN/m3) (kN/m3) (kPa) (kPa) (度) Φ(度) 数(cm2/s) 数(cm2/s)1 1.000 25.000 25.000 2000.000 500.000 30.000 30.000 0.00150 0.00150 否层号 e( 0) e( 50) e(100) e(200) e(300) e(400) e(500) e(600) e(800)1 0.721 0.676 0.636 0.602 0.587 0.577 0.573 0.570 0.570承载力计算参数:承载力验算公式: p ≤γR[fa]验算点距离中线距离: 0.000(m)承载力抗力系数γR: 1.00承载力修正公式: [fa] = [fa0] + γ2(h-h0)基准深度h0: 0.000(m)固结度计算参数:地基土层底面: 不是排水层固结度计算采用方法: 微分方程数值解法多级加荷固结度修正时的荷载增量定义为"填土高*容重"填土-时间-固结度输出位置距离中线距离: 0.000(m)填土-时间-固结度输出位置深度: 0.000(m)沉降计算参数:地基总沉降计算方法: 经验系数法主固结沉降计算方法: e-p曲线法沉降计算不考虑超载沉降修正系数: 1.200沉降计算的分层厚度: 0.500(m)分层沉降输出点距中线距离: 0.000(m)压缩层厚度判断应力比 = 15.000%基底压力计算方法:按多层土实际容重计算计算时不考虑弥补地基沉降引起的堤坝增高量工后基准期起算时间: 最后一级加载(堤坝施工)结束时稳定计算参数:稳定计算方法: 有效固结应力法加载与堤坝竣工的间隔时间(月): 1稳定计算不考虑地震力稳定计算目标: 自动搜索最危险滑裂面条分法的土条宽度: 1.000(m)搜索时的圆心步长: 1.000(m)搜索时的半径步长: 0.500(m)============================================================================稳定计算(1) 第1级加荷,从0.0~6.0月,堤坝设计高度10.000(m), 堤坝计算高度(不考虑沉降影响)10.000(m),加载结束时稳定结果用户不要求作稳定计算(2) 在8.0月堤坝注水到工作水位,堤坝设计高度10.000(m), 此时稳定结果土条起始x 土条面土条自条上荷总重αi Sinαi Cosαi Cqi Φqi 下滑力抗滑力抗滑力编号 (m) 积(m2) 重(kN) 重(kN) (kN) (度) (kPa) (度) (kN) WiCosαitgΦq CiLi-----------------------------------------------------------------------------------------------------------1 2.17 0.38 3.24 0.00 3.24 -16.75 -0.29 0.96 20.00 15.00-2.03 0.83 20.372 3.15 1.12 9.51 0.00 9.51 -14.12 -0.24 0.97 20.00 15.00-5.05 2.47 20.123 4.12 1.81 15.40 0.00 15.40 -11.51 -0.20 0.98 20.00 15.00-6.69 4.04 19.914 5.10 2.46 20.90 0.00 20.90 -8.93 -0.16 0.99 20.00 15.00-7.06 5.53 19.755 6.07 3.06 26.03 0.00 26.03 -6.36 -0.11 0.99 20.00 15.00-6.28 6.93 19.636 7.05 3.62 30.79 0.00 30.79 -3.81 -0.07 1.00 20.00 15.00-4.46 8.23 19.557 8.02 4.14 35.19 0.00 35.19 -1.27 -0.02 1.00 20.00 15.00-1.70 9.43 19.518 9.00 4.74 40.28 0.00 40.28 1.30 0.02 1.00 20.00 15.001.99 10.79 20.019 10.00 5.19 44.14 0.00 44.14 3.91 0.07 1.00 20.00 15.006.55 11.80 20.0510 11.00 5.60 47.61 0.00 47.61 6.53 0.11 0.99 20.00 15.0011.78 12.68 20.1311 12.00 5.96 50.69 0.00 50.69 9.16 0.16 0.99 20.00 15.0017.56 13.41 20.2612 13.00 6.28 53.37 0.00 53.37 11.81 0.20 0.98 20.00 15.0023.77 14.00 20.4313 14.00 6.54 55.63 0.00 55.63 14.48 0.25 0.97 20.00 15.0030.28 14.43 20.6614 15.00 6.76 57.47 0.00 57.47 17.19 0.30 0.96 20.00 15.0036.97 14.71 20.9415 16.00 6.93 58.86 0.00 58.86 19.94 0.34 0.94 20.00 15.0043.69 14.83 21.2816 17.00 7.03 59.79 0.00 59.79 22.74 0.39 0.92 20.00 15.0050.29 14.78 21.6917 18.00 4.72 40.78 0.00 40.78 25.11 0.42 0.91 20.00 15.0036.86 9.89 14.7318 18.67 4.73 42.09 0.00 42.09 27.04 0.45 0.89 20.00 15.0039.06 10.04 14.9719 19.33 4.71 43.67 0.00 43.67 29.01 0.48 0.87 20.00 15.0040.86 10.23 15.2520 20.00 6.33 63.69 0.00 63.69 31.43 0.52 0.85 20.00 15.0056.89 14.56 21.9421 20.94 5.77 65.49 0.00 65.49 34.33 0.56 0.83 20.00 15.0052.56 14.49 22.6722 21.87 5.13 66.72 0.00 66.72 37.34 0.61 0.80 20.00 15.0046.14 14.21 23.5523 22.81 2.91 40.70 0.00 40.70 39.89 0.64 0.77 25.00 20.0026.10 11.37 19.4224 23.40 2.60 36.39 0.00 36.39 41.94 0.67 0.74 25.00 20.0024.32 9.85 20.0325 24.00 3.35 46.85 80.00 126.85 44.82 0.70 0.71 25.00 20.00 89.42 32.75 35.2526 25.00 1.78 24.94 80.00 104.94 48.63 0.75 0.66 25.00 20.00 78.75 25.24 37.8327 26.00 0.26 3.68 43.60 47.28 51.75 0.79 0.62 25.00 20.00 37.13 10.65 22.01最不利滑动面:滑动圆心 = (9.000000,22.000000)(m)滑动半径 = 21.999712(m)滑动安全系数 = 2.163总的下滑力 = 413.411(kN)总的抗滑力 = 894.113(kN)土体部分下滑力 = 717.693(kN)土体部分抗滑力 = 894.113(kN)筋带的抗滑力 = 0.000(kN)地震作用下滑力 = 0.000(kN)坡外静水作用下滑力 = -304.282(kN)。
围堰渗流及稳定计算书(校核)
上游围堰采用土石挡水围堰,堰顶宽8m,最大堰高43m,上游边坡为1:1.8,下游边坡1:1.6,堰身采用复合土工膜防渗,基础采用C20混凝土防渗墙。
下游围堰采用土石挡水围堰,堰顶宽8m,最大堰高14.8m,堰体上、下游边坡均为1:1.6,堰身采用复合土工膜防渗,基础开挖至基岩。
2.计算内容
进行上游围堰的渗流及稳定计算。
3.渗流计算
1)计算工况
(1)正常运用:10年一遇设计洪水位稳定渗流。
2)计算采用参数
围堰渗流计算断面选取河床段最大堰体断面,计算所采用的相关参数见表3-1。
表3-1 围堰渗流计算参数表
3)计算结果
渗流计算结果见表3-2,正常蓄水位等势线图,见图3-1。
表3-2 堰体渗流计算成果表
注:渗漏量为堰体和堰基渗漏量的总和。
图3-1 10年一遇设计洪水位稳定渗流期等势线图
4.稳定计算
1)计算工况
(1)施工期上、下游坡
(2)10年一遇设计洪水位稳定渗流期上、下游坡
2)计算采用参数
计算所采用的相关参数见表4-1。
表4-1 围堰稳定计算参数表
3)计算结果
稳定计算结果见表4-2,见图4-1~4-2。
图4-1 竣工期上游围堰上、下游坡稳定计算结果图
图4-2 稳定渗流期上游围堰上、下游坡稳定计算结果图。
平面、折线滑动法边坡稳定性计算计算书
平面、折线滑动法边坡稳定性计算书计算依据:1、《建筑基坑支护技术规程》JGJ120-20122、《建筑边坡工程技术规范》GB50330-20023、《建筑施工计算手册》江正荣编著一、基本参数边坡稳定计算方式平面滑动法边坡工程安全等级三级边坡边坡土体类型填土土的重度γ(KN/m3) 16土的内摩擦角φ(°)10 土的粘聚力c(kPa) 9.5边坡高度H(m) 3.45 边坡斜面倾角α(°)56坡顶均布荷载q(kPa) 10二、边坡稳定性计算计算简图滑动体自重和顶部所受荷载:W= (1/2γH+q)×H×(ctgω-ctgα)=1/2(γH+2q)×H×sin(α-ω)/sinω/sinα边坡稳定性系数为:K s=(W×cosω×tanφ+H/sinω×c)/(W×sinω)=cotω×tanφ+2c/(γH+2q)×sinα/(sin(α-ω)×sinω)滑动面位置不同,Ks值亦随之而变,边坡稳定与否根据稳定性系数的最小值Ksmin判断,相应的最危险滑动面的倾角为ω0。
求K smin值,根据dKs/dω=0,得最危险滑动面的倾角ω0的值:ctgω=ctgα+(a/(tanφ+a))0.5×cscα式中:a=2c/(γH+2q)= 2×9.5/(16×3.45+2×10)= 0.253ctgω=ctgα+(a/(tanφ+a))0.5×cscα= ctg(56°)+(0.253/(tan(10°)+0.253))0.5×csc(56°) = 1.6则边坡稳定性最不利滑动面倾角为:ω0= 32.005°K smin=(2a+tanφ)×ctgα+2×(a(tanφ+a))0.5×cscα=(2×0.253+tan(10°))×ctg(56°)+2×(0.253×(tan(10°)+0. 253))0.5×csc(56°)=1.255≥1.25满足要求!。
土和块石防水围堰计算书
土和块石防水围堰计算书计算依据:1、《公路桥涵地基与基础设计规范》JTG D63-20072、《公路桥涵施工技术规范》JTG/T F50-20113、《碾压式土石坝设计规范》DLT 5395-2007一、基本参数计算简图土和块石防水围堰_剖面图二、围堰土堤稳定性计算1、围堰土堤边坡按直线滑动法验算稳定性土和块石防水围堰_直线滑动面法受力简图K min1=(W1×cosα1×tanφ+c×L1)/(W1*sinα1)=(775.79×cos35.00°×tan27.00° +16.00×18.21)/(775.79×sin35.00°)=1.38≥1.25K min2=(W2×cosα2×tanφ+c×L2)/(W2×sinα2)=(875.59×cos28.00°×tan27.00°+16.00×21.44)/(875.59×sin28.00°)=1.79≥1.25其中:W i--滑动面上的土体重和围堰顶所受荷载,kN;满足要求!2、围堰土堤抗倾覆稳定验算土和块石防水围堰_抗倾覆验算受力简图围堰土堤重和顶部所受荷载:W=γ×H(2B+H×ctgα+H×ctgβ)/2+q×B=19.00×12.00×(2×3.00+12.00×ctg50.00°+12.0 0×ctg40.00°)/2+10.00×3.00=3492.21kNk0=(W×b+ E y×a)/( E x×h+M WF+M others)=(3492.21×12.90+482.66×13.86)/(405.00×3.00+910.46)=24.34≥1.30满足要求!3、围堰土堤抗整体滑动稳定验算k c=μ×∑Pi/∑Ti=(0.30×3974.87)/(405.00+104.67)=2.34≥1.30其中:∑Pi--围堰土堤对地基土层的竖向作用力总和,kN;∑Ti--围堰土堤各水平力总和,kN;满足要求!三、围堰土堤断面抗剪强度计算土和块石围堰的抗剪切能力来自土体断面上的摩擦力,其强度为Hγμ应大于剪应力:围堰填土土面间的摩擦系数:μ=tanφ= tan27.00°=0.51抗剪切强度:Hγμ=12.00×19.00×0.51=116.17kN/m2剪应力:τ=3/2(H2/2/B)= 3H2/4/B =3×12.002/4/3.00=36.00kN/m2Hγμ=116.17kN/m2≥3H2/4/B=36.00kN/m2满足要求!四、围堰坝基渗流计算围堰内侧坡坡率:m2=H/tanα/H=12/tan(50°)/12=0.839L1=L+ΔL=8+0.5=8.5q=k(h w2-h02)/[2(L1-m2h0)]=0.001×(92-12)/[2×(8.5-0.839×1)]=0.005m2/s<S=0.006m2/s满足要求!。
均质土截流围堰施工安全稳定性验算
3 计算分析
要建设内容为河道开挖、 直立挡墙加斜坡及灌注排
桩等ꎬ 其中河道拓挖全长 2 8kmꎬ 边坡比 1∶ 3ꎬ 河堤
为保证均质土围堰在高水位状态下的安全稳定
设计高程 - 3 0mꎬ 底宽 30mꎻ 直立挡墙加斜坡全长
性ꎬ 可从如下几方面分析体系的整体性能ꎬ 即围堰
灌注排桩直径 1 2mꎬ 全长 426mꎬ 墙顶高程 4 0mꎮ
m1
H
2m1 + 1 1
y =
h20 + 2
(7)
(8)
q
x
k
(9)
透性系 数ꎬ 根 据 护 面 类 型 查 表 A 1 12 ̄ 1 取 0 9ꎻ
H21 - h0
q
=
k
2( L1 - m2 h0 )
正向来波在单坡上的平均波浪爬高计算表达式
如下:
Rm =
KΔ Kw
Байду номын сангаас
1 + m2
L1 = L + ΔL
(5)
hm Lm
式中ꎬ R m —平均波浪爬高ꎬ mꎻ m —单坡的坡度系
数ꎬ 若坡角为 αꎬ 即等于 cotαꎻ K Δ —斜坡的糙率渗
(6)
ΔL =
施工方法采用进占法ꎬ 施工机械为 160 型推土机配
定的运行ꎬ 保证河道内施工作业的安全ꎮ
合 220 型挖掘机ꎬ 根据工程地质报告要求选择①1
1 工程概况
层土料作为截流围堰填筑材料ꎬ 截流围堰断面形式
如图 1 所示ꎮ
里下河川东港工程主要由川东港、 何垛河、 丁
溪河与车路河等河段构成ꎬ 全长 91 95kmꎮ 工程主
平均波长计算表达式如下:
gT2m 2πH
=
围堰渗水和基坑抽水强度计算书(002)
设计计算书计算[2010]002号 共5页 第一页围堰渗水和基坑抽水强度计算书1 围堰渗流计算围堰渗流计算分为两个部分(围堰帷幕部分,堰基部分)分别进行渗流计算。
然后将两部分渗流计算的渗流量累加,既为该围堰的总渗流量。
一般情况下,这样求得的总渗流量较整体计算渗流量较小,所以在最后累加后会乘以约30%做为较小值的进一步精确。
以下来做分别计算(计算为单宽渗流量,单位为m 3/d ,即立方米每天)。
1.1 帷幕灌浆部分的渗流计算查阅相关资料,帷幕灌浆体的渗透系数约为1×106-cm/s 。
根据水利水电出版社《土坝设计》第171页达塞定理计算渗流量的方法和以取定的相关参数, 帷幕灌浆渗流量: kiA q =11q ——渗流量A ——帷幕水流断面面积18.36×1m 2(帷幕平均总长808m ,总计44个灌浆孔,均深18.36m ,渗水断面面积即为18.36×1)。
k ——高喷射墙渗透系数(1×106-cm/s=8.64×104-m/d)i ——水力坡降,210.1/21===LH i ; H ——水头(H =21.00m )L ——渗透途径长度(L =1m ~1.5m)计算得 kiA q =1=d m /333.036.1821000864.03=⨯⨯图3-1堰基部分渗流计算简图1.2 堰基透水部分渗流计算堰基渗流部分计算则根据《土坝设计》第197页堰基渗流量计算公式来进行计算。
1.2.1渗流参数的取定上游围堰上游水位H=1201.50m (设计堰顶5年一遇37.1m 3/s 的水位高程)。
堰底的高程H 2=1191m 。
上游围堰上游最大水头H 1=20.50m 。
帷幕灌浆孔钻入强风化岩层1.0m ,地质资料中确定:河床覆盖层为10m ~15m 厚的全透水层,其下为强风化岩层,强风化岩层也为较强透水层,其厚度为3m ~5m ,渗透系数由于无试验确定,拟定其渗透系数值为1m/d ~8m/d ,计算取值为4 m/d 。
水利工程土石围堰稳定性计算
水利工程土石围堰稳定性计算摘要:土石围堰由土石填筑而成,是为水利工程建设施工制造干地环境而修建的临时性围护建筑物。
其安全与否直接影响着主体工程的进展情况和施工人员的生命安全。
依托引水隧洞的土石围堰工程,基于Midas/GTS软件功能,应用渗流理论和有限元强度折减法,计算分析土石围堰的渗流稳定和边坡稳定分析。
关键词:土石围堰;Midas/GTS;稳定性中图分类号:TV551文献标识码:A文章编号:2095-0438(2019)08-0001-03(绥化学院农业与水利工程学院黑龙江绥化152000)一、工程介绍工程位于西南某江河流段,大坝为重力坝,装机容量475MW。
大坝基础高程2018m,坝顶高程2110m,正常蓄水位2080m,最大坝高92m,坝顶长500m,采用坝后式地面厂房。
该水电站采用的是左岸引水隧洞导流。
隧洞口围堰采用土工膜斜墙土石围堰,围堰堰顶高程2800m,最大堰高7.9m,最大挡水水头约为6.2m,堰基采用封闭式砼防渗墙,防渗墙最大深度18m,厚0.8m。
引水隧洞设于库区左岸,为有压隧洞后接竖井及有压隧洞,全长约14.5km,隧洞进口底板高程2096m,开挖断面为马蹄形,出口底板高程1971m,比降2‰,引水流量120m3/s,隧洞口采用土石围堰制造干法施工环境。
综合考虑现场施工进度和计划安排,临时土石围堰设计位置刚好处于距隧洞口10m处,典型二维断面如图所示。
围堰底部宽38.2m,顶部通行宽7m,南侧边坡最大斜率为1:1.5,围堰南侧联通河流,最高水位和最高低水位分别是6.2m和4.8m,如图1-1所示。
图1-1土石围堰剖面图二、影响土石围堰安全的因素(一)渗流。
围堰通常以临时建筑的形式出现在工程中,通常在隧洞施工导流期间给主体工程阻挡洪水而创造所需要的干燥的施工环境[1]。
并且由于土石围堰具有历史悠久、能充分利用当地材料,地基适应性强,造价低,施工简便等优点而成为当今世界大多数国家临时围堰的首选。
边坡稳定性计算书(理正软件计算)
计算书目录1理正边坡稳定分析成果1.1Ⅰ-Ⅰ剖面------------------------------------------------------------------------1.1.1计算项目:Ⅰ-Ⅰ土坡稳定(工况1-一般气象条件+土体自重)------------------------------------------------------------------------[计算简图][控制参数]:采用规范: 通用方法计算目标: 剩余下滑力计算不考虑地震不同土性区域数 4区号重度饱和重度粘聚力内摩擦角全孔压节点编号(kN/m3) (kN/m3) (kPa) (度) 系数1 19.300 19.960 25.000 20.000 ---2 19.300 20.000 15.000 18.000 ---3 17.800 18.230 15.000 12.000 ---4 25.800 26.300 24440.000 21.150 ---[水面信息]采用总应力法考虑渗透力作用不考虑边坡外侧静水压力[计算条件]剩余下滑力计算目标: 计算剩余下滑力剩余下滑力计算时的安全系数: 1.015计算结果: 剩余下滑力 = -0.942(kN)本块下滑力角度 = 328.833(度)[计算条件]剩余下滑力计算目标: 计算剩余下滑力剩余下滑力计算时的安全系数: 1.000计算结果: 剩余下滑力 = -21.855(kN)本块下滑力角度 = 328.833(度)------------------------------------------------------------------------ 1.1.2计算项目:Ⅰ-Ⅰ土坡稳定(工况2-久雨(暴雨)+土体自重)------------------------------------------------------------------------ [计算简图][控制参数]:采用规范: 通用方法计算目标: 剩余下滑力计算不考虑地震[坡面信息]不同土性区域数 4区号重度饱和重度粘聚力内摩擦角全孔压节点编号(kN/m3) (kN/m3) (kPa) (度) 系数1 19.300 19.960 25.000 20.000 ---2 19.300 20.000 15.000 18.000 ---3 17.800 18.230 15.000 12.000 ---4 25.800 26.300 24440.000 21.150 ---[水面信息]采用总应力法考虑渗透力作用不考虑边坡外侧静水压力[计算条件]剩余下滑力计算目标: 计算剩余下滑力剩余下滑力计算时的安全系数: 0.851计算结果: 剩余下滑力 = 0.478(kN) 本块下滑力角度 = 328.833(度)[计算条件]剩余下滑力计算目标: 计算剩余下滑力剩余下滑力计算时的安全系数: 1.000计算结果: 剩余下滑力 = 250.877(kN) 本块下滑力角度 = 328.833(度) ------------------------------------------------------------------------ 1.1.3计算项目:Ⅰ-Ⅰ加固土坡稳定(工况1-一般气象条件+土体自重)------------------------------------------------------------------------ [计算简图][控制参数]:采用规范: 通用方法计算目标: 剩余下滑力计算不考虑地震[坡面信息]坡面线段数 12坡面线号水平投影(m) 竖直投影(m) 超载数1 0.381 2.947 02 3.791 0.000 03 3.561 2.049 04 2.136 1.229 05 4.855 2.794 06 3.829 2.203 07 4.060 0.935 08 7.920 2.844 09 3.572 1.995 010 3.813 1.233 011 0.452 0.377 012 5.858 5.284 0[土层信息]不同土性区域数 4区号重度饱和重度粘聚力内摩擦角全孔压节点编号(kN/m3) (kN/m3) (kPa) (度) 系数1 19.300 19.960 25.000 20.000 ---2 19.300 20.000 15.000 18.000 ---3 17.800 18.230 15.000 12.000 ---4 25.800 26.300 24440.000 21.150 ---[水面信息]采用总应力法不考虑渗透力作用不考虑边坡外侧静水压力[滑面信息]滑面线段数 9 滑面线起始点坐标: (0.000,0.000)滑动面线号水平投影(m) 竖直投影(m) 矢高(m) 粘聚力(kPa) 内摩擦角(度)1 1.941 -1.174 0.000 ---- ----2 3.130 -1.112 0.000 ---- ----3 4.056 -0.190 0.000 ---- ----4 5.735 0.940 0.000 ---- ----5 6.100 2.515 0.000 ---- ----6 8.547 5.978 0.000 ---- ----7 7.060 6.740 0.000 ---- ----8 6.000 6.740 0.000 ---- ----9 6.000 10.570 0.000 ---- ----[筋带信息]采用锚杆锚杆道数: 10筋带号距地面水平间距总长度倾角材料抗拉锚固段锚固段粘结强高度(m) (m) (m) (度) 力(kN) 长度(m) 周长(m) 度(kPa)1 3.00 3.60 15.00 25.00 720.00 3.00 0.41 400.002 4.60 3.60 15.00 25.00 720.00 3.00 0.41 400.003 6.20 3.60 15.00 25.00 720.00 3.00 0.41 400.004 7.80 3.60 15.00 25.00 720.00 3.00 0.41 400.005 9.40 3.60 12.00 25.00 720.00 3.00 0.41 400.006 11.00 3.60 12.00 25.00 720.00 3.00 0.41 400.007 12.60 3.60 12.00 25.00 720.00 3.00 0.41 400.008 14.20 3.60 12.00 25.00 720.00 3.00 0.41 400.009 15.80 3.60 12.00 25.00 720.00 3.00 0.41 400.0010 17.40 3.60 12.00 25.00 720.00 3.00 0.41 400.00 [计算条件]剩余下滑力计算目标: 计算剩余下滑力剩余下滑力计算时的安全系数: 1.640计算结果: 剩余下滑力 = -6.276(kN) 本块下滑力角度 = 328.833(度)------------------------------------------------------------------------1.1.4计算项目:Ⅰ-Ⅰ加固土坡(仅考虑锚杆)稳定(工况2-久雨(暴雨)+土体自重)------------------------------------------------------------------------[计算简图][控制参数]:采用规范: 通用方法计算目标: 剩余下滑力计算不考虑地震[坡面信息]坡面线段数 12坡面线号水平投影(m) 竖直投影(m) 超载数1 0.381 2.947 02 3.791 0.000 03 3.561 2.049 04 2.136 1.229 05 4.855 2.794 06 3.829 2.203 07 4.060 0.935 08 7.920 2.844 09 3.572 1.995 010 3.813 1.233 011 0.452 0.377 012 5.858 5.284 0[土层信息]不同土性区域数 4区号重度饱和重度粘聚力内摩擦角全孔压节点编号 (kN/m3) (kN/m3) (kPa) (度) 系数1 19.300 19.960 25.000 20.000 ---2 19.300 20.000 15.000 18.000 ---3 17.800 18.230 15.000 12.000 ---4 25.800 26.300 24440.000 21.150 ---[水面信息]采用总应力法不考虑渗透力作用不考虑边坡外侧静水压力[滑面信息]滑面线段数 9 滑面线起始点坐标: (0.000,0.000)滑动面线号水平投影(m) 竖直投影(m) 矢高(m) 粘聚力(kPa) 内摩擦角(度)1 1.941 -1.174 0.000 ---- ----2 3.130 -1.112 0.000 ---- ----3 4.056 -0.190 0.000 ---- ----4 5.735 0.940 0.000 ---- ----5 6.100 2.515 0.000 ---- ----6 8.547 5.978 0.000 ---- ----7 7.060 6.740 0.000 ---- ----8 6.000 6.740 0.000 ---- ----9 6.000 10.570 0.000 ---- ----[筋带信息] 采用锚杆锚杆道数: 10筋带号距地面水平间距总长度倾角材料抗拉锚固段锚固段粘结强高度(m) (m) (m) (度) 力(kN) 长度(m) 周长(m) 度(kPa)1 3.00 3.60 15.00 25.00 100.00 3.00 0.41 400.002 4.60 3.60 15.00 25.00 100.00 3.00 0.41 400.003 6.20 3.60 15.00 25.00 100.00 3.00 0.41 400.004 7.80 3.60 15.00 25.00 100.00 3.00 0.41 400.005 9.40 3.60 12.00 25.00 100.00 3.00 0.41 400.006 11.00 3.60 12.00 25.00 100.00 3.00 0.41 400.007 12.60 3.60 12.00 25.00 100.00 3.00 0.41 400.008 14.20 3.60 12.00 25.00 100.00 3.00 0.41 400.009 15.80 3.60 12.00 25.00 100.00 3.00 0.41 400.0010 17.40 3.60 12.00 25.00 100.00 3.00 0.41 400.00 [计算条件]剩余下滑力计算目标: 计算剩余下滑力剩余下滑力计算时的安全系数: 1.250计算结果: 剩余下滑力 = 38.597(kN) 本块下滑力角度 = 328.833(度))------------------------------------------------------------------------1.1.5抗滑动桩验算------------------------------------------------------------------------原始条件:墙身尺寸:桩总长: 12.000(m)嵌入深度: 6.000(m)截面形状: 圆桩桩径: 0.200(m)桩间距: 0.600(m)嵌入段土层数: 1桩底支承条件: 铰接计算方法: M法土层序号土层厚(m) 重度(kN/m3) M(MN/m4) 1 50.000 25.800 20.000初始弹性系数A: 0.000(MN/m3)初始弹性系数A1: 0.000(MN/m3)桩前滑动土层厚: 6.000(m)桩顶锚索水平刚度: 1.000(MN/m)物理参数:桩混凝土强度等级: C25桩纵筋:I12.6桩纵筋级别: A3桩最大抵抗弯矩:19.22 kNm(安全系数1.25)桩最大抗剪力:561.1 kN(安全系数1.25)坡线与滑坡推力:参数名称参数值推力分布类型矩形桩后剩余下滑力水平分力 45.000(kN/m)桩后剩余抗滑力水平分力 0.000(kN/m)滑坡推力作用情况[桩身所受推力计算]假定荷载矩形分布:桩后: 上部=4.500(kN/m) 下部=4.500(kN/m)桩前: 上部=0.000(kN/m) 下部=0.000(kN/m)桩前分布长度=6.000(m)桩身内力计算计算方法: m 法内侧最大弯矩 = 18.797(kN-m) 距离桩顶 6.720(m)外侧最大弯矩 = 19.281(kN-m) 距离桩顶 2.640(m)最大剪力 = 17.968(kN) 距离桩顶 6.000(m)桩顶位移 = 44(mm)锚索水平拉力 = 14.432(kN)------------------------------------------------------------------------1.1.6计算项目:Ⅰ-Ⅰ加固土坡(锚杆+抗滑桩)稳定(工况2-久雨(暴雨)+土体自重)------------------------------------------------------------------------Ⅰ-Ⅰ加固土坡稳定性验算注:利用理正边坡稳定分析软件计算时,将抗滑桩所承担的抗滑力以锚杆力的形式施加。
渗流条件下边坡稳定系数计算
渗流条件下边坡稳定系数计算一、引言边坡稳定问题是岩土工程领域的重要研究课题,涉及到诸多工程领域的实际应用。
在渗流条件下,边坡的稳定性分析变得更加复杂,需要综合考虑地质条件、水文环境、工程因素等多种因素。
以下系统地探讨渗流条件下边坡稳定系数的计算方法,为相关工程提供理论支持和实践指导。
二、渗流基本理论2.1渗流定义与分类渗流是指流体在多孔介质中流动的现象,是水文地质学和水利工程学等领域的重要研究对象。
根据流动特性的不同,渗流可以分为稳定渗流和不稳定渗流;根据流体物性,可分为单相流和两相流等。
2.2达西定律达西定律是描述流体在多孔介质中流动的规律,是渗流理论的基础。
达西定律指出,在一定条件下,渗流速度与水力坡度成正比。
2.3渗透系数渗透系数是描述多孔介质渗透性能的重要参数,反映了流体在多孔介质中的流动能力。
渗透系数的确定对于渗流计算至关重要。
三、边坡稳定性分析3.1边坡稳定性定义边坡稳定性是指边坡在各种因素作用下保持其原有平衡状态的能力。
在自然条件或人为工程影响下,边坡可能出现滑坡、崩塌等失稳现象。
3.2边坡破坏模式边坡破坏模式主要有平面滑动、圆弧滑动和楔形体滑动等,不同的破坏模式对于稳定性分析具有重要的意义。
3.3边坡稳定系数计算方法边坡稳定系数的计算方法主要包括极限平衡法、有限元法、离散元法等。
这些方法通过分析边坡内部应力分布和变形特征,评估边坡的稳定性状况。
四、渗流对边坡稳定性的影响4.1孔隙水压力孔隙水压力是指多孔介质中孔隙水产生的压力,与流体应力状态、水头分布等密切相关。
孔隙水压力的变化对边坡的应力分布和稳定性具有重要影响。
4.2有效应力原理有效应力原理指出,有效应力是决定岩土体工程性质的主要因素。
在渗流过程中,由于孔隙水压力的变化,有效应力也会随之改变,从而影响边坡的稳定性。
4.3渗流对边坡稳定性的影响机制渗流过程中,由于流体对边坡的侵蚀作用、孔隙水压力的变化以及由此引起的有效应力变化等因素,会对边坡的稳定性产生重要影响。
围堰稳定性计算知识讲解
围堰稳定性计算围堰稳定性计算本计算书采用瑞典条分法进行分析计算,因为围堰顶标高37.5m,故假定水位标高达到37.5m的最不利情况,还假定滑动面为圆柱面及滑动土体为不变形刚体,还假定不考虑土条两侧上的作用力。
一、参数信息:条分方法:瑞典条分法;坝高高程36m,坝顶宽7m,坝坡为1:3;填筑土料为中粉质壤土,土料指标为:φ=20.1, c=15kpa,湿重度γm=19.5kn/m ³,浮重度γ' =10.5kn/m³,饱和重度γsat=20.5kn/m³。
由于围堰上无恒载,故不考虑外部荷载二、计算原理:根据土坡极限平衡稳定进行计算。
自然界匀质土坡失去稳定,滑动面呈曲面,通常滑动面接近圆弧,可将滑裂面近似成圆弧计算。
将土坡的土体沿竖直方向分成若干个土条,从土条中任意取出第i条,不考虑其侧面上的作用力时,该土条上存在着:1、土条自重,2、作用于土条弧面上的法向反力,3、作用于土条圆弧面上的切向阻力。
将抗剪强度引起的极限抗滑力矩和滑动力矩的比值作为安全系数,考虑安全储备的大小,按照《规范》要求,安全系数要满足≥1.3的要求。
示意图水位三、计算公式:K=(∑W i2cosa i tgФi+∑C i l i/b)/∑W i1sina i式子中:K --土坡稳定安全系数;c i --土层的粘聚力;l i--第i条土条的圆弧长度;γ --土层的计算重度;θi --第i条土中线处法线与铅直线的夹角;φi --土层的内摩擦角;b i --第i条土的宽度;h i --第i条土的平均高度;h1i --第i条土水位以上的高度;h2i --第i条土水位以下的高度;γ' --第i条土的平均重度的浮重度;q --第i条土条土上的均布荷载;四、稳定计算根据上述原理按一定比例画出坝体横剖面图,采用列表的方法进行计算1、按一定比例绘出坝体横剖面图。
2、确定危险滑弧圆心的范围,详图附后。
3、心o1的铅垂线作为0号土条的中线,向左右两侧量取土条,以左的编号为1,2,3,4,5;以右的编号为-1,-2,各土条的sina i和cosa i值填入计算表中。
渗流计算及渗流稳定分析[终稿]
渗流计算及渗流稳定分析
一、计算情况
根据《碾压式土石坝设计规范》有关规定,计算组合情况如下:
1、上游正常水位177.84米,下游无水;
2、上游设计洪水位180.57米,下游无水;
3、上游1/3坝高水位174米,下游无水
二、计算参数
坝体渗透系数Ko=3.3×10-6m/s,坝基Kt=3.0×10-6m/s
采用解析法计算成果见下图:
图1 桐峪沟水库大坝渗流安全计算图
三、防渗工程措施
计算结果如上图,由于计算出逸坡降大于允许坡降J=0.4,采取
工程措施,下游坝脚采取贴坡排水, 排水体顶按规范要求高于最高出逸点0.5米,即173.2米高程。
坝坡稳定计算及稳定分析
一、计算工况
根据有关规范,土石坝施工、建设、蓄水和库水位降落的各个时期不同荷载下,应分别计算其稳定性。
控制稳定的有施工期(包括竣工期)、稳定渗流期、水库水位降落期和正常运用遇地震四种情况。
二、计算参数
见下表
三、计算成果及分析
计算成果见下图,所示,经计算,各种工况下均满足设计要求。
图表 2 桐峪沟水库大坝上游坝坡抗滑稳定计算图
图表 3 桐峪沟水库大坝上游坝坡抗滑稳定计算图。
水利枢纽工程上游围堰渗流及稳定分析
水利枢纽工程上游围堰渗流及稳定分析摘要:大石峡水利枢纽项目上游围堰堰高54m,覆盖层厚约25m,采用根底高压旋喷墙+复合土工膜心墙的防渗形式;围堰土工膜最大挡水水头接近40m,覆盖层采用双排旋喷墙,最大墙深30m。
通过渗流及抗滑稳定分析说明,上游围堰渗流量较小,边坡出逸坡降远小于填筑砂砾料的允许渗透坡降,上、下游坡在设计水位和水位骤降工况下均满足标准要求且有一定的裕度;表明上游围堰防渗形式、高低游坡比及填筑料压实指标均是适宜的,为后续大坝基坑开挖和填筑工作面正常施工提供了有利条件。
图6幅,表2个。
关键词:上游围堰;渗流分析;抗滑稳定;大石峡水利枢纽1项目概况大石峡水利枢纽项目位于--塔里木河流域阿克苏河源流之一的库玛拉克河上,坝址位于阿克苏地区温宿县与乌什县交界的大石峡峡谷出山口处,距下游已建小石峡水电站11km,距约100km。
该项目是?塔里木河流域近期综合治理规划》和?--阿克苏河支流库玛拉克河河段水电规划报告》确定的具有灌溉、防洪和发电任务的控制性枢纽项目,已列入国务院批准近期实施的172项重大水利项目建设工程。
项目坝址控制流域面积1.27万km2,多年平均径流量48.7亿m3,水库总库容11.7亿m3,拦河坝最大坝高247m。
电站装机容量为750MW,多年平均年发电量18.93亿kW·h,项目为Ⅰ等大(1)型项目,大坝为1级建筑物[1]。
2建设条件2.1气象及水文条件库玛拉克河流域地处欧亚大陆腹地,远离海洋,周围又有高山阻隔,流域内呈典型的大陆性气候,坝址区多年平均气温11.5Ⅰ,1月份平均气温-6.7Ⅰ,7月份平均气温24.9Ⅰ,极端最高气温39.5Ⅰ,极端最低气温-22.0Ⅰ,多年平均降水量129.5mm,多年平均蒸发量1706.9mm,多年平均最大风速19m/s。
坝址处多年平均流量154.3m3/s。
库玛拉克河洪水主要为融冰雪型洪水、冰川阻塞湖溃决型洪水和融冰雪降水混合型洪水,6~9月为汛期,当冰川阻塞湖溃决型洪水与融冰雪洪水和融冰雪降水混合型洪水叠加后,形成库玛拉克河的最大洪水,对项目危害较大。
围堰边坡稳定计算
围堰稳定性计算(示意)本计算书采用瑞典条分法进行分析计算,因为围堰顶标高****m,故假定迎水面水位标高达到**m的最不利情况,还假定滑动面为圆柱面及滑动土体为不变形刚体,还假定不考虑土条两侧上的作用力。
一、参数信息:条分方法:瑞典条分法;基坑外侧水位标高:10.50m基坑内侧水位标高:5.50m荷载参数:由于围堰上无恒载,故不考虑外部荷载土层参数:二、计算原理:根据土坡极限平衡稳定进行计算。
自然界匀质土坡失去稳定,滑动面呈曲面,通常滑动面接近圆弧,可将滑裂面近似成圆弧计算。
将土坡的土体沿竖直方向分成若干个土条,从土条中任意取出第i条,不考虑其侧面上的作用力时,该土条上存在着:1、土条自重2、作用于土条弧面上的法向反力3、作用于土条圆弧面上的切向阻力。
将抗剪强度引起的极限抗滑力矩和滑动力矩的比值作为安全系数,考虑安全储备的大小,按照《规范》要求,安全系数要满足≥1.3的要求。
三、计算公式:Fs=∑{c i l i+[(γh1i+γ'h2i)b i+qb i]cosθi tanφi}/∑[(γh1i+γ'h2i)b i+qb i]sinθi式子中:Fs--土坡稳定安全系数;c i--土层的粘聚力;l i--第i条土条的圆弧长度;γ--土层的计算重度;θi--第i条土中线处法线与铅直线的夹角;φi--土层的内摩擦角;b i--第i条土的宽度;h i--第i条土的平均高度;h1i--第i条土水位以上的高度;h2i--第i条土水位以下的高度;γ'--第i条土的平均重度的浮重度;q--第i条土条土上的均布荷载;其中,根据几何关系,求得h i为:h i=(r2-[(i-0.5)×b i-l0]2)1/2-[r+l0-(i-0.5)×b i]tanα式子中:r--土坡滑动圆弧的半径;l0--坡角距圆心垂线与坡角地坪线交点长度;α--土坡与水平面的夹角;h1i的计算公式h1i=hw-{(r-h i/cosθi)×cosθi-[rsin(β+α)-H]}当h1i≥h i时,取h1i=h i;当h1i≤0时,取h1i=0;h2i的计算公式:h2i=h i-h1i;hw--土坡外地下水位深度;l i的几何关系为:l i={arccos[((i-1)×b i-l0)/r]-arccos[(i×b i-l0)/r]×2×r×π}/360θi=90-arccos[((i-0.5)×b i-l0)/r]四、计算安全系数:将数据各参数代入上面的公式,通过循环计算,求得最小的安全系数Fs:计算结论如下:稳定性安全系数Fs=2.426>1.30满足要求!。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
目录
1.计算总说明............................... ..................... .. (2)
2.设计基本资料...................... ..................... . (3)
3.计算过程 (4)
4.计算结果分析与结论...................... ..................... . (5)
1、计算总说明
1.1 计算目的与要求
施工单位对充(吹)填砂取样实验,充(吹)填砂的内摩擦角与原设计计算采用的数值有差异,需用施工单位现场的实验数值对围堰边坡稳定计算进行复核。
根据充(吹)填砂施工单位实验数值,充(吹)填砂采用水下摩擦角16°,水上摩擦角20°进行边坡稳定复核。
由于东、西岸围堰设计断面一致,基础均为中、粗砂,可以采用东、西岸围堰最大断面进行复核,即东岸围堰6-6断面。
1.2 主要计算原则和方法
从受力性能上说,袋装砂实质上是一种加筋土坝。
计算采用瑞典圆弧法。
计算采用北京理正边坡稳定分析软件6.0版,边坡稳定分析采用凝聚力C p 模型计算。
p C
式中,C p ——拟凝聚力,R f ——单位厚度土工合成材料试样(纵向)中筋材
的极限抗拉强度;S y——土工合成材料层间距;K p——被动土压力系数。
单位厚度土工合成材料试样(纵向)中筋材的极限抗拉强度为30kn。
施工时,根据实际水位,水上土工合成材料层间距为0.7m,水下土工合成材料层间距0.5m,为简化计算,水上、水下土工合成材料层间距均按0.7m计。
砂的内摩擦角水上水下统一按16度计。
C p=30*1.33/2*0.7=28.5kpa。
1.3 主要计算内容
根据GB50286-2013《堤防工程设计规范》,抗滑稳定计算分为正常运用条件和非常运用条件。
正常运用条件计算工况如下:
1)临水侧为设计洪水位和防洪高水位,稳定渗流期的背水侧堤坡的稳定;
2)设计洪水位和防洪高水位骤降期,临水侧堤坡的稳定。
非常运用条件计算工况包括:
1)施工期的堤坡稳定;
2)多年平均水位时遭遇地震的堤坡稳定。
由于堰基基本没有淤泥质类软土以及施工期堰身内外水位基本平衡,故不进行施工期的边坡稳定验算。
本工程区地震基本烈度小于Ⅵ度,不进行地震时的堰坡稳定分析。
因此,仅计算正常运用条件下的边坡稳定。
根据地形、地质条件、堰身断面情况选取典型断面进行围堰抗滑稳定分析计算。
依据SL/T225-98《水利水电工程土工合成材料应用技术规范》规定,土工织物与土之间的摩擦角φsg可取土料内摩擦角φ的2/3。
2 设计计算基本资料
2.1 相关规程规范
SL303-2004《水利水电工程施工组织设计规范》
GB50286-2013《堤防工程设计规范》
SL/T225-98《水利水电工程土工合成材料应用技术规范》
SL260-98《堤防工程施工规范》。
2.2计算所采用的原始资料
从受力性能上说,袋装砂实质上是一种加筋土坝。
由于土工管袋筋材的布设,改变了土体不能受拉的性能,因此,达到增加围堰整体及局部稳定性的目的。
关键的问题是如何确定筋材的加筋作用对围堰稳定性的影响。
试验证明:加筋砂试验与无加筋砂试验的破坏包络线基本平行,即其内摩擦角近似相等,两者的凝聚力不同。
基于此理论,加筋材料的加筋效果就相当于增加了一个凝聚力Cp。
我们可以把工程上通行的圆弧滑动法移植到袋装砂围堰的稳定性计算中来。
参数见表1、表2。
2.3 参考文献
《土工合成材料工程应用手册》
表2 岩土参数建议值一览表
3、计算过程
本次计算采用理正岩土边坡稳定计算软件6.0。
------------------------------------------------------------------------ [计算简图]
[控制参数]:
采用规范: 堤防工程设计规范
计算工期: 稳定渗流期
计算目标: 安全系数计算
滑裂面形状: 圆弧滑动法
不考虑地震
[坡面信息]
坡面线段数 11
坡面线号水平投影(m) 竖直投影(m) 超载数
1 30.000 12.000 0
2 3.000 0.000 0
3 15.000 6.000 0
4 3.000 0.000 0
5 11.400 5.700 0
6 10.000 0.000 0
7 13.000 -5.200 0
8 3.000 0.000 0
9 22.000 -8.800 0
10 3.000 0.000 0
11 29.100 -9.700 0
[土层信息]
坡面节点数 12
编号 X(m) Y(m)
0 0.000 0.000
-1 30.000 12.000
-2 33.000 12.000
-3 48.000 18.000
-4 51.000 18.000
-5 62.400 23.700
-6 72.400 23.700
-7 85.400 18.500
-8 88.400 18.500
-9 110.400 9.700
-10 113.400 9.700
-11 142.500 0.000
附加节点数 11
编号 X(m) Y(m)
1 0.000 -5.000
2 142.500 -5.000
3 12.500 5.000
4 75.156 5.000
5 80.15
6 5.000
6 127.456 5.000
7 71.646 16.700
8 76.394 16.700
9 83.664 16.700
10 92.856 16.700
11 69.361 23.700
不同土性区域数 6
区号重度饱和重度粘结强度孔隙水压节点
(kN/m3) (kN/m3) (kpa) 力系数编号
1 19.500 20.000 0.001 --- ( 1,2,-11,0,)
2 19.500 19.500 0.001 --- ( 0,-11,6,3,)
3 17.000 19.000 0.001 --- ( 3,4,7,11,-5,-4,-3,-2,-1,)
4 17.000 19.000 0.001 --- ( 4,5,9,7,)
5 17.000 19.000 0.001 --- ( 11,7,8,9,10,-8,-7,-6,)
6 18.000 20.000 120.000 --- ( 5,6,-10,-9,10,9,)
区号粘聚力内摩擦角水下粘聚水下内摩
(kPa) (度) 力(kPa) 擦角(度)
1 0.000 45.000 0.000 45.000
2 38.300 30.000 0.000 30.000
3 28.500 20.000 28.500 16.000
4 0.000 20.000 0.000 16.000
5 28.500 20.000 28.500 16.000
6 38.300 20.600 35.000 20.600
区号十字板强度增十字板羲强度增长系
(kPa) 长系数下值(kPa) 数水下值
1 --- --- --- ---
2 --- --- --- ---
3 --- --- --- ---
4 --- --- --- ---
5 --- --- --- ---
6 --- --- --- ---
[水面信息]
采用有效应力法
孔隙水压力采用近似方法计算
不考虑渗透力作用
考虑边坡外侧静水压力
坝坡外水位: 0.000(m)
水面线段数 6 水面线起始点坐标: (0.000,0.000)
水面线号水平投影(m) 竖直投影(m)
1 76.000 3.000
2 0.000 8.000
3 0.000 5.000
4 0.000 2.000
5 0.000 2.000
6 0.000 1.640
[计算条件]
圆弧稳定分析方法: 瑞典条分法
土条重切向分力与滑动方向反向时: 当下滑力对待
稳定计算目标: 自动搜索最危险滑裂面
条分法的土条宽度: 0.500(m)
搜索时的圆心步长: 1.000(m)
搜索时的半径步长: 0.500(m)
------------------------------------------------------------------------
计算结果:
------------------------------------------------------------------------
[计算结果图]
最不利滑动面:
滑动圆心 = (15.012,45.727)(m)
滑动半径 = 57.160(m)
滑动安全系数 = 1.362
理正软件采用瑞典圆弧法,边坡抗滑稳定安全系数满足规范要求的不小于1.2的要求。