2015年上海市杨浦区中考数学一模试卷及答案解析(pdf版)
上海市杨浦区2015届高三一模数学文含答案
上海市杨浦区2015届高三一模数学文含答案XXX年度第一学期高三年级学业质量调研数学学科试卷(文科)考生注意:1.答卷前,务必在答题纸上写上姓名、考号,并将核对后的条形码贴在指定位置上。
2.本试卷共有23道题,满分150分,考试时间120分钟。
一.填空题(本大题满分56分)本大题共有14题,考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分。
1.已知sinα=1/2,α∈(0,π),则α=π/6.2.设A={x|1≤x≤3},B={xm+1≤x≤2m+4,m∈R},A⊆B,则m的取值范围是[-1,3)。
3.已知等差数列{an}中,a3=7,a7=3,则通项公式为an=-2n+11.4.已知直线l经过点A(1,-2)、B(-3,2),则直线l的方程是y=-x-1.5.函数f(x)=x^2-1(x<0)的反函数f^-1(x)=√(x+1)(x≥1)。
6.二项式(x-1/2)^4的展开式中的第4项是6x^2-12x+5/16.7.不等式log2(x-3)+x>2的解是(3,∞)。
8.已知条件p:x+1≤2;条件q:x≤a,若p是q的充分不必要条件,则a的取值范围是(-∞,1]。
9.向量a=(2,3),b=(-1,2),若ma+b与a-2b平行,则实数m=1/2.10.一家5口春节回老家探亲,买到了如下图的一排5张车票:6排A座 | 6排B座 | 6排C座 | 走廊 | 6排D座 | 6排E座| 窗口 | 窗口 |其中爷爷行动不便要坐靠近走廊的座位,小孙女喜欢看风景要坐靠窗的座位,则座位的安排方式一共有60种。
11.已知一个铁球的体积为36π,则该铁球的表面积为54π。
12.已知集合A={z|z=1+i+i^2+。
+in,n∈N*},则集合A的子集个数为2^n-1.13.设△ABC的内角A,B,C所对的边分别为a,b,c。
若(a+b-c)(a+b+c)=ab,则角C=π/3.14.如图所示,已知函数y=log2(4x)图像上的两点A,B和函数y=log2(x)上的点C,线段AC平行于y轴,三角形ABC 为正三角形时,点B的坐标为(-1,2),则实数p=-1/4.值为_______________。
2015年杨浦区一模数学试卷(理)含答案
杨浦区2014学年度第一学期高三年级学业质量调研数学学科试卷(理科) 2015.1.考生注意: 1.答卷前,考生务必在答题纸写上姓名、考号, 并将核对后的条形码贴在指定位置上.2.本试卷共有23道题,满分150分,考试时间120分钟.一.填空题(本大题满分56分)本大题共有14题,考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分. 1.已知() , 0,1sin 2∈=απα,则α=________________. 2.设{}13A x x =≤≤,{}124,B x m x m m R =+≤≤+∈,A B ⊆,则m 的取值范围是________. 3.已知等差数列{}n a 中,377,3a a ==,则通项公式为n a =________________. 4.已知直线l 经过点()()1,2,3,2A B --,则直线l 的方程是___________________. 5. 函数()()012<-=x x x f 的反函数()=-x f1.6. 二项式91x x -⎛⎫⎪⎝⎭的展开式(按x 的降幂排列)中的第4项是_________________.7. 已知条件:12p x +≤;条件:q x a ≤,若p 是q 的充分不必要条件,则a 的取值范围是 .8.向量()()2,3,1,2a b ==-,若ma b +与2a b -平行,则实数m =_________. 9.一家5口春节回老家探亲,买到了如下图的一排5张车票:窗口6排A 座6排B 座6排C 座走廊6排D 座 6排E 座窗口其中爷爷行动不便要坐靠近走廊的位置,小孙女喜欢热闹要坐在左侧三个连在一起的座位之一,则座位的安排方式一共有__________种。
10.在底面直径为6的圆柱形容器中,放入一个半径为2的冰球,当冰球全部溶化后,容器中液面的高度为_______________.(相同质量的冰与水的体积比为10:9)11.不等式()2log 431xx ->+的解集是_______________________.1,0i s ==开始1i i =+否 输出s结束 是第15题图2s s i =+12.设△ABC 的内角A ,B ,C 所对的边长分别为a ,b ,c ,若30a b c a ba b c++=+-,则角C =_________. 13.已知1322i ω=-+,集合{}2*1,n A z z n N ωωω==++++∈,集合1212{|,}B x x z z z z A ==⋅∈、(1z 可以等于2z ),则集合B 的子集个数为__________.14.如图所示,已知函数 2log 4y x =图像上的两 点 A 、 B 和函数 2log y x =上的点 C ,线段 AC 平行于 y 轴, 三角形 ABC 为正三角形时, 点 B 的坐标为 (),p q , 则22q p ⨯的值为________.二、选择题(本大题满分20分)本大题共有4题,每题有且只有一个正确答案,考生应在答题纸的相应编号上,填上正确的答案,选对得5分,否则一律得零分. 15.程序框图如图所示,若其输出结果是140,则判断框中填写的是( ) A . 7i < B .8i <C . 7i >D .8i > 16.下列命题中正确的是( ) A .若x C ∈,则方程32x =只有一个根 B .若12,z C z C ∈∈且120z z ->,则12z z > C .若z R ∈,则2z z z ⋅=不成立D .若z C ∈,且20z <,那么z 一定是纯虚数17.圆心在抛物线x y 22=上,且与x 轴和抛物线的准线都相切的一个 圆的方程是( )A .01222=+--+y x y xB .041222=---+y x y x第14题图A1A C1CB1BD1D OCDC .01222=+-++y x y xD . 041222=+--+y x y x 18.对数列{}{},n n a b ,若区间[],n n a b 满足下列条件:①[]11,n n a b ++≠⊂[]()*,n n a b n N ∈;②()lim 0n n n b a →∞-=,则称{},n n a b ⎡⎤⎣⎦为区间套。
2015年上海市杨浦区中考二模数学试题及答案模板
2015年杨浦区初三模拟测试数学试卷(满分150分,考试时间100分钟)2015.5考生注意:1.本试卷含三个大题,共25题;2.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上.】1.下列实数中,无理数是()(C)2π; (D) 2.020020002.2.下列运算正确的是()(A) 1393=; (B) 1393=±; (C)1293=; (D)1293=±.3.关于x的方程210x mx--=根的情况是()(A)有两个不相等的实数根; (B)有两个相等的实数根;(C)没有实数根; (D)不能确定的.4.下列关于向量的等式中,正确的是( )(A) AB BA = ; (B) AB BC CA +=; (C) a b b a +=+ ; (D) ()0a a +-=.5.顺次联结等腰梯形各边中点所得到的四边形一定是( )(A)菱形; (B)矩形; (C)正方形; (D) 等腰梯形.6.已知半径分别是3和5的两个圆没有公共点,那么这两个圆的圆心距d 的取值范围是( ) (A) 8d >; (B) 2d >; (C) 02d ≤<; (D) 8d >或02d ≤<.二、 填空题:(本大题共12题,每题4分,满分48分) 三、 【请将结果直接填入答题纸的相应位置】 7= .8.计算:62a a ÷= .9.如果关于x 的二次三项式26x x m -+在实数范围内不能分解因式,那么m 的取值范围是 .10.不等式组23022x x ->⎧⎨-+<⎩的解集是 .11.函数y =的定义域是 .12.当2k >时,一次函数1y kx k =+-的图像经过 象限.13.超市为了制定某个时间段收银台开放方案,统计了这个时间段本超市收银台排队付款的等待时间,并绘制成如图所示的频数分布直方图(图中等待时间0分钟到1分钟表示大于或等于0分钟而小于1分钟,其他类同).这个时间段内顾客等待时间不少于6分钟的人数为 .14.下列图形:四边形,三角形,正方形,梯形,平行四边形,圆,从中任取一个图形既是轴对称图形又是中心对称图形的概率为 .15.如果一个正多边形的内角和等于1440°,那么这个正多边形的内角是 度. 16.如图,一人乘雪橇沿坡比1:的斜坡笔直滑下72米,那么他下降的高度为米.17.如图,矩形ABCD 中,AB =2,BC =4,点A 、B 分别在y 轴、x 轴的正半轴上,点C 在第一象限,如果∠OAB =30°,那么点C 的坐标是 .18.如图,将矩形纸片ABC D 折叠,B 、C 两点恰好重合落在AD 边上点P 处,已知∠MPN =90°,PM =3,PN =4,那么矩第13题图等待时间/min884形纸片ABCD 的面积为 .三、解答题:(本大题共7题,满分78分) 19.(本题满分10分)化简:1021(1)(2)32x x x x -+-+--+ ,并求当1x =时的值.20.(本题满分10分)解方程:33201x x x x+--=+21.(本题满分10分)如图,⊙O 的两条弦AB 、CD 互相垂直,垂足为E,且AB=CD,已知CE=2,ED=6,求⊙O的半径长。
2015年上海市杨浦区初三数学二模卷(word版含答案).
杨浦区2015年初中毕业统一学业模拟考试数学试卷(时间100分钟,满分150分 2015.4一、选择题:(本大题共6题,每题4分,满分24分【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上】1.下列二次根式中,属于最简二次根式的是( ▲ (A(B 22b a -; (C(D3x. 2.下列运算正确的是( ▲2=±; (B(11x x --=--; (C239-=; (D22--=-. 3.关于x 的一元二次方程210x ax --=根的情况是( ▲(A有两个相等的实数根; (B没有实数根;(C有两个不相等的实数根; (D根的情况无法确定.4.下列四个函数图像中,当x >0时,y 随x 的增大而增大的是( ▲(A; (B;(D.5.一名同学想用正方形和圆设计一个图案,要求整个图案关于正方形的某条对角线对称,那么下列图案中不符合...要求的是( ▲(D .6.下列命题中,正确的是( ▲ (A Rt △ABC 中,CD 是AB 上中线,则CD =21AB ; (B 点P 是∠AOB 的平分线上一点,点M 、N 分别在OA 、OB 上,则PM =PN ; (C Rt △ABC 中,若∠B =30°,则AC =21AB ; (D 一边上的中线等于这边的一半的三角形是直角三角形.二、填空题:(本大题12题,每题4分,满分48分【请将结果直接填入答题纸的相应位置上】 7.计算:=÷-xy y x 232 ▲ . 8.分解因式:x 2-9= ▲ .9.方程12=+x 的解是▲ .10.若点M (x -1,3-x 在第二象限,则x 的取值范围是▲ .11.已知反比例函数1k y x-=的图像在第二、四象限内,那么k 的取值范围是▲ . 12.如果一次函数y kx b =+的图像与直线2y x =平行,且过点(3,5-,那么该一次函数解析式为▲ .13.下图是同一副扑克中的4张扑克牌的正面,将它们正面朝下洗匀后放在桌上,从中抽出一张,则抽到奇数的概率是▲ . 14.在□ABCD 中,AC 与B D 相交于点O ,b AD a AB ==,,那么等于▲ .15.在半径为5的圆中,︒30的圆心角所对弧的弧长为▲ (结果保留π. 16.如图,在Rt △ABC 中,∠ACB =90°,D 、E 、F 分别是AB 、BC 、CA 的中点,若CD =5cm ,则EF = ▲ cm .17.如图,△ABC 绕点A 顺时针旋转80°得到△AEF ,若∠B =100°,∠F =50°,则∠α的度数是▲ .18.如图,正方形ABCD 中,E 是BC 边上一点,以E 为圆心、EC 为半径的半圆与以A 为圆心,AB 为半径的圆弧外切,则S 四边形ADCE ∶S 正方形ABCD 的值为▲ .三、解答题:(本大题共7题,满分78分19.(本题10分11220123tan303-⎛⎫+--+︒⎪⎝⎭.20.(本题10分解方程:32321942+--+=-x x x x .(第18题(第17题C ABEFα(第16题DA BC21.(本题10分如图,在单位长度为1的正方形网格中,一段圆弧经过网格的交点A 、B 、C 。
2015-2016年上海市杨浦区中考数学二模试卷及答案
杨浦区2015-2016学年度第二学期初三质量调研数学2016.04.12一、选择题5. 某射击选手在一次训练中的成绩如下表所示,该选手训练成绩的中位数是( 成绩(环) 6 7 3 9 10次数 1 4 2 6 3A. 2 B . 3 C . 8 D . 9 6•已知圆O 是正n 边形A 1A 2-A n 的外接圆,半径长为18,如果弧A 1A 2的长为、填空题7.计算:&写出节2 -"的一个有理化因式: __________________9.如果关于x 的方程mx 2-mx+仁0有两个相等的实数根,那么实数 110 .函数 y= • ,+x 的定义域是 _____________11.如果函数y=x 2 -m 的图象向左平移2个单位后经过原点,那么 m= ___________门为( )A . 5B . 10C . 36D . 721.F 列等式成立的是( 打=i2 B . C .|a+b|=a+b2. F 列关于x 的方程一定有实数解的是2x=m B . x 2=m C . =mVr.-1 =m3.F 列函数中, 图象经过第二象限的是(y=2x B . y= C . y=x - 2y=x 2 - 24.F 列图形中既是轴对称图形又是中心对称图形的是( 正五边形 B .正六边形 C •等腰三角形等腰梯形那么边数 m 的值是12•在分别写有数字-1, 0, 2, 3的四张卡片中随机抽取一张,放回后再抽取一张,如果以第一次抽取的数字作为横坐标,第二次抽取的数字作为纵坐标,那么所得点落在第一象限的概率为____________ •13. 在厶ABC中,点M、N分别在边AB、AC上,且AM : MB=CN : NA=1 : 2,如果「云:—:那么\[=_____________ (用:; ]「表示).14. 某大型超市有斜坡式的自动扶梯,人站在自动扶梯上,沿着斜坡向上方向前进13米时,在铅锤方向上升了5米,如果自动扶梯所在的斜坡的坡度i=1: m,那么m= _____________ .15. 某校为了解本校学生每周阅读课外书籍的时间,对本校全体学生进行了调查,并绘制如图所示的频率分布直方图(不完整),则图中m的值是________________ .16. 如图,在平面直角坐标系xOy中,正方形OABC的边长为2.写出一个函数y=「(k和),使它的图象与正方形OABC有公共点,这个函数的表达式为_________________ .C RX__________0 A 才17. ______________________________________________ 在矩形ABCD中,AB=3 , AD=4,点O为边AD的中点,如果以点O为圆心,r为半径的圆与对角线BD所在的直线相切,那么r的值是.18. 如图,将平行四边形ABCD绕点A旋转到平行四边形AEFG的位置,其中点B、C、D分别落在点E、F、G处,且点B、E、D、F在一直线上,如果点E恰好是对角线BD的中点,那么二'的AE值是_____________ .解答题段BM 的中点.22 .某山山脚的 M 处到山顶的N 处有一条长为600米的登山路,小李沿此路从 M 走到N ,停留后 再原路返回,期间小李离开 M 处的路程y 米与离开M 处的时间x 分(x >0)之间的函数关系如图 中折线OABCD 所示.(1) 求上山时y 关于x 的函数解析式,并写出定义域:19. 20. 计算: -'■ 1 11 : ■' " - I口 f2x- 1>3 (x- 1),并写出它的所有非负整数解.解不等式组: 21. 已知,在Rt △ ABC 中,/ACB=90 ° / A=30。
2016年上海市各区县中考数学一模压轴题图文解析第24、25题
2016年上海市各区县中考数学一模压轴题图文解析目录第一部分第24、25题图文解析2016年上海市崇明县中考数学一模第24、25题/ 22016年上海市奉贤区中考数学一模第24、25题/ 52016年上海市虹口区中考数学一模第24、25题/ 82016年上海市黄浦区中考数学一模第24、25题/ 112016年上海市嘉定区中考数学一模第24、25题/ 142016年上海市静安区青浦区中考数学一模第24、25题/ 172016年上海市闵行区中考数学一模第24、25题/ 202016年上海市浦东新区中考数学一模第24、25题/ 242016年上海市普陀区中考数学一模第24、25题/ 282016年上海市松江区中考数学一模第24、25题/ 312016年上海市徐汇区中考数学一模第24、25题/ 342016年上海市杨浦区中考数学一模第24、25题/ 382016年上海市闸北区中考数学一模第24、25题/ 412016年上海市长宁区金山区中考数学一模第24、25题/ 452016年上海市宝山区中考数学一模第25、26题/ 48如图1,在直角坐标系中,一条抛物线与x轴交于A、B两点,与y轴交于点C,其中B(3, 0),C(0, 4),点A在x轴的负半轴上,OC=4OA.(1)求这条抛物线的解析式,并求出它的顶点坐标;(2)联结AC、BC,点P是x轴正半轴上的一个动点,过点P作PM//BC交射线AC于M,联结CP,若△CPM的面积为2,则请求出点P的坐标.图1动感体验请打开几何画板文件名“16崇明一模24”,拖动点P在x轴的正半轴上运动,可以体验到,有两个时刻,△CPM的面积为2.满分解答(1)由C(0, 4),OC=4OA,得OA=1,A(-1, 0).设抛物线的解析式为y=a(x+1)(x-3),代入点C(0, 4),得4=-3a.解得43a=-.所以244(1)(3)(23)33y x x x x=-+-=---2416(1)33x=--+.顶点坐标为16 (1)3,.(2)如图2,设P(m, 0),那么AP=m+1.所以S△CP A=12AP CO⋅=1(1)42m+⨯=2m+2.由PM//BC,得CM BPCA BA=.又因为CPMCPAS CMS CA=△△,所以S△CPM =(22)BPmBA+.①如图2,当点P在AB上时,BP=3-m.解方程3(22)4mm-+=2,得m=1.此时P(1, 0).②如图3,当点P在AB的延长线上时,BP=m-3.解方程3(22)4mm-+=2,得1m=±P(1+.图2 图3如图1,已知矩形ABCD 中,AB =6,BC =8,点E 是BC 边上一点(不与B 、C 重合),过点E 作EF ⊥AE 交AC 、CD 于点M 、F ,过点B 作BG ⊥AC ,垂足为G ,BG 交AE 于点H .(1)求证:△ABH ∽△ECM ; (2)设BE =x ,EHEM=y ,求y 关于x 的函数解析式,并写出定义域; (3)当△BHE 为等腰三角形时,求BE 的长.图1 备用图动感体验请打开几何画板文件名“16崇明一模25”,拖动点E 在BC 上运动,可以体验到,有三个时刻,△BHE 可以成为为等腰三角形.满分解答(1)如图2,因为∠1和∠2都是∠BAC 的余角,所以∠1=∠2. 又因为∠BAH 和∠CEM 都是∠AEB 的余角,所以∠BAH =∠CEM . 所以△ABH ∽△ECM .图2 图3(2)如图3,延长BG 交AD 于N .在Rt △ABC 中,AB =6,BC =8,所以AC =10. 在Rt △ABN 中,AB =6,所以AN =AB tan ∠1=34AB =92,BN =152. 如图2,由AD //BC ,得92AH AN EH BE x ==. 由△ABH ∽△ECM ,得68AH AB EM EC x ==-. 所以y =EHEM=AH AH EM EH ÷=6982x x ÷-=12729x x -. 定义域是0<x <8.(3)如图2,由AD//BC,得92NH ANBH BE x==.所以292BN xBH x+=.所以215292xBHx=⨯+=1529xx+.在△BHE中,BE=x,cos∠HBE=35,1529xBHx=+.分三种情况讨论等腰三角形BHE:①如图4,当BE=BH时,解方程1529xxx=+,得x=3.②如图5,当HB=HE时,1cos2BE BH B=⋅∠.解方程11532295xxx=⨯+,得92x=.③如图6,当EB=EH时,1cos2BH BE B=⋅∠.解方程11532295xxx⨯=+,得74x=.图4 图5 图6如图1,二次函数y=x2+bx+c的图像经过原点和点A(2, 0),直线AB与抛物线交于点B,且∠BAO=45°.(1)求二次函数的解析式及顶点C的坐标;(2)在直线AB上是否存在点D,使得△BCD为直角三角形,若存在,求出点D的坐标;若不存在,请说明理由.图1动感体验请打开几何画板文件名“16奉贤一模24”,可以体验到,以BC为直径的圆恰好经过点A,直角三角形BCD存在两种情况.满分解答(1)因为抛物线y=x2+bx+c与x轴交于O、A(2, 0)两点,所以y=x(x-2)=(x-1)2-1.顶点C的坐标为(1,-1).(2)如图2,作BH⊥x轴于H.设B(x, x2-2x).由于∠BAH=45°,所以BH=AH.解方程x2-2x=2-x,得x=-1,或x=2.所以点B的坐标为(-1, 3).图2①∠BDC=90°.如图3,由A(2, 0)、C(1,-1),可得∠CAO=45°.因此∠BAC=90°.所以当点D与点A(2, 0)重合时,△BCD是直角三角形.②∠BCD=90°.由A(2, 0)、B(-1, 3),可得直线AB的解析式为y=-x+2.【解法一】如图4,过点C作BC的垂线与直线AB交于点D.设D(m,-m+2 ).由BD2=BC2+CD2,得(m+1)2+(-m-1)2=22+42+(m-1)2+(-m+3)2.解得73m=.此时点D的坐标为71(,)33-.【解法二】构造△BMC∽△CND,由BM CNMC ND=,得4123mm-=-+.解得73m=.图2 图3 图4如图1,在Rt △ABC 中,∠ACB =90°,AB =5,BC =3,点D 是斜边AB 上任意一点,联结DC ,过点C 作CE ⊥CD ,联结DE ,使得∠EDC =∠A ,联结BE .(1)求证:AC ·BE =BC ·AD ;(2)设AD =x ,四边形BDCE 的面积为S ,求S 与x 之间的函数关系式,并写出定义域;(3)当S △BDE =14S △ABC 时,求tan ∠BCE 的值.图1 备用图动感体验请打开几何画板文件名“16奉贤一模25”,拖动点E 在AD 边上运动,可以体验到,△ABC 与△DEC 保持相似,△ACD 与△BCE 保持相似,△BDE 是直角三角形.满分解答(1)如图2,在Rt △BAC 和Rt △EDC 中,由tan ∠A =tan ∠EDC ,得BC ECAC DC=. 如图3,已知∠ACB =∠DCE =90°,所以∠1=∠2. 所以△ACD ∽△BCE .所以AC BCAD BE=.因此AC ·BE =BC ·AD .图2 图3(2)在Rt △ABC 中,AB =5,BC =3,所以AC =4.所以S △ABC =6.如图3,由于△ABC 与△ADC 是同高三角形,所以S △ADC ∶S △ABC =AD ∶AB =x ∶5. 所以S △ADC =65x .所以S △BDC =665x -. 由△ADC ∽△BEC ,得S △ADC ∶S △BEC =AC 2∶BC 2=16∶9.所以S △BEC =916S △ADC =96165x ⨯=2740x . 所以S =S 四边形BDCE =S △BDC +S △BEC =6276540x x -+=21640x -+.定义域是0<x <5.(3)如图3,由△ACD ∽△BCE ,得AC BCAD BE=,∠A =∠CBE . 由43x BE =,得BE =34x . 由∠A =∠CBE ,∠A 与∠ABC 互余,得∠ABE =90°(如图4).所以S △BDE =1133(5)(5)2248BD BE x x x x ⋅=-⨯=--. 当S △BDE =14S △ABC =13642⨯=时,解方程33(5)82x x --=,得x =1,或x =4.图4 图5 图6作DH ⊥AC 于H .①如图5,当x =AD =1时,在Rt △ADH 中,DH =35AD =35,AH =45AD =45. 在Rt △CDH 中,CH =AC -AH =416455-=,所以tan ∠HCD =DHCH =316.②如图6,当x =AD =4时,在Rt △ADH 中,DH =35AD =125,AH =45AD =165.在Rt △CDH 中,CH =AC -AH =164455-=,所以tan ∠HCD =DHCH=3. 综合①、②,当S △BDE =14S △ABC 时, tan ∠BCE 的值为316或3.如图1,在平面直角坐标系中,抛物线y =ax 2+bx +3与x 轴分别交于点A (2, 0)、点B (点B 在点A 的右侧),与y 轴交于点C ,tan ∠CBA =12. (1)求该抛物线的表达式;(2)设该抛物线的顶点为D ,求四边形ACBD 的面积; (3)设抛物线上的点E 在第一象限,△BCE 是以BC 为一条直角边的直角三角形,请直接写出点E 的坐标.图1动感体验请打开几何画板文件名“16虹口一模24”,可以体验到,以BC 为直角边的直角三角形BCE 有2个.满分解答(1)由y =ax 2+bx +3,得C (0, 3),OC =3. 由tan ∠CBA =OC OB =12,得OB =6,B (6, 0). 将A (2, 0)、B (6, 0)分别代入y =ax 2+bx +3,得4230,36630.a b a b ++=⎧⎨++=⎩解得14a =,b =-2.所以221123(4)144y x x x =-+=--. (2)如图2,顶点D 的坐标为(4,-1).S 四边形ACBD =S △ABC +S △ABD =1123+2122⨯⨯⨯⨯=4.(3)如图3,点E 的坐标为(10, 8)或(16, 35).思路如下:设E 21(,23)4x x x -+. 当∠CBE =90°时,过点E 作EF ⊥x 轴于F ,那么2EF BOBF CO==.所以EF =2BF . 解方程21232(4)4x x x -+=-,得x =10,或x =4.此时E (10, 8). 当∠BCE =90°时,EF =2CF . 解方程21224x x x -=,得x =16,或x =0.此时E (16, 35).图2 图3如图1,在平行四边形ABCD 中,E 为BC 的中点,F 为线段AE 上一点,联结BF 并延长交边AD 于点G ,过点G 作AE 的平行线,交射线DC 于点H .设AD EFx AB AF==. (1)当x =1时,求AG ∶AB 的值; (2)设GDHEBAS S △△=y ,求y 关于x 的函数关系式,并写出x 的取值范围; (3)当DH =3HC 时,求x 的值.图1 备用图动感体验请打开几何画板文件名“16虹口一模25”,拖动点B 可以改变平行四边形的邻边比,可以体验到,当菱形ABCD 时,G 是AD 的中点,△GDH 与△EBA 保持相似.还可以体验到,DH =3HC 存在两种情况.满分解答(1)如图2,当x =1时,AD =AB ,F 是AE 的中点. 因为AD //CB ,所以AG =BE =12BC =12AD =12AB . 所以AG ∶AB =1∶2.(2)如图3,已知AD EF x AB AF ==,设AB =m ,那么AD =xm ,BE =12xm . 由AD //BC ,得BE EFx AG AF ==.所以12BE AG m x ==.所以DG =12xm m -.图2 图3 图4 如图4,延长AE 交DC 的延长线于M . 因为GH //AE ,所以△GDH ∽△ADM . 因为DM //AB ,所以△EBA ∽△ADM . 所以△GDH ∽△EBA .所以y =GDH EBA S S △△=2()DG BE =2211()()22xm m xm -÷=22(21)x x -. (3)如图5,因为GH //AM ,所以11()2122DH DG xm m m x HM GA ==-÷=-. 因为DM //AB ,E 是BC 的中点,所以MC =AB =DC . DH =3HC 存在两种情况:如图5,当H 在DC 上时,35DH HM =.解方程3215x -=,得45x =. 如图6,当H 在DC 的延长线上时,3DH HM =.解方程213x -=,得45x =.图5 图6如图1,在平面直角坐标系中,抛物线y =ax 2-3ax +c 与x 轴交于A (-1, 0)、B 两点(点A 在点B 左侧),与y 轴交于点C (0, 2).(1)求抛物线的对称轴及点B 的坐标; (2)求证:∠CAO =∠BCO ;(3)点D 是射线BC 上一点(不与B 、C 重合),联结OD ,过点B 作BE ⊥OD ,垂足为△BOD 外一点E ,若△BDE 与△ABC 相似,求点D 的坐标.图1动感体验请打开几何画板文件名“16黄浦一模24”,拖动点D 在射线BC 上运动,可以体验到,当点E 在△BOD 外时,有两个时刻,Rt △BDE 的两条直角边的比为1∶2.满分解答(1)由y =ax 2-3ax +c ,得抛物线的对称轴为直线32x =. 因此点A (-1, 0)关于直线32x =的对称点B 的坐标为(4, 0). (2)如图2,因为tan ∠CAO =2CO AO =,tan ∠BCO =2BOCO=,所以∠CAO =∠BCO .(3)由B (4, 0)、C (0, 2),得直线BC 的解析式为122y x =-+.设D 1(,2)2x x -+.以∠ABC (∠OBC )为分类标准,分两种情况讨论:①如图3,当∠OBC =∠DBE 时,由于∠OBC 与∠OCB 互余,∠DBE 与∠ODC 互余,所以∠OCB =∠ODC .此时OD =OC =2.根据OD 2=4,列方程221+(2)42x x -+=.解得x =0,或85x =.此时D 86(,)55. ②如图4,当∠OBC =∠EDB 时,OD =OB =4. 根据OD 2=16,列方程221+(2)162x x -+=.解得x =4,或125x =-.此时D 1216(,)55-.图2 图3 图4如图1,已知直线l1//l2,点A是l1上的点,B、C是l2上的点,AC⊥BC,∠ABC=60°,AB=4,O是AB的中点,D是CB的延长线上的点,将△DOC沿直线CO翻折,点D与点D′重合.(1)如图1,当点D落在直线l1上时,求DB的长;(2)延长DO交直线l1于点E,直线OD′分别交直线l1、l2于点M、N.①如图2,当点E在线段AM上时,设AE=x,DN=y,求y关于x的解析式及定义域;②若△DON AE的长.图1 图2动感体验请打开几何画板文件名“16黄浦一模25”,拖动点D在CB的延长线上运动,可以体验到,CD′与AB保持平行,△BON与△BDO保持相似.还可以体验到,有两个时刻DN=3.满分解答(1)如图3,在Rt△ABC中,∠ABC=60°,AB=4,O是AB的中点,所以△OBC是边长为2的等边三角形.又因为△DOC与△D′OC关于CO对称,所以∠BCD′=120°,CD′=CD.所以AB//D′C.当点D′ 落在直线l1上时,AD′//BC.所以四边形ABCD′是平行四边形.所以CD′=BA=4.此时BD=CD-CB=CD′-CB=4-2=2.图3(2)①如图4,由于AE//BD,O是AB的中点,所以AE=BD=x.因为AB//D′C,所以∠AOM=∠2.又因为∠AOM=∠BON,∠2=∠1,所以∠BON=∠1.又因为∠OBN=∠DBO,所以△BON∽△BDO.所以BO BDBN BO=.因此22xx y=+.于是得到24xyx-=.定义域是0<x≤2.②在△DON中,DN当S△DON DN=3.有两种情形:情形1,如图4,当D在BN上时,DN=24xyx-==3,解得x=1,或x=-4.此时AE=1.情形2,如图5,当D在BN的延长线上时,由BO BDBN BO=,得22xx y=-.于是得到24xyx-=.当DN=24xyx-==3时,解得x=4,或x=-1.此时AE=4.图4 图5如图1,在平面直角坐标系中,抛物线212y x bx c =++经过点A (4, 0)、点C (0,-4),点B 与点A 关于这条抛物线的对称轴对称.(1)用配方法求这条抛物线的顶点坐标; (2)联结AC 、BC ,求∠ACB 的正弦值;(3)点P 是这条抛物线上的一个动点,设点P 的横坐标为m (m >0),过点P 作y 轴的垂线PQ ,垂足为Q ,如果∠QPO =∠BCO ,求m 的值.图1动感体验请打开几何画板文件名“16嘉定一模24”,可以体验到,QO ∶QP =OB ∶OC .满分解答(1)将A (4, 0)、C (0,-4)分别代入212y x bx c =++,得840,4.b c c ++=⎧⎨=-⎩解得b =-1,c =-4.所以2142y x x =--=1(2)(4)2x x +-=219(1)22x --. 点B 的坐标是(-2, 0),顶点坐标是9(1,)2-.(2)由A (4, 0)、B (-2, 0)、C (0,-4),得AC =BC =AB =6,CO =4. 作BH ⊥AC 于H .由S △ABC =12AB CO ⋅=12AC BH ⋅.得AB CO BH AC ⋅==因此sin ∠ACB =BH BC .(3)点P 的坐标可以表示为21(,4)2m m m --. 由tan ∠QPO =tan ∠BCO ,得12QO OB QP OC ==. 所以QP =2QO .解方程212(4)2m m m =--,得m =图2所以点P 的横坐标m .如图1,已知△ABC 中,∠ABC =90°,tan ∠BAC =12.点D 在AC 边的延长线上,且DB 2=DC ·DA .(1)求DCCA的值; (2)如果点E 在线段BC 的延长线上,联结AE ,过点B 作AC 的垂线,交AC 于点F ,交AE 于点G .①如图2,当CE =3BC 时,求BFFG的值; ②如图3,当CE =BC 时,求BCDBEGS S △△的值.图1动感体验请打开几何画板文件名“16嘉定一模25”,拖动点E 运动,可以体验到,当CE =3BC 时,BD //AE ,BG 是直角三角形ABE 斜边上的中线.当CE =BC 时,△ABF ≌△BEH ,AF =2EH =4CF .满分解答(1)如图1,由DB 2=DC ·DA ,得DB DADC DB=. 又因为∠D 是公共角,所以△DBC ∽△DAB .所以DB BC CDDA AB BD==. 又因为tan ∠BAC =BC AB =12,所以12CD BD =,12BD DA =.所以14CD DA =.所以13DCCA=. (2)①如图4,由△DBC ∽△DAB ,得∠1=∠2. 当BF ⊥CA 时,∠1=∠3,所以∠2=∠3.因为13DC CA =,当CE =3BC 时,得DC BCCA CE =.所以BD //AE . 所以13BD EA =,∠2=∠E .所以∠3=∠E .所以GB =GE .于是可得G B 是Rt △ABE 斜边上的中线.所以23BD GA =.所以23BF BD FG GA ==.②如图5,作EH⊥BG,垂足为H.当CE=BC时,CF是△BEH的中位线,BF=FH.设CF=m.由tan∠1=tan∠3=12,得BF=2m,AF=4m.所以FH=2m,EH=2m,DC=1533CA m=.因此422FG AF mHG EH m===.所以2433FG FH m==.所以103BG m=.于是5121321102323BCDBEGm mDC BFSS BG EH m m⨯⋅===⋅⨯△△.图4 图5如图1,直线121+=x y 与x 轴、y 轴分别相交于点A 、B ,二次函数的图像与y 轴相交于点C ,与直线121+=x y 相交于点A 、D ,CD //x 轴,∠CDA =∠OCA . (1)求点C 的坐标;(2)求这个二次函数的解析式.图1动感体验请打开几何画板文件名“16静安青浦一模24”,可以体验到,△AOB 与△COA 相似.满分解答(1)由121+=x y ,得A (-2, 0),B (0, 1).所以OA =2,OB =1. 由于CD //x 轴,所以∠CDA =∠1.又已知∠CDA =∠OCA ,所以∠1=∠OCA . 由tan ∠1=tan ∠OCA ,得OB OAOA OC=. 所以122OC=. 解得OC =4.所以C (0, 4).(2)因为CD //x 轴,所以y D =y C =4. 图2 解方程1142x +=,得x =6.所以D (6, 4). 所以抛物线的对称轴为直线x =3.因此点A (-2, 0)关于直线x =3的对称点为(8, 0). 设抛物线的解析式为y =a (x +2)(x -8).代入点C (0, 4),得4=-16a . 解得14a =-.所以2113(2)(8)4442y x x x x =-+-=-++.如图1,在梯形ABCD 中,AD //BC ,AC =BC =10,cos ∠ACB =45,点E 在对角线AC 上,且CE =AD ,BE 的延长线与射线AD 、射线CD 分别相交于点F 、G .设AD =x ,△AEF 的面积为y .(1)求证:∠DCA =∠EBC ;(2)当点G 在线段CD 上时,求y 关于x 的函数解析式,并写出它的定义域; (3)如果△DFG 是直角三角形,求△AEF 的面积.图1动感体验请打开几何画板文件名“16静安青浦一模25”,拖动点D 运动,可以体验到,直角三角形DFG 存在两种情况.满分解答(1)如图2,因为AD //BC ,所以∠DAC =∠ECB .又因为AC =CB ,AD =CE ,所以△ADC ≌△CEB .所以∠DCA =∠EBC . (2)如图3,作EH ⊥BC 于H . 在Rt △EHC 中,CE =x ,cos ∠ECB =45,所以CH =45x ,EH =35x . 所以S △CEB =12BC EH ⋅=131025x ⨯⨯=3x . 因为AD //BC ,所以△AEF ∽△CEB .所以2()AEF CEB S AE S CE=△△. 所以22103(10)()3AEF x x y S x x x--==⨯=△.定义域是0<x≤5. 定义域中x=5的几何意义如图4,D 、F 重合,根据AD AECB CE=,列方程1010x xx-=.图2 图3 图4(3)①如图5,如果∠FGD=90°,那么在Rt△BCG和Rt△BEH中,tan∠GBC=335104504xGC HE xGB HB x x ===--.由(1)得∠ACD=∠CBE.由cos∠ACD=cos∠CBE,得GC GBCE BC=.所以10GC CE xGB BC==.因此350410x xx=-.解得x=5.此时S△AEF=23(10)15xyx-==.②如图6,如果∠FDG=90°,那么在Rt△ADC中,AD=AC cos∠CAD=4105⨯=8.此时S△AEF=23(10)32xyx-==.图5 图6例 2016年上海市闵行区中考一模第24题如图1,在平面直角坐标系中,二次函数y =x 2+bx +c 的图像与x 轴交于A 、B 两点,点B 的坐标为(3, 0),与y 轴交于点C (0,-3),点P 是直线BC 下方的抛物线上的任意一点.(1)求这个二次函数的解析式;(2)联结PO ,PC ,并将△POC 沿y 轴对折,得到四边形POP ′C ,如果四边形POP ′C 为菱形,求点P 的坐标;(3)如果点P 在运动过程中,使得以P 、C 、B 为顶点的三角形与△AOC 相似,请求出此时点P 的坐标.图1动感体验请打开几何画板文件名“16闵行一模24”,拖动点P 在直线BC 下方的抛物线上运动,可以体验到,当四边形POP ′C 为菱形时,PP ′垂直平分OC .还可以体验到,当点P 与抛物线的顶点重合时,或者点P 落在以BC 为直径的圆上时,△PCB 是直角三角形.满分解答(1)将B (3, 0)、C (0,-3)分别代入y =x 2+bx +c ,得930,3.b c c ++=⎧⎨=-⎩.解得b =-2,c =-3.所以二次函数的解析式为y =x 2-2x -3.(2)如图2,如果四边形POP ′C 为菱形,那么PP ′垂直平分OC ,所以y P =32-.解方程23232x x --=-,得22x =.所以点P 的坐标为23()22-.图2 图3 图4(3)由y =x 2-2x -3=(x +1)(x -3)=(x -1)2-4,得A (-1, 0),顶点M (1,-4). 在Rt △AOC 中,OA ∶OC =1∶3.分两种情况讨论△PCB 与△AOC 相似:①如图3,作MN⊥y轴于N.由B(3, 0)、C(0,-3),M(1,-4),可得∠BOC=∠MCN=45°,所以∠BCM=90°.又因为CM∶CB=1∶3,所以当点P与点M(1,-4)重合时,△PCB∽△AOC.②如图4,当∠BPC=90°时,构造△AEP∽△PFB,那么CE PF EP FB=.设P(x, x2-2x-3),那么22(3)(23)3(23)x x xx x x-----=---.化简,得1(2)1xx--=+.解得x=.此时点P的横坐标为x=.而2(23)32CB NB x xxCP MP x x---===-++是个无理数,所以当∠BPC=90°时,△PCB与△AOC不相似.例 2016年上海市闵行区中考一模第25题如图1,在直角梯形ABCD 中,AB //CD ,∠ABC =90°,对角线AC 、BD 交于点G ,已知AB =BC =3,tan ∠BDC =12,点E 是射线BC 上任意一点,过点B 作BF ⊥DE ,垂足为F ,交射线AC 于点M ,交射线DC 于点H .(1)当点F 是线段BH 的中点时,求线段CH 的长;(2)当点E 在线段BC 上时(点E 不与B 、C 重合),设BE =x ,CM =y ,求y 关于x 的函数解析式,并指出x 的取值范围;(3)联结GF ,如果线段GF 与直角梯形ABCD 中的一条边(AD 除外)垂直时,求x 的值.图1 备用图动感体验请打开几何画板文件名“16闵行一模25”,拖动点E 在射线BC 上运动,可以体验到,点G 是BD 的一个三等分点,CH 始终都有CE 的一半.还可以体验到,GF 可以与BC 垂直,也可以与DC 垂直.满分解答(1)在Rt △BCD 中,BC =3,tan ∠BDC =BC DC =12,所以DC =6,DB =.如图2,当点F 是线段BH 的中点时,DF 垂直平分BH ,所以DH =DB =.此时CH =DB -DC =6.图2 图3(2)如图3,因为∠CBH 与∠CDE 都是∠BHD 的余角,所以∠CBH =∠CDE . 由tan ∠CBH =tan ∠CDE ,得CH CE CB CD =,即336CH x-=. 又因为CH //AB ,所以CH MC AB MA =,即3CH =.因此36x -=.整理,得)3x y x -=+.x 的取值范围是0<x <3. (3)如图4,不论点E 在BC 上,还是在BC 的延长线上,都有12BG AB GD DC ==, 12CH CE =. ①如图5,如果GF ⊥BC 于P ,那么AB //GF //DH .所以13BP PF BG BC CH BD ===.所以BP =1,111(3)366PF CH CE x ===-. 由PF //DC ,得PF PE DC CE =,即12(3)(3)363x x x---=-. 整理,得242450x x -+=.解得21x =±21BE =- ②如图6,如果GF ⊥DC 于Q ,那么GF //BE . 所以23QF DQ DG CE DC DB ===.所以DQ =4,2(3)3QF x =-. 由QF //BC ,得QF QH BC CH =,即21(3)2(3)3213(3)2x x x ---=-. 整理,得223450x x --=.解得x =34BE +=.图4 图5 图6如图1,抛物线y =ax 2+2ax +c (a >0)与x 轴交于A (-3,0)、B 两点(A 在B 的左侧),与y 轴交于点C (0,-3),抛物线的顶点为M .(1)求a 、c 的值; (2)求tan ∠MAC 的值;(3)若点P 是线段AC 上的一个动点,联结OP .问:是否存在点P ,使得以点O 、C 、P 为顶点的三角形与△ABC 相似?若存在,求出点P 的坐标;若不存在,请说明理由.图1动感体验请打开几何画板文件名“16浦东一模24”,拖动点P 在线段AC 上运动,可以体验到,△COP 与△ABC 相似存在两种情况.满分解答(1)将A (-3,0)、C (0,-3)分别代入y =ax 2+2ax +c ,得960,3.a a c c -+=⎧⎨=-⎩解得a =1,c =-3.(2)由y =x 2+2x -3=(x +1)2-4,得顶点M 的坐标为(-1,-4). 如图2,作MN ⊥y 轴于N .由A (-3,0)、C (0,-3)、M (-1,-4),可得OA =OC =3,NC =NM =1.所以∠ACO =∠MCN =45°,AC =MC . 所以∠ACM =90°.因此tan ∠MAC =MC AC=13. (3)由y =x 2+2x -3=(x +3)(x -1),得B (1, 0).所以AB =4.如图3,在△COP 与△ABC 中,∠OCP =∠BAC =45°,分两种情况讨论它们相似:当CP ABCO AC =时,3CP =CP =P 的坐标为(-2,-1).当CP AC CO AB =时,3CP =CP =.此时点P 的坐标为93(,)44--.图2 图3如图1,在边长为6的正方形ABCD 中,点E 为AD 边上的一个动点(与A 、D 不重合),∠EBM =45°,BE 交对角线AC 于点F ,BM 交对角线于点G ,交CD 于点M .(1)如图1,联结BD ,求证:△DEB ∽△CGB ,并写出DECG的值; (2)如图2,联结EG ,设AE =x ,EG =y ,求y 关于x 的函数解析式,并写出函数的定义域;(3)当M 为边DC 的三等分点时,求S △EGF 的面积.图1 图2动感体验请打开几何画板文件名“16浦东一模25”,拖动点E 在AD 边上运动,可以体验到, △EBD 与△GBC 保持相似,△EBG 保持等腰直角三角形.满分解答(1)如图3,因为∠EBM =∠DBC =45°,所以∠1=∠2. 又因为∠EDB =∠GCB =45°,所以△DEB ∽△CGB .因此DE DBCG CB==图3 图4(2)如图3,由△DEB ∽△CGB ,得EB DBGB CB=. 又因为∠EBM =∠DBC =45°,所以△EBG ∽△DBC (如图4). 所以△EBG 是等腰直角三角形.如图4,在Rt △ABE 中,AB =6,AE =x ,所以BE所以y =EG =2BE . 定义域是0<x <6.(3)如图5,由于S △EGB =12EG 2=2364x +,EGF EGB S EF S EB =△△, 所以2364EGFEF x S EB +=⨯△. 由(1)知,DE,所以 x =AE =AD -DE=6.①如图6,当13CM CD =时,13CG CM AG AB ==.所以1144CG CA ==⨯此时x =AE=6-=3.所以3162EF AE BF CB ===.所以13EF EB =.所以2364EGF EF x S EB +=⨯△=2133634+⨯=154. ②如图7,当23CM CD =时,23CG CM AG AB ==.所以2255CG CA ==⨯=此时x =AE=6-=65.所以61655EF AE BF CB ==÷=.所以16EF EB =.所以2364EGFEF x S EB +=⨯△=26()361564+⨯=3925.图5 图6 图7第(2)题也可以这样证明等腰直角三角形EBG : 如图8,作GH ⊥EB 于H ,那么△GBH 是等腰直角三角形.一方面2GB CB EB DB ==,另一方面cos 452HB GB =︒=,所以GB HBEB GB=. 于是可得△EBG ∽△GBH .所以△EBG 是等腰直角三角形. 如图9,第(2)题也可以构造Rt △EGN 来求斜边EG =y : 在Rt △AEN 中,AE =x ,所以AN =ENx . 又因为CG)x -,所以GN =AC -AN -CG=所以y=EG.如图10,第(2)题如果构造Rt△EGQ和Rt△CGP,也可以求斜边EG=y:由于CG)x-,所以CP=GP=1(6)2x-=132x-.所以GQ=PD=16(3)2x--=132x+,EQ=16(3)2x x---=132x-.所以y=EG.图8 图9 图10如图1,已知二次函数273y ax x c =-+的图像经过A (0, 8)、B (6, 2)、C (9, m )三点,延长AC 交x 轴于点D .(1)求这个二次函数的解析式及m 的值; (2)求∠ADO 的余切值;(3)过点B 的直线分别与y 轴的正半轴、x 轴、线段AD 交于点P (点A 的上方)、M 、Q ,使以点P 、A 、Q 为顶点的三角形与△MDQ 相似,求此时点P的坐标. 图1动感体验请打开几何画板文件名“16普陀一模24”,拖动点Q 在线段AD 上运动,可以体验到,△APQ 与△MDQ 相似只存在一种情况.满分解答(1)将A (0, 8)、B (6, 2)分别代入273y ax x c =-+,得8,3614 2.c a c =⎧⎨-+=⎩ 解得29a =,c =8.所以二次函数的解析式为227893y x x =-+. 所以227(9)818218593m f x x ==-+=-+=.(2)由A (0, 8)、C (9, 5),可得直线AC 的解析式为183y x =-+.所以D (24, 0).因此cot ∠ADO =OD OA =248=3.(3)如图2,如果△APQ 与△MDQ 相似,由于∠AQP =∠MQD ,∠P AQ 与∠DMQ 是钝角,因此只存在一种情况,△APQ ∽△MDQ .因此∠APQ =∠D .作BN ⊥y 轴于N ,那么∠BPN =∠D .因此cot ∠BPN =cot ∠D =3.所以PN =3BN =18.此时点P 的坐标为(0, 20).图2如图1,已知锐角∠MBN 的正切值等于3,△PBD 中,∠BDP =90°,点D 在∠MBN 的边BN 上,点P 在∠MBN 内,PD =3,BD =9.直线l 经过点P ,并绕点P 旋转,交射线BM 于点A ,交射线DN 于点C ,设CAx CP=. (1)求x =2时,点A 到BN 的距离;(2)设△ABC 的面积为y ,求y 关于x 的函数解析式,并写出函数的定义域; (3)当△ABC 因l 的旋转成为等腰三角形时,求x 的值.图1 备用图动感体验请打开几何画板文件名“16普陀一模25”,拖动点C 运动,可以体验到,AH 与BH 的比值=tan ∠B =3为定值,AH 与PD 的比值=CA ∶CP =x .满分解答(1)如图2,作AH ⊥BC 于H ,那么PD //AH . 因此2AH CAx PD CP===. 所以AH =2PD =6,即点A 到BN 的距离为6.图2 图3(2)如图3,由AH CAx PD CP ==,得AH =xPD =3x . 又因为tan ∠MBN =AHBH =3,所以BH =x .设BC =m .由CH CA x CD CP ==,得9m xx m -=-.整理,得81xm x =-.所以y =S △ABC =12BC AH ⋅=18321xx x ⨯⨯-=2121x x -. 定义域是0<x ≤9.x =9的几何意义是点C 与点H 重合,此时CA =27,CP =3.(3)在△ABC 中,BA ,cos ∠ABC BC =81x x -.①如图4,当BA =BC 81x x =-,得1x = ②如图5,当AB =AC 时,BC =2BH .解方程821xx x =-,得x =5.③如图6,当CA =CB 时,由cos ∠ABC ,得12AB =.解方程1821x x =-,得135x =.图4 图5 图6如图1,已知抛物线y =ax 2+bx -3与x 轴交于A 、B 两点,与y 轴交于点C ,O 是坐标原点,已知点B 的坐标是(3, 0),tan ∠OAC =3.(1)求该抛物线的函数表达式;(2)点P 在x 轴上方的抛物线上,且∠P AB =∠CAB ,求点P 的坐标;(3)点D 是y 轴上的一动点,若以D 、C 、B 为顶点的三角形与△ABC 相似,求出符合条件的点D 的坐标.图1动感体验请打开几何画板文件名“16松江一模24”,拖动点D 在y 轴正半轴上运动,可以体验到,△BCD 与△ABC 相似存在两种情况.满分解答(1)由y =ax 2+bx -3,得C (0,-3),OC =3. 由tan ∠OAC =3,得OA =1,A (-1, 0).因为抛物线与x 轴交于A (-1, 0)、B (3, 0)两点,设y =a (x +1)(x -3). 代入点C (0,-3),得a =1.所以y =(x +1)(x -3)=x 2-2x -3. (2)如图2,作PH ⊥x 轴于H .设P (x , (x +1)(x -3)). 由tan ∠P AB =tan ∠CAB ,得3PH CO AH AO ==.所以(1)(3)31x x x +-=+. 解得x =6.所以点P 的坐标为(6, 21).(3)由A (-1, 0)、B (3, 0)、C (0,-3),得BA =4,BC =ABC =∠BCO =45°. 当点D 在点C 上方时,∠ABC =∠BCD =45°.分两种情况讨论△BCD 与△ABC 相似: 如图3,当CD BACB BC=时,CD =BA =4.此时D (0, 1).如图4,当CD BCCB BA =4=92CD =.此时D 3(0,)2.图2 图3 图4已知等腰梯形ABCD 中,AD //BC ,∠B =∠BCD =45°,AD =3,BC =9,点P 是对角线AC 上的一个动点,且∠APE =∠B ,PE 分别交射线AD 和射线CD 于点E 和点G .(1)如图1,当点E 、D 重合时,求AP 的长;(2)如图2,当点E 在AD 的延长线上时,设AP =x ,DE =y ,求y 关于x 的函数解析式,并写出它的定义域;(3)当线段DG 时,求AE 的长.图1 图2动感体验请打开几何画板文件名“16松江一模25”,拖动点P 在AC 上运动,可以体验到,DGDE 也存在两种情况.满分解答(1)如图3,作AM ⊥BC ,DN ⊥BC ,垂足分别为M 、N ,那么MN =AD =3.在Rt △ABM 中,BM =3,∠B =45°,所以AM =3,AB =在Rt △AMC 中,AM =3,MC =6,所以CA = 如图4,由AD //BC ,得∠1=∠2.又因为∠APE =∠B ,当E 、D 重合时,△APD ∽△CBA .所以AP CBAD CA =.因此3AP =AP =5. (2)如图5,设(1)中E 、D 重合时点P 的对应点为F . 因为∠AFD =∠APE =45°,所以FD //PE .所以AF AD AP AE =33y=+.因此33y x =-.定义域是5<x ≤.图3 图4 图5(3)如图6,因为CA =AF =,所以FC =.由DF //PE ,得13FP DG FC DC ===.所以FP =.由DF //PE ,9552AD AF DE FP ==÷=.所以2293DE AD ==. ①如图6,当P 在AF 的延长线上时,233AE AD DE =+=. ②如图7,当P 在AF 上时,123AE AD DE =-=.图6 图7例 2016年上海市徐汇区中考一模第24题如图1,在Rt △AOB 中,∠AOB =90°,已知点A (-1,-1),点B 在第二象限,OB=抛物线235y x bx c =++经过点A 和B . (1)求点B 的坐标; (2)求抛物线235y x bx c =++的对称轴; (3)如果该抛物线的对称轴分别和边AO 、BO 的延长线交于点C 、D ,设点E 在直线AB 上,当△BOE 和△BCD 相似时,直接写出点E 的坐标.图1动感体验请打开几何画板文件名“16徐汇一模24”,拖动点E 在射线BA 上运动,可以体验到,△BOE 和△BCD 相似存在两种情况.满分解答(1)由A (-1,-1),得OA 与x 轴负半轴的夹角为45°.又因为∠AOB =90°,所以OB 与x 轴负半轴的夹角也为45°. 当OB=B 到x 轴、y 轴的距离都为2. 所以点B 的坐标为(-2,2).(2)将A (-1,-1)、B (-2,2)分别代入235y x bx c =++,得31,5122 2.5b c b c ⎧-+=-⎪⎪⎨⎪-+=⎪⎩解得65b =-,145c =-.所以23614555y x x =--.抛物线的对称轴是直线x =1.(3)如图2,由A (-1,-1)、B (-2,2)、C (1, 1)、D (1,-1),以及∠AOB =90°,可得BO 垂直平分AC ,BO=,BA =BCBD=如图3,过点A 、E 作y 轴的平行线,过点B 作y 轴的垂线,构造Rt △ABM 和Rt △EBN ,那么BA BM MA BE BN NE==. 设点E 的坐标为(x , y )1322x y==+-.图2 图3当点E 在射线BA 上时,∠EBO =∠DBC .分两种情况讨论相似:①当BE BCBO BD ==BE =1322x y==+-.解得x =43-,y =0.所以E 4(,0)3-(如图4).②当BE BDBO BC ==BE =1322x y==+-.解得x =45-,y =85-.所以E 48(,)55--(如图5).图4 图5例 2016年上海市徐汇区中考一模第25题如图1,四边形ABCD 中,∠C =60°,AB =AD =5,CB =CD =8,点P 、Q 分别是边AD 、BC 上的动点,AQ 与BP 交于点E ,且∠BEQ =90°-12∠BAD .设A 、P 两点间的距离为x .(1)求∠BEQ 的正切值; (2)设AEPE=y ,求y 关于x 的函数解析式及定义域; (3)当△AEP 是等腰三角形时,求B 、Q 两点间的距离.图1动感体验请打开几何画板文件名“16徐汇一模25”,拖动点P 在AD 边上运动,可以体验到, ∠AEP =∠BEQ =∠ABH =∠ADH ,△ABF ∽△BEF ∽△BDP ,△AEP ∽△ADF .满分解答(1)如图2,联结BD 、AC 交于点H .因为AB =AD ,CB =CD ,所以A 、C 在BD 的垂直平分线上. 所以AC 垂直平分BD .因此∠BAH =12∠BAD . 因为∠BEQ =90°-12∠BAD , 所以∠BEQ =90°-∠BAH =∠ABH .在Rt △ABH 中,AB =5,BH =4,所以AH =3. 所以tan ∠BEQ =tan ∠ABH =34. 图2 (2)如图3,由于∠BEQ =∠ABH ,∠BEQ =∠AEP ,∠ABH =∠ADH , 所以∠AEP =∠BEQ =∠ABH =∠ADH .图3 图4 图5如图3,因为∠BF A 是公共角,所以△BEF ∽△ABF . 如图4,因为∠DBP 是公共角,所以△BEF ∽△BDP .所以△ABF ∽△BDP .所以AB BD BF DP =.因此585BF x=-. 所以5(5)8BF x =-.所以518(5)(539)88FD BD BF x x =-=--=+.如图5,因为∠DAF 是公共角,所以△AEP ∽△ADF . 所以5401539(539)8AE AD y PE FD x x ====++.定义域是0≤x ≤5. (3)分三种情况讨论等腰△AEP :①当EP =EA 时,由于△AEP ∽△ADF ,所以DF =DA =5(如图6). 此时BF =3,HF =1. 作QM ⊥BD 于M .在Rt △BMQ 中,∠QBM =60°,设BQ =m ,那么12BM m =,QM =. 在Rt △FMQ 中,132FM m =-,tan ∠MFQ =tan ∠HF A =3,所以QM =3FM .13(3)2m =-,得BQ =m=9- ②如图7,当AE =AP 时,E 与B 重合,P 与D 重合,此时Q 与B 重合,BQ =0. ③不存在PE =P A 的情况,因为∠P AE >∠P AH >∠AEP .图6 图7如图1,在平面直角坐标系中,抛物线212y x bx c =-++与x 轴交于A 、B 两点,与y轴交于点C ,直线y =x +4经过A 、C 两点.(1)求抛物线的表达式;(2)如果点P 、Q 在抛物线上(点P 在对称轴左边),且PQ //AO ,PQ =2AO ,求点P 、Q 的坐标;(3)动点M 在直线y =x +4上,且△ABC 与△COM相似,求点M 的坐标. 图1动感体验请打开几何画板文件名“16杨浦一模24”,拖动点M 在射线CA 上运动,可以体验到,△ABC 与△COM 相似存在两种情况.满分解答(1)由y =x +4,得A (-4, 0),C (0, 4). 将A (-4, 0)、C (0, 4)分别代入212y x bx c =-++,得840,4.b c c --+=⎧⎨=⎩ 解得b =-1,c =4.所以抛物线的表达式为2142y x x =--+. (2)如图2,因为PQ //AO ,所以P 、Q 关于抛物线的对称轴对称. 因为抛物线的对称轴是直线x =-1,PQ =2AO =8,所以x P =-5,x Q =3.当x =3时,2142y x x =--+=72-.所以P 7(5,)2--,Q 7(3,)2-. (3)由2114(4)(2)22y x x x x =--+=-+-,得B (2, 0).由A (-4, 0)、B (2, 0)、C (0, 4),得AB =6,AC =,CO =4.当点M 在射线CA 上时,由于∠MCO =∠BAC =45°,所以分两种情况讨论相似:①当CM ABCO AC =时,4CM =CM =M (-3, 1)(如图3).②当CM AC CO AB =时,46CM =CM =M 84(,)33-(如图4).图2 图3 图4如图1,已知菱形ABCD的边长为5,对角线AC的长为6,点E为边AB上的动点,点F在射线AD上,且∠ECF=∠B,直线CF交直线AB于点M.(1)求∠B的余弦值;(2)当点E与点A重合时,试画出符合题意的图,并求BM的长;(3)当点M在AB的延长线上时,设BE=x,BM=y,求y关于x的函数解析式,并写出定义域.图1 备用图动感体验请打开几何画板文件名“16杨浦一模25”,拖动点E在AB上慢慢运动,可以体验到,∠1=∠2=∠3,△MCE与△MBC保持相似.满分解答(1)如图2,作AN⊥BC于N,联结BD交AC于O,那么BO垂直平分AC.在Rt△ABO中,AB=5,AO=3,所以BO=4.因为S菱形ABCD=12AC BD⋅=BC AN⋅,所以64=5AN⨯⨯.解得AN=245.在Rt△ABN中,AB=5,AN=245,所以BN=75.因此cos∠B=BNAB=725.(2)如图3,当点E与点A重合时,由于∠ECF=∠B,∠FEC=∠1,所以△ECF∽△ABC.所以EF ACEC AB=,即665EF=.解得365EF=.由BC//AF,得AM AFBM BC=,即53625BMBM+=.解得12511BM=.图2 图3(3)如图4,因为∠ECF =∠ABC ,根据等角的邻补角相等,得∠MCE =∠MBC . 如图5,因为∠M 是公共角,所以△MCE ∽△MBC . 所以MC MBME MC=.因此22()MC MB ME y x y xy y =⋅=+=+. 作MH ⊥BC ,垂足为H .在Rt △MBH 中,MB =y ,cos ∠MBH =725,所以BH =725y ,MH =2425y .在Rt △MCH 中,根据勾股定理,得MC 2=MH 2+CH 2.因此222247()(5)2525xy y y y +=++. 整理,得125514y x =-.定义域是145<x ≤5.定义域中x =145的几何意义如图6所示,此时D 、F 重合,AB //CF .由CF =CE ,CF =CB ,得CE =CB . 所以1cos 2BE BC B =⋅.解得BE =72525⨯⨯=145.图4 图5 图6例 2016年上海市闸北区中考一模第24题如图1,在平面直角坐标系中,已知抛物线与x 轴交于点A (-1,0)和点B ,与y 轴交于点C (0, 2),对称轴为直线x =1,对称轴交x 轴于点E .(1)求该抛物线的表达式,并写出顶点D 的坐标;(2)设点F 在抛物线上,如果四边形AEFD 是梯形,求点F 的坐标;(3)联结BD ,设点P 在线段BD 上,若△EBP 与△ABD 相似,求点P 的坐标.图1动感体验请打开几何画板文件名“16闸北一模24”,梯形AEFD 只存在一种情况.拖动点P 在BD 边上运动,可以体验到,△EBP 与△ABD 相似存在两种情况.满分解答(1)点A (-1,0)关于直线x =1的对称点B 的坐标为(3, 0).设抛物线的解析式为y =a (x +1)(x -3),代入点C (0, 2),得2=-3a . 解得23a =-.所以2222428(1)(3)2(1)33333y x x x x x =-+-=-++=--+. 顶点D 的坐标为8(1,)3. (2)过△ADE 的三个顶点分别画对边的平行线,只有经过点E 的直线与抛物线有另外的交点,在第一象限内的交点就是梯形AEFD 的顶点F .设F 224(,2)33x x x -++. 作FH ⊥x 轴于H ,那么∠FEH =∠DAE . 由tan ∠FEH =tan ∠DAE ,得43FH DE EH AE ==.所以43FH EH =.解方程22442(1)333x x x -++=-,得x =F .图2 图3 图4。
上海市杨浦区2017年中考数学一模试卷(含解析)
上海市杨浦区2017年中考数学一模试卷一、选择题(本大题共6题,每题4分,满分24分)1.如果延长线段AB到C,使得,那么AC:AB等于()A.2:1 B.2:3 C.3:1 D.3:22.在高为100米的楼顶测得地面上某目标的俯角为α,那么楼底到该目标的水平距离是()A.100tanα B.100cotα C.100sinα D.100cosα3.将抛物线y=2(x﹣1)2+3向右平移2个单位后所得抛物线的表达式为()A.y=2(x﹣1)2+5 B.y=2(x﹣1)2+1 C.y=2(x+1)2+3 D.y=2(x﹣3)2+34.在二次函数y=ax2+bx+c中,如果a>0,b<0,c>0,那么它的图象一定不经过()A.第一象限 B.第二象限 C.第三象限 D.第四象限5.下列命题不一定成立的是()A.斜边与一条直角边对应成比例的两个直角三角形相似B.两个等腰直角三角形相似C.两边对应成比例且有一个角相等的两个三角形相似D.各有一个角等于100°的两个等腰三角形相似6.在△ABC和△DEF中,∠A=40°,∠D=60°,∠E=80°,,那么∠B的度数是()A.40° B.60° C.80° D.100°二、填空题(本大题共12题,每题4分,满分48分)7.线段3cm和4cm的比例中项是cm.8.抛物线y=2(x+4)2的顶点坐标是.9.函数y=ax2(a>0)中,当x<0时,y随x的增大而.10.如果抛物线y=ax2+bx+c(a≠0)经过点(﹣1,2)和(4,2),那么它的对称轴是直线.11.如图,△ABC中,点D、E、F分别在边AB、AC、BC上,且DE∥BC,EF∥AB,DE:BC=1:3,那么EF:AB的值为.12.如图,在梯形ABCD中,AD∥BC,AC与BD相交于点O,如果BC=2AD,那么S△ADC:S△ABC 的值为.13.如果两个相似三角形的面积之比是9:25,其中小三角形一边上的中线长是12cm,那么大三角形对应边上的中线长是cm.14.如果+=3,2﹣=,那么= (用表示).15.已知α是锐角,tanα=2cos30°,那么α= 度.16.如图是一斜坡的横截面,某人沿着斜坡从P处出发,走了13米到达M处,此时在铅垂方向上上升了5米,那么该斜坡的坡度是i=1:.17.用“描点法”画二次函数y=ax2+bx+c(a≠0)的图象时,列出了如下表格:那么该二次函数在x=0时,y= .18.如图,△ABC中,AB=AC=5,BC=6,BD⊥AC于点D,将△BCD绕点B逆时针旋转,旋转角的大小与∠CBA相等,如果点C、D旋转后分别落在点E、F的位置,那么∠EFD的正切值是.三、解答题(本大题共7题,满分78分)19.(10分)如图,已知△ABC中,点F在边AB上,且AF=AB、过A作AG∥BC交CF的延长线于点G.(1)设=, =,试用向量和表示向量;(2)在图中求作向量与的和向量.(不要求写作法,但要指出所作图中表示结论的向量)20.(10分)已知抛物线y=﹣x2+bx+c经过点B(﹣1,0)和点C(2,3).(1)求此抛物线的表达式;(2)如果此抛物线上下平移后过点(﹣2,﹣1),试确定平移的方向和平移的距离.21.(10分)已知:如图,梯形ABCD中,AD∥BC,∠ABD=∠C,AD=4,BC=9,锐角∠DBC的正弦值为.求:(1)对角线BD的长;(2)梯形ABCD的面积.22.(10分)如图,某客轮以每小时10海里的速度向正东方向航行,到A处时向位于南偏西30°方向且相距12海里的B处发出送货请求,货轮接到请求后即刻沿着北偏东某一方向以每小时14海里的速度出发,在C处恰好与客轮相逢,试求货轮从出发到客轮相逢所用的时间.23.(12分)已知:如图,在△ABC中,点D、G分别在边AB、BC上,∠ACD=∠B,AG与CD相交于点F.(1)求证:AC2=AD•AB;(2)若=,求证:CG2=DF•BG.24.(12分)在直角坐标系xOy中(如图),抛物线y=ax2﹣4ax+4a+3(a<0)的顶点为D,它的对称轴与x轴交点为M.(1)求点D、点M的坐标;(2)如果该抛物线与y轴的交点为A,点P在抛物线上且AM∥DP,AM=2DP,求a的值.25.(14分)在Rt△ABC中,∠ACB=90°,AC=BC=2,点P为边BC上的一动点(不与B、C 重合),点P关于直线AC、AB的对称点分别为M、N,连接MN交边AB于点F,交边AC于点E.(1)如图1,当点P为边BC的中点时,求∠M的正切值;(2)连接FP,设CP=x,S△MPF=y,求y关于x的函数关系式,并写出定义域;(3)连接AM,当点P在边BC上运动时,△AEF与△ABM是否一定相似?若是,请证明;若不是,请求出当△AEF与△ABM相似时CP的长.2017年上海市杨浦区中考数学一模试卷参考答案与试题解析一、选择题(本大题共6题,每题4分,满分24分)1.如果延长线段AB到C,使得,那么AC:AB等于()A.2:1 B.2:3 C.3:1 D.3:2【考点】两点间的距离.【分析】作出图形,用AB表示出AC,然后求比值即可.【解答】解:如图,∵BC=AB,∴AC=AB+BC=AB+AB=AB,∴AC:AB=3:2.故选D.【点评】本题考查了两点间的距离,用AB表示出AC是解题的关键,作出图形更形象直观.2.在高为100米的楼顶测得地面上某目标的俯角为α,那么楼底到该目标的水平距离是()A.100tanα B.100cotα C.100sinα D.100cosα【考点】解直角三角形的应用﹣仰角俯角问题.【分析】根据题意画出图形,利用锐角三角函数的定义直接进行解答即可.【解答】解:∵∠BAC=α,BC=100m,∴AB=BC•cotα=100cotαm.故选:B.【点评】本题考查的是解直角三角形的应用﹣仰角俯角问题,根据题意画出图形,利用数形结合求解是解答此题的关键.3.将抛物线y=2(x﹣1)2+3向右平移2个单位后所得抛物线的表达式为()A.y=2(x﹣1)2+5 B.y=2(x﹣1)2+1 C.y=2(x+1)2+3 D.y=2(x﹣3)2+3【考点】二次函数图象与几何变换.【分析】根据二次函数图象左加右减,上加下减的平移规律进行求解.【解答】解:抛物线y=2(x﹣1)2+3向右平移2个单位,可得y=2(x﹣1﹣2)2+3,即y=2(x﹣3)2+3,故选:D.【点评】本题主要考查的是函数图象的平移,用平移规律“左加右减,上加下减”直接代入函数解析式求得平移后的函数解析式.4.在二次函数y=ax2+bx+c中,如果a>0,b<0,c>0,那么它的图象一定不经过()A.第一象限 B.第二象限 C.第三象限 D.第四象限【考点】二次函数图象与系数的关系.【分析】根据已知条件“a>0,b<0,c>0”判断出该函数图象的开口方向、与x和y轴的交点、对称轴所在的位置,然后据此来判断它的图象一定不经过第三象限.【解答】解:①∵a>0、c>0,∴该抛物线开口方向向上,且与y轴交于正半轴;②∵a>0,b<0,∴二次函数y=ax2+bx+c的函数图象的对称轴是x=﹣>0,∴二次函数y=ax2+bx+c的函数图象的对称轴在第一象限;综合①②,二次函数y=ax2+bx+c的图象一定不经过第三象限.故选C.【点评】本题考查了二次函数图象与系数的关系.根据二次函数y=ax2+bx+c系数符号判断抛物线开口方向、对称轴、抛物线与y轴的交点抛物线与x轴交点的个数.5.下列命题不一定成立的是()A.斜边与一条直角边对应成比例的两个直角三角形相似B.两个等腰直角三角形相似C.两边对应成比例且有一个角相等的两个三角形相似D.各有一个角等于100°的两个等腰三角形相似【考点】命题与定理.【分析】根据相似三角形的判定定理进行判定即可.【解答】解:斜边与一条直角边对应成比例的两个直角三角形相似一定成立;两个等腰直角三角形相似一定成立;两边对应成比例且有一个角相等的两个三角形相似不一定成立;各有一个角等于100°的两个等腰三角形相似一定成立,故选:C.【点评】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.6.在△ABC和△DEF中,∠A=40°,∠D=60°,∠E=80°,,那么∠B的度数是()A.40° B.60° C.80° D.100°【考点】相似三角形的判定与性质.【分析】根据可以确定对应角,根据对应角相等的性质即可求得∠B的大小,即可解题.【解答】解:∵,∴∠B与∠D是对应角,故∠B=∠D=60°.故选B.【点评】本题考查了相似三角形对应角相等的性质,考查了对应边比值相等的性质,本题中求∠B和∠D是对应角是解题的关键.二、填空题(本大题共12题,每题4分,满分48分)7.线段3cm和4cm的比例中项是2cm.【考点】比例线段.【分析】根据比例中项的概念,a:b=b:c,设比例中项是xcm,则列比例式可求.【解答】解:设比例中项是xcm,则:3:x=x:4,x2=12,x=±2,∵线段是正值,∴负值舍去,故答案为:2.【点评】本题主要考查了比例线段,理解比例中项的概念,求两条线段的比例中项的时候,应舍去负数是解答此题的关键.8.抛物线y=2(x+4)2的顶点坐标是(﹣4,0).【考点】二次函数的性质.【分析】由抛物线的解析式可求得答案.【解答】解:∵y=2(x+4)2,∴抛物线顶点坐标为(﹣4,0),故答案为:(﹣4,0).【点评】本题主要考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y=a(x ﹣h)2+k中,对称轴为x=h,顶点坐标为(h,k).9.函数y=ax2(a>0)中,当x<0时,y随x的增大而减小.【考点】二次函数的性质.【分析】由解析式可确定其开口方向,再根据增减性可求得答案.【解答】解:∵y=ax2(a>0),∴抛物线开口向上,对称轴为y轴,∴当x<0时,y随x的增大而减小,故答案为:减小.【点评】本题主要考查二次函数的性质,掌握二次函数的增减性是解题的关键.10.如果抛物线y=ax2+bx+c(a≠0)经过点(﹣1,2)和(4,2),那么它的对称轴是直线x=.【考点】二次函数的性质.【分析】根据抛物线上函数值相等的点离对称轴的距离相等可求得答案.【解答】解:∵抛物线y=ax2+bx+c(a≠0)经过点(﹣1,2)和(4,2),∴对称轴为x==,故答案为:x=.【点评】本题主要考查二次函数的性质,掌握抛物线上函数值相等的点离对称轴的距离相等是解题的关键.11.如图,△ABC中,点D、E、F分别在边AB、AC、BC上,且DE∥BC,EF∥AB,DE:BC=1:3,那么EF:AB的值为.【考点】相似三角形的判定与性质.【分析】利用DE∥BC可判断△ADE∽△ABC,利用相似的性质的得==,再利用比例性质得=,然后证明△CEF∽△CAB,然后利用相似比可得到的值.【解答】解:∵DE∥BC,∴△ADE∽△ABC,∴==,∴=,∵EF∥AB,∴△CEF∽△CAB,故答案为.【点评】本题考查了三角形相似的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形;在运用相似三角形的性质时,主要利用相似进行几何计算.12.如图,在梯形ABCD 中,AD ∥BC ,AC 与BD 相交于点O ,如果BC=2AD ,那么S △ADC :S △ABC 的值为 1:2 .【考点】相似三角形的判定与性质;梯形.【分析】根据梯形的性质和三角形的面积计算公式,可以解答本题.【解答】解:∵在梯形ABCD 中,AD ∥BC ,BC=2AD ,设AD 与BC 间的距离为h ,则,故答案为:1:2.【点评】本题考查梯形、三角形的面积,解题的关键是明确题意,找出所求问题需要的条件.13.如果两个相似三角形的面积之比是9:25,其中小三角形一边上的中线长是12cm ,那么大三角形对应边上的中线长是 20 cm . 【考点】相似三角形的性质.【分析】因为两个三角形的面积之比9:25,根据相似三角形面积比等于相似比的平方,即可求出周长的比,又因为对应中线的比等于相似比即可求出大三角形的中线. 【解答】解:∵两个相似三角形的面积之比是9:25, ∴大三角形的周长:小三角形的周长是5:3, ∵小三角形一边上的中线长是12cm ,∴大三角形对应边上的中线长是20cm.【点评】本题考查对相似三角形性质的理解.(1)相似三角形面积的比等于相似比的平方;(3)相似三角形对应中线的比等于相似比.14.如果+=3,2﹣=,那么= (用表示).【考点】*平面向量.【分析】根据平面向量的运算法则进行计算即可.【解答】解:∵2﹣=,∴6﹣3=3,∵+=3,∴+=6﹣3,∴=.故答案是:.【点评】本题考查了平面向量的运算,类似于解一元一次方程进行计算即可,比较简单,要注意移项要变号.15.已知α是锐角,tanα=2cos30°,那么α= 60 度.【考点】特殊角的三角函数值.【分析】根据30°角的余弦值等于,正切值是的锐角为60°解答即可.【解答】解:∵tanα=2cos30°=2×=,∴α=60°.故答案为:60.【点评】本题考查了特殊角的三角函数值,熟记30°、45°、60°角的正弦值、余弦值、正切值是解此类题目的关键.16.如图是一斜坡的横截面,某人沿着斜坡从P处出发,走了13米到达M处,此时在铅垂方向上上升了5米,那么该斜坡的坡度是i=1: 2.4 .【考点】解直角三角形的应用﹣坡度坡角问题.【分析】垂直高度、水平距离和坡面距离正好构成一个直角三角形,先根据勾股定理,求出水平距离,然后根据定义解答.【解答】解:由题意得,水平距离==12,∴坡比i=5:12=1:2.4.故答案为2.4【点评】本题考查的知识点为:坡度=垂直距离:水平距离,通常写成1:n的形式,属于基础题.17.用“描点法”画二次函数y=ax2+bx+c(a≠0)的图象时,列出了如下表格:那么该二次函数在x=0时,y= 3 .【考点】二次函数的图象.【分析】根据题目提供的满足二次函数解析式的x、y的值,确定二次函数的对称轴,利用抛物线的对称性找到当x=0时,y的值即可.【解答】解:由上表可知函数图象经过点(1,0)和点(3,0),∴对称轴为x=2,∴当x=4时的函数值等于当x=0时的函数值,∵当x=4时,y=3,∴当x=0时,y=3.故答案是:3.【点评】本题考查了二次函数的图象的性质,利用表格找到二次函数的对称点是解决此题的关键.18.如图,△ABC中,AB=AC=5,BC=6,BD⊥AC于点D,将△BCD绕点B逆时针旋转,旋转角的大小与∠CBA相等,如果点C、D旋转后分别落在点E、F的位置,那么∠EFD的正切值是.【考点】旋转的性质;等腰三角形的性质;解直角三角形.【分析】作AH⊥BC于H,延长CD交EF于G,根据等腰三角形的性质和勾股定理求出AH、BD、CD、AD,根据旋转变换的性质得到∠FBD=∠CBA,证明FB∥AH,根据四点共圆得到∠EFD=∠GBD,求出tan∠GBD即可.【解答】解:作AH⊥BC于H,延长CD交EF于G,∵AB=AC,∴BH=CH=BC=3,由勾股定理得,AH==4,×BC×AH=×AC×BD,即6×4=5×BD,解得,BD=,∴CD==,AD=,∵∠FBD=∠CBA,∴∠FBE=∠DBC,∵∠DBC+∠C=90°,∠HAC+∠C=90°,∴∠FBE=∠BAH,∴FB∥AH,∴∠FBC=∠AHC=90°,∴EF∥BC,∴∠E=∠ABC=∠C=∠EGA,∴AG=AE=BE﹣AB=BC﹣AB=1,∴DG=,∴∠F=∠BDC=90°,∴F、B、D、G四点共圆,∴∠EFD=∠GBD,tan∠GBD==,∴∠EFD的正切值是,故答案为:.【点评】本题考查的是旋转变换的性质、等腰三角形的性质、锐角三角函数的应用,掌握旋转变换的性质、熟记锐角三角函数的概念是解题的关键.三、解答题(本大题共7题,满分78分)19.(10分)(2017•杨浦区一模)如图,已知△ABC中,点F在边AB上,且AF=AB、过A作AG∥BC交CF的延长线于点G.(1)设=, =,试用向量和表示向量;(2)在图中求作向量与的和向量.(不要求写作法,但要指出所作图中表示结论的向量)【考点】*平面向量;作图—复杂作图.【分析】(1)证△AGF∽△BCF得==,即AG=CB,由=()可得答案;(2)延长CB到E,使BE=AG,连接AE,则=.【解答】解:(1)∵AG∥BC,AF=AB,∴△AGF∽△BCF, =,∴==,即AG=CB,∴=()=﹣;(2)如图所示,==.【点评】本题主要考查相似三角形的判定与性质及向量的运算、作图,熟练掌握向量的基本运算法则是解题的关键.20.(10分)(2017•杨浦区一模)已知抛物线y=﹣x2+bx+c经过点B(﹣1,0)和点C(2,3).(1)求此抛物线的表达式;(2)如果此抛物线上下平移后过点(﹣2,﹣1),试确定平移的方向和平移的距离.【考点】待定系数法求二次函数解析式;二次函数图象与几何变换.【分析】(1)待定系数法求解可得;(2)求出原抛物线上x=﹣2时,y的值,若点(﹣2,﹣5)平移后的对应点为(﹣2,﹣1),根据纵坐标的变化可得其中的一种平移方式.【解答】解:(1)将点B(﹣1,0)、C(2,3)代入y=﹣x2+bx+c,得:,解得:,∴此抛物线的表达式为y=﹣x2+2x+3;(2)在y=﹣x2+2x+3中,当x=﹣2时,y=﹣4﹣4+3=﹣5,若点(﹣2,﹣5)平移后的对应点为(﹣2,﹣1),则需将抛物线向上平移4个单位.【点评】本题主要考查待定系数法求二次函数的解析式及抛物线的平移,熟练掌握待定系数法求二次函数的解析式是解题的关键.21.(10分)(2017•杨浦区一模)已知:如图,梯形ABCD中,AD∥BC,∠ABD=∠C,AD=4,BC=9,锐角∠DBC的正弦值为.求:(1)对角线BD的长;(2)梯形ABCD的面积.【考点】梯形;解直角三角形.【分析】(1)求出△ABD∽△DCB,得出比例式,即可得出答案;(2)过D作DE⊥BC于E,解直角三角形求出DE,根据面积公式求出即可.【解答】解:(1)∵AD∥BC,∴∠ADB=∠DBC,∵∠ABD=∠C,∴△ABD∽△DCB,∴=,∵AD=4,BC=9,∴BD=6;(2)过D作DE⊥BC于E,则∠DEB=90°,∵锐角∠DBC的正弦值为,∴sin∠DBC==,∵BD=6,∴DE=4,∴梯形ABCD的面积为×(AD+BC)×DE=×(4+9)×4=26.【点评】本题考查了相似三角形的性质和判定,梯形的性质,解直角三角形等知识点,能求出BD的长是解此题的关键.22.(10分)(2017•杨浦区一模)如图,某客轮以每小时10海里的速度向正东方向航行,到A处时向位于南偏西30°方向且相距12海里的B处发出送货请求,货轮接到请求后即刻沿着北偏东某一方向以每小时14海里的速度出发,在C处恰好与客轮相逢,试求货轮从出发到客轮相逢所用的时间.【考点】解直角三角形的应用﹣方向角问题.【分析】首先证明AC=AB=12,根据时间=路程÷速度,计算即可解决问题.【解答】解:如图,由题意,∠ABF=30°,∠CBF=60°,∴∠FAB=60°,∠ABC=∠C=30°,∴AC=AB=12,货轮从出发到客轮相逢所用的时间==1.2小时.答:货轮从出发到客轮相逢所用的时间1,2小时.【点评】本题考查解直角三角形的应用﹣方向角、等腰三角形的判定、路程、时间、速度之间的关系等知识,解题的关键是掌握方向角的定义,属于中考常考题型.23.(12分)(2017•杨浦区一模)已知:如图,在△ABC中,点D、G分别在边AB、BC上,∠ACD=∠B,AG与CD相交于点F.(1)求证:AC2=AD•AB;(2)若=,求证:CG2=DF•BG.【考点】相似三角形的判定与性质.【分析】(1)证明△ACD∽△ABC,得出对应边成比例AC:AB=AD:AC,即可得出结论;(2)由相似三角形的性质得出∠ADF=∠ACG,由已知证出△ADF∽△ACG,得出∠DAF=∠CAF,AG是∠BAC的平分线,由角平分线得出,即可得出结论.【解答】(1)证明:∵∠ACD=∠B,∠CAD=∠BAC,∴△ACD∽△ABC,∴AC:AB=AD:AC,∴AC2=AD•AB;(2)证明:∵△ACD∽△ABC,∴∠ADF=∠ACG,∵=,∴△ADF∽△ACG,∴∠DAF=∠CAF,即∠BAG=∠CAG,AG是∠BAC的平分线,∴,∴,∴CG2=DF•BG.【点评】本题考查了相似三角形的判定与性质以及角平分线的性质;熟练掌握相似三角形的判定与性质是解决问题的关键.24.(12分)(2017•杨浦区一模)在直角坐标系xOy中(如图),抛物线y=ax2﹣4ax+4a+3(a<0)的顶点为D,它的对称轴与x轴交点为M.(1)求点D、点M的坐标;(2)如果该抛物线与y轴的交点为A,点P在抛物线上且AM∥DP,AM=2DP,求a的值.【考点】抛物线与x轴的交点.【分析】(1)由y=ax2﹣4ax+4a+3=a(x﹣2)2+3,可得顶点D(2,3),M(2,0).(2)作PN⊥DM于N.由△PDN∽△MAO,得===,因为OM=2,OA=﹣4a﹣3,PN=1,所以P(1,a+3),DN=﹣a,根据OA=2DN,可得方程﹣4a﹣3=﹣2a,由此即可解决问题.【解答】解:(1)∵y=ax2﹣4ax+4a+3=a(x﹣2)2+3,∴顶点D(2,3),M(2,0).(2)作PN⊥DM于N.∵AM∥DP,∴∠PDN=∠AMG,∵DG∥OA,∴∠OAM=∠AMG=∠PDN,∵∠PND=∠AOM=90°,∴△PDN∽△MAO,∴===,∵OM=2,OA=﹣4a﹣3,PN=1,∴P(1,a+3),∴DN=﹣a,∵OA=2DN,∴﹣4a﹣3=﹣2a,∴a=﹣.(当点A在y的正半轴上时,方法类似,求得a=﹣).【点评】本题考查抛物线与x轴的交点、相似三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,学会利用相似三角形的性质解决问题,用方程的思想思考问题,属于中考常考题型.25.(14分)(2017•杨浦区一模)在Rt△ABC中,∠ACB=90°,AC=BC=2,点P为边BC上的一动点(不与B、C重合),点P关于直线AC、AB的对称点分别为M、N,连接MN交边AB 于点F,交边AC于点E.(1)如图1,当点P为边BC的中点时,求∠M的正切值;(2)连接FP,设CP=x,S△MPF=y,求y关于x的函数关系式,并写出定义域;(3)连接AM,当点P在边BC上运动时,△AEF与△ABM是否一定相似?若是,请证明;若不是,请求出当△AEF与△ABM相似时CP的长.【考点】相似形综合题.【分析】(1)先求出CP=1,利用对称得出∠MB N=90°,BP=BP=3,最后用锐角三角函数的定义即可;(2)先求出FG,再利用同角的三角函数相等,得出PG,再用三角形的面积公式求解即可;(3)利用对称先判断出AM=AP=AN,进而得出三角形AMN是等腰直角三角形,即可得出∠AMN=45°,得出∠AFE=∠AMB,即可判断出△AEF∽△BAM.【解答】解:(1)如图1,连接BN,∵点P为边BC的中点,∴CP=BP=BC=1,∵点P与点M关于AC对称,∴CM=CP=1∵∠ACB=90°,AC=BC=2,∴∠BAC=∠ABC=45°,∵点P与点N关于AB对称,∴BP=BN=1,∠ABN=∠ABC=45°,∴∠CBM=90°,BM=CM+BC=3,在Rt△MBN中,tan∠M==;(2)如图2,过点F作FG⊥BC,设PG=m,∴BG=BP﹣PG=2﹣x﹣m,MG=MP+PG=2x+m,在Rt△BFG中,∠FBG=45°,∴FG=BG=2﹣x﹣m,在Rt△FMG中,tan∠M==,在Rt△MNB中,tan∠M==,∴,∴m=,∴y=S△MPF=MP•FG=×2x×=(0<x<2);(3)△AEF∽△BAM理由:如图3,连接AM,AP,AN,BN,∵点P关于直线AC、AB的对称点分别为M、N,∴AM=AP=AN.∠MAC=∠PAC,∠PAB=∠NAB,∵∠BAC=∠PAC+∠PAB=45°,∴∠MAN=∠MAC+∠PAC+∠BAP+∠NAB=2(∠PAC+∠PAB)=90°,∴∠AMN=45°=∠ABC,∵∠AFE=∠ABC+∠BMF,∠AMB=∠AMN+∠BMF,∴∠AFE=∠AMB,∵∠EAF=∠ABM=45°,∴△AEF∽△BAM.。
2018年上海市杨浦区中考数学一模试卷含答案
2018年上海市杨浦区中考数学一模试卷一、选择题:(本大题共6题,每题4分,满分24分)1.(4分)如果5x=6y,那么下列结论正确的是()A.x:6=y:5B.x:5=y:6C.x=5,y=6D.x=6,y=52.(4分)下列条件中,一定能判断两个等腰三角形相似的是()A.都含有一个40°的内角B.都含有一个50°的内角C.都含有一个60°的内角D.都含有一个70°的内角3.(4分)如果△ABC∽△DEF,A、B分别对应D、E,且AB:DE=1:2,那么下列等式一定成立的是()A.BC:DE=1:2B.△ABC的面积:△DEF的面积=1:2C.∠A的度数:∠D的度数=1:2D.△ABC的周长:△DEF的周长=1:24.(4分)如果(,均为非零向量),那么下列结论错误的是()A.B.C.D.5.(4分)如果二次函数y=ax 2+bx+c(a≠0)的图象如图所示,那么下列不等式成立的是()A.a>0B.b<0C.ac<0D.bc<0.6.(4分)如图,在△ABC中,点D、E、F分别在边AB、AC、BC上,且∠AED=∠B,再将下列四个选项中的一个作为条件,不一定能使得△ADE和△BDF相似的是()A .B .C .D ..二、填空题:(本大题共12题,每题4分,满分48分)7.(4分)抛物线y =x 2﹣3的顶点坐标是.8.(4分)化简:.9.(4分)点A (﹣1,m )和点B (﹣2,n )都在抛物线y =(x ﹣3)2+2上,则m 与n 的大小关系为mn (填“<”或“>”).10.(4分)请写出一个开口向下,且与y 轴的交点坐标为(0,4)的抛物线的表达式.11.(4分)如图,DE ∥FG ∥BC ,AD :DF :FB =2:3:4,如果EG =4,那么AC =.12.(4分)如图,在?ABCD 中,AC 、BD 相交于点O ,点E 是OA 的中点,联结BE 并延长交AD于点F ,如果△AEF 的面积是4,那么△BCE 的面积是.13.(4分)Rt △ABC 中,∠C =90°,如果AC =9,cosA ,那么AB =.14.(4分)如果某人滑雪时沿着一斜坡下滑了130米的同时,在铅垂方向上下降了50米,那么该斜坡的坡度是1:.15.(4分)如图,Rt △ABC 中,∠C =90°,M 是AB 中点,MH ⊥BC ,垂足为点H ,CM 与AH交于点O ,如果AB =12,那么CO =.16.(4分)已知抛物线y =ax 2+2ax+c ,那么点P (﹣3,4)关于该抛物线的对称轴对称的点的坐标是.17.(4分)在平面直角坐标系中,将点(﹣b ,﹣a )称为点(a ,b )的“关联点”(例如点(﹣2,﹣1)是点(1,2)的“关联点”).如果一个点和它的“关联点”在同一象限内,那么这一点在第象限.18.(4分)如图,在△ABC中,AB=AC,将△ABC绕点A旋转,当点B与点C重合时,点C落在点D处,如果sinB,BC=6,那么BC的中点M和CD的中点N的距离是.三、解答题:(本大题共7题,满分78分)19.(10分)计算:.20.(10分)已知:如图,Rt△ABC中,∠ACB=90°,sinB,点D、E分别在边AB、BC上,且AD:DB=2:3,DE⊥BC.(1)求∠DCE的正切值;(2)如果设,,试用、表示.21.(10分)甲、乙两人分别站在相距6米的A、B两点练习打羽毛球,已知羽毛球飞行的路线为抛物线的一部分,甲在离地面1米的C处发出一球,乙在离地面 1.5米的D处成功击球,球飞行过程中的最高点H与甲的水平距离AE为4米,现以A为原点,直线AB为x轴,建立平面直角坐标系(如图所示).求羽毛球飞行的路线所在的抛物线的表达式及飞行的最高高度.22.(10分)如图是某路灯在铅垂面内的示意图,灯柱BC的高为10米,灯柱BC与灯杆AB的夹角为120°.路灯采用锥形灯罩,在地面上的照射区域DE的长为13.3米,从D、E两处测得路灯A的仰角分别为α和45°,且tanα=6.求灯杆AB的长度.23.(12分)已知:梯形ABCD中,AD∥BC,AD=AB,对角线AC、BD交于点E,点F在边BC 上,且∠BEF=∠BAC.(1)求证:△AED∽△CFE;(2)当EF∥DC时,求证:AE=DE.24.(12分)在平面直角坐标系xOy中,抛物线y=﹣x 2+2mx﹣m2﹣m+1交y轴于点为A,顶点为D,对称轴与x轴交于点H.(1)求顶点D的坐标(用含m的代数式表示);(2)当抛物线过点(1,﹣2),且不经过第一象限时,平移此抛物线到抛物线y=﹣x2+2x的位置,求平移的方向和距离;(3)当抛物线顶点D在第二象限时,如果∠ADH=∠AHO,求m的值.25.(14分)已知:矩形ABCD中,AB=4,BC=3,点M、N分别在边AB、CD上,直线MN交矩形对角线AC于点E,将△AME沿直线MN翻折,点A落在点P处,且点P在射线CB上.(1)如图1,当EP⊥BC时,求CN的长;(2)如图2,当EP⊥AC时,求AM的长;(3)请写出线段CP的长的取值范围,及当CP的长最大时MN的长.2018年上海市杨浦区中考数学一模试卷参考答案与试题解析一、选择题:(本大题共6题,每题4分,满分24分)1.(4分)如果5x=6y,那么下列结论正确的是()A.x:6=y:5B.x:5=y:6C.x=5,y=6D.x=6,y=5【解答】解:∵5x=6y,∴,故选项A正确.故选:A.2.(4分)下列条件中,一定能判断两个等腰三角形相似的是()A.都含有一个40°的内角B.都含有一个50°的内角C.都含有一个60°的内角D.都含有一个70°的内角【解答】解:因为A,B,D给出的角40°,50°,70°可能是顶角也可能是底角,所以不对应,则不能判定两个等腰三角形相似;故A,B,D错误;C、有一个60°的内角的等腰三角形是等边三角形,所有的等边三角形相似,故C正确.故选:C.3.(4分)如果△ABC∽△DEF,A、B分别对应D、E,且AB:DE=1:2,那么下列等式一定成立的是()A.BC:DE=1:2B.△ABC的面积:△DEF的面积=1:2C.∠A的度数:∠D的度数=1:2D.△ABC的周长:△DEF的周长=1:2【解答】解:A、BC与EF是对应边,所以,BC:DE=1:2不一定成立,故本选项错误;B、△ABC的面积:△DEF的面积=1:4,故本选项错误;C、∠A的度数:∠D的度数=1:1,故本选项错误;D、△ABC的周长:△DEF的周长=1:2正确,故本选项正确.故选:D.4.(4分)如果(,均为非零向量),那么下列结论错误的是()A.B.C.D.【解答】解:A、正确.因为(,均为非零向量),所以与是方向相同的向量,即∥;B、错误.应该是2;C、正确.由可得;D、正确.因为所以||=2||;故选:B.5.(4分)如果二次函数y=ax 2+bx+c(a≠0)的图象如图所示,那么下列不等式成立的是()A.a>0B.b<0C.ac<0D.bc<0.【解答】解:∵抛物线开口向下,∴a<0,∵抛物线的对称轴在y轴的右侧,∴x>0,∴b>0,∵抛物线与y轴的交点在x轴上方,∴c>0,∴ac<0,bc>0.故选:C.6.(4分)如图,在△ABC中,点D、E、F分别在边AB、AC、BC上,且∠AED=∠B,再将下列四个选项中的一个作为条件,不一定能使得△ADE和△BDF相似的是()A .B .C .D ..【解答】解:A 、∵∠AED =∠B ,,∴△ADE ∽△BDF ,正确;B 、∵∠AED =∠B ,,∴△ADE ∽△BDF ,正确;C 、∵∠AED =∠B ,,不是夹角,∴不能得出△ADE ∽△BDF ,错误;D 、∵∠AED =∠B ,,∴△ABC ∽△BDF ,∵∠A =∠A ,∠B =∠AED ,∴△AED ∽△ABC ,∴△ADE ∽△BDF ,正确;故选:C .二、填空题:(本大题共12题,每题4分,满分48分)7.(4分)抛物线y =x 2﹣3的顶点坐标是(0,﹣3).【解答】解:∵抛物线y =x 2﹣3,∴抛物线y =x 2﹣3的顶点坐标是:(0,﹣3),故答案为:(0,﹣3).8.(4分)化简:4.【解答】解:=234故答案为4.9.(4分)点A (﹣1,m )和点B (﹣2,n )都在抛物线y =(x ﹣3)2+2上,则m 与n 的大小关系为m<n (填“<”或“>”).【解答】解:∵二次函数的解析式为y =(x ﹣3)2+2,∴该抛物线开口向上,对称轴为x =3,在对称轴y 的左侧y 随x 的增大而减小,∵﹣1>﹣2,∴m <n .故答案为:<.10.(4分)请写出一个开口向下,且与y 轴的交点坐标为(0,4)的抛物线的表达式y =﹣x 2+4.【解答】解:因为抛物线的开口向下,则可设a =﹣1,又因为抛物线与y轴的交点坐标为(0,4),则可设顶点为(0,4),所以此时抛物线的解析式为y=﹣x2+4.故答案为y=﹣x2+4.11.(4分)如图,DE∥FG∥BC,AD:DF:FB=2:3:4,如果EG=4,那么AC=12.【解答】解:∵DE∥FG∥BC,∴AE:EG:GC=AD:DF:FB=2:3:4,∵EG=4,∴AE,GC,∴AC=AE+EG+GC=12,故答案为:12.12.(4分)如图,在?ABCD中,AC、BD相交于点O,点E是OA的中点,联结BE并延长交AD 于点F,如果△AEF的面积是4,那么△BCE的面积是36.【解答】解:∵在?ABCD中,AO AC,∵点E是OA的中点,∴AE CE,∵AD∥BC,∴△AFE∽△CBE,∴,∵S△AEF=4,()2,∴S△BCE=36,故答案为36.13.(4分)Rt△ABC中,∠C=90°,如果AC=9,cosA,那么AB=27.【解答】解:如图.∵在Rt△ABC中,∠C=90°,AC=9,cosA,∴,∴AB=27.故答案为:27.14.(4分)如果某人滑雪时沿着一斜坡下滑了130米的同时,在铅垂方向上下降了50米,那么该斜坡的坡度是1: 2.4.【解答】解:由题意得,水平距离120,则该斜坡的坡度i=50:120=1:2.4.故答案为 2.4.15.(4分)如图,Rt△ABC中,∠C=90°,M是AB中点,MH⊥BC,垂足为点H,CM与AH 交于点O,如果AB=12,那么CO=4.【解答】解:∵∠C=90°,CM是AB边上的中线,∴CM AB=6,∵MH⊥BC,∴H是BC的中点,∴AH 是BC 边上的中线,∵AH 与CM 交于点O ,∴O 是△ABC 的重心,∴,∴CO CM =4,故答案为:4;16.(4分)已知抛物线y =ax 2+2ax+c ,那么点P (﹣3,4)关于该抛物线的对称轴对称的点的坐标是(1,4).【解答】解:∵y =ax 2+2ax+c ,∴抛物线对称轴为x 1,∵P (﹣3,4)关于对称轴对称的点的坐标为(1,4),故答案为:(1,4).17.(4分)在平面直角坐标系中,将点(﹣b ,﹣a )称为点(a ,b )的“关联点”(例如点(﹣2,﹣1)是点(1,2)的“关联点”).如果一个点和它的“关联点”在同一象限内,那么这一点在第二、四象限.【解答】解:若a ,b 同号,则﹣b ,﹣a 也同号且符号改变,此时点(﹣b ,﹣a ),点(a ,b )分别在一三象限,不合题意;若a ,b 异号,则﹣b ,﹣a 也异号,此时点(﹣b ,﹣a ),点(a ,b )都在第二或第四象限,符合题意;故答案为:二、四.18.(4分)如图,在△ABC 中,AB =AC ,将△ABC 绕点A 旋转,当点B 与点C 重合时,点C 落在点D 处,如果sinB ,BC =6,那么BC 的中点M 和CD 的中点N 的距离是4.【解答】解:如图所示,连接BD ,AM ,∵AB =AC ,M 是BC 的中点,BC =6,∴AM ⊥BC ,∵sin B,BM=3,∴Rt△ABM中,由勾股定理可得:AM,AB AC,∵∠ACB=∠ACD,BC=DC,∴BD⊥AC,BH=DH,∴BC×AM AC×BH,∴BH4,∴BD=2BH=8,又∵M是BC的中点,N是CD的中点,∴MN BD=4,故答案为:4.三、解答题:(本大题共7题,满分78分)19.(10分)计算:.【解答】解:原式.20.(10分)已知:如图,Rt△ABC中,∠ACB=90°,sinB,点D、E分别在边AB、BC上,且AD:DB=2:3,DE⊥BC.(1)求∠DCE的正切值;(2)如果设,,试用、表示.【解答】解:(1)∵∠ACB=90°,sinB,∴,∴设AC=3a,AB=5a.则BC=4a.∵AD:DB=2:3,∴AD=2a,DB=3a.∵∠ACB=90°即AC⊥BC,又DE⊥BC,∴AC∥DE.∴,.∴,.∴DE a,CE a,∵DE⊥BC,∴tan∠DCE.(2)∵AD:DB=2:3,∴AD:AB=2:5,∵,,∴,,∵,∴.21.(10分)甲、乙两人分别站在相距6米的A、B两点练习打羽毛球,已知羽毛球飞行的路线为抛物线的一部分,甲在离地面1米的C处发出一球,乙在离地面 1.5米的D处成功击球,球飞行过程中的最高点H与甲的水平距离AE为4米,现以A为原点,直线AB为x轴,建立平面直角坐标系(如图所示).求羽毛球飞行的路线所在的抛物线的表达式及飞行的最高高度.【解答】解:由题意得:C(0,1),D(6,1.5),抛物线的对称轴为直线x=4,设抛物线的表达式为:y=ax2+bx+1(a≠0),则据题意得:,解得:,∴羽毛球飞行的路线所在的抛物线的表达式为:y x2x+1,∵y(x﹣4)2,∴飞行的最高高度为:米.22.(10分)如图是某路灯在铅垂面内的示意图,灯柱BC的高为10米,灯柱BC与灯杆AB的夹角为120°.路灯采用锥形灯罩,在地面上的照射区域DE的长为13.3米,从D、E两处测得路灯A的仰角分别为α和45°,且tanα=6.求灯杆AB的长度.【解答】解:过点A作AF⊥CE,交CE于点F,过点B作BG⊥AF,交AF于点G,则FG=BC =10.由题意得∠ADE=α,∠E=45°.设AF=x.∵∠E=45°,∴EF=AF=x.在Rt△ADF中,∵tan∠ADF,∴DF,∵DE=13.3,∴x13.3.∴x=11.4.∴AG=AF﹣GF=11.4﹣10=1.4.∵∠ABC=120°,∴∠ABG=∠ABC﹣∠CBG=120°﹣90°=30°.∴AB=2AG=2.8,答:灯杆AB的长度为 2.8米.23.(12分)已知:梯形ABCD中,AD∥BC,AD=AB,对角线AC、BD交于点E,点F在边BC 上,且∠BEF=∠BAC.(1)求证:△AED∽△CFE;(2)当EF∥DC时,求证:AE=DE.【解答】证明:(1)∵∠BEC=∠BAC+∠ABD,∠BEC=∠BEF+∠FEC,又∵∠BEF=∠BAC,∴∠ABD=∠FEC,∵AD=AB,∴∠ABD=∠ADB,∴∠FEC=∠ADB,∵AD∥BC,∴∠DAE=∠ECF,∴△AED∽△CFE;(2)∵EF∥DC,∴∠FEC=∠ECD,∵∠ABD=∠FEC,∴∠ABD=∠ECD,∵∠AEB=∠DEC.∴△AEB∽△DEC,∴,∵AD∥BC,∴,∴.即AE2=DE2,∴AE=DE.24.(12分)在平面直角坐标系xOy中,抛物线y=﹣x 2+2mx﹣m2﹣m+1交y轴于点为A,顶点为D,对称轴与x轴交于点H.(1)求顶点D的坐标(用含m的代数式表示);(2)当抛物线过点(1,﹣2),且不经过第一象限时,平移此抛物线到抛物线y=﹣x2+2x的位置,求平移的方向和距离;(3)当抛物线顶点D在第二象限时,如果∠ADH=∠AHO,求m的值.【解答】解:(1)∵y=﹣x2+2mx﹣m2﹣m+1=﹣(x﹣m)2﹣m+1,∴顶点D(m,1﹣m).(2)∵抛物线y=﹣x2+2mx﹣m2﹣m+1过点(1,﹣2),∴﹣2=﹣1+2m﹣m2﹣m+1.整理得:m2﹣m﹣2=0.∴m=﹣1(舍)或m=2.当m=2时,抛物线的顶点是(2,﹣1),∴向左平移了1个单位,向上平移了2个单位.(3)∵顶点D在第二象限,∴m<0.当点A在y轴的正半轴上,如图(1)作AG⊥DH于点G,∵A(0,﹣m2﹣m+1),D(m,﹣m+1),∴H(m,0),G(m,﹣m2﹣m+1)∵∠ADH=∠AHO,∴tan∠ADH=tan∠AHO,∴.∴.整理得:m2+m=0.∴m=﹣1或m=0(舍).当点A在y轴的负半轴上,如图(2).作AG⊥DH于点G,∵A(0,﹣m2﹣m+1),D(m,﹣m+1),∴H(m,0),G(m,﹣m2﹣m+1)∵∠ADH=∠AHO,∴tan∠ADH=tan∠AHO,∴.∴.整理得:m2+m﹣2=0.∴m=﹣2或m=1(舍).综上所述,m的值为﹣1或﹣2.25.(14分)已知:矩形ABCD中,AB=4,BC=3,点M、N分别在边AB、CD上,直线MN交矩形对角线AC于点E,将△AME沿直线MN翻折,点A落在点P处,且点P在射线CB上.(1)如图1,当EP⊥BC时,求CN的长;(2)如图2,当EP⊥AC时,求AM的长;(3)请写出线段CP的长的取值范围,及当CP的长最大时MN的长.【解答】解:(1)∵△AME沿直线MN翻折,点A落在点P处,∴△AME≌△PME.∴∠AEM=∠PEM,AE=PE.∵ABCD是矩形,∴AB⊥BC.∵EP⊥BC,∴∠AME=∠PEM.∴∠AEM=∠AME.∴AM=AE,∵ABCD是矩形,∴AB∥DC.∴.∴CN=CE,设CN=CE=x.∵ABCD是矩形,AB=4,BC=3,∴AC=5.∴PE=AE=5﹣x.∵EP⊥BC,∴sin∠ACB.∴,∴x,即CN(2)∵△AME沿直线MN翻折,点A落在点P处,∴△AME≌△PME.∴AE=PE,AM=PM.∵EP⊥AC,∴.∴.∵AC=5,∴AE,CE.∴PE,∴PC.∴PB=PC﹣BC,在Rt△PMB中,∵PM2=PB2+MB2,AM=PM.∴AM2=()2+(4﹣AM)2.∴AM;(3)∵四边形ABCD是矩形,∴∠ABC=90°,在Rt△ABC中,AB=4,BC=3,根据勾股定理得,AC=5,由折叠知,AE=PE,由三角形的三边关系得,PE+CE>PC,∴AC>PC,∴PC<5,∴点E是AC中点时,PC最小为0,当点E和点C重合时,PC最大为AC=5,∴0≤CP≤5,如图,当点C,N,E重合时,PC=BC+BP=5,∴BP=2,由折叠知,PM=AM,在Rt△PBM中,PM=4﹣BM,根据勾股定理得,PM2﹣BM2=BP2,∴(4﹣BM)2﹣BM2=4,∴BM,在Rt△BCM中,根据勾股定理得,MN.当CP最大时MN,第21页(共21页)。
上海市杨浦区名校2024届中考数学全真模拟试卷含解析
上海市杨浦区名校2024届中考数学全真模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。
考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.等腰三角形底角与顶角之间的函数关系是( )A .正比例函数B .一次函数C .反比例函数D .二次函数2.如图,在正三角形ABC 中,D,E,F 分别是BC,AC,AB 上的点,DE ⊥AC,EF ⊥AB,FD ⊥BC ,则△DEF 的面积与△ABC的面积之比等于( )A .1∶3B .2∶3C .3∶2D .3∶33.已知一个多边形的内角和是1080°,则这个多边形是( )A .五边形B .六边形C .七边形D .八边形4.在如图所示的正方形网格中,网格线的交点称为格点,已知A 、B 是两格点,如果 C 也是图中的格点,且使得△ABC为等腰直角三角形,则这样的点C 有( )A .6个B .7个C .8个D .9个5.关于反比例函数4y x=-,下列说法正确的是( ) A .函数图像经过点(2,2);B .函数图像位于第一、三象限;C .当0x >时,函数值y 随着x 的增大而增大;D .当1x >时,4y <-.6.如图,“赵爽弦图”是由四个全等的直角三角形与中间一个小正方形拼成的一个大正方形,大正方形与小正方形的边长之比是2∶1,若随机在大正方形及其内部区域投针,则针孔扎到小正方形(阴影部分)的概率是( )A.0.2 B.0.25 C.0.4 D.0.57.如图,O为直线AB上一点,OE平分∠BOC,OD⊥OE于点O,若∠BOC=80°,则∠AOD的度数是()A.70°B.50°C.40°D.35°8.计算111xx x---结果是( )A.0 B.1 C.﹣1 D.x9.下列运算正确的是()A.x2•x3=x6B.x2+x2=2x4C.(﹣2x)2=4x2D.(a+b)2=a2+b210.将抛物线y=x2﹣x+1先向左平移2个单位长度,再向上平移3个单位长度,则所得抛物线的表达式为()A.y=x2+3x+6 B.y=x2+3x C.y=x2﹣5x+10 D.y=x2﹣5x+4二、填空题(共7小题,每小题3分,满分21分)11.一个圆锥的侧面展开图是半径为6,圆心角为120°的扇形,那么这个圆锥的底面圆的半径为____.12.解不等式组11 21xx x-+-⎧⎨≥-⎩①②请结合题意填空,完成本题的解答.(Ⅰ)解不等式①,得;(Ⅱ)解不等式②,得;(Ⅲ)把不等式①和②的解集在数轴上表示出来:(Ⅳ)原不等式组的解集为.13.如图,在四边形ABCD中,AB=AD,∠BAD=∠BCD=90°,连接AC、BD,若S四边形ABCD=18,则BD的最小值为_________.14.如图,是由形状相同的正六边形和正三角形镶嵌而成的一组有规律的图案,则第n 个图案中阴影小三角形的个数是 .15.函数12x y x +=-中,自变量x 的取值范围是 . 16.分解因式:mx 2﹣4m =_____.17.分解因式:24xy x -=____三、解答题(共7小题,满分69分)18.(10分)为了加强学生的安全意识,某校组织了学生参加安全知识竞赛,从中抽取了部分的学生成绩进行统计,绘制统计图如图(不完整).类别分数段 A50.5~60.5 B60.5~70.5 C70.5~80.5 D80.5~90.5 E 90.5~100.5请你根据上面的信息,解答下列问题.(1)若A 组的频数比B 组小24,求频数直方图中的a ,b 的值;(3)若成绩在80分以上为优秀,全校共有2 000名学生,估计成绩优秀的学生有多少名?19.(5分)为实施“农村留守儿童关爱计划”,某校结全校各班留守儿童的人数情况进行了统计,发现各班留守儿童人数只有1名、2名、3名、4名、5名、6名共六种情况,并制成如下两幅不完整的统计图:求该校平均每班有多少名留守儿童?并将该条形统计图补充完整;某爱心人士决定从只有2名留守儿童的这些班级中,任选两名进行生活资助,请用列表法或画树状图的方法,求出所选两名留守儿童来自同一个班级的概率.20.(8分)对于平面直角坐标系xOy 中的点P 和直线m ,给出如下定义:若存在一点P ,使得点P 到直线m 的距离等于1,则称P 为直线m 的平行点.(1)当直线m 的表达式为y =x 时,①在点()11,1P ,()20,2P ,322,22P ⎛⎫- ⎪ ⎪⎝⎭中,直线m 的平行点是______; ②⊙O 的半径为10,点Q 在⊙O 上,若点Q 为直线m 的平行点,求点Q 的坐标.(2)点A 的坐标为(n ,0),⊙A 半径等于1,若⊙A 上存在直线3y x =的平行点,直接写出n 的取值范围.21.(10分)为了解某市市民“绿色出行”方式的情况,某校数学兴趣小组以问卷调查的形式,随机调查了某市部分出行市民的主要出行方式(参与问卷调查的市民都只从以下五个种类中选择一类),并将调查结果绘制成如下不完整的统计图.种类 A B C D E出行方式 共享单车 步行 公交车 的士 私家车根据以上信息,回答下列问题:(1)参与本次问卷调查的市民共有人,其中选择B类的人数有人;(2)在扇形统计图中,求A类对应扇形圆心角α的度数,并补全条形统计图;(3)该市约有12万人出行,若将A,B,C这三类出行方式均视为“绿色出行”方式,请估计该市“绿色出行”方式的人数.22.(10分)计算:8﹣4cos45°+(12)﹣1+|﹣2|.23.(12分)如图,以O为圆心,4为半径的圆与x轴交于点A,C在⊙O上,∠OAC=60°.(1)求∠AOC的度数;(2)P为x轴正半轴上一点,且PA=OA,连接PC,试判断PC与⊙O的位置关系,并说明理由;(3)有一动点M从A点出发,在⊙O上按顺时针方向运动一周,当S△MAO=S△CAO时,求动点M所经过的弧长,并写出此时M点的坐标.24.(14分)如图,点C在线段AB上,AD∥EB,AC=BE,AD=BC,CF平分∠DCE.求证:CF⊥DE于点F.参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、B根据一次函数的定义,可得答案.【题目详解】设等腰三角形的底角为y,顶角为x,由题意,得x+2y=180,所以,y=﹣12x+90°,即等腰三角形底角与顶角之间的函数关系是一次函数关系,故选B.【题目点拨】本题考查了实际问题与一次函数,根据题意正确列出函数关系式是解题的关键.2、A【解题分析】∵DE⊥AC,EF⊥AB,FD⊥BC,∴∠C+∠EDC=90°,∠FDE+∠EDC=90°,∴∠C=∠FDE,同理可得:∠B=∠DFE,∠A=DEF,∴△DEF∽△CAB,∴△DEF与△ABC的面积之比=2 DEAC⎛⎫⎪⎝⎭,又∵△ABC为正三角形,∴∠B=∠C=∠A=60°∴△EFD是等边三角形,∴EF=DE=DF,又∵DE⊥AC,EF⊥AB,FD⊥BC,∴△AEF≌△CDE≌△BFD,∴BF=AE=CD,AF=BD=EC,在Rt△DEC中,DE=DC×sin∠C,EC=cos∠C×DC=12 DC,又∵DC+BD=BC=AC=32 DC,∴332332DCDEAC DC==,∴△DEF与△ABC的面积之比等于:2231:33DEAC⎛⎫⎛⎫==⎪⎪ ⎪⎝⎭⎝⎭故选A.点晴:本题主要通过证出两个三角形是相似三角形,再利用相似三角形的性质:相似三角形的面积之比等于对应边之比的平方,进而将求面积比的问题转化为求边之比的问题,并通过含30度角的直角三角形三边间的关系(锐角三角形函数)即可得出对应边DEAC之比,进而得到面积比.3、D【解题分析】根据多边形的内角和=(n﹣2)•180°,列方程可求解.【题目详解】设所求多边形边数为n,∴(n﹣2)•180°=1080°,解得n=8.故选D.【题目点拨】本题考查根据多边形的内角和计算公式求多边形的边数,解答时要会根据公式进行正确运算、变形和数据处理.4、A【解题分析】根据题意,结合图形,分两种情况讨论:①AB为等腰△ABC底边;②AB为等腰△ABC其中的一条腰.【题目详解】如图:分情况讨论:①AB为等腰直角△ABC底边时,符合条件的C点有2个;②AB为等腰直角△ABC其中的一条腰时,符合条件的C点有4个.【题目点拨】本题考查了等腰三角形的判定;解答本题关键是根据题意,画出符合实际条件的图形,再利用数学知识来求解.数形结合的思想是数学解题中很重要的解题思想.5、C【解题分析】直接利用反比例函数的性质分别分析得出答案.【题目详解】A、关于反比例函数y=-4x,函数图象经过点(2,-2),故此选项错误;B、关于反比例函数y=-4x,函数图象位于第二、四象限,故此选项错误;C、关于反比例函数y=-4x,当x>0时,函数值y随着x的增大而增大,故此选项正确;D、关于反比例函数y=-4x,当x>1时,y>-4,故此选项错误;故选C.【题目点拨】此题主要考查了反比例函数的性质,正确掌握相关函数的性质是解题关键.6、B【解题分析】设大正方形边长为2,则小正方形边长为1,所以大正方形面积为4,小正方形面积为1,则针孔扎到小正方形(阴影部分)的概率是0.1.【题目详解】解:设大正方形边长为2,则小正方形边长为1,因为面积比是相似比的平方,所以大正方形面积为4,小正方形面积为1,则针孔扎到小正方形(阴影部分)的概率是10.25 4=;故选:B.【题目点拨】本题考查了概率公式:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率()mP An=.7、B分析:由OE是∠BOC的平分线得∠COE=40°,由OD⊥OE得∠DOC=50°,从而可求出∠AOD的度数. 详解:∵OE是∠BOC的平分线,∠BOC=80°,∴∠COE=12∠BOC=12×80°=40°,∵OD⊥OE∴∠DOE=90°,∴∠DOC=∠DOE-∠COE=90°-40°=50°,∴∠AOD=180°-∠BOC-∠DOC==180°-80°-50°=50°.故选B.点睛:本题考查了角平分线的定义:从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线.性质:若OC是∠AOB的平分线则∠AOC=∠BOC=12∠AOB或∠AOB=2∠AOC=2∠BOC.8、C【解题分析】试题解析:11(1)1 1111x x xx x x x----===-----.故选C.考点:分式的加减法.9、C【解题分析】根据同底数幂的法则、合并同类项的法则、积的乘方法则、完全平方公式逐一进行计算即可.【题目详解】A、x2•x3=x5,故A选项错误;B、x2+x2=2x2,故B选项错误;C、(﹣2x)2=4x2,故C选项正确;D、( a+b)2=a2+2ab+b2,故D选项错误,故选C.【题目点拨】本题考查了同底数幂的乘法、合并同类项、积的乘方以及完全平方公式,熟练掌握各运算的运算法则是解题的关键10、A【解题分析】先将抛物线解析式化为顶点式,左加右减的原则即可.,当向左平移2个单位长度,再向上平移3个单位长度,得.故选A .【题目点拨】本题考查二次函数的平移;掌握平移的法则“左加右减”,二次函数的平移一定要将解析式化为顶点式进行;二、填空题(共7小题,每小题3分,满分21分)11、2【解题分析】试题分析:设此圆锥的底面半径为r ,根据圆锥的侧面展开图扇形的弧长等于圆锥底面周长可得, 2πr=0208161π⨯,解得r=2cm . 考点:圆锥侧面展开扇形与底面圆之间的关系.12、详见解析.【解题分析】先根据不等式的性质求出每个不等式的解集,再在数轴上表示出来,根据数轴找出不等式组公共部分即可.【题目详解】(Ⅰ)解不等式①,得:x <1;(Ⅱ)解不等式②,得:x≥﹣1;(Ⅲ)把不等式①和②的解集在数轴上表示出来:(Ⅳ)原不等式组的解集为:﹣1≤x <1,故答案为:x <1、x≥﹣1、﹣1≤x <1.【题目点拨】本题考查了解一元一次不等式组的概念.13、6【解题分析】过A 作AM ⊥CD 于M ,过A 作AN ⊥BC 于N ,先根据“AAS”证明△DAM ≌△BAN ,再证明四边形AMCN 为正方形,可求得AC =6,从而当BD ⊥AC 时BD 最小,且最小值为6.【题目详解】如下图,过A 作AM ⊥CD 于M ,过A 作AN ⊥BC 于N ,则∠MAN =90°, ∠DAM +∠BAM =90°,∠BAM +∠BAN =90°, ∴∠DAM =∠BAN .∵∠DMA =∠N =90°,AB =AD ,∴△DAM ≌△BAN ,∴AM =AN ,∴四边形AMCN 为正方形,∴S 四边形ABCD =S 四边形AMCN =12AC 2, ∴AC =6,∴BD ⊥AC 时BD 最小,且最小值为6.故答案为:6.【题目点拨】本题考查了全等三角形的判定与性质,正方形的判定与性质,正确作出辅助线是解答本题的关键.14、4n ﹣1.【解题分析】由图可知:第一个图案有阴影小三角形1个,第二图案有阴影小三角形1+4=6个,第三个图案有阴影小三角形1+8=11个,···那么第n 个就有阴影小三角形1+4(n ﹣1)=4n ﹣1个.15、x 1≥-且x 2≠.【解题分析】试题分析:求函数自变量的取值范围,就是求函数解析式有意义的条件,根据二次根式被开方数必须是非负数和分式分母不为01x +在实数范围内有意义,必须x+10x 1{{x 1x 20x 2≥≥-⇒⇒≥--≠≠且x 2≠. 考点:1.函数自变量的取值范围;2.二次根式和分式有意义的条件.16、m (x+2)(x ﹣2)【解题分析】提取公因式法和公式法相结合因式分解即可.【题目详解】原式()24,m x =- ()()22.m x x =+-故答案为()()22.m x x +-【题目点拨】本题主要考查因式分解,熟练掌握提取公因式法和公式法是解题的关键.分解一定要彻底.17、x(y+2)(y-2)【解题分析】原式提取x ,再利用平方差公式分解即可.【题目详解】原式=x (y 2-4)=x (y+2)(y-2),故答案为x (y+2)(y-2).【题目点拨】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.三、解答题(共7小题,满分69分)18、(1)40(2)126°,1(3)940名【解题分析】(1)根据若A 组的频数比B 组小24,且已知两个组的百分比,据此即可求得总人数,然后根据百分比的意义求得a 、b 的值;(2)利用360°乘以对应的比例即可求解;(3)利用总人数乘以对应的百分比即可求解.【题目详解】(1)学生总数是24÷(20%﹣8%)=200(人),则a=200×8%=16,b=200×20%=40; (2)n=360×70200=126°. C 组的人数是:200×25%=1.;(3)样本D、E两组的百分数的和为1﹣25%﹣20%﹣8%=47%,∴2000×47%=940(名)答估计成绩优秀的学生有940名.【题目点拨】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.19、解:(1)该校班级个数为4÷20%=20(个),只有2名留守儿童的班级个数为:20﹣(2+3+4+5+4)=2(个),该校平均每班留守儿童的人数为:=4(名),补图如下:(2)由(1)得只有2名留守儿童的班级有2个,共4名学生.设A1,A2来自一个班,B1,B2来自一个班,有树状图可知,共有12中等可能的情况,其中来自一个班的共有4种情况,则所选两名留守儿童来自同一个班级的概率为:=.【解题分析】(1)首先求出班级数,然后根据条形统计图求出只有2名留守儿童的班级数,再求出总的留守儿童数,最后求出每班平均留守儿童数;(2)利用树状图确定可能种数和来自同一班的种数,然后就能算出来自同一个班级的概率.20、(1)①2P ,3P ;②()2,22,()22,2--,()22,2,()2,22--;(2)434333n -≤≤. 【解题分析】(1)①根据平行点的定义即可判断;②分两种情形:如图1,当点B 在原点上方时,作OH ⊥AB 于点H ,可知OH=1.如图2,当点B 在原点下方时,同法可求;(2)如图,直线OE 的解析式为3y x =,设直线BC//OE 交x 轴于C ,作CD ⊥OE 于D. 设⊙A 与直线BC 相切于点F ,想办法求出点A 的坐标,再根据对称性求出左侧点A 的坐标即可解决问题;【题目详解】解:(1)①因为P 2、P 3到直线y =x 的距离为1,所以根据平行点的定义可知,直线m 的平行点是2P ,3P ,故答案为2P ,3P .②解:由题意可知,直线m 的所有平行点组成平行于直线m ,且到直线m 的距离为1的直线.设该直线与x 轴交于点A ,与y 轴交于点B .如图1,当点B 在原点上方时,作OH ⊥AB 于点H ,可知OH =1.由直线m 的表达式为y =x ,可知∠OAB =∠OBA =45°.所以2OB =.直线AB 与⊙O 的交点即为满足条件的点Q .连接1OQ ,作1Q N y ⊥轴于点N ,可知110OQ =在1Rt OHQ ∆中,可求13HQ =.所以12BQ =.在1Rt BHQ ∆中,可求12NQ NB ==. 所以22ON =. 所以点1Q 的坐标为()2,22. 同理可求点2Q 的坐标为()22,2--.如图2,当点B 在原点下方时,可求点3Q 的坐标为()22,2点4Q 的坐标为()2,22--,综上所述,点Q 的坐标为()2,22,()22,2--,()22,2,()2,22--. (2)如图,直线OE 的解析式为3y x =,设直线BC ∥OE 交x 轴于C ,作CD ⊥OE 于D .当CD =1时,在Rt △COD 中,∠COD =60°,∴23sin 60CD OC ==︒, 设⊙A 与直线BC 相切于点F ,在Rt△ACE中,同法可得233 AC=,∴433 OA=,∴433n=,根据对称性可知,当⊙A在y轴左侧时,433n=-,观察图象可知满足条件的N的值为:434333n-≤≤.【题目点拨】此题考查一次函数综合题、直线与圆的位置关系、锐角三角函数、解直角三角形等知识,解题的关键是学会用分类讨论的思想思考问题,学会添加常用辅助线,构造直角三角形解决问题.21、(1)800,240;(2)补图见解析;(3)9.6万人.【解题分析】试题分析:(1)由C类别人数及其百分比可得总人数,总人数乘以B类别百分比即可得;(2)根据百分比之和为1求得A类别百分比,再乘以360°和总人数可分别求得;(3)总人数乘以样本中A、B、C三类别百分比之和可得答案.试题解析:(1)本次调查的市民有200÷25%=800(人),∴B类别的人数为800×30%=240(人),故答案为800,240;(2)∵A类人数所占百分比为1﹣(30%+25%+14%+6%)=25%,∴A类对应扇形圆心角α的度数为360°×25%=90°,A类的人数为800×25%=200(人),补全条形图如下:(3)12×(25%+30%+25%)=9.6(万人),答:估计该市“绿色出行”方式的人数约为9.6万人.考点:1、条形统计图;2、用样本估计总体;3、统计表;4、扇形统计图22、4【解题分析】分析:代入45°角的余弦函数值,结合“负整数指数幂的意义”和“二次根式的相关运算法则”进行计算即可. 详解:原式=42242⨯++=.点睛:熟记“特殊角的三角函数值、负整数指数幂的意义:1ppaa-=(0a p≠,为正整数)”是正确解答本题的关键.23、(1)60°;(2)见解析;(3)对应的M点坐标分别为:M1(2,﹣)、M2(﹣2,﹣、M3(﹣2,、M4(2,).【解题分析】(1)由于∠OAC=60°,易证得△OAC是等边三角形,即可得∠AOC=60°.(2)由(1)的结论知:OA=AC,因此OA=AC=AP,即OP边上的中线等于OP的一半,由此可证得△OCP是直角三角形,且∠OCP=90°,由此可判断出PC与⊙O的位置关系.(3)此题应考虑多种情况,若△MAO、△OAC的面积相等,那么它们的高必相等,因此有四个符合条件的M点,即:C点以及C点关于x轴、y轴、原点的对称点,可据此进行求解.【题目详解】(1)∵OA=OC,∠OAC=60°,∴△OAC是等边三角形,故∠AOC=60°.(2)由(1)知:AC=OA,已知PA=OA,即OA=PA=AC;∴AC=12OP,因此△OCP是直角三角形,且∠OCP=90°,而OC是⊙O的半径,故PC与⊙O的位置关系是相切.(3)如图;有三种情况:①取C点关于x轴的对称点,则此点符合M点的要求,此时M点的坐标为:M1(2,﹣23);劣弧MA的长为:6044 1803ππ⨯=;②取C点关于原点的对称点,此点也符合M点的要求,此时M点的坐标为:M2(﹣2,﹣23);劣弧MA的长为:12048 1803ππ⨯=;③取C点关于y轴的对称点,此点也符合M点的要求,此时M点的坐标为:M3(﹣2,23);优弧MA的长为:240416 1803ππ⨯=;④当C、M重合时,C点符合M点的要求,此时M4(2,23);优弧MA的长为:300420 1803ππ⨯=;综上可知:当S△MAO=S△CAO时,动点M所经过的弧长为481620,,,3333ππππ对应的M点坐标分别为:M1(2,﹣23)、M2(﹣2,﹣23)、M3(﹣2,23)、M4(2,23).【题目点拨】本题考查了切线的判定以及弧长的计算方法,注意分类讨论思想的运用,不要漏解.24、证明见解析.【解题分析】根据平行线性质得出∠A=∠B,根据SAS证△ACD≌△BEC,推出DC=CE,根据等腰三角形的三线合一定理推出即可.【题目详解】∵AD∥BE,∴∠A=∠B.在△ACD和△BEC中∵,∴△ACD≌△BEC(SAS),∴DC=CE.∵CF平分∠DCE,∴CF⊥DE(三线合一).【题目点拨】本题考查了全等三角形的性质和判定,平行线的性质,等腰三角形的性质等知识点,关键是求出DC=CE,主要考查了学生运用定理进行推理的能力.。
2024年上海市杨浦区九年级上学期期末数学中考一模试卷含详解
C. D.
【答案】A
【分析】本题考查黄金分割点,根据黄金分割点的定义得出线段比例关系,选出正确选项,解题的关键是掌握黄金分割点的性质.
【详解】解:如图.
∵点 是线段 的黄金分割点,且 .
∴ .
故选:A.
4.如果两个非零向量 与 的方向相反,且 ,那么下列说法错误的是()
A. 与 是平行向量B. 的方向与 的方向相同
【详解】解:因为锐角三角形三边的长都扩大为原来的两倍,所得的三角形与原三角形相似.
所以锐角 的大小没改变.
所以锐角 的正切函数值也不变.
故选:C.
【点睛】本题考查了正切的定义,解题的关键是掌握在直角三角形中,一个锐角的正切等于它的对边与邻边的比值.
3.已知 是线段 的黄金分割点,且 ,那么下列等式能成立的是( )
【详解】如图.
∵ .
∴ .
∴ .
∵ .
∴ .
∴ .
∵ .
∴ .
故答案为: .
13.小华沿着坡度 的斜坡向上行走了 米,那么他距离地面的垂直高度上升了_____米.
【答案】
【分析】本题考查了坡度,根据题意画图,过点 作 于点 ,由坡度 得到 ,再利用勾股定理即可求解,熟练掌握坡度及勾股定理.
【详解】如图,过点 作 于点 ,则由题意得 米.
C.若 ,则 D.若 ,则
【答案】B
【分析】设 ,m,n都是正数, ,c,d都是负数,根据向量运算法则计算判断即可.
【详解】设 ,m,n都是正数, ,c,d都是负数.
则 .
故A正确,不符合题意.
的方向与 的方向相反.
故B错误,符合题意.
若 ,则 正确,不符合题意.
若 ,则 正确,不符合题意.
2024年上海市杨浦区九年级中考一模数学试题(原卷版)
2023学年度第二学期初三质量调研(一)数学学科(测试时间:100分钟,满分:150分)考生注意:1. 本试卷含三个大题,共25题;2. 答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;3. 除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置写出证明或计算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分,下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上)1.同类二次根式是( )A. B.C. D. 2. 已知,下列不等式成立的是()A B. C.D. 3. 当k <0,b <0时,一次函数y =kx +b 的图像不经过( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限4. 已知一组数据a ,2,4,1,6的中位数是4,那么a 可以是( )A. 0B. 2C. 3D. 55. 下列命题中,真命题的是( )A. 四条边相等的四边形是正方形B. 四个内角相等的四边形是正方形C. 对角线互相垂直的平行四边形是正方形D. 对角线互相垂直的矩形是正方形6. 如图,在中,,,将绕点C 逆时针旋转,点A 、B 分别落在点D 、E 处,如果点A 、D 、E 在同一直线上,那么下列结论错误的是( )A B. C. D. 的..a b >a b ->-22a b -<-22a b <0a b -<ABC AB AC ≠120BAC ∠=︒ABC 60ADC ∠=︒60ACD ∠=︒BCD ECD ∠=∠BAD BCE ∠=∠二、填空题:(本大题共12题,每题4分,满分48分,请将结果直接填入答题纸的相应位置上)7. 计算:______.8. 在实数范围内因式分解__________9. 函数的定义域是__________.10. 若关于x 的方程有两个实数根,则k 的取值范围是________.11. 布袋中有大小、质地完全相同的5个小球,每个小球上分别标有数字1,2,3,4,5,如果从布袋中随机抽一个小球,那么这个小球上的数字是合数的概率是______.12. 已知反比例函数的图象在每一个象限内,都随的增大而减小,则的取值范围是_________.13. 根据上海市统计局数据,上海市2021年的地区生产总值约是4.32万亿,2023年的地区生产总值约是4.72万亿,设这两年上海市地区生产总值的年平均增长率都为x ,根据题意可列方程______.14. 如图,在平行四边形中,E 是边的中点,与对角线相交于点F ,设向量,向量,那么向量______.(用含、的式子表示)15. 近年来越来越多的“社区食堂”出现在街头巷尾,它们是城市服务不断丰富的缩影.已知某社区食堂推出了15元、18元、20元三种价格的套餐,每人限购一份.据统计,3月16日该食堂销售套餐共计160份,其中15元的占总份数的40%,18元的卖出40份,其余均为20元,那么食堂这一天卖出一份套餐的平均价格是______元.16. 如图,在中,,的垂直平分线交边于点D ,如果,那么______.17. 如图,已知一张正方形纸片的边长为6厘米,将这个正方形纸片剪去四个角后成为一个正八边形,那3262a a ÷=23=x-y =260x x k -+=1k y x-=y x k ABCD AD CE BD AB a =BC b =BF = a b Rt ABC △90C ∠=︒AB BC 4BD CD =tan B =么这个正八边形的边长是______厘米.18. 已知矩形中,,以为半径的圆A 和以为半径的圆C 相交于点D 、E ,如果点E 到直线的距离不超过3,设的长度为m ,则m 的取值范围是______.三、解答题:(本大题共7题,满分78分)19. 计算:20. 解方程组:.21. 如图,已知在中,,G 是的重心,延长交边于点D ,以G 为圆心,为半径的圆分别交边、于点E 、F .(1)求的长;(2)求的长.22. 寒假期间,小华一家驾车去某地旅游,早上6∶00点出发,以80千米/小时的速度匀速行驶一段时间后,途经一个服务区休息了1小时,再次出发时提高了车速.如图,这是她们离目的地的路程y (千米)与所用时间x (小时)的函数图像.根据图像提供信息回答下列问题:(1)图中的_______,______;(2)求提速后y 关于x 的函数解析式(不用写出定义域);的ABCD 5AB =AD CD BC AD )0112112713-⎛⎫+--+- ⎪⎝⎭222124440x y x xy y +=⎧⎨-+-=⎩ABC 9AB AC ==cos B =ABC AG BC GA AB AC AG BE =a b =(3)她们能否在中午12∶30之前到达目的地?请说明理由.23. 已知:如图,在梯形中,,,,的平分线交延长线于点E ,交于点F .(1)求证:四边形是菱形;(2)连接交于点G ,如果,求证:.24. 定义:我们把平面内经过已知直线外一点并且与这条直线相切的圆叫做这个点与已知直线的点切圆.如图1,已知直线l 外有一点H ,圆Q 经过点H 且与直线l 相切,则称圆Q 是点H 与直线l 的点切圆.阅读以上材料,解决问题:已知直线外有一点P ,,,,圆M 是点P 与直线的点切圆.(1)如果圆心M 在线段上,那么圆M 的半径长是_____(直接写出答案).(2)如图2,以O 为坐标原点、为x 轴的正半轴建立平面直角坐标系,点P 在第一象限,设圆心M 的坐标是.①求y 关于x 函数解析式;②点B 是①中所求函数图象上的一点,连接 并延长交此函数图象于另一点C .如果,求点B 的坐标.25. 已知以为直径的半圆上有一点,,垂足为点,点是半径上一点(不与点、重合),作交弧于点,连接.的ABCD AD BC ∥AB CD =BD BC =DBC ∠AD CD BCED AC BF A C C E ⊥2AB AG AC =⋅OA PA OA ⊥4OA =2AP =OA OP OA xOy (),x y BP :1:4CP BP =AB O C CD OA ⊥D E OC O C EF OC ⊥BC F OF(1)如图,当的延长线经过点时,求的值;(2)如图,作,垂足为点,连接.试判断与的大小关系,并证明你的结论;当是等腰三角形,且,求的值.1FE A CD AF 2FG AB ⊥G EG ①EG CD ②EFG 4sin 5COD ∠=OE OD。
2020年上海市杨浦区初三中考一模数学试卷及答案 Word含解析
2020年上海市杨浦区初三一模数学试卷2019.12(测试时间:100分钟,满分:150分)考生注意:1.本试卷含三个大题,共25题.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效.2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分) 1.把抛物线2x y =向左平移1个单位后得到的抛物线是A .21y x =+();B .21y x =-(); C .21y x =+;D .21y x =-.2.在Rt △ABC 中,∠C =90°,如果AC =2,3cos 4A =,那么AB 的长是 A .52;B .83;C .103; D .273. 3.已知a r 、b r 和c r都是非零向量,下列结论中不能判定//a b r r 的是A .////a c b c r u u r r r,;B .12a c =r r,2b c =r r ;C .2a b =r r;D .a b =r r .4.如图,在6×6的正方形网格中,联结小正方形中两个顶点A 、B ,如果线段AB 与网格线的其中两个交点为M 、N ,那么AM ∶MN ∶NB 的值是 A .3∶5∶4; B .3∶6∶5; C .1∶3∶2;D .1∶4∶2.5.广场上喷水池中的喷头微露水面,喷出的水线呈一条抛物线,水线上 水珠的高度y (米)关于水珠和喷头的水平距离x (米)的函数解析式是236042y x x x =-+≤≤(),那么水珠的高度达到最大时,水珠与喷头的水平距离是 A .1米; B .2米; C .5米; D .6米.6.如图,在正方形ABCD 中,△ABP 是等边三角形,AP 、BP 的延长线分别交边CD 于点E 、F ,联结AC 、CP ,AC 与BF 相交于点H ,下列结论中错误的是 A .AE =2DE ;B .△CFP ∽△APH ;C .△CFP ∽△APC ;D .CP 2=PH •PB .二、填空题:(本大题共12题,每题4分,满分48分) 7.如果cot 3α=,那么锐角α= ▲ 度.8.如果抛物线231y x x m =-+-+经过原点,那么m = ▲ . 9.二次函数2251y x x =+-的图像与y 轴的交点坐标为 ▲ .10.已知点11A x y (,)、22B x y (,)为抛物线22y x =-()上的两点,如果122x x <<,那么 ▲ . AD BCE PF H第6题图第4题图(填“>”、“<”或“=”)11.在比例尺为1:8 000 000地图上测得甲、乙两地间的图上距离为4厘米,那么甲、乙两地间的实际距离为 ▲ 千米.12.已知点P 是线段AB 上的一点,且2BP AP=⋅ 13.已知点G 是△ABC 的重心,过点G 作MN ∥BC 分别交边AB 、AC 于点M 、N ,那么AMNABCS S ∆∆14.如图,某小区门口的栏杆从水平位置AB 绕固定点O 旋转到位置DC ,已知栏杆AB 的长为3.5米,OA 的长为3米,点C 到AB 的距离为0.3米,支柱OE 的高为0.6米,那么栏杆端点D 离地面的距离为▲ 米. 15.如图,某商店营业大厅自动扶梯AB 的坡角为31°,AB 的长为12米,那么大厅两层之间BC 的高度为 ▲ 米.(结果保留一位小数)【参考数据:sin31°=0.515,cos31°=0.867,tan31°=0.601】 16.如图,在四边形ABCD 中,∠B =∠D =90°,AB =3,BC =2,4tan 3A =,那么CD = ▲ .17.定义:我们知道,四边形的一条对角线把这个四边形分成两个三角形,如果这两个三角形相似但不全等,我们就把这条对角线叫做这个四边形的相似对角线.在四边形ABCD 中,对角线BD 是它的相似对角线,∠ABC =70°,BD 平分∠ABC ,那么∠ADC= ▲ 度.18.在Rt △ABC 中,∠A =90°,AC =4,AB =a ,将△ABC 沿着斜边BC 翻折,点A 落在点A 1处,点D 、E 分别为边AC 、BC 的中点,联结DE 并延长交A 1B 所在直线于点F ,联结A 1E ,如果△A 1EF 为直角三角形时,那么a = ▲ .三、解答题:(本大题共7题,满分78分)19.(本题满分10分,第(1)小题6分,第(2)小题4分)抛物线y =ax 2+bx +c 中,函数值y 与自变量x 之间的部分对应关系如下表:x (3)-2- 1-1… y…4-1-1-4-…(1)求该抛物线的表达式;(2)如果将该抛物线平移,使它的顶点移到点M (2,4)的位置,那么其平移的方法是 ▲ . 20.(本题满分10分,第(1)小题6分,第(2)小题4分)如图,已知在梯形ABCD 中,AB //CD ,AB =12,CD=7,点E 在边AD 上,23DE AE =,过点E 作EF //AB ABC第15题图31°第16题图第14题图交边BC 于点F .(1)求线段EF 的长;(2)设AB a =u u u r r ,AD b =u u u r r ,联结AF ,请用向量a r 、b r 表示向量AF u u u r.21. (本题满分10分,第(1)小题5分,第(2)小题5分)如图,已知在△ABC 中,∠ACB=90º,3sin 5B =,延长边BA 至点D ,使AD =AC ,联结CD . (1)求∠D 的正切值;(2)取边AC 的中点E ,联结BE 并延长交边CD 于点F ,求CFFD的值. 22.(本题满分10分)某校九年级数学兴趣小组的学生进行社会实践活动时,想利用所学的解直角三角形的知识测量教学楼的高度,他们先在点D 处用测角仪测得楼顶M 的仰角为30︒,再沿DF 方向前行40米到达点E 处,在点E 处测得楼顶M 的仰角为45︒,已知测角仪的高AD 为1.5米.请根据他们的测量数据求此楼MF 的高.(结果精确到0.1m 1.414≈ 1.732≈ 2.449) 23.(本题满分12分,每小题各6分)如图,已知在ABC △中,AD 是ABC △的中线,DAC B ∠=∠,点E 在边AD 上,CE CD =.(1)求证:AC BDAB AD =; (2)求证:22AC AE AD =⋅.24.(本题满分12分,每小题各4分)已知在平面直角坐标系xOy 中,抛物线224y mx mx =-+(0)m ≠与x 轴交于点A 、B (点A 在点B 的左侧),且AB=6.第21题图ABCD第23题图A BCDE30º 45º 第22题图A B C DFEM(1)求这条抛物线的对称轴及表达式;(2)在y 轴上取点E 02(,),点F 为第一象限内抛物线上一点,联结BF 、EF ,如果=10OEFB S 四边形, 求点F 的坐标;(3)在第(2)小题的条件下,点F 在抛物线对称轴右侧,点P 在x 轴上且在点B 左侧,如果直线PF 与y 轴的夹角等于∠EBF ,求点P 的坐标.25.(本题满分14分,第(1)小题3分,第(2)小题5分,第(3)小题6分)已知在菱形ABCD 中,AB=4,120BAD ∠=︒,点P 是直线AB 上任意一点,联结PC ,在∠PCD 内部作射线CQ 与对角线BD 交于点Q (与B 、D 不重合),且∠PCQ=30︒. (1)如图,当点P 在边AB 上时,如果3BP =,求线段PC 的长;(2)当点P 在射线BA 上时,设BP =x ,CQ =y ,求y 关于x 的函数解析式及定义域; (3)联结PQ ,直线PQ 与直线BC 交于点E ,如果△QCE 与△BCP 相似,求线段BP 的长.杨浦区2019学年度第一学期初三数学期末质量调研试卷答案2019.12一、选择题:(本大题共6题,每题4分,满分24分)1.A ; 2.B ; 3.D ; 4.C ; 5.B ; 6.C第24题图 A BC DPQ第25题图备用图A BCD二、填空题:(本大题共12题,每题4分,满分48分)7.8.1; 9.0(,-1);10.320; 1213 14.2.4; 15.6.2; 16.145; 18.、4(本大题共7题,满分78分) 19.解:(1)∵二次函数2y ax bx c =++图像过点10(-,)、 (01)-,和(14)-,, ∴01 4.a b c c a b c -+=⎧⎪=-⎨⎪++=-⎩,, ··········································································· (3分) ∴121.a b c =-⎧⎪=-⎨⎪=-⎩,,∴二次函数解析式为221y x x =---. ·································· (3分) (2)平移的方法是先向右平移3个单位再向上平移4个单位或先向上平移4个单位再向右平移3个单位. ······················· (4分)20.解:(1)过D 作DH //BC 交AB 于H ,交EF 于G .∵DH //BC ,AB //DC ,∴四边形DHBC 是平行四边形. ································· (1分) ∴BH =CD ,∵CD=7,∴BH =7.······························································ (1分) 同理GF =7. ······················································································· (1分) 又AB=12,∴AH =5. ············································································ (1分)∵EF //AB , ∴EG DEAH DA=. ···································································· (1分) ∵23DE AE =,∴25DE DA =. ∴255EG =,2EG =,∴9EF =. ·························································· (1分) (2)3345a b →→+ ··················································································· (4分)21. 解:(1)过C 作CH ⊥AB 于H . 在Rt △ABC 中,∵3sin =5B ,∴3=5AC AB . ·········································· (1分) ∴设AC =3k ,AB =5k ,则BC =4k . ∵1122ABC S AC BC AB CH ∆=⋅=⋅,∴125AC BC CH k AB ⋅==. ··············· (1分) ∴9=5AH k . ················································································ (1分)∵AD=AC ,∴DH =924355k k k +=. ················································· (1分) 在Rt △CDH 中,1215tan =2425kCH CDH DH k ∠==. ··································· (1分) (2)过点A 作AH//CD 交BE 于点H.∵AH//CD ,∴AH AECF EC=. ···································································· (1分) ∵点E 为边AC 的中点,∴AE CE =.∴AH CF =. ···································· (1分) ∵AH//CD ,∴AH ABDF BD=. ···································································· (1分) ∵AB =5k ,BD =3k ,∴58AB BD =.∴58AH DF =. ·············································· (1分) ∴58CF DF =. ······················································································· (1分) 22.解:由题意可知∠MCA =90°,∠MAC =30°,∠MBC =45°,AB =40,CF =1.5.设MC =x 米,则在Rt △MBC 中,由 tan MCMBC BC∠=得BC =x . ················· (2分)又Rt △ACM 中,由cot ACMAC MC ∠=得AC =. ···································· (2分)∴40x -=. ············································································· (2分)∴x =20. ··············································································· (1分)∴MF =MC+CF =56.1≈米. ····················································· (2分) 答:此楼MF 的高度是56.1米. ······························································ (1分)23.证明:(1)∵CD =CE ,∴∠CED =∠CDA . ········································ (1分) ∴∠AEC =∠BDA . ······························································· (1分) 又∵∠DAC =∠B ,∴△ACE ∽△BAD. ········································ (1分)∴AC CEAB AD=. ····································································· (1分) ∵AD 是ABC △的中线,∴BD CD =. ········································ (1分)∵CD =CE ,∴BD CE =.∴AC BDAB AD=. ······································· (1分) (2)∵∠DAC =∠B ,又∠ACD =∠BCA ,∴△ACD ∽△BCA. ······················· (1分)∴AC CDBC AC=,∴2AC CD CB =?. ················································· (1分) ∵AD 是ABC △的中线,∴2BC CD =,∴222AC CD =. ·················· (1分)∵△ACE ∽△BAD ,∴CE AEAD BD=. ················································ (1分) 又∵CD =CE=BD ,∴2CD AD AE =?. ············································ (1分) ∴22AC AD AE =?. ································································ (1分)24.解:(1)抛物线对称轴212mx m-=-=... ................................................................. (1分)∵AB =6,∴抛物线与x 轴的交点A 为(20),-,B (40),.................................................. (1分) ∴4440m m ++=(或16840m m -+=).. ................................................................ (1分)∴12m =-.∴抛物线的表达式为2142y x x =-++. ..................................................... (1分)(2)设点F 21(4)2x x x ,-++. ...................................................................................... (1分) ∵点E 02-(,),点B 4(,0),∴OE = 2,OB = 4. ∵=+10OEF OBF OEFB S S S ∆∆=四边形, ∴211124(4)10222x x x ⨯⨯+⨯⨯-++=.. .................... (1分)∴12x =或,∴点F 912(,)、24(,).. ............................................................................... (2分) (3)∵=+10OBE BEF OEFB S S S ∆∆=四边形,又1142422OBE S OB OE ∆=⋅=⨯⨯=,∴6BEF S ∆=.过F 作FH BE ⊥,垂足为点H .∵162BEF S BE FH ∆=⋅=,又BE =FH =............................... (1分)又BF ==BH ∴在Rt BFH ∆中,tan ∠EBF=3584FH BH ==.................................................................. (1分)设直线PF 与y 轴的交点为M ,则∠PMO=∠EBF ,过F 作FG x ⊥轴,垂足为点G.∵FG//y 轴,∴∠PMO=∠PFG . ∴tan ∠PFG=tan ∠EBF ................................................ (1分)∴tan ∠PFG=34PG FG =.又FG =4,∴PG =3.∴点P 的坐标10(-,). .......................................................................................................... (1分)25.解:(1)过P 作PH BC ⊥,垂足为点H.在Rt BPH ∆中,∵BP =3,∠ABC =60°,∴32BH PH =,................................. (2分)在Rt PCH ∆中,35422CH PC =-==,................................... (1分) (2)过P 作PH BC ⊥,垂足为点H. 在Rt BPH ∆中,12BH x PH =,. ∴在Rt PCH ∆中,142CH x PC =-==,........... (1分) 设PC 与对角线BD 交于点G .∵AB//CD ,∴4BP PG BG xCD GC GD ===.∴BG CG =··················································· (1分) ∵∠ABD =∠PCQ ,又∠PGC =∠QGC ,∴△PBG ∽△QCG .∴PB BG CQ CG =,∴x y ··················································· (1分)∴y =08x ≤<). ······················································ (2分)(3)i )当点P 在射线BA 上,点E 在边BC 的延长线时.∵BD 是菱形ABCD 的对角线,∴∠PBQ =∠QBC=1302ABC ∠=︒.∵△PBG ∽△QCG ,∴PG BGQG CG=,又∠PGQ =∠BGC ,∴△PGQ ∽△BGC . ∴∠QPG =∠QBC 30=︒, 又∠PBQ =∠PCQ 30=︒,∴60CQE QPC QCP ∠=∠+∠=︒. ∴ 60CQE PBC ∠=∠=︒. ···································································· (1分) ∵PCB E ∠>∠,∴ PCB QCE ∠=∠.又180PCB QCE PCQ ∠+∠+∠=︒,∠PCQ 30=︒,∴ 75PCB QCE ∠=∠=︒. 过C 作CN BP ⊥,垂足为点N ,∴在Rt CBN ∆中,2BN CN ==,∴在Rt PCN ∆中,PN CN ==∴2BP = . ................................................................................................................. (2分) ii )当点P 在边AB 的延长线上,点E 在边BC上时,同理可得2BP = . ...... (3分)。
2015-2016年上海九年级数学一模汇总包含答案
2015-2016学年第一学期徐汇区学习能力诊断卷数学一、选择题1. 下列两个图形一定相似的是( )A.两个菱形;B.两个矩形;C.两个正方形;D.两个等腰梯形.2. 如图1,如果AB ∥CD ∥EF ,那么下列结论正确的是( )A.;B.;C.;D.. 3. 将抛物线向右平移2个单位,再向上平移2个单位后所得的抛物线的表达式是()A.;B.;C.;D.4. 点G 是△ABC 的重心,如果AB=AC=5,BC=8,那么AG 的长是()A.1;B.2;C.3;D.4.5. 如果从甲船看乙船,乙船在甲船的北偏东30°方向,那么从乙船看甲船,甲船在乙船的()A.南偏西30°方向;B.南偏西60°方向;C.南偏东30°方向;D.南偏东60°方向.6. 如图2,梯形ABCD 中,AD ∥BC ,∠DAC =90°,AB=AC ,点E 是边AB 上一点,∠ECD =45°,那么下列结论错误的是( )A.∠AED=∠ECB ;B. ∠ADE=∠ACE ;C.BE=AD ;D.BC=CE. 一、 填空题7. 计算:=______________;8. 如果,那么=__________;9. 已知二次函数,如果y 随x 的增大而增大,那么x 的取值范围是_________;10. 如果两个相似三角形的面积比是4:9,那么它们对应高的比是_____________;11. 如图3所示,一皮带轮的坡比是1:2.4,如果将货物从地面用皮带轮送到离地10米高的平台,那么该货物经过的路程是_______米; 12. 已知点M (1,4)在抛物线上,如果点N 和点M 关于该抛物线的对称轴对称,那么点N 的坐标是__________;图2 图3B13. 点D 在△ABC 的边AB 上,AC=3,AB =4,∠ACD=∠B ,那么AD 的长是__________;14. 如图4,在平行四边形ABCD 中,AB=6,AD =4,∠BAD 的平分线AE 分别交BD 、CD 于F 、E ,那么=________; 15. 如图5,在△ABC 中,AH ⊥BC 于H ,正方形DEFG 内接于△ABC ,点D 、E 分别在边AB 、AC 上,点G 、F 在边BC 上,如果BC=20,正方形DEFG 的面积为25,那么AH 的长是________;16. 如图6,在Rt △ABC 中,∠ACB=90°,CD ⊥AB ,垂足为D ,tan ∠ACD =,AB=5,那么CD 的长是_________;17. 如图7,在梯形ABCD 中,AD ∥BC ,BC=2AD ,点E 是CD 的中点,AC 与BE 交于点F ,那么△ABF 和△CEF的面积比是___________;18. 如图8,在Rt △ABC 中,∠BAC=90°,AB=3,cosB=,将△ABC 绕着点A 旋转得△ADE ,点B 的对应点D落在边BC 上,联结CE ,那么CE 的长是________.二、 解答题19. 计算:4sin45°-2tan30°cos30°+20. 抛物线经过点(2,1).(1) 求抛物线的顶点坐标;(2) 将抛物线沿y 轴向下平移后,所得新抛物线与x 轴交于A 、B 两点,如果AB =2,求新抛物线的表达式。
上海中考数学一模2015年25题汇编(含答案)
K 満分H分*茎中第(1)小・4拳・0时・55分)(1)矩形AJ3CD 中.ZABCF90Sm = io.\ AF±(T.且点F恳线敕CE的申点kAAE = AC-10.Rl^CBE 中・taiWECB -豆亡=寺./K 口TJJ? - 2710.R T ACBE中,GF«CF• lanZBCB* 寸岂(2)■/ ZABC = ZC*BE = 90a, ^LAGH二Z仇沪.fJG HE AH HC中形ABCD 中*AD HC,(1分》(1分)(1分〉(1分〉(1廿)<1知(I炉2015年上海一模25题集锦1、(2015年一模黄浦25题)25.在矩形ABCD中,= BC = 6.对谢线AC.交于点O,点疋在AB延长线上,联结CE, AF丄CE t分别交线段CE、边BC、对角线*D于点F、G. H(点F不与点C\ E重合};(D当点F是线段CE的中点时.求GF的长;(2〉设BE = x, OH = y.求y关于兀的函数解析式,并写出它的定义域;(3) f flH=BG时山丹=人0昇・5+了 = 6*即;二丫 "斛縛工二3.2' gGH=HG 时MD=AH・过点A作从f丄DH・垂足为H.5 * yRtACBE中^cosZADK = 2•二—j— =3 6 5将"粧晋代入⑴解密忑=£3* ^GH = BHBt.DH-AH- A点H ftAD ®fi平分线上. 此时点F与点C 3tf二書(舍)嫌上所迷BE的K<3或#.2、(2015年一模徐汇25题).如图,梯形ABCD中,AD // BC ,对角线AC _ BC , AD =9 ,AC =12, BC =16,点E是边BC上的一个动点,-EAF - BAC , AF交CD于点F ,交BC 延长线于点G,设BE = x ;(1)试用x的代数式表示FC ;(2)设FGEF-y,求y关于x的函数关系式,并写出定义域;BE的长;[来源学科网]25 (1分) (2分)(1分)BGE3^\DFco\GAl :7当A是等農三角形若,&\DF 也为等腰三角形动点(D 和A 、B所以,BE = 7二不重合),过 D 作DE // BC 交AC 于E ,并以DE 为边向BC 一侧作正方形 DEFG ,设AD = x3( 2015年一模宝山26题).如图在△ ABC 中,AB=BC=10,AC =牛、5,D 为边AB 上一(3) = = t ZG = Zl AD当AF = DF 时,点F 为CD 中点3 Cl = DI0 <16林理得、V100作AH £ DF 于",易得DH m"丸 EEAiUM':.^CAr = ^tiAE* AB UL … 20 A-■ ■—r J » 1■AC - r e 12 ~ rcf C- -A5由弘I HEs 川Ci'得,搜1 £卜'5山报:,^Ai'E二90AF AC 123LI ~ H< ~16~ 斗3 15 25 CF -A =—、 -V -——5 22 当 Al )二w 时, CF =3/. Cl = —A = 6 ? A 5=10(1) 请用X的代数式表示正方形DEFG的面积,并求出当边FG落在BC边上时的x的值;(2) 设正方形DEFG与厶ABC重合部分的面积为y,求y关于x的函数及其定义域;(3) 点D在运动过程中,是否存在D、G、B三点中的两点落在以第三点为圆心的圆上的情况?若存在,请直接写出此时AD的值,若不存在,则请说明理由;4、( 2015年一模崇明25题)(本题满分14分,其中第(1)小题5分,第(2)小题5分,第(3)小题4 分)已知在ABC中,AB =AC =5,BC =6,O为边AB上一动点(不与A、B重合),以0为圆心0B为半径的圆交BC于点D,设OB =x,DC =y .(1)如图1,求y关于x的函数关系式及定义域;(2)当O 0与线段AC有且只有一个交点时,求x的取值范围;(3)如图2,若O O与边AC交于点E (有两个交点时取靠近当DEC与ABC相似时,求x的值.25, Hfd)如图1联站「AB 亚片GGB H QD代= XODB:.or>//A.c* BO_Bp.王-些'' 5 ' 6「* BD- gjr-"I■工+ 6((KX5)(2)如團氛肖与线段A匚有且只育一亍交点时①®0与播2梱切时作OH_LAC.HK丄AGAM丄BC垂圧井劃为H^K y M,JS^OH#BK.AM=4— -BC・AM-A「FK' - —1g-_'r.BK■習3也-0H…丽-賦C的交点),联结DE ,C(备用图ir C1分1分B(备用图•(图£}(2> A ftGO 内,〔不SQO 内时内:.OB>OA”"”*>■5 一 x•">4•rc 不在£50内 /-OB<AB1分,\y<X<5炀匕当工二器或号VY5时◎。
2015学年度第一学期期末考试初三数学试卷答案(杨浦)
九年级第一学期期末考试数学模拟综合试卷(二杨浦区2015学年度第一学期期末考试初三数学答案 2016.1一、选择题:(本大题共6题,每题4分,满分24分)1. A; 2. D; 3. B; 4. A; 5. C; 6. C;二、填空题:(本大题共12题,每题4分,满分48分)7.; 8.; 9.2;13.2; 14.5; 15.x=1;16.; 17.等; 18.;三、解答题:(本大题共7题,满分78分)20.(本题满分10分,其中第(1)小题6分,第(2)小题4分)解:(1)由题意可得: -----------------------------------(3分)解得:,即解析式为---------------------------(3分)(2)∵,∴顶点坐标是(1,3), ------(2分)∴当x=4时,y=-15,即m=-15. ------------------------------(2分)21.(本题满分10分,其中每小题各5分)解:(1)延长BE交AD的延长线于点M,∵AD//BC,∴,-------------------------------------------(2分)∵点E为边DC的中点,∴DM=BC,∵BC=2AD,∴DM=2AD,∴AM=AD+DM=3AD, ----------------------------------(1分)∴------------------------------------------------------------------(2分)(2)∵AD//BC,∴, ,-------------(1分,1分)∴,∴,---------------------------------------(1分)∴-----------------------------------------------------------------------(2分)22.(本题满分10分,其中第(1)小题6分,第(2)小题4分)答:该信号发射塔顶端到地面的高度FG约是116 m.-------------------------(1分)23.(本题满分12分,其中第(1)小题6分,第(2)小题6分)又∵∠B=∠B,∴△BCF∽△BAC,------------------------------------------(2分)∵DE//BC,∴△FDG∽△FBC,----------------------------------------------(1分)∴△FDG∽△CBA,--------------------------------------------------------------(1分)∵△BCF∽△BAC,∴∠BCF=∠BAC,又∵DE//BC,∴∠EGC=∠BAC,而∠ECG=∠FCA, ∴△CEG∽△CFA,------------------------------------------------(2分)∴,即---------------------------------------------------(1分)24.(本题满分12分,其中第(1)小题4分,第(2)小题4分,第(3)小题4分)解:(1)∵直线经过,两点,∴A(-4,0),C(0,4),--------------(2分)∵抛物线过点A、C,∴抛物线的表达式是。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A. S1=S3
B. S2=2S4
C. S2 =2S1
D.S1•S3=S2•S4
二.填空题(本大题满分 4×12=48 分)
7.(4 分)(2015•静安区一模)已知 = ,那么
=
.
8.(4 分)(2015•静安区一模)计算:
=
.
9.(4 分)(2002•福州)已知线段 a=4 cm,b=9 cm,则线段 a,b 的比例中项为
.
15.(4 分)(2015•静安区一模)如图,当小杰沿坡度 i=1:5 的坡面由 B 到 A 行走了 26 米
时,小杰实际上升高度 AC=
米.(可以用根号表示)
16.(4 分)(2015•青浦区一模)已知二次函数的图象经过点(1,3),对称轴为直线 x=﹣1,
由此可知这个二次函数的图象一定经过除点(1,3)外的另一点,这点的坐标是
20.(10 分)(2015•静安区一模)如图,已知在△ ABC 中,AD 是边 BC 上的中线,设 = ,
=;
(1)求 (用向量 , 的式子表示);
(2)如果点 E 在中线 AD 上,求作 在 , 方向上的分向量;(不要求写作法,但要保 留作图痕迹,并指出所作图中表示结论的分向量).
21.(10 分)(2015•大庆模拟)如图,某幢大楼的外墙边上竖直安装着一根旗杆 CD,小明 在离旗杆下方大楼底部 E 点 24 米的点 A 处放置一台测角仪,测角仪的高度 AB 为 1.5 米, 并在点 B 处测得旗杆下端 C 的仰角为 40°,上端 D 的仰角为 45°,求旗杆 CD 的长度;(结 果精确到 0.1 米,参考数据:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84)
解答:解:如图,过点 A 作 AD⊥BC 于点 D. ∵AB=m,∠B=α,
∴cosα= = ,
则 BD=m•cosα. 又∵AB=AC,
∴BC=2BD=2m•cosα. 故选:B.
点评:此题主要考查了锐角三角函数的定义,正确区分正弦余弦三角函数是解决问题的关 键.
6.(4 分)(2015•青浦区一模)如图,已知在梯形 ABCD 中,AD∥BC,BC=2AD,如果对 角线 AC 与 BD 相交于点 O,△ AOB、△ BOC、△ COD、△ DOA 的面积分别记作 S1、S2、 S3、S4,那么下列结论中,不正确的是( )
T﹣变换中心为点 A,T﹣变换角为 60°,T﹣变换比为 ,那么经过 T﹣变换后点 C 所对应
的点的坐标为
.
三.解答题(本大题满分 10+10+10+10+12+12+14=78 分) 19.(10 分)(2015•静安区一模)已知在直角坐标平面内,抛物线 y=x2+bx+6 经过 x 轴上两 点 A,B,点 B 的坐标为(3,0),与 y 轴相交于点 C; (1)求抛物线的表达式; (2)求△ ABC 的面积.
5.(4 分)(2015•静安区一模)已知在△ ABC 中,AB=AC=m,∠B=α,那么边 BC 的长等
于( )
A. 2m•s inα
B. 2m•cosα
C. 2m•tanα
D.2m•cotα
考点:锐角三角函数的定义. 菁优网版权所有
分析:过点 A 作 AD⊥BC 于点 D,构建直角△ ABD,通过解该直角三角形得到 BD 的长度, 然后利用等腰三角形“三线合一”的性质来求 BC 的长度.
(2)如果 CF2=FG•FB,求证:CG•CE=BC•DE.
24.(12 分)(2015•青浦区一模)已知在平面直角坐标系 xOy 中,二次函数 y=ax2+bx 的图 象经过点(1,﹣3)和点(﹣1,5); (1)求这个二次函数的解析式; (2)将这个二次函数的图象向上平移,交 y 轴于点 C,其纵坐标为 m,请用 m 的代数式表 示平移后函数图象顶点 M 的坐标; (3)在第(2)小题的条件下,如果点 P 的坐标为(2,3),CM 平分∠PCO,求 m 的值.
A. S1=S3
B. S2=2S4
C. S2 =2S1
D.S1•S3=S2•S4
考点:相似三角形的判定与性质. 菁优网版权所有
分析:证三角形相似,再根据三角形的面积公式和相似三角形的面积比等于相似比的平方, 以及三角形的面积公式即可得出结论.
解答:解:A、∵△ABD 和△ ACD 同底、同高,则 S△ ABD=S△ ACD, ∴S1=S3,故命题正确; B、∵AD∥BC, ∴△AOD∽△COB, 又∵BC=2AD,
移的规律得到点(1,0)平移后对应点的坐标为(﹣1,0),然后根据顶点式写出平 移后抛物线的表达式. 解答:解:抛物线 y=(x﹣1)2 的顶点坐标为(1,0),点(1,0)向左平移 2 个单位得到 对应点的坐标为(﹣1,0),所以平移后抛物线的表达式为 y=(x+1)2. 故选 A. 点评:本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故 a 不变,所 以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移 后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解 析式.
达式为( )
A. y=(x+1)2
B. y=(x﹣3)2
C.y=(x﹣1)2+2 D.y=(x﹣1)2﹣2
3.(4 分)(2015•魏县二模)一个小球被抛出后,如果距离地面的高度 h(米)和运行时间
t(秒)的函数解析式为 h=﹣5t2+10t+1,那么小球到达最高点时距离地面的高度是( )
A.1 米
B. 2m•cosα
C. 2m•tanα
D.2m•cotα
6.(4 分)(2015•青浦区一模)如图,已知在梯形 ABCD 中,AD∥BC,BC=2AD,如果对 角线 AC 与 BD 相交于点 O,△ AOB、△ BOC、△ COD、△ DOA 的面积分别记作 S1、S2、 S3、S4,那么下列结论中,不正确的是( )
18.(4 分)(2015•青浦区一模)把一个三角形绕其中一个顶点逆时针旋转并放大或缩小(这 个顶点不变),我们把这样的三角形运动称为三角形的 T﹣变换,这个顶点称为 T﹣变换中 心,旋转角称为 T﹣变换角,三角形与原三角形的对应边之比称为 T﹣变换比;已知△ ABC 在直角坐标平面内,点 A(0,﹣1),B(﹣ ,2),C(0,2),将△ ABC 进含 30°、45°、60°这三个特殊角的三角比,结合加、减、乘、除四种运算,设计一个
等式,要求:等式中须含有这三个特殊角的三角比,上述四种运算 都至少出现一次,且这个
等式的结果等于 1,即填空:1=
.
23.(12 分)(2015•青浦区一模)已知如图,D 是△ ABC 的边 AB 上一点,DE∥BC,交边 AC 于点 E,延长 DE 至点 F,使 EF=DE,联结 BF,交边 AC 于点 G,联结 CF (1)求证: = ;
考点:锐角三角函数的定义. 菁优网版权所有
分析:根据三角形三边扩大相同的倍数,可得边的比不变,根据锐角三角函数的定义,可得 答案.
解答:解:如果把 Rt△ ABC 的三边长度都扩大 2 倍,锐角 A 不变,锐角三角函数值不变, 故选:C.
点评:本题考查了锐角三角函数,注意锐角不变,锐角三角函数值不变.
2015 年上海市杨浦区中考数学一模试卷
参考答案与试题解析
一.选择题(本大题满分 4×6=24 分)
1.(4 分)(2015•静安区一模)如果把 Rt△ ABC 的三边长度都扩大 2 倍,那么锐角 A 的四
个三角比的值( )
A.都扩大到原来的 2 倍
B. 都缩小到原来的
C. 都没有变化
D.都不能确定
2015 年上海市杨浦区中考数学一模试卷
一.选择题(本大题满分 4×6=24 分)
1.(4 分)(2015•静安区一模)如果把 Rt△ ABC 的三边长度都扩大 2 倍,那么锐角 A 的四
个三角比的值( )
A.都扩大到原来的 2 倍
B. 都缩小到原来的
C. 都没有变化
D.都不能确定
2.(4 分)(2015•青浦区一模)将抛物线 y=(x﹣1)2 向左平移 2 个单位,所得抛物线的表
.
17.(4 分)(2015•尤溪县校级质检)已知不等臂跷跷板 AB 长为 3 米,当 AB 的一端点 A 碰到地面时(如图 1),AB 与地面的夹角为 30°;当 AB 的另一端点 B 碰到地面时(如图 2),
AB 与地面的夹角的正弦值为 ,那么跷跷板 AB 的支撑点 O 到地面的距离 OH= 米.
=﹣5(t2﹣2t)+1
=﹣5(t﹣1)2+6, 故小球到达最高点时距离地面的高度是:6m. 故选:D. 点评:此题主要考查了二次函数的应用,正确利用配方法求出是解题关键.
4.(4 分)(2015•鄂城区模拟)如图,已知 AB∥CD∥EF,AD:AF=3:5,BE=12,那么 CE 的长等于( )
B. 3 米
C.5 米
D.6 米
4.(4 分)(2015•鄂城区模拟)如图,已知 AB∥CD∥EF,AD:AF=3:5,BE=12,那么 CE 的长等于( )
A. 2
B. 4
C.
D.
5.(4 分)(2015•静安区一模)已知在△ ABC 中,AB=AC=m,∠B=α,那么边 BC 的长等
于( )
A. 2m•s inα
AE=2,CE=3,要使 DE∥AB,那么 BC:CD 应等于
.
13.(4 分)(2015•青浦区一模)如果抛物线 y=(a+3)x2﹣5 不经过第一象限,那么 a 的取
值范围是
.
14.(4 分)(2015•青浦区一模)已知点 G 是面积为 27cm2 的△ ABC 的重心,那么△ AGC