电动汽车驱动系统
简述纯电动汽车驱动系统的组成
简述纯电动汽车驱动系统的组成纯电动汽车驱动系统是指由电动机、电池组、电控系统和传动装置等组成的系统,用于提供动力和驱动纯电动汽车行驶。
1. 电动机电动机是纯电动汽车驱动系统的核心部件,负责将电能转化为机械能,驱动车辆前进。
电动汽车常用的电动机有直流电动机和交流电动机两种。
直流电动机具有结构简单、转速范围广、起动扭矩大等特点,而交流电动机则具有效率高、控制方便等优势。
2. 电池组电池组是纯电动汽车的能量存储装置,负责储存电能以供电动机使用。
电池组的类型多样,常见的有锂离子电池、镍氢电池和钠离子电池等。
锂离子电池具有能量密度高、重量轻、寿命长等优点,因此被广泛应用于纯电动汽车。
3. 电控系统电控系统是纯电动汽车驱动系统的控制中枢,负责对电动机和电池组进行控制和调节。
电控系统包括电控器、传感器、控制算法等组成。
电控系统可以根据车辆的需求,控制电动机的转速、扭矩和能量输出等参数,以实现车辆的动力和能耗控制。
4. 传动装置传动装置是将电动机的动力传输到车轮上的装置。
传动装置通常由减速器和差速器组成。
减速器用于降低电动机的转速,并提供足够的扭矩输出;差速器则用于实现车轮的差速调节,使车辆在转弯时能够平稳行驶。
除了以上基本组成部件外,纯电动汽车驱动系统还包括辅助设备,如充电设备、电池管理系统和辅助电器等。
充电设备用于将外部电源的交流电能转化为电池组所需的直流电能;电池管理系统用于对电池组进行监控和管理,以确保电池组的安全和性能;辅助电器则提供车辆的辅助功能,如空调、音响等。
纯电动汽车驱动系统的组成部件之间相互协调配合,共同实现车辆的动力输出和行驶控制。
电动机将电能转化为机械能,通过传动装置将动力传递到车轮上,从而实现车辆的行驶。
电池组提供所需的电能,电控系统对电动机和电池组进行精确控制,以满足车辆在不同工况下的动力需求。
通过不断的技术创新和研发,纯电动汽车驱动系统的性能和效率得到了不断提升,使得纯电动汽车逐渐成为了可行的替代传统燃油车的选择。
简述电动汽车电机驱动系统的组成
简述电动汽车电机驱动系统的组成1. 引言电动汽车(EV)已经成为现代交通的明星,真是风头无两呀!不过,你知道它的电机驱动系统是怎么回事吗?今天我们就来聊聊这个神奇的系统,看看它到底有啥组成部分。
2. 电机驱动系统概述电机驱动系统可以说是电动汽车的“心脏”。
这个系统主要由电动机、控制器和动力电池组成。
简单来说,电动机负责提供动力,控制器负责“指挥”,而动力电池则是电的来源。
就像一台乐队,电动机是主唱,控制器是指挥,电池是音响,缺一不可呀!2.1 电动机首先得说说电动机。
电动机是系统的核心,主要有直流电动机和交流电动机两种。
直流电动机简单好用,启动快,但在效率上有点差强人意。
而交流电动机,像个“全能选手”,效率高、维护简单,很多电动汽车都选择了它。
开车的时候,你就能感觉到那种瞬间的加速感,真是让人乐开了花!2.2 控制器接下来是控制器,简单来说就是电动机的“大管家”。
控制器通过各种传感器收集数据,实时调整电机的转速和扭矩,确保驾驶体验平稳舒适。
想象一下,控制器就像一位高超的厨师,时刻关注锅里的火候,确保每一道菜都恰到好处。
没有它,电动机就会像无头苍蝇一样,乱糟糟的。
3. 动力电池说到动力电池,这可是电动汽车的“动力源泉”。
通常情况下,电池组采用锂离子电池,轻便又耐用。
充电时,它就像是喝水,越喝越充实;用电时,就像是拼命工作,慢慢消耗。
但一旦电池没电了,那就尴尬了!所以,合理的电池管理系统就显得尤为重要,确保电池既安全又高效。
想想看,要是在路上突然没电,那真是心塞!3.1 电池管理系统电池管理系统(BMS)就像是电池的“保镖”,监控电池的状态,防止过充和过放。
它还能平衡每个电池单元的电量,确保每个“小伙伴”都能共同努力。
没有它,电池寿命就会大打折扣,真是得不偿失。
3.2 充电系统再说说充电系统,简单来说,就是给电池“加油”的地方。
如今的充电桩越来越普及,快充、慢充应有尽有,真是让人眼花缭乱。
充电的时候,车主总是有种“等公交”的感觉,但等个十来分钟,电就满了,心情瞬间好起来。
电动汽车电驱系统分类、技术趋势和主流电驱系统介绍
4、电驱动系统的结构形式
(6)外转子电动轮驱动系统
a.采用低速外转子电动机,可完全去掉变速装置。 b.电动机外转子直接安装在车轮轮缘上,电动机转速和车轮转速相等,车轮转速和车速控制完全取决于电动 机的转速控制。 c.低速外转子电动机结构简单,无需齿轮变速传动机构,但其体积大、质量大、成本高。
5、驱动电动机的选择及功率匹配
(1)同步电动机:转子转速与定子旋转磁场的转速 相等。又分为绕线式和永磁式。 (2)异步电动机:转子转速不等于定子旋转磁场的 转速。 优点:结构简单,价格便宜,运行可靠,维护方便, 效率较高。 缺点:功率因数低。 电动汽车用交流异步电动机具有以下特点: ( 1 )高速低转矩时运转效率高。( 2 )低速时有高 转矩,并有宽泛的速度范围。(3)易实现转速超过 10000r/min的高速旋转。(4)小型轻量化。(5) 高可靠性。( 6 )制造成本低。( 7 )控制装置的简 单化。
7、交流电动机分为:
异步电动机的特点:成本低,可靠性高,广泛应用于大型高速电动汽车中。三相鼠笼式异步电动机功率容量覆盖 面很大,冷却自由度高,环境适应性好,可再生制动,效率高,重量轻。 电动机在10000r/m以上高速运转时,采用一级齿轮减速。 汽车驱动电动机需用新方法设计。 冷却方式:风冷,水冷 异步电动机是多变量系统,电压、电流、频率、磁通、转速相互影响。 异步电动机的调速控制:矢量控制,直接转矩控制,转速控制,变频恒压控制,自适应控制,效率优化控制等。 永磁电动机的分类 根据输入电动机接线端的电流种类可分为: (1)永磁直流电动机 (2)永磁交流电动机(永磁无刷电动机,没有电刷、滑环或换向器) 根据输入电动机接线端的交流波形永磁无刷电动机可分为: (1)永磁同步电动机 (2)永磁无刷直流电动机
电动汽车驱动系统的设计与优化研究
电动汽车驱动系统的设计与优化研究电动汽车是一种以电能为动力源的交通工具,其驱动系统的设计和优化是保证电动汽车性能和效率的关键。
本文将深入探讨电动汽车驱动系统的设计和优化研究。
首先,电动汽车驱动系统的设计需要考虑以下几个方面:1. 电池系统设计:电池是电动汽车的能量存储设备,其容量、电压和类型的选择将直接影响电动汽车的续航里程和性能。
因此,设计师需要综合考虑电池的能量密度、充电速度、寿命和安全性等因素,选择适合特定应用场景的电池系统。
2. 电机系统设计:电动汽车的驱动力来自电机,因此电机的选择和设计十分重要。
设计师需要根据车辆的功率需求、驱动方式和可用空间来选择合适的电机类型,如直流电机、异步电机或永磁同步电机,并考虑电机控制算法和效率优化。
3. 电力电子系统设计:电力电子器件如逆变器、充电器和DC-DC变换器等是电动汽车驱动系统的核心组成部分。
设计师需要考虑器件的功率损耗、效率和可靠性,选择合适的拓扑结构和控制策略,以提高电力电子系统的性能和能量利用率。
4. 能量管理系统设计:能量管理系统负责电池的充放电控制,包括电池管理单元(BMS)、能量回收和能量分配等。
设计师需要制定智能的能量管理策略,平衡电池的寿命和车辆性能,最大化能量利用效率和续航里程。
然后,针对电动汽车驱动系统的优化研究,可以考虑以下几个方向:1. 效率优化:通过改进电机和电力电子系统的设计和控制策略,提高系统的效率。
例如,采用高效率的电机拓扑、优化电机控制算法和减小电力电子器件的功率损耗等,可以降低电能转换过程中的能量损失,提高驱动系统的整体效率。
2. 续航里程优化:针对电动汽车续航里程短的问题,可以通过优化电池系统和能量管理策略来提高续航里程。
例如,采用高能量密度的电池、改进节能驾驶算法和优化能量回收系统等方法,可以最大程度地延长电动汽车的续航里程。
3. 可靠性优化:电动汽车需要长时间稳定运行,因此驱动系统的可靠性十分重要。
通过增强电池系统的安全性、优化电机的结构和材料选择、加强电力电子系统的故障检测和容错能力等方式,可以提高电动汽车驱动系统的可靠性和耐久性,降低故障率。
工作原理电动汽车驱动系统的工作原理
工作原理电动汽车驱动系统的工作原理电动汽车驱动系统是指整个电动汽车中负责将电能转换为动力并驱动车辆前进的系统。
它是电动汽车的核心技术之一,对于我们理解电动汽车的工作原理至关重要。
电动汽车的驱动系统包含电动机、电池组、控制器和辅助设备等组成部分。
首先,电池组是提供电动汽车所需电能的重要组成部分。
它通常由多个电池单体组成,并通过电池管理系统进行监控和控制。
这些电池单体通常是锂离子电池或镍氢电池,其化学反应将储存的电能以直流形式释放出来。
其次,控制器是电动汽车驱动系统的大脑,它负责监测和管理电池组以及控制电动机的工作状态。
控制器接收来自车辆的控制信号,并将其转化为电能输出给电动机。
同时,控制器还负责监测电动机的工作状态,例如转速、温度等,并根据需要对其进行调节和控制,以确保电动机的安全运行。
接下来是电动机,它是电动汽车驱动系统的关键组件之一。
电动机负责将电能转换成机械能,并通过驱动车轮将车辆推动前进。
根据电动机的类型不同,可以分为直流电动机和交流电动机。
直流电动机通常由电刷和电枢、永磁体以及电枢绕组组成,其工作原理是根据洛伦兹力发生力矩从而带动转子转动;而在交流电动机中,电流通过其绕组形成旋转磁场,进而推动转子转动。
最后是辅助设备,它包括制动系统、转向系统和其他驱动系统的辅助组件。
制动系统用于控制车辆的制动,通常包括了刹车盘、刹车片等部件;转向系统则用于控制车辆的转向,通过输入转向信号来控制前轮转向角度;其他驱动系统的辅助组件包括冷却系统、动力分配系统等。
综上所述,电动汽车驱动系统的工作原理可以概括为:电池组提供电能,控制器负责管理和调节电能的输出,电动机将电能转换为机械能,驱动车辆前进。
辅助设备则用于增强驱动系统的性能和稳定性。
与传统内燃机驱动系统相比,电动汽车驱动系统具有许多优势。
首先,电动汽车驱动系统无尾气排放,对环境友好,可以有效减少空气污染。
其次,电动汽车的驱动系统噪音低,行驶更加静音,为城市交通提供了更好的居民生活环境。
电动汽车电驱系统分类、技术趋势和主流电驱系统介绍
电动汽车电驱系统分类、技术趋势和主流电驱系统介绍
1综述
电动汽车驱动电机及其控制系统是电动汽车的心脏,是把电能转化为机械能来驱动车辆的部件。
它的任务是在驾驶人的控制下,高效率地将动力电池的能量转化为车轮的动能,或者将车轮上的动能反馈到动力电池中。
电能和机械能的相互转化在电机转子和定子间的气隙形成。
2纯电动汽车电动机驱动系统分类
单电动机:有差速减速器,无离合器和传动装置,需要低速大转矩且速度变化区域大的电动机,电动机与逆变器的容量大。
双电动机:前后驱动和双轮毂电动机两类,双轮毂电动机及逆变器制造成本高。
四轮毂电动机:结构更紧凑,效率最高。
3新能源汽车驱动电动机需满足的性能
汽车运行功能、舒适性、适应环境、一次充电的续驶里程、耐温、耐潮湿、噪音低、结构简单、维修方便等。
(1)低速大转矩特性及较宽范围内的恒功率特性
(2)在整个运行范围内的高效率、低损耗
(3)体积小,重量轻
(4)可靠性好、耐温和耐潮性能强,能够在较恶劣的环境下长期工作。
(5)价格低
(6)高电压(尽量高电压,减小电机尺寸和线束尺寸,降低逆变器成本)
(7)电气系统安全性高(符合相关车辆电气控制安全性能的标准和规定。
)
(8)高转速(体积小,重量轻)
(9)在车辆减速时实现制动能量回收并反馈蓄电池。
4电驱动系统的结构形式。
新能源汽车电机驱动系统的研究与开发
新能源汽车电机驱动系统的研究与开发随着环保主义的逐渐盛行,越来越多的人开始关注新能源汽车的开发和推广。
其中,电动汽车是最受欢迎的一种,因为它非常环保、节能,并且可以轻松充电。
但电动汽车的能量来源在于电池,这就需要更加先进和高效的电机驱动系统来实现车辆的高效运行。
本文将讨论新能源汽车电机驱动系统的研究与开发,并探讨这个领域面临的挑战和机遇。
一、电动汽车的电机驱动系统电动汽车的关键是电机驱动系统。
电机驱动系统通常包括电动机、电子控制器和电池组。
电动机是整个系统的核心,它将电能转化为机械能,用于驱动车辆。
电子控制器用来控制电动机的转速和扭矩,以及电池组与电机之间的能量转移。
电池组则用来储存能量,为电动车提供动力。
目前,电动汽车的电机驱动系统分为两种类型:交流电机和直流电机。
直流电机简单、易于控制,但效率不高;交流电机则更加高效,但成本较高。
近年来,随着磁性材料、电子元器件和嵌入式系统的不断发展,交流电机逐渐成为了电动汽车的主流。
二、电机驱动系统的研究进展在过去的十年里,电机驱动系统的研究取得了重大的进展。
主要包括以下几个方面:1、电机设计和优化电机的设计是电机驱动系统研究的关键。
新型电机需要具备高效、高性能、轻量和紧凑等特点。
随着电机技术的不断发展,越来越多的设计方法被提出,如基于有限元分析的电磁场模拟、基于优化算法的电磁参数设计等。
2、电力电子技术的应用电力电子技术是电机驱动系统的重要组成部分。
它通过变换电压和电流的方式,使电动机运行在最佳性能点。
近年来,随着工艺制造技术和电子元器件的不断改进,电力电子技术的应用也逐渐普及。
3、能量管理系统的优化能量管理系统是指在电池组与电机之间控制能量转移的系统。
能量管理系统的优化可以提高电动汽车的续航里程,并减少电池的损耗。
目前,能量管理系统的优化主要通过控制电机的转速和扭矩来实现。
三、新能源汽车电机驱动系统面临的挑战和机遇虽然新能源汽车电机驱动系统已经取得了重要进展,但仍然面临着许多挑战。
电动汽车驱动系统的组成
电动汽车驱动系统的组成
一、电动汽车驱动系统基本组成
电动汽车驱动系统由电源模块、发动机模块、转向模块、制动模块和车轮模块等组成。
1、电源模块
电源模块包括电池箱和变流器,主要功能是将电池中的高压直流电转换成低压交流电,供发动机模块供电。
2、发动机模块
发动机模块主要包括电机和电机控制器,用于实现电动汽车的驱动功能。
3、转向模块
转向模块包括电动助力转向系统和自动差速器,主要功能是使车辆能够按照驾驶人操作的方向转向,以及根据行驶状况调节前后轮的转速,从而提高行驶的安全性能。
4、制动模块
制动模块主要由电动制动系统和液压制动系统组成,主要功能是控制车轮的制动,使车辆能够正常制动停车。
5、车轮模块
车轮模块包括前轮和后轮,由轮胎和轮毂组成,主要用于给电动汽车提供支撑和支撑力,从而使车辆能够顺利行驶。
- 1 -。
电动汽车电机驱动系统的组成
电动汽车电机驱动系统的组成电动汽车电机驱动系统是电动汽车的核心部件,它由多个组成部分组合而成,共同实现电动汽车的动力输出和驱动功能。
本文将从电机、电控系统和电池系统三个方面介绍电动汽车电机驱动系统的组成。
1. 电机电动汽车的电机是实现动力输出的关键组件。
电动汽车电机通常采用交流异步电机或永磁同步电机。
交流异步电机结构简单、成本较低,但效率相对较低;永磁同步电机具有高效率、高功率密度和良好的动力性能,但成本较高。
电机通过电流控制器控制电流大小和方向,实现电机转速和扭矩的调节,从而满足车辆不同驾驶工况下的需求。
2. 电控系统电动汽车的电控系统是控制电机工作状态和调节电机性能的关键。
电控系统由电流控制器、逆变器和电控单元等组成。
电流控制器根据驾驶员的需求和车辆状态,通过调节电机的电流大小和方向,控制电机的转速和扭矩。
逆变器则将电池系统提供的直流电转换为交流电供给电机。
电控单元负责监测和控制电池系统、电机系统和车辆系统之间的信息交互,确保各个系统的协调运行。
3. 电池系统电动汽车的电池系统是提供电能的关键组成部分。
电池系统通常采用锂离子电池、镍氢电池或铅酸电池等。
锂离子电池具有高能量密度、长寿命和低自放电率等优点,成为目前电动汽车最常用的电池类型。
电池系统通过电池管理系统监测和管理电池的状态,包括电池的电量、温度、电压和健康状况等。
电池管理系统可以优化电池的充放电过程,保证电池的安全性和稳定性,延长电池的使用寿命。
电动汽车的电机驱动系统由电机、电控系统和电池系统三个主要部分组成。
电机作为动力输出的关键,通过电流控制器调节电流大小和方向,实现转速和扭矩的控制。
电控系统负责控制电机的工作状态和性能,确保电机的稳定运行。
电池系统提供电能,并通过电池管理系统监测和管理电池状态,保证电池的安全性和稳定性。
这三个部分相互协作,共同实现电动汽车的驱动功能。
通过不断的技术创新和发展,电动汽车的电机驱动系统将进一步提升性能,满足人们对环保、高效、安全的出行需求。
电动汽车驱动电机系统研发方案(一)
电动汽车驱动电机系统研发方案1. 实施背景随着全球对环保和能源转型的重视,电动汽车市场在近年来得到了快速的发展。
中国作为世界上最大的汽车市场,对电动汽车的推广尤其积极。
然而,电动汽车的驱动系统作为其核心部件,直接决定了车辆的性能和效率。
当前,我国在驱动电机系统的研发上与发达国家还存在一定差距。
为此,我们提出以下电动汽车驱动电机系统的研发方案。
2. 工作原理电动汽车驱动电机系统主要包括电机、逆变器和控制器三部分。
电机作为驱动系统的核心,采用电磁感应原理,将电能转化为机械能,从而推动车辆前行。
逆变器则负责将直流电源转化为交流电源,为电机提供动力。
控制器则是整个系统的中枢,根据车辆的运行状态和驾驶员的指令,控制电机的转速和转向。
3. 实施计划步骤(1)技术研究:对现有驱动电机系统进行深入分析,找出技术瓶颈和问题所在;(2)团队建设:建立跨学科研发团队,包括电机工程师、电子工程师和系统工程师等;(3)合作与资源整合:与高校、研究机构和企业进行深度合作,共享资源,实现技术转移;(4)产品开发:根据技术研究的结果,开发出具有自主知识产权的驱动电机系统;(5)试验与验证:对开发的驱动电机系统进行严格的试验和验证,确保其性能和质量;(6)推广与应用:将研发的产品推广至汽车制造企业和终端消费者,实现商业化应用。
4. 适用范围本研发方案适用于汽车制造企业、电动汽车制造商以及相关的零部件供应商。
通过本方案的实施,可以提高我国电动汽车驱动系统的技术水平,提升国际竞争力。
5. 创新要点(1)材料创新:采用新型材料制作电机,提高电机的效率和寿命;(2)设计创新:优化电机设计和制造工艺,提高电机的性能;(3)控制策略创新:通过先进的控制算法和策略,提高电机的响应速度和稳定性;(4)系统集成创新:将电机、逆变器和控制器进行一体化设计,提高整个系统的效率。
6. 预期效果预计通过本方案的实施,可以降低电动汽车的能耗、提高车辆的行驶效率,同时提升车辆的安全性和舒适性。
纯电动汽车的电机驱动系统
1 2驱动电机系统是电动汽车三大核心系统之一,是车辆行驶的主要驱动系统,其特性决定了车辆的主要性能指标,直接影响车辆动力性、经济性和用户驾乘感受。
由电动机、固定速比减速器和差速器等构成的电动机中央驱动系统,这种驱动系统中,由于没有离合器和变速器,因此可以减少机械传动装置的体积和质量。
它与前轮驱动横向布置发动机的燃油汽车的结构形式相似,将电动机、固定速比减速器和差速器集成一体,两根半轴连接两个驱动车轮,这种布置形式在小型电动汽车上应用最为普遍。
本文将以北汽新能源EV200车型所采用的驱动电机系统为例来介绍相关技术。
1.驱动电机系统介绍驱动电机系统由驱动电机、驱动电机控制器(MCU)构成,通过高低压线束、冷却管路与整车其他系统连接,如图1所示。
整车控制器(VCU)根据加速踏板、制动踏板、挡位等信号通过CAN网络向电机控制器MCU发送指令,实时调节驱动电机的扭矩输出,以实现整车的怠速、加速、能量回收等功能。
电机控制器能对自身温度、电机的运行温度、转子位置进行实时监测,并把相关信息传递给整车控制器VCU,进而调节水泵和冷却风扇工作,使电机保持在理想温度下工作。
驱动电机技术指标参数,如表1所示,驱动电机控制器技术参数如表2所示。
图1 驱动电机系统结构表1 驱动电机技术参数类型永磁同步基速1228r/min转速范围0~9000r/min额定功率30kW峰值功率53kW额定扭矩102N.m峰值扭矩180N.m(相当于2.0排量的汽油机)重量45kg表2 驱动电机控制器技术参数技术指标技术参数直流输入电压336V工作电压范围265~410V控制电源12V控制电源电压范围9~16V(所有控制器具有低压电路控制)标称容量85kVA重量9kgMCU(E machine and inverter )-Motor Control UnitMCU主要集成两部分一部分是电机,和逆变器,他主要作用根据油门踏板和制动踏板的输入,去控制电机的动力输出以及能力制动回收。
电动汽车驱动系统深入解剖
电动汽车驱动系统深入解剖近年来,随着环保意识的提高和技术的发展,电动汽车成为了人们关注的焦点。
电动汽车的核心就是驱动系统,它掌握着汽车的动力,影响着车辆的性能和驾驶体验。
本文将深入解剖电动汽车驱动系统,带领大家一起了解这个精密而神奇的机械装置。
电动汽车驱动系统的组成部分电动汽车驱动系统由三个核心组件组成:电动机、电池和电控系统。
电动机是驱动汽车轮胎的核心动力源,电池提供电能作为电动机的供电,而电控系统则控制和管理这一过程,确保电能的高效利用。
电动机电动机是电动汽车的心脏,它将电能转化为机械能,驱动轮胎进行前进。
电动汽车常用的电动机类型主要有直流电动机和交流电动机。
直流电动机体积小、效率高,适合用于小型电动汽车;而交流电动机具有高转速范围和较好的动力输出特性,适用于中、高档电动汽车。
电动机的转子由大量导线绕制而成,通过电流在磁场中产生转矩,带动汽车进行运动。
电池电池是电动汽车的能量库,提供电能给电动机驱动汽车。
目前,常用的电池技术有锂离子电池、镍氢电池等。
锂离子电池具有能量密度高、体积小、充电时间短的特点,成为了主流的电动汽车电池技术。
电池容量的大小决定了电动汽车的续航能力,而电池的寿命则影响着电动汽车的使用寿命。
电控系统电控系统是电动汽车驱动系统的大脑,它通过控制电机和电池之间的能量流动,实现驱动力的调节和能量的高效利用。
电控系统包含了电动汽车的控制器、传感器以及监测和管理电池状态的装置。
电控系统具有智能化的特点,能够根据用户驾驶习惯和路况变化进行实时调整,优化能量的使用效率,提供更加智能化和人性化的驾驶体验。
电动汽车驱动系统的优势相比传统内燃机驱动系统,电动汽车驱动系统具有多个优势。
电动汽车驱动系统的环保性能优越。
电动汽车使用电能作为驱动能源,不产生尾气排放,减少了对环境的污染,降低了碳排放的量,有助于改善空气质量和应对全球变暖问题。
电动汽车驱动系统的效率更高。
电动汽车的电动机能够将电能转化为机械能的效率高达80%以上,而传统内燃机的热能转化效率只有30%左右。
一文详解电动汽车电驱动系统
一文详解电动汽车电驱动系统
依托于传统内燃汽车,采用驱动电机替代原有的内燃机,可形成最为简单的电动汽车电驱动系统。
如图1所示,电驱动系统一般由驱动电机、离合器、齿轮箱和差速器组成,这是纯电动汽车传动系统布置的常规形式。
在此种形式中,传统内燃机被一组动力电池和一台驱动电机所代替,离合器、变速器和差速器的布置形式与传统内燃机车辆的布置形式一致。
其中的离合器和变速器也可以被自动变速器所代替,差速器的功能是通过机械传动使车辆曲线行驶时两侧车轮能够在不同速度下行驶。
由于驱动电机能够在较长的速度范围内提供相对恒定的功率,因此多级变速器可以被一个固定速比减速器所代替,并且离合器也可以省去,即无变速器,其传动形式如图2所示。
这种传动系统一方面可以节省机械传动结构的重量和体积,另一方面可以减少由于换档所带来的控制难度。
图1 纯电动汽车传动系统布置和装置结构图
1-电机2-螺栓3-套筒4-飞轮壳5-飞轮6-轴承7-压盘
8-离合器壳9-螺栓10-轴承11-输入轴12-分离叉13-分离套筒。
电动汽车技术培训课件-电机驱动系统讲义
直流电动机分为绕组励磁式直流电动机和永磁式直流电动机。在电动汽车所采用 的直流电动机中,小功率电动机采用的是永磁式直流电动机,大功率电动机则采用绕 组励磁式直流电动机。
绕组励磁式直流电动机根据励磁方式的不同,可分为他励式、并励式、串励式和 复励式4种类型。
1.他励式直流电动机 他励式直流电动机的励磁绕组与电枢绕组无连接关系,而由其他直流电源对励磁
绕组供电,因此励磁电流不受电枢端电压或电枢电流的影响。 他励式直流电动机在运行过程中励磁磁场稳定而且容易控制,容易实现电动汽车
的再生制动要求。当采用永磁激励时,虽然电动机效率高、重量轻和体积小,但由于 励磁磁场固定,电动机的机械特性不理想,难以满足电动汽车起动和加速时的大转矩 要求。
11
第二节 直流电机驱动系统
14
第二节 直流电机驱动系统
二、直流电动机的工作原理
15
第二节 直流电机驱动系统
16
第二节 直流电机驱动系统
17
第二节 直流电机驱动系统
18
第二节 直流电机驱动系统
三、直流电动机的调速
1.调压调速 由式可知,在负载转矩T和磁通量不变时,降低电枢电压,可以降低转速,
从而得到一系列平行的机械特性,如图所示。但只能在额定电压以下进行调速。 其优点是:可平滑调速,控制方便;机械特性硬,稳定性好;调速范围大,可 达6~10倍。
直流电机驱动系统即由直流电源供给电机的驱动系统,交流电机驱动系统即由交流电源供给电
机的驱动系统。
电机是电动汽车驱动系统的核心部件,其性能的好坏直接影响电动汽车驱动系统的性能,
特别是影响电动汽车的最高车速、加速性能及爬坡性能等。
电动汽车驱动系统对于电机有以下要求:
电动汽车电机驱动系统基础
——冷却系统
——电动汽车电机驱动系统
1课时
提出任务
作为一名汽车专业的学生,你知道新能源电机驱动系统的主 要作用及性能指标吗?
电动汽车电机驱动系统
电动汽车电动机驱动系统的组成 电动驱动系统电机的布置形式 电动驱动系统要求
本节 重点
(1)知道电动汽车电动机驱动系统的组成及 布置形式; (2)了解电动驱动系统要求.
图4-1-5 中央电机的布置形式
二、电动驱动系统电机的布置形式
中央电机布置形式具有一下特点:
三、电动驱动系统要求
电力驱动系统是电动汽车的核心,也是区别于内燃机汽车,驱动系统应符合下列要求:
(1)瞬时功率大,短时过载能力强,以满足爬坡及加速的需要; (2)调速范围宽广; (3)在运行的全部速度范围和负载范围内,具有较高的效率。也就是在电机所有工作范围内综 合效率高, 以尽量提高电动汽车一次续驶里程; (4)可靠性高,使用方便简单,价格低廉; (5)功率密度高,体积小,质量轻。
本章 小节
1、电动汽车电动机驱动系统的组成及布置形式; 2、电动驱动系统要求.
课后作业
1、电动汽车电动机驱动系统的组成及布置形式? 2、比亚迪唐电动机驱动系统的组成及布置形式? 3、电动汽车对动力电池的要求主要哪些?
图4-1-1 电机驱动系统
一、电动汽车电动机驱动系统的组成
1、电控单元(ECU) 电控单元(ECU)作用是控制电动机的电压 或电流,完成电动机的驱动转矩和旋转方向的控 制,如图4-1-2所示。
图4-1-2 电控单元(ECU)
一、电动汽车电动机驱动系统的组成
2、功率控制单元(PCU) 功率变换器用于实现DC-DC转换和DC-AC转换。 DC-DC转换器又称直流斩波器,用于直流电动机驱动系统。两象限直流斩波器能把蓄电池的直 流电压转换为可变的直流电压,并能将再生制动能量进行反向转换。 DC-AC逆变器用于交流电动机驱动系统,它将蓄电池的直流电转换为频率和电压均可调的交流 电。电动汽车一般只是用电压输入式逆变器,因为其结构简单且又能进行双向能量转换。
几种常用电动汽车驱动系统简介
一二三四几种常用电动汽车驱动系统简介 驱动系统是电动汽车的核心,主要包括:电动机、驱动器以及控制部分。
根据应用电机的不同,目前正在应用或开发的电动汽车驱动系统主要有直流电动机驱动系统、感应电动机驱动系统、永磁电动机驱动系统、开关磁阻电动机驱动系统。
直流电动机驱动系统 在电动汽车领域最早使用的就是直流电动机。
直流电动机结构简单,易于控制,具有良好的电磁转矩控制特性,但是由于采用机械换向结构,维护困难,并产生火花,容易对无线电产生干扰,这对高度智能化的未来电动汽车是致命的弱点。
另外,直流电动机驱动系统体积大、制造成本高、速度范围有限、能量密度较低,这些都限制和妨碍了直流电动机在电动汽车中的进一步应用。
感应电动机驱动系统 交流三相感应电动机是应用得最广泛的电动机。
其定子和转子采用硅钢片叠压而定子之间没有相互接触的滑环、换向器等部件。
结构简单,运行可靠,经久耐用。
应用于电动汽车的感应电动机现在普遍采用变频驱动方式,常见的变频控制技术有三种:V/F控制、转差频率控制、矢量控制。
20世纪90年代以前主要以脉冲宽度调制 ( PWM)方式实现V/F控制和转差频率控制,但这两种控制技术因转速控制范围小、转矩特性不理想,面对于需频繁起动、加减速的电动汽车不太适用。
近几年,电动汽车感应电动机主要采用矢量控制技术。
永磁电动机驱动系统 永磁电动机既具有交流电动机的无电刷结构、运行可靠等优点,又具有直流电动机的调速性能好的优点,且无需励磁绕组,可以做到体积小、控制效率高,是当前电动汽车电动机研发与应用的热点。
永磁电动柳驱动系统可以分为无刷直流电动机(BLDCM)系统和永磁同步电动机(PMSM)系统。
无刷直流电动机( BLDCM)系统具有转矩大、功率密度高、位置检测和控制方法简单的优点,但是由于换相电流很难达到理想扶态,因此会造成转矩脉动、振动噪声等问题。
对于车速要求不太高的电动汽车驱动领域,BLDCM系统具有一定的优势,得到了广泛的重视和普遍应用。
纯电动汽车驱动系统的工作原理
纯电动汽车驱动系统的工作原理纯电动汽车是指完全依靠电能来驱动的车辆,其驱动系统主要包括电动机、电池组、电控系统和变速系统等关键部件。
下面将详细介绍纯电动汽车驱动系统的工作原理。
1. 电池组纯电动汽车的电池组是存储电能的关键装置。
通常采用锂离子电池,其具有高能量密度和较长的寿命。
电池组的容量会影响纯电动汽车的续航里程。
当车辆行驶过程中,电池组会不断释放储存的电能供给电动机驱动车辆。
2. 电动机纯电动汽车使用的电动机主要有三种类型:直流电动机(DC motor)、异步电动机(Asynchronous motor)和永磁同步电动机(PM motor)。
直流电动机可根据电流的正反方向实现正向和反向转动,适用于小型车辆。
异步电动机是一种交流电动机,通过电磁感应产生转矩,使用较为广泛。
永磁同步电动机则利用永磁体产生磁场与电流感应磁场相互作用产生驱动力,具有高效率和高功率密度。
电动机的工作原理是将电能转化为机械能,通过电磁场的变化产生动力,驱动车辆前进。
电动机通过与车轮相连的传动装置将旋转转矩传输到车轮上,实现车辆的运动。
3. 电控系统电控系统是纯电动汽车的“大脑”,负责监测和控制车辆电能的流动,使得电能得以高效地转化为机械能驱动车辆。
电控系统主要包括电控器和电控单元。
电控器负责将电池组的直流电转化为电动机所需的交流电,控制电机的启动、停止和转速调节。
电控单元则通过传感器实时监控车辆的状态和行驶环境,将数据传输给电控器进行调节。
同时,电控系统还负责对电池组的状态进行监测和管理,以保证电池组的正常工作和寿命。
电控系统还可以实现能量回收和制动力分配等功能,提高能源利用效率。
4. 变速系统传统汽车通常使用内燃机与变速器传递动力,而纯电动汽车的电动机具有较宽的转速范围和较大的扭矩输出,可以不需要传统的变速器。
但有些纯电动汽车仍然配备了单速或多速变速器,通过变速器可以提供不同的驱动力和转速选择,适应不同的驾驶需求和路况条件。
电动汽车电机驱动系统
3.2.1 直流电动机的分类
➢2.并励直流电动机 ➢并励直流电动机的励磁绕组与电枢绕组相并联,共用同一电 源,性能与他励直流电动机基本相同。并励绕组两端电压就 是电枢两端电压,但是励磁绕组用细导线绕成,其匝数很多, 因此具有较大的电阻,使得通过它的励磁电流较小。 ➢3.串励直流电动机 ➢串励直流电动机的励磁绕组与电枢绕组串联后,再接于直流 电源,这种直流电动机的励磁电流就是电枢电流。这种电动 机内磁场随着电枢电流的改变有显著的变化。为了使励磁绕 组中不致引起大的损耗和电压降,励磁绕组的电阻越小越好, 所以串励直流电动机通常用较粗的导线绕成,它的匝数较少。
第 16 页
3.2.3 直流电动机的工作原理
➢直流电动机的工作原理图所示。图中,定子有一对N、S极, 电枢绕组的末端分别接到两个换向片上,正、负电刷A和B分 别与两个换向片接触。
第 17 页
3.2.4 直流电动机的控制
➢直流电动机转速控制方法主要有电枢调压控制、磁场控制和电枢回路电 阻控制。 ➢电枢调压控制是指通过改变电枢的端电压来控制电动机的转速。这种控 制只适合电动机基速以下的转速控制,它可保持电动机的负载转矩不变, 电动机转速近似与电枢端电压成比例变化,所以称为恒转矩调速。直流电 动机采用电枢调压控制可实现在宽广范围内的连续平滑的速度控制,调速 比一般可达1:10,如果与磁场控制配合使用,调速比可达1:30。电枢调压 控制的调速过程:当磁通保持不变时,减小电压,由于转速不立即发生变 化,反电动势也暂时不变化,由于电枢电流减小了,转矩也减小了。如果 阻转矩未变,则转速下降。随着转速的降低,反电动势减小,电枢电流和 转矩就随着增大,直到转矩与阻转矩再次平衡为止,但这时转速已经较原 来降低了。
第 7页
3.1.4 电动汽车电机驱动系统的发展趋势
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
研 究 生:景诗毅
背景和意义
在现代工业发展过程中,人类科技迄今共 经历了4次科技热潮:
1835-1836年的运河投资热
1922-1929年的铁路
1985-2000年的计算机网络热
2004-2008年的太阳能
通用汽车百年庆典,雪佛兰VOLT 电动车量产版全球首发
(a) 振动造成绕组线圈损坏
(b) 转子断条
电机故障模式和故障机理
轴故障模式及机理
故障模式 磨损
故障机理
电磁力波频率与电动机的固有频率一 致的时候,电动机会发生共
振;轴承中有粗糙研磨物,研磨造成 振动;有惯性力作用于保持
架上,润滑不良;因过载、内圈膨胀 或外圈收缩而使间隙不当,
轴承不圆使内外圈变形,有压痕,装 配偏心或加载偏心,内外圈
与轴肩、轴承孔的配合松动造成旋转 爬行,转速过高
IGBT故障模式和故障机理
静电放电及相关原因引起的失效占很大的比例
其他主要故障有短路,击穿和烧坏
故障机理主要是过热,过压,过流(长时间过 流运行,短路超时,过高的di/dt)。
母线支撑电容故障模式及机理
故障模式
故障机理
防爆阀打 开
过电压,过电流,施加交 流电,频繁充
转子绕组:和定子绕组相同
转子磁钢:主要包括磁钢脱落和退磁两个方面。 其中:磁钢脱落的主要故障机理是粘接工艺欠 佳,粘接剂选择不当,结构不合理。退磁的主 要故障机理是高温,振动,电枢反应,选用磁 钢不当等
转子本身故障:一方面,转子中的高频电流引 起集肤效应使转子电阻上升,使转子铜耗增大, 造成磨损严重;另一方面,如果有缺陷,变形,
放电,电压反向
过电压,过电流,频繁充 放电,施加交
容量下降 流电,电压反向,使用温 度过高,长时
间使用
过电压,过电流,电压反 向,频繁充放
损耗上升 电,施加交流电,使用温 度过高,长时
间使用
电容故障表象图
DSP控制电路故障模式及机理
故障模式
故障机理
电阻等无源元件短路、 老化,过应力,装配不合理,电路板受
电动汽车驱动系统的结构
+
逆变器
(IGBT)
电机
-
驱动信号 保护信号
母线电压 采样
光电耦合
两相电流 采样
稳压电源
DSP控制 电路
电动汽车
PC
电动汽车驱动系统结构图
驱动系统故障模式及故障机理分析
T1
T3
T5
Udc
C
M
T6
T4
T2
电动汽车驱动系统主电路拓扑图
驱动系统故障模式及故障机理分析
永磁同步电机 电机驱动系统
主要研究内容
电动汽车驱动系统分类
直流电动 驱动系统
结构简单
优良的电磁转矩控制特性
城市无轨电车上广泛应用
重量和体积也较大
感应电机
驱动系统
新一代牵引 电机系统
永磁无 刷
电机系 统
开关磁阻电机驱 动系统 高密度、高效率 低成本、宽调速
功率密度较高 电机尺寸小、体积小 转子结构简单,稳定性好
结构简单、坚固耐用、成本低廉、运行可靠 低转矩脉动、低噪声、不需要位置传感器、转速极限高 矢量控制调速技术比较成熟 驱动电路复杂,成本高
而由于能源危机和环境污染问题,电动汽车即将成为新的一代科技明星。
背景和意义
电动汽车清洁无污染、能量效率高、低噪声的 优点,使得电动汽车的产业化势不可挡。在电 动汽车的产业化过程中,企业和客户都非常关 注电动汽车的可靠性。
驱动系统是电动汽车的关键部件之一,其可靠 性研究不但能够获得电动汽车电机驱动系统的 可靠性指标,为行业提供经济适用的可靠性考 核方法和可靠性考核标准,能够大力促进我国 电动汽车的产业化,加快我国电动汽车的快速 发展。
背景和意义
萌芽 பைடு நூலகம்段
20世纪40年代。1943年电子管研究委员会成立,专门 研究电子管的可靠性问题
兴起和 发展时期
20世纪50年代 。1952年美国国防部成立了电子设备可靠性咨询组 (AGREE)。于1957年发表了《军用电子设备可靠性》的研究报告, 标志着可靠性已成为一门独立的学科,是可靠性工程发展的重要里程 碑。
全面发 展阶段
20世纪60年代。20世纪60年代是可靠性工程全面发展的阶段, 也是美国武器系统研制全面贯彻可靠性大纲的年代。
国际化
70年代以后。1977年国际电子技术委员会 (IEC)设立了可靠性与可维修性技术委员会
发展阶段
可靠性研究
发展四阶段
可靠性指标
可靠度: R (t)P (Tt)
平均寿命M :TTF
R(t)dt 0
(t) r
失效率: [Nr(t)]t
产品浴盆曲线
λ(t) 失 效 率
早期失效期
规定 的失 效率
偶然失效期 使用寿命
耗损失效期
因为修而下 降的失效率
t0
t1
工作时间t
背景和意义
驱动系统可靠性研究现状
电容
功率器件
电机
轴承
分析电动汽车驱动系统的故障模式及其故障机 理,建立驱动系统故障树
驱动器
定子 转子 轴承 主电路
控制器
定子绕组 定子铁芯 转子绕组 转子磁钢 转子转轴 功率器件
散热器 母线电容
控制电路 驱动,保护电路
集成电路
驱动系统的组成
定子故障模式和故障机理
定子绝缘故障: 主要是电压过高,绝缘局部击 穿。
定子铁芯故障: 主要是由于铁芯松动
定子故绕障组模故式障:
故障机理
开路
到冲击和振动
集成电路坏
老化,过应力
连接线断线,碰壳等 焊接质量差,安装不当,冲击,振动
焊接点接触不良 工艺不良,助焊剂差,焊盘太小
电连接器松动脱焊 焊接质量差,安装不当,冲击,振动
驱动系统故障树建立
驱动电机系统 故障
+
电机本体故障
驱动器故障
+
+
定子故障
+
转子故障
+
轴故障
分析电动汽车驱动系统薄弱环节的可靠性影响因素, 对可靠性几种建模方式进行了介绍,分析了驱动系统 的可靠性模型,采用冗余设计来进行了可靠性设计
分析电动汽车驱动系统单应力加速模型,建立 多应力加速模型,利用二元一次插值法来估算 多应力加速模型参数
对电动汽车回馈制动的基本原理和研究现状进 行了介绍,并对回馈制动对整个驱动系统可靠 性的影响进行了分析
绝缘电阻下降 受潮,积灰,绝缘材料有缺陷
绝缘老化 连续高温,频繁启动,过载,冷热循环
绝缘击穿
材料缺陷,尖峰电压,线圈移动(由于 磁力、冲击、
振动)造成的绝缘损伤,积灰焊接点被 焊剂腐蚀
变质腐蚀
油,药污损,浸蚀,运行电压过高,冲 电压
(a) 过负载下定子损伤
(b) 机械疲劳造成定子开裂
转子故障模式和故障机理