交流高压电缆局部放电的在线监测

合集下载

高压电缆局部放电检测方法分析

高压电缆局部放电检测方法分析

高压电缆局部放电检测方法分析摘要:对高压电缆接头局部放电进行在线检测,能够及时发现绝缘的受损情况,是保障电力电缆可靠运行的重要手段,具有非常重要的意义。

本文对高压电缆接头局部放电检测方法进行分析。

关键字:高压电缆;局部;放电检测高压电缆由于长时间与空气、水分、土壤等发生接触,电缆绝缘层容易受到腐蚀,出现绝缘老化现象。

此时电缆的电容和电阻都已发生改变,在物理和化学效应下,出现局部放电现象。

在高压电缆运行维护过程中,对局部放电故障点进行排查和检测是一项重要工作,而且具有较高难度,如果选择方法不当,会消耗大量时间,容易导致故障升级。

因此,有必要对其具体检测方法进行研究,提高高压电缆局部放电检测效率和检测结果的准确性。

1高压电缆局部放电的基本原理局部放电是指当外加电压在电气设备中产生的场强足以使绝缘部分区域发生放电,但在放电区域内未形成固定放电通道的一种放电现象,高压电缆的绝缘劣化主要就是由于这个原因。

电缆的绝缘性能决定着其局部放电量,而电缆能否安全、无缺陷地运行一定程度上也正是由其局部放电量的变化决定的。

这种电气设备绝缘内部存在缺陷的局部放电现象放电能量虽然并不大,短时间内不会引起整个绝缘的击穿,但是在长期工作电压的作用下,局部放电会使绝缘缺陷变大,进而会使整个绝缘都发生击穿。

局部放电主要有表面放电、内部放电和尖端放电等。

电缆系统局部放电的基本原理大体相同:当电缆的绝缘本体、电缆接头存在一定缺陷时,有可能会发生局部放电现象,产生脉冲电流信号。

这种信号由于绝缘介质不同特性的原因,所表现的频率大小也各不相同,一般产生高频脉冲信号,其频率在300 kHz以上,会在电缆线路的回路中传播,可以沿高压电缆带电检测有效性评估系统研究着电缆的屏蔽层传播,这样就可以在电缆外层屏蔽的接地线上,通过高频电流互感器来耦合这类高频电流信号。

引起电缆局部放电的原因主要包括:微空穴或不同介质交界面接触不良而产生局部放电、径向不对称而产生局部放电、热效应产生脱层、接头处半导体均压层处理不良、处理半导体均压层时对绝缘产生损伤及外皮接地不良等。

高压电力电缆局部放电检测技术

高压电力电缆局部放电检测技术

高压电力电缆局部放电检测技术发布时间:2022-04-24T10:01:05.859Z 来源:《福光技术》2022年7期作者:顾斌[导读] 希望可以为电力电缆的局部放电检测工作的开展创造一定的条件和优势,让检测方法的作用得到保障。

上海东捷建设(集团)有限公司上海市 200120摘要:现代社会的不断发展让电力建设体系逐渐得到了完善,针对电力电缆进行检测过程中采取的方法体现出了多样性,包括脉冲电流法、高频电流法以及化学检测法等,但是目前在具体检测过程中仍然会受到不同方面因素的阻碍和限制,让具体的检测效果不是十分理想,获得的检测数据可能也并不真实和准确,让电缆内部结构的放电脉冲电流难以确定。

本文结合实际情况,首先了解高压电力电缆局部放电的基本原理,在此基础上提出放电检测过程中可以采取的关键技术和有效方法,希望可以为电力电缆的局部放电检测工作的开展创造一定的条件和优势,让检测方法的作用得到保障。

关键词:高压线路,电力电缆;局部放电;检测技术针对电力电缆局部放电进行检测过程中使用的技术会参考局部放电产生的不同物理现象,并结合工作人员的经验参考这些现象对局部放电的情况产生了解,描述相应的放电状态。

当前在电力电缆局部放电检测技术中,使用的方式多元化包括光学检测技术、化学检测技术以及超声检测技术,本文对这些检测技术进行进一步的研究和探讨。

一、高压电力电缆局部放电的基本原理实际中,电缆的绝缘体内部具体制造或施工的过程中可能会存在一些残留的气泡或者是会渗入其他的一些杂质,而在这些有气泡的区域,其击穿场强相对来说要比平均的击穿场强更低,在这些区域就可能会产生特殊的放电现象,也正是基于电场的作用以及影响下,只有某些部分会产生放电的现象,并没有将放电的现象真正贯穿在施加电压的导体之间,也就是说尚未击穿的这种现象被称之为局部放电的现象。

这种放电的状态会导致导体的绝缘局部短接而不会形成导电通道,在高压电力电缆结构中产生局部放电对于绝缘介质本身会造成影响,当局部放电的问题比较轻微和细小时,对于电力设备绝缘介质整体造成的影响相对来说比较小,而如果局部放电现象比较强烈,那么就会导致绝缘设置受到相应的破坏,使其绝缘的强度大幅下降,这也是在高压电力设备运行的过程中绝缘介质被损坏的重要影响因素。

中高压电缆局部放电检测和在线监测技术曹军

中高压电缆局部放电检测和在线监测技术曹军

中高压电缆局部放电检测和在线监测技术曹军发布时间:2023-06-15T03:42:48.409Z 来源:《中国电业与能源》2023年7期作者:曹军[导读] 中高压电缆是电力设备中不可或缺的材料之一。

在电力系统中,中高压电缆局部放电检测系统的开发涉及到高压绝缘和高压试验等技术,中高压电缆局部放电检测试验具有一定局限性,有些重大施工缺陷无法被发现。

因此只有有效提高局部放电的检测和在线检测技术,加强对电缆局放检测技术的研究,才能提高供电设备的运行效率,保证电力系统的安全性和稳定性。

乌兰察布供电分公司内蒙古乌兰察布市 013650摘要:中高压电缆是电力设备中不可或缺的材料之一。

在电力系统中,中高压电缆局部放电检测系统的开发涉及到高压绝缘和高压试验等技术,中高压电缆局部放电检测试验具有一定局限性,有些重大施工缺陷无法被发现。

因此只有有效提高局部放电的检测和在线检测技术,加强对电缆局放检测技术的研究,才能提高供电设备的运行效率,保证电力系统的安全性和稳定性。

关键词:中高压电缆;局部放电;检测技术;检测方法一、电力电缆的局部放电现象及其发生的原理1.电缆的局部放电现象电缆的局部放电现象主要是指:若外部施加的电压能在电气设备中产生一种能够让绝缘设备产生放电现象,但绝缘设备的放电现象又没有产生一个固定的放电通道,其中高压电缆存在的绝缘劣化现象一般就是这个原因。

电缆的局部放电量主要是由电力电缆的绝缘性质决定的,然而电力电缆的局部放电量有决定着电力电缆是否能够无缺陷的、安全的输送和供应电力资源。

2.电缆的局部放电原理电缆的局部放电原理是当电力电缆的绝缘本体存在问题,或者电力电缆的接头存在杂质物、半导体电极表面的不平以及有微孔现象等原因,会使电力电缆局部产生放电现象。

同时,也会发生脉冲电流信号,但因为电力电缆的电气设备中绝缘介质存在不同的属性,会使其脉冲电流信号产生的频率也不相同。

3.电缆局部放电、带电检测至今为止,对电缆的局部放电现象检测最被人们认可的方法是对电缆的绝缘性诊断,同样的,对电缆局部带电性的检测也是对电缆的绝缘性诊断。

高压电缆局部放电在线监测系统

高压电缆局部放电在线监测系统

高压电缆局部放电在线监测系统高压、超高压电缆局部放电在线监测系统主要用于监测发生在高压电缆、GIS以及与其相连高压设备中的局放信号,预测该局放的发展趋势,预防突发性的电气事故,为设备的状态检修和维护提供有效的数据依据。

该系统是一个独立的、紧凑型多功能分布式高频局放同步检测系统,采用光纤组网方式进行数据传输,实时在线监测电缆系统局部放电,通过高压电缆局放分析系统来评估系统的绝缘状态。

系统基于高频脉冲电流法测量局放的原理而设计,通过高频电流传感器(HFCT)和100Mbps采样率采集局放源点激发的脉冲电流信号。

二、技术特点
(1)采用高频脉冲电流法原理,通过高频电流传感器测量局放信号;
(2)局放监测装置可以通过单模光纤级联,组成光纤环网,控制计算机通过总线控制单元管理所有装置,进行长电缆线路分布式局放检测,各监测装置之间实现完全电气绝缘。

光纤长度可达20km;
(3)可以进行电缆线路局放在线监测;
(4)供电电源使用AC220V市电;
(5)分析软件采用可视化方式展示局放图谱,如二维q-φ, N-φ, N-q和三维N-q-φ;
(6)可生成测试报告,用于存档或运维问题追溯。

注意事项
1)严禁在局放传感器输出端处于短路状态下在接地线上合上局放传感器,在合上局放传感器前,需确认其输出端是否短路;
2)传感器应牢固固定于接地线上,若接地线过细,可使用绝缘胶布缠绕数层后再使用电流互感器;。

高压电缆验收标准 局部放电检测与评估

高压电缆验收标准 局部放电检测与评估

高压电缆验收标准局部放电检测与评估高压电缆是大型电力工程中常用的重要设备,其质量和安全性直接影响到电力系统的运行和供电可靠性。

为了确保高压电缆的质量符合规定标准,必须对其进行验收。

本文将重点介绍高压电缆验收标准中的局部放电检测与评估。

一、局部放电概述局部放电(PD)是高压电缆中常见的故障形式之一,指的是在电缆绝缘中的局部区域发生间歇性放电现象。

这种放电不仅会引起电缆绝缘材料的老化和劣化,还可能导致绝缘击穿,从而造成电缆的故障和事故。

因此,在高压电缆验收中,对局部放电进行检测与评估具有重要意义。

二、局部放电的检测方法常见的局部放电检测方法有多种,包括频域分析法、时域分析法、相位分析法等。

其中,频域分析法是较为常用的方法,通过测量电缆敷设后的局部放电特性,来评估电缆绝缘材料的质量和绝缘状态。

此外,还可以利用电缆封闭直流电荷法(DC Voltage-Step)和交流脉冲法(AC Voltage-Withstand)等验证电缆的质量。

三、局部放电的评估参数局部放电评估的参数主要有放电量、放电能量、频率特性、放电模式等。

放电量和放电能量是衡量故障严重程度的重要指标,频率特性可以分析出放电源的类型,而放电模式则能表征电缆绝缘的状况。

通过这些评估参数的分析,可以判断电缆的安全性和可靠性。

四、局部放电的评估标准根据国家相关标准和行业规范,高压电缆的局部放电评估标准一般包括放电量、放电能量、频率特性和放电模式等参数的限定范围。

超过这些范围的数值,则可能代表电缆存在质量问题。

同时,还需要注意不同类型的高压电缆在局部放电评估标准上可能存在差异,有针对性地进行评估。

五、局部放电的检测设备局部放电的检测设备主要有高压电缆局部放电在线监测系统和离线检测仪器。

在线监测系统能够实时监测电缆的放电情况,并提供警报和故障诊断等功能。

离线检测仪器可以对电缆进行定期的检测和评估,是电力工程部门常用的检修设备。

六、局部放电的处理方式当检测到高压电缆存在局部放电问题时,应及时采取相应的处理方式。

高压电力电缆局部放电检测技术

高压电力电缆局部放电检测技术

高压电力电缆局部放电检测技术沈㊀盼摘㊀要:随着社会经济的不断发展进步,国民生活水平的大幅度提升,城市化进程的不断加快,城市规模日益扩大,城市电网建设也不断发展,为了有效满足人们日常生产生活过程中日益旺盛的电力需求,电力行业要加强电网建设,而电缆作为电网建设中最基本的元素,其对电力运输有着至关重要的作用㊂文章根据自身相关从业经验并具有广泛的社会实践调查与研究,就高压电力电缆局部放电检测技术展开了相关的探讨,希望能提供借鉴㊂关键词:高压电力电缆;局部放电;在线检测;检测技术;探讨一㊁引言高压电力电缆局部放电检测技术主要是指以局部放电所引发的不同的物理现象作为实际的检测依据,通过对不同的物理现象对局部放电的状态进行检测及反应,高压电力电缆局部放电检测技术有利于电力系统的安全稳定运行,能够满足人们日常生产生活中稳定的供电需求㊂现阶段,电力电缆局部放电检测技术绝大多数是由高频脉冲电流法㊁超声波法㊁化学检测法以及光学检测法等㊂二㊁局部放电的基本原理分析交联电缆结缘体内部在制造或者在安装施工过程中会留下一些气泡残留,甚至会有其他物质渗入,而有气泡或者其他物质存在的地方,击穿场强会比一般的击穿场强更低,这很有可能会出现局部放电的现象㊂而在电场的不断作用之下,绝缘系统中也会存在部分区域放电的问题,但是并不会在电压的导体之间贯穿,将这种没有击穿的问题称只为局部放电㊂局部放电的数量级虽然不大,但一旦发生局部放电现象,则很有可能会造成绝缘更加快速的老化,最终导致绝缘击穿的问题,所以通过局部放电检测技术来检测交接试验中的局部放电现象,在发现局部放电问题时,及早采取有效措施进行解决,进而有效避免或减少事故的发生㊂局部放电现象绝大多数情况下发生在绝缘的内部,并且在电场的充分作用之下,气泡中含有的空气分子会出现游离的现象,气泡中的正负电子两端不同的极性会有效集结起来,其会随着气泡中长长的不断扩大,极有可能会导致气泡被击穿的问题,进而会产生比较强烈的电荷,并且会形成脉冲电流,而且还很有可能会导致表面放电问题㊂三㊁局部放电检测技术分析(一)脉冲电流检测方法脉冲电流检测是针对变压器壳体接电线㊁壳体的接电线以及铁芯的接电线及绕组局部放电引起的脉冲电流的现象,这是在电流检测中应用最为广泛的检测方式之一㊂电流传感器可以根据其具体应用划分为窄带与宽带两种形式,窄带传感器多是10kHz的,其非常的灵敏,而且有一定的抗干扰能力,但在具体的传输过程中传输出的波形会出现比较严重的畸变,畸变过程中的宽频带传感的宽带大概是100Hz,其分辨率非常高,但噪声比较低,利用这种方式进行检测,最大的缺点是检测的灵敏度及测量准确性不够,当样品中的电容超过其标准值时,则非常有可能会导致耦合阻抗问题出现,进而使其灵敏性受到影响㊂一般测试的频率都会比较低,在离线状态下,灵敏度虽然比较高,但也很容易受外界环境因素的干扰㊂(二)高频电流法高频电流法是常见的局部放电检测方式,但其只可以在电缆和电缆接地电缆两个方面进行有效检测,当电缆出现局部放电现象时,会有电流通过外屏蔽不断地流入到地球,在这过程中就可以在接地线上对高频电流传感器进行科学的设计,根据地线局部放电电流的情况,对局部放电问题进行合理的判断㊂由于电缆的功能和作用与感应天线非常类似,因此在整个检测过程中非常容易受到广播的干扰,会影响到整个检测结果的准确性,而进行一定的数据处理,有利于更加准确的分辨出电缆中的部分放电脉冲问题出现位置㊂(三)超声波法超声波法是电力电缆出现了局部放电问题时,能够根据电力电缆不断出现的局部放电问题,通过对超声波传感器的有效利用,对局部放电问题进行合理㊁有效的检测㊂超声波法是能够借助和高压电缆直接接电的方式进行局部放电检测,其比较适用于在线检测㊂因为变压器的内部绝缘结构相当复杂,当超声波不断衰减与声速的影响存在一定的差异,但超声波传感器在检测过程中抗电磁干扰能力比较弱,其灵敏度也比较低㊂这一定程度上有利于增加检测的难度㊂随着检测效益的不断提升,以及电子放大技术的不断进步,超声波检测技术的灵敏度也不断提升,其在高压电力电缆局部放电检测过程中越来越广泛㊂(四)化学检测技术分析化学检测技术主要是指变压器产生局部放电问题时,其对周边用于绝缘的各式各样的材料具备破坏性分解作用,并且在这过程中能够形成新的合成物,可以比较精准的判断电压出现的局部放电问题㊂化学检测技术在变压器在线故障检测过程中应用越来越广泛,其实检测比较准确,而且操作相对方便的检测方式㊂化学检测技术在故障判断具体过程中能够对不同气味和不同浓度的气体进行有效的检测,并能够构建识别系统,有利于对故障进行自动识别,但现阶段并没有统一的标准及态度,其对早期潜伏型的故障反应比较灵敏,对突发性的故障反应速度比较慢㊂四㊁结语综上所述,随着电力行业的不断发展进步以及人们用电需求的日益增长,电网建设规模越来越大,这对高压电力电缆局部放电检测提出了更高的标准与要求,要加强高压电力电缆局部放电检测技术的研究,进而不断提升局部放电检测效益,尽可能地减少用电安全事故的发生㊂参考文献:[1]宋作光,袁芳凌.电力电缆局部放电检测技术的探讨[J].工业设计,2016(11):166-167.[2]徐阳.高压电缆局部放电检测技术应用及发展[C]//国家能源智能电网.国家能源智能电网,2016.[3]李宇烽,才英博.高压电力电缆局部放电检测技术研究[J].民营科技,2017(4):54.作者简介:沈盼,江苏宏源电气有限责任公司㊂081。

高压电机局部放电在线监测方法

高压电机局部放电在线监测方法

高压电机局部放电在线监测方法【摘要】局部放电在线监测是诊断高压电机定子绕组绝缘故障的有效方法之一。

文中概述了国外高压电机局部放电在线监测的几种方法:基于汇流环上成对耦合电容器的监测法,基于中线射频监测法,基于电机引出线上耦合器的监测法,基于定子槽耦合器的监测法,基于埋置在定子槽里的电阻式测温元件导线的监测法等。

其中主要介绍耦合器或传感器的设置、噪声抑制方法以及它们的应用情况。

【关键词】局部放电,在线监测,高压电机1前言定子绕组绝缘故障是高压旋转电机的主要故障之一。

为了提高运行可靠性,应当加强对电机定子绝缘运行状态进行监测。

电机在发生绝缘故障前往往会有征兆,其中局部放电(PD)与电机定子绕组绝缘状况有着密切地联系。

由于电机绝缘介质长期承受热、电、机械应力及环境影响,导致绝缘发生劣化,使得电机在运行时绝缘产生局部放电。

反过来,局部放电又加速了绝缘的劣化,若局部放电继续扩大与发展,最终将导致绝缘被破坏。

因此,对局部放电作连续地监测,是诊断绝缘状况的有效方法。

2局部放电监测的几种方法2.1基于汇流环上成对耦合电容器监测法国外在70年代就已开发了高压电机绝缘在线监测装置。

如Kurtz M.等开发了适合水轮发电机使用的局部放电分析仪(PDA)[1],并已成功地应用于北美的140多台机组的局放监测试验上[2],取得了重大经济效益。

它的局放信号是通过安装在发电机定子绕组上的高压耦合电容器(其额定值为80pF,30kV)获取的,每相各有一对耦合电容器,并将耦合器安装在各相汇流环(过桥线)的合适位置上,以便消除来自电机外部的干扰。

假设一个来自电力系统的干扰脉冲,从某一相的端接线端进入,这时干扰脉冲将分成两路,分别沿该相的汇流环两边传送至两个耦合电容器,若汇流环两边等长,而且由这两个耦合电容器联接到电机外部供PDA分析仪监测用的固定测点的同轴电缆线也等长,这样干扰脉冲沿该相汇流环两边通过耦合电容器和同轴电缆传送至电机外部测点时的信号是相同的,这两路相同的脉冲信号送入PDA分析仪前级的高速差动放大器后,其结果是输出为零,即来自电机外部的干扰脉冲将不产生输出,如图1(a)所示。

高压电缆高频局部放电带电检测技术原理、检测报告、高频电流检测典型干扰信号

高压电缆高频局部放电带电检测技术原理、检测报告、高频电流检测典型干扰信号

附录A(资料性附录)高压电缆高频局部放电带电检测技术的原理A.1电流耦合型传感器方法将电流耦合型传感器直接卡装在电缆金属屏蔽外,或穿过电缆终端、连接头屏蔽层的接地线,通过感应流过电缆屏蔽层的局放脉冲电流来检测局放,也叫电磁耦合法。

电磁耦合法应用于XLPE电缆PD 在线监测比较成功的例子是1998年瑞士研制的170kV XLPE电缆PD在线监测系统,测量位置选在XLPE中间接头金属屏蔽的连接引线上,系统的检测频带在15~50MHz左右,检测灵敏度可低于15pC。

由于宽频带电磁耦合法具有小巧灵活,操作安全,能真实地反映脉冲波形等特点,正在被广泛的研究和应用。

同时XLPE电缆PD信号微弱、幅值很小,外界强电磁场干扰源很多,特别是地线上干扰信号更为复杂,单纯依赖宽频带滤波器和高倍数的放大器很难排除某些类似PD脉冲的干扰,所以电磁耦合传感器关键在于抗干扰技术。

A.2电容耦合型传感器方法在XLPE电缆中间接头两侧,通过耦合剂将2块金属箔分别贴的金属屏蔽上,金属箔与金属屏蔽筒之间则构成一个约为1500~2000pF的等效电容,再在两金属箔之间连接检测阻抗。

金属箔与电缆屏蔽层的等效电容、电缆导体与绝缘间的等效电容与检测阻抗构成检测回路,检测原理如附图A.1所示。

附图A.1电容型电流传感器检测原理图当电缆接头一侧存在局部放电时,由于另一侧电缆绝缘的等效电容的耦合电容作用,检测阻抗便耦合到局部放电脉冲信号。

耦合到的脉冲信号将输入到频谱分析仪中进行窄带放大并显示。

日本电力公司将此原理应用于275kV的XLPE电缆局部放电在线监测中。

该方法的优点是不必加入专门的高压电源和耦合电容,也无需改变电缆连接线,且由于可等效为桥式电路,故能很好地抑制外界噪声。

A.3电磁感应型传感器方法电磁感应型传感器紧贴于电缆本体或附件表面,通过电磁感应的原理,获取局部放电在电缆本体或附件表面的电磁信号。

附录B(资料性附录)检测报告检测单位检测人员检测时间检测环境(温度、湿度)检测线路名称检测仪器型号及规格检测结果序号检测位置测试相位测试方法测试记录检测结论:测试日期工作负责人附录C(资料性附录)高压电缆局部放电的高频电流检测典型干扰信号C.1白噪声干扰信号白噪声一般指线圈热噪声、地网噪声等各种典型随机噪声,在整个频域内均匀分布,幅值变化不大,无工频相关性,无周期重复现象。

高压电力设备局部放电检测

高压电力设备局部放电检测
超声波的接收与处理
利用超声波传感器接收这些超声波信 号,并将其转换为电信号。通过对电 信号的处理和分析,可以判断局部放 电的位置和严重程度。
红外热像检测法
红外热像仪的应用
红外热像仪能够捕捉物体表面的红外辐射能量分布图形,直观地显示物体表面 的温度分布。在高压电力设备局部放电检测中,红外热像仪可以捕捉设备表面 的温度异常,从而判断设备内部是否存在局部放电。
绝缘材料性能
不同绝缘材料的耐电强度、介 电常数等性能不同,对局部放 电的敏感性也不同。
设备结构
设备结构复杂、电场分布不均 等因素都可能导致局部放电的 产生。
运行环境
温度、湿度、污染等环境因素 都会对设备绝缘造成影响,从 而影响局部放电的产生和发展

03
高压电力设备局部放电检测方法
电测法
脉冲电流法
02
过高电压或电流
当设备承受的电压或电流超过其绝缘承受能力时,会导致绝缘击穿,进
而引发局部放电。
03
环境因素
如温度、湿度、污染等环境因素也可能对设备绝缘造成影响,导致局部
放电的产生。
局部放电类型及特点
电晕放电
通常在气体绝缘设备的高压电极 附近发生,表现为蓝色荧光和咝 咝声。电晕放电对设备的危害相 对较小,但长期存在也可能导致
绝缘老化。
火花放电
在气体或液体绝缘中均可能发生 ,表现为明亮的火花和爆裂声。 火花放电对设备的危害较大,可
能导致绝缘击穿。
沿面放电
发生在固体绝缘表面,表现为沿 绝缘表面爬行的放电现象。沿面 放电可能导致绝缘表面碳化、龟
裂,最终导致绝缘失效。
影响局部放电因素
电压等级
电压等级越高,局部放电越容 易产生,且放电强度越大。

高压电力电缆在线局部放电检测典型经验

高压电力电缆在线局部放电检测典型经验

高压电力电缆在线局部放电检测典型经验作者:耿宁岳增伟阎炳水来源:《华中电力》2014年第01期[摘要]随着高电压、超高压电缆在电网中比重的增加,电缆供电可靠性是电网安全可靠运行的重中之重。

通过电缆局部放电在线检测,在无需停电的情况下,实现对电缆状态监测,及早发现和定位局部缺陷点,制定检修策略,能够避免造成严重的经济损失和社会影响。

[关键词]高压电力电缆;局部放电;典型经验一、专业管理的目标描述1.1专业管理的理念及策略1.1.1管理理念利用电磁耦合技术和电容耦合技术,实现对电力电缆的局部放电信号检测,高频电流传感器可检测带宽100KHz-4MHz,射频天线传感器可检测带宽为4MHz-100MHz。

依据在线和离线检测手段、定期巡检等手段,获取高压电力电缆局部放电指标的全面信息,为形成电力电缆运行状态的综合评价系统和预警系统提供支持,全面推进高压电力电缆状态检修工作。

1.1.2管理策略采集并分析高压电力电缆局部放电信号的局部放电量、放电次数、放电波形、放电位置等重要指标,同时也能够诊断噪声波形和数值。

通过对脉冲信号的幅值和频率的分析,来确定局部放电量的大小,以及放电次数,进而判断局部放电的严重程度。

采用软件定位法,通过软件计算采集到信号之间的时间差、信号波形的特征等分析和定位电缆的局部放电源。

1.2管理目标通过寻找局部放电指标与电力电缆绝缘缺陷之间的对应关系,建立基于特高频检测的电缆潜伏性故障诊断专家库,为电力电缆绝缘监督提供直接有效的监测手段,通过及时消除电缆的潜伏性故障,有效避免停电事故的发生,保障电网设备的安全稳定运行。

二、专业管理的主要做法通过高压电力电缆在线局部放电检测装置,及时发现设备缺陷,制定状态检修最佳策略,有效消除设备潜伏性绝缘故障,降低检修成本,确保高压电力电缆可靠运行。

2.1专业管理工作流程2.1.1电缆设备缺陷管理流程:节点1:运行人员通过实时监控和日常巡视及时发现变电设备的异常及缺陷,并及时录入缺陷管理系统,本流程形成缺陷记录簿。

高压电缆局放在线监测系统(亿森)

高压电缆局放在线监测系统(亿森)

高压电缆局放在线监测系统设计方案福州亿森电力设备设备有限公司2016年9月摘要:在XLPE电缆投入运行后,由于绝缘的老化变质、过热、机械损伤等,使得电缆在运行中绝缘裂化,为了防止由于绝缘劣化造成电缆运行事故,需要对电缆的运行状态进行即时监测,监测系统控制着电缆及其附件的质量。

局部放电是目前比较有效的在线监测方法,局部放电检测目前相应有电磁耦合法、超高频法和超声波法、光学测量法等,本文将着重论述这些方法各自的优势与不足,同时对目前发展起来的PD混沌监测方法进行讨论。

关键词:XLPE电缆;在线监测;局部放电;混沌法0引言随着电力系统的飞速发展以及旧城改造工程的进行,电力电缆在电力网络中的应用愈发广泛。

电力电缆的基本结构包括线芯、绝缘层、屏蔽层和保护层四个部分。

其中线芯即导体,是电力电缆中传输电能的部分,是电缆的主要结构。

绝缘层将线芯与外界电气上隔离。

屏蔽层包括导体屏蔽层和绝缘屏蔽层,一般存在于15kV及以上电缆中。

保护层是用来防止外界的杂质和水分的渗入和外力的破坏[1]。

电力电缆按照电压等级分类有低压电缆(35kV及以下输配电线路)、中低压电缆(35kV及以下)、高压电缆(110kV及以上)、超高压电缆(275~800kV)、特高压电缆(1000kV及以上)。

按照绝缘材料电力电缆可以分为塑料绝缘电缆和橡皮绝缘电缆。

其中油纸绝缘电缆应用历史最长。

它安全可靠,使用寿命长,价格低廉。

主要缺点是敷设受落差限制。

塑料绝缘电缆主要用于低压电缆,常用的绝缘材料有聚氯乙烯、聚乙烯、交联聚乙烯。

橡皮绝缘电缆弹性好,适合用于移动频繁弯曲半径小的敷设地点。

我国早期使用的多是油纸绝缘电缆,但自1970 年以来,交联聚乙烯(XLPE)电力电缆得以广泛应用,并逐渐取代了油纸绝缘电缆的地位。

XLPE电缆电气性能优越,具有击穿电场强度高、介质损耗小、载流量大等优点因而得到了广泛的应用。

在线检测电缆故障的方法有很多,如直流分量法、损耗电流谐波分量法、局部放电法等,其中,局部放电法是目前用于现场比较有效的在线检测方法。

高压电缆局部放电实时监测方法研究与应用

高压电缆局部放电实时监测方法研究与应用

高压电缆局部放电实时监测方法研究与应用随着电力电缆在电力系统中越来越广泛应用,其供电的可靠性也越来越受到相关部门和用户的关注,局部放电是导致电缆附件发生故障的主要原因之一,而高压电缆附件局部放电与内部绝缘状况有密切关系。

文章探索了一种新的监测高压电缆绝缘质量的局部放电方法,提出了一种利用超声波和虚拟仪器的高压电缆局部放电实时监测方法,并对该方法的硬件系统和工作原理进行分析。

仿真实验进一步分析了高压电缆内局部放电超声波传播的特性,其结果表明,文章研究方法对高压电缆局部放电进行实时检测是可行的,可以为实现局部放电故障点定位提供了前期准备工作。

标签:高压电缆;局部放电;绝缘;超声法;虚拟仪器1 概述随着电力系统的高速发展,高压电缆在电力系统中的应用范围也逐渐扩大。

高压电缆的基本结构主要包括四个部分,分别为纤芯、绝缘层、屏蔽层和保护层[1]。

在这四部分中,线芯是高压电缆中电流传播的载体,是高压电缆的重要组成部分[2]。

绝缘层起到的是将线芯与隔离的作用。

而屏蔽层分为导体屏蔽层和绝缘屏蔽层,主要存在于15千瓦以上的高压电缆中[3]。

保护层则是保护高压电缆以防止电缆外杂质和环境中水分的渗入以及外力对电缆的损坏。

当高压电缆频繁产生局部放电时,最终使高压电缆的附件绝缘体被击穿[4]。

就目前来看,对高压电缆的局部放电进行实时监测是检测高压电缆安全性能最为广泛和有效的方法[5]。

为此,提出了一种利用超声波和虚拟仪器的高压电缆局部放电实时监测方法,并对该方法的硬件系统和工作原理进行分析。

仿真实验进一步分析了高压电缆内局部放电超声波传播的特性,其结果表明,本文研究方法能有效对高压电缆局部放电进行实时检测。

2 高压电缆附件局部放电在线检测的意义近年来,随着我国经济快速发展,各大中小城市规模不断扩大,电力消费水平逐年增长。

到今年年底,我国电力装机容量已经达到百万千瓦。

明年预计将增加1亿千瓦,整个社会能耗将接近百万千瓦小时。

电力装机容量迅速增加的同时,电网建设和改造在全国范围内广泛实施,据统计,在年底传输线电路总循环长度将达数千公里。

110kV高压电缆的局部放电在线监测

110kV高压电缆的局部放电在线监测

陈 弋 , 张 丹 , 曾宪 乐 1 , 李 旭
CHEN Yi , ZHANG Da n ,Z ENG Xi a n — l e , LI Xu ( 1 . 广西 电网公司南宁供 电局 ,南 宁 5 3 0 0 3 1 ;2 . 长缆电工科 技股 份有 限公 司,长沙 4 1 0 2 0 5 )
Ab s t r a c t : I n o r d e r t o g r a s p t i me l y a n d a c c u r a t e l y t h e s i t u a t i o n o f c a b l e ’ S i n s u l a t i o n f a u l t he t o n - l i n e mo n i t o in r g o f c bl a e l i n e i s
的硬件和软件最终集成在 1 台工控计算机上 ,超高
频 局部 放 电在线 监测 系统 的采 集装 置测试 回路 如 图
1 所示 。
为简单 , 但容易受周围电磁场信号干扰 ; 超高频法是 通过检测 电缆附件局部放电产生的超高频 电磁波信
号判断故障缺陷 , 由于抗干扰能力强 , 对局放信号 比 较敏感 ,所以被广泛应用到各种 电力设备 的缺陷局
摘要 : 为 了及时 、 准确地掌握 电缆绝缘故障情况 , 有必要对 电缆线路进行在线监测。介绍 了超高频局部放 电在线监测系统的 信号采集装置 、 测量原理及数据传输原理。通过运 用该 系统对 1 1 0 k V五凌七线电缆进行局部放 电在线监测 , 准确地找 出了电缆 绝缘 缺陷 , 检测效果较好 。 关键词 : 1 1 0 k V高压 电缆 ; 超高频 ; 局部放电 ; 在线监测
2 0 1 3年第 3 6卷 第 6期

电力电缆局部放电在线监测技术的研究与应用

电力电缆局部放电在线监测技术的研究与应用

电力电缆局部放电在线监测技术的研究与应用发布时间:2021-09-03T15:37:41.100Z 来源:《科学与技术》2021年4月第11期作者:田发英卢峥嵘[导读] 电缆投入运行后,会受到电、热、机械和化学的作用逐渐老化。

在制造中和施工中存在的微小缺陷,田发英卢峥嵘国网新疆电力有限公司检修公司新疆乌鲁木齐 830001摘要:电缆投入运行后,会受到电、热、机械和化学的作用逐渐老化。

在制造中和施工中存在的微小缺陷,也会随着运行时间逐渐发展和恶化。

火电厂内一般主变进线、启备变进线、联络变压器出线以及重要辅机均采用高压电缆,电缆一旦发生故障将导致严重后果。

如重要辅机电缆故障将造成辅机停机,启备变进线电缆出现故障将会造成机组在失去备用电源下运行的情况,主变进线电缆故障会直接导致机组非计划停运。

同时由于电缆处于电缆沟、甚至是直埋于地下,一旦出现问题查找和处理都会相当困难。

同时由于电缆的订货和更换都需较长时间,需根据长度进行订货,订货和生产周期都很长,很难在短时间内进行修复。

关键词:电力电缆;局部放电;在线监测技术;研究与应用引言随着电气设备功率的不断增大,高压已经成为电气设备的标准电压。

与低压设备不同,高压设备在运行过程中,高压电场会对空气中的粉尘进行放电,在此过程中极易发生短路、跳闸等电路安全事故。

为了保证高压电气的安全,需要对其进行实时监测。

为了适应高压监测环境,普遍采用高频信号作为监测信号,因此如何准确识别高频信号成为监测精度的关键。

现有监测方法对高频窄带信号的灵敏度较差,导致整体识别准确度降低,难以更好地应对实际监测过程。

为此,提出新的高压电气设备局部放电过程超高频信号监测方法,并通过实验数据证明了所提方法的有效性。

1电力电缆局部放电在线监测现状在计算机广泛应用之前,对于局部放电信号的评估多数基于放电脉冲特征分析、统计方法以及专家评估[22-23],评估结果带有明显的主观因素。

在设备现场运行中,由于运行工况复杂、噪声环境干扰以及机械结构的阻挡使得放电信号存在阻挡和衰减。

高压电缆接头局部放电检测方法研究

高压电缆接头局部放电检测方法研究

高压电缆接头局部放电检测方法研究
高压电缆接头是电力系统中重要的连接部件,其可靠性对电力系统的稳定运行具有重要影响。

而局部放电是导致电力设备绝缘击穿的主要原因之一,因此对高压电缆接头的局部放电进行检测和监测是十分必要的。

高压电缆接头的局部放电检测方法可以分为两类,一类是在线监测方法,另一类是离线检测方法。

在线监测方法是指在高压电缆接头运行时进行局部放电检测,其优点是能够实时监测接头的状况,及时发现问题。

常用的在线监测方法有电磁波法、电荷法和红外热像法等。

电磁波法是一种非接触式的局部放电检测方法,通过接收和分析电缆接头周围空气中发射的电磁波信号来判断是否存在局部放电现象。

电磁波法具有检测灵敏度高、无需拆卸接头和不干扰电缆运行等优点,但需要专门的电磁波传感器设备。

红外热像法是一种基于红外热像设备的局部放电检测方法,通过测量接头表面的温度分布来判断是否存在局部放电现象。

红外热像法具有快速、无损检测的优点,但只能检测到局部放电产生的热量,无法直接判断局部放电的性质。

高压电缆接头局部放电检测方法有在线监测方法和离线检测方法两类,每种方法都有其适用的场景和特点,根据实际情况选择合适的方法进行检测是保证电缆接头可靠运行的关键。

XLPE电缆接头局部放电紫外光谱吸收在线检测技术

XLPE电缆接头局部放电紫外光谱吸收在线检测技术

XLPE电缆接头局部放电紫外光谱吸收在线检测技术交联聚乙烯(XLPE)电力电缆局部放电,是电缆绝缘介质的一种电气放电,仅局限于电缆绝缘介质的一部分,且只使半导体间的绝缘介质局部桥接,这种放电可能发生或不发生于导体的邻近[1]。

如果XLPE电力电缆存在长时间局部放电,会引起绝缘劣化甚至击穿而导致XLPE电力电缆运行寿命缩短,甚至无法正常运行。

导致XLPE电力电缆局部放电原因有生产工艺瑕疵,安装缺陷和运行过程中的绝缘老化[2]。

基于XLPE电力电缆局部放电所产生的物理现象,如电、光、声、热等现象的研究,发展出了与之相应的各种在线探测方法,包括电检测法、声检测法、光检测法和红外热检测法 [3] 。

其中电检测法是基于两个原理:(1)局部放电伴有一定数量的电荷通过电介质,引起电力电缆接头外部电极的电压变化;(2)每次放电时间很短,这种短脉冲会产生高频电磁辐射。

电检测法包括脉冲电流法、无线电干扰电压法和超高频检测法。

这些技术做为在线检测方法的弊端主要是电信号太弱容易被干扰[3]。

声检测法是利用介质中发生局部放电时,瞬时释放的能将放电部位的介质加热蒸发而产生声波。

使用声音传感器可以探测到局部放电的发生。

但是由于声波在传播过程中衰变畸变严重,声检测法不能反映放电量的大小[4]。

XLPE电力电缆局部放电初始阶段,放电不严重,所以XLPE电力电缆局部放电最好造成严重后果是一个漫长累计过程。

声检测法不利于测量这个累计过程的结果,这是该检测方法的弊端。

光检测法包括使用光纤检测法、可调谐激光光谱吸收法(TDLAS)、荧光法和红外热检测法。

光纤检测法是利用介质中发生局部放电而产生声波时,该声波挤压光纤使得光纤折射率和长度发生变化,从而光谱被调制,通过测量该光谱的变化可以实现放电定位[5]。

可调谐激光光谱吸收法(TDLAS)[6]利用可变波长激光器作为光源,用光纤将激光导入一个光学气体测量池内,并射向位于光学气体测量池一端的凹面反射镜,经反射镜反射和聚焦,激光被聚焦导入第二根光纤,第二根光纤将激光导入光电探测器,光电探测器将激光转换为电信号。

局部放电的在线监测

局部放电的在线监测

局部放电的在线监测一、绝缘内部局部放电在线监测的基本方法局部放电的过程除了伴随着电荷的转移和电能的损耗之外,还会产生电磁辐射、超声、发光、发热以及出现新的生成物等。

因此针对这些现象,局部放电监测的基本方法有脉冲电流测量、超声波测量、光测量、化学测量、超高频测量以及特高频测量等方法。

其中脉冲电流法放电电流脉冲信息含量丰富,可通过电流脉冲的统计特征和实测波形来判定放电的严重程度,进而运用现代分析手段了解绝缘劣化的状况及其发展趋势,对于突变信号反应也较灵敏,易于准确及时地发现故障,且易于定量,因此,脉冲电流法得到广泛应用。

目前,国内不少单位研制的局部放电监测装置普遍采用这种方法来提取放电信号。

该方法通过监测阻抗、接地线以及绕组中由于局部放电引起的脉冲电流,获得视在放电量。

它是研究最早、应用最广泛的一种监测方法,也是国际上唯一有标准(IEC60270)的局放监测方法,所测得的信息具有可比性。

图4-4为比较典型的局部放电在线监测(以变压器为例,图中CT表示电流互感器)原理框图。

图4-4 脉冲电流法监测变压器局部放电原理框图随着技术的发展,针对不同的监测对象,近年来发展了多种局部放电在线监测方法。

如光测量、超高频测量以及特高频测量法等。

利用光电监测技术,通过光电探测器接收的来自放电源的光脉冲信号,然后转为电信号,再放大处理。

不同类型放电产生的光波波长不同,小电晕光波长≤400nm呈紫色,大部为紫外线;强火花放电光波长自<400nm扩展至>700nm,呈桔红色,大部为可见光,固体、介质表面放电光谱与放电区域的气体组成、固体材料的性质、表面状态及电极材料等有关。

这样就可以实现局部放电的在线监测。

同样,由于脉冲放电是一种较高频率的重复放电,这种放电将产生辐射电磁波,根据这一原理,可以采用超高频或特高频测量法监测辐射电磁波来实现局部放电在线监测。

日本H.KAwada等人较早实现了对电力变压器PD的声电联合监测(见图4-5)。

高压电缆终端在线局部放电测试分析

高压电缆终端在线局部放电测试分析
( .El c rc P we s a c n tt t fGu n d n o r Grd Co p. 1 e t i o rRe e r h I s i eo a g o g P we i r ,Gu n z o ,Gu n d n 0 8 u a gh u a g o g 5 0 0,Ch n ;2 1 i a .Gu n - a g d n we i r ,Gu n z o o g Po r Grd Co p. a g h u,Gu n d n 1 0 0,Ch n a g o g 5 06 i a;3.S a e Ke b r t r f El c rc l I s l t n a d t t y La o a o y o e t ia n u a i n o P we u p n ,Xi n J a t n ie st o rEq i me t ’ io o g Un v r i a y,Xi n,S a x ,71 0 9 ’ a h n i 4 ,Ch n ) 0 ia
Anay i n On—i e Pa ta s h r eTe to l sso ln r ilDic a g s n HV b eTe m i a s Ca l r n l
WANG Ho gbn , I a -a2 L Yu n , NG Yu ny a C n n -i L nj o , A a ME a —u n , AO We 3 Du i
Ab ta t sr c :Thi p p rito u e s fh g r q e c ( ) a d uta ih fe u n y ( - )i a ta i h ret s o s a e n r d c sueo ih fe u n y HF n lr hg r q e c UI F np ril s a g e t n HV I d c
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

交流高压电缆局部放电的在线监测陈敬德,1140319060;指导老师:李旭光(上海交通大学电气工程系,上海,200240)摘要:在XLPE电缆投入运行后,由于绝缘的老化变质、过热、机械损伤等,使得电缆在运行中绝缘裂化,为了防止由于绝缘劣化造成电缆运行事故,需要对电缆的运行状态进行即时监测,监测系统控制着电缆及其附件的质量。

局部放电是目前比较有效的在线监测方法,局部放电检测目前相应有电磁耦合法、超高频法和超声波法、光学测量法等,本文将着重论述这些方法各自的优势与不足,同时对目前发展起来的PD混沌监测方法进行讨论。

关键词:XLPE电缆;在线监测;局部放电;混沌法0引言随着电力系统的飞速发展以及旧城改造工程的进行,电力电缆在电力网络中的应用愈发广泛。

电力电缆的基本结构包括线芯、绝缘层、屏蔽层和保护层四个部分。

其中线芯即导体,是电力电缆中传输电能的部分,是电缆的主要结构。

绝缘层将线芯与外界电气上隔离。

屏蔽层包括导体屏蔽层和绝缘屏蔽层,一般存在于15kV及以上电缆中。

保护层是用来防止外界的杂质和水分的渗入和外力的破坏[1]。

电力电缆按照电压等级分类有低压电缆(35kV 及以下输配电线路)、中低压电缆(35kV及以下)、高压电缆(110kV及以上)、超高压电缆(275~800kV)、特高压电缆(1000kV及以上)。

按照绝缘材料电力电缆可以分为塑料绝缘电缆和橡皮绝缘电缆。

其中油纸绝缘电缆应用历史最长。

它安全可靠,使用寿命长,价格低廉。

主要缺点是敷设受落差限制。

塑料绝缘电缆主要用于低压电缆,常用的绝缘材料有聚氯乙烯、聚乙烯、交联聚乙烯。

橡皮绝缘电缆弹性好,适合用于移动频繁弯曲半径小的敷设地点。

我国早期使用的多是油纸绝缘电缆,但自1970 年以来,交联聚乙烯(XLPE)电力电缆得以广泛应用,并逐渐取代了油纸绝缘电缆的地位。

XLPE电缆电气性能优越,具有击穿电场强度高、介质损耗小、载流量大等优点因而得到了广泛的应用。

在线检测电缆故障的方法有很多,如直流分量法、损耗电流谐波分量法、局部放电法等,其中,局部放电法是目前用于现场比较有效的在线检测方法。

XLPE电缆发生局部放电时一般会产生电流脉冲、电磁辐射、超声波等现象,根据检测物理量的不同,局部放电检测相应有电磁耦合法、超高频法和超声波法等,其中,电磁耦合法由于传感器灵敏度高、安装方便,且与电缆无电气连接,是目前应用最为广泛的一种方法。

本文主要论述了XLPE电缆局部放电在线监测的一些基本方法的优势与缺陷,并对电缆局部放电的混沌监测方法进行了讨论[2]。

1 PD在线监测的意义以及技术难点局部放电,是绝缘介质中的一种电气放电,这种放电仅限制在被测介质中一部分且只使导体间的绝缘局部桥接,这种放电可能发生或可能不发生于导体的邻近。

电力设备绝缘中的某些薄弱部位在强电场的作用下发生局部放电是高压绝缘中普遍存在的问题。

虽然局部放电一般不会引起绝缘的穿透性击穿,但可以导致电介质(特别是有机电介质)的局部损坏。

若局部放电长期存在,在一定条件下会导致绝缘劣化甚至击穿。

对电力设备进行局部放电试验,不但能够了解设备的绝缘状况,还能及时发现许多有关制造与安装方面的问题,确定绝缘故障的原因及其严重程度。

因此,对电力设备进行局部放电测试是电力设备制造和运行中的一项重要预防性试验。

基于对发生局部放电时产生的各种电、光、声、热等现象的研究,局部放电检测技术中也相应出现了电检测法和光测法、声测法、红外热测法等非电量检测方法。

但每种方法都有自身的优势与局限性。

抑制噪声、提高传感器的灵敏度是推广XLPE电力电缆局部放电在线监测技术的关键,如何分析局放测试数据、识别局放源类型乃至精确定位局放源,需要更多的现场检测经验和理论研究。

2 传统PD在线监测方法由于电缆故障主要发生在电缆附件位置,而本体较少发生故障。

因此,电缆在线检测主要检测电缆接头位置。

在线PD 检测的主要问题有三:一是传感器很难接触到带电导体甚至不易接触到金属护套;二是传感点分布在长电缆上,因此它们检测的信号在传输过程中容易变形扭曲;三是干扰信号的存在。

测量局放的辐射场常用敏感的场传感器。

这些传感器通常放在靠近电缆接头的外半导电层上,常用铜或铝导体作为内置传感器,半导电层在导体和绝缘之间起一个连接和均匀电场的作用,防止电场的加强,防止造成局放或早期故障。

内置传感器的缺点在于不够便携,而便携式的传感器必须安装在电缆的外部,并通过电感耦合或电容耦合的方法与电介质耦合。

这样的传感器安装最大问题在于它不仅仅捕捉内部信号,也捕捉外部干扰。

常用的在线PD 检测手段有:高频电流法,电容耦合传感器,声发射法,超高频UHF 法,甚高频VHF 法等。

此外还有一些不太常用的手段,例如定向偶合法、偏振光测量法等。

2.1电容耦合法电容耦合法也是电测法的一种,其具体的方法是从距离接头比较近取一段电缆,把电缆的外护套绝缘层去电,电极是在外半导电层的表面裹上一导电体,这样就构成了容性电机,在发生放电时,就可以通过耦合,然后测量脉冲电流信号。

就可以如图 2.1 所示。

我们可以看到,两个阻抗(同轴电缆和绝缘层)是并联在一起,这种测量方法的最大优点就是不会损坏外半导电层和电缆绝缘层,而且对电缆信号传输几乎没有干扰。

传感器的信号噪声比与剥去护套的长度、金属箔和护套之间的长度以及金属箔长度这三者之间是有关联的,通过调整可以得到理想的信噪比值[3]。

中心导体图2-1电容偶合法示意图常用的电容耦合传感器有内置式和外置式。

内置式和外置式的相比较外置式的更有优势,外置式的电极可以做在护套表面,对电缆的绝缘没有影响,这样也会使安装比较方便,这样外置式的既可以用在在线局放检测也可以用在现场局放监测。

在国内有些科研单位已经研发出了电容耦合传感器,根据电容耦合的原理,西安交通大学开发了可以通过监测电缆附件的传感器,该传感器为位置式,并通过实验对220 千伏交联聚乙烯电缆进行了局部放电测量。

这一传感器的生产过程是:一、用刀具剥开屏蔽层和电缆外护套,把一导体环放到屏蔽层和外护套之间,并用绝缘材料固定住导体环,使之紧贴外半导体层,然后用法兰连接导体断层。

其带宽也不错,可以到500MHZ。

有一些研究院、电力设备生产企业和高校也进行了这方面的研究,例如华中科技大学,国家电网科学研究院、兴迪公司等,有的产品通过实验也取得了不错的结果[4]。

国外对电容耦合传感器技术比国内成熟很多。

美国麻省理工大学开发出了内置VHF 传感器。

其加工过程是:剥开100mm宽的金属屏蔽层,然后用40mm宽的薄金属裹在电缆的外半导电层,这样薄金属与半导电层构成耦合电容,当发生放电时,信号通过薄金属和屏蔽层传输出,它在正常运行时带宽为 300MHz ,抗干扰效果也比较好。

还有就是韩国也是根据这一理论开发出一种检测仪,它携带方便抗干扰效果好,灵敏度高,已到达1pC,带宽为200kHz-300MHz ,现场使用效果较好。

2.2电感耦合法 根据电感耦合理论,现在已开发出多种传感器,罗斯(Rogowski )线圈是在其中最具有代表性。

在电缆发生放电时,会产生频率较高的电流信号,信号通过导线传输,一边以电流信号传输也转化为电磁波,不断的向各个方向辐射能量,正是根据电磁耦合这一原理,研究出了罗斯线圈传感器。

罗斯线圈传感器结构图 2-2 与罗斯线圈传感器等效电路图 2-3。

X1X2信号处理单元C0R0hD1D2图2-2罗斯线圈结构图在图 2-3 中,M 是原边与副边之间的互感,由罗斯线圈等效电路图可以清晰的看到,左边即为电流传感器,在线路之间也会形成相互干扰,用Cs 表示,罗斯线圈自感用 Ls 表示,线圈的等效电阻 Rs 表示,C0,R0 为线圈的取样阻抗。

在实际应用中,磁芯的选择也很重要,不同的磁芯对生产出的传感器影响很大,我们通常使用的是镍锌铁氧体,用其做出的电感耦合器灵敏度高,可达 3PC ,工作带宽大,其频率带可从 20KHZ 到100MHZ [4]。

MLsRs C0U0(t)i(t)CsUi(t)图2-3罗斯线圈等效电路根据罗果夫斯基(Rogowski )线圈原理生产的电磁耦合传感器也分为内置式传感器和外置式传感器。

外置式和内置式也是有一定不同,主要体现在两个方面:一是两传感器的大小有所差异;二是在安装时放置的位置不同;外置式的传感器在尺寸方面比内置式大,灵敏度方面内置式比外置式要好,外置式的抗干扰性也不如内置式,其安装的位置在电缆接头内部,与屏蔽层的导体相连接,安装相比内置式简单方便。

由于外置式传感器安装比较复杂,所以在设计时大多设计成开口,这样的设计也方便我们携带,如图 2-4 所示,同时开口式的设计在一定程度上改善了安装难度,直接打开口,套在电缆本体外部,这样通过电缆的电流就可以通过传感器检测到信号[5]。

由图中我们可以看到,外置式传感器一般做的不够精巧,测量的精度不高,而且对外界的电磁环境比较敏感,会因为周围环境的干扰而信号失真。

如果在以后能够解决这些问题,还是比较有很大的工程实际应用前景的。

图2-4 外置式罗斯线圈传感器目前,我国对罗果夫斯基(Rogowski )线圈传感器的产品研发以及在工程实际上的应用很广泛。

以下科研单位和高校都开展过相关的研究,并设计出一些实验性产品,如国家电网电力科学研究院,华中科技大学和西安交通大学,武汉大学,重庆大学等[6]。

在部分区域电力公司也对这类局放传感器进行了实际工程运用,收集了一些现场运行数据,像国家电网北京电力公司和南方电网云南分公司都有试运行,实际运行的效果还是有参考价值的。

2.3超声法和超声传感器在非电量局部放电测量的方法中超声法是研究的比较早的一种,目前已经成功应用在局部放电监测的工程实际中。

超声法的核心器件就是超声传感器,大多采用的是压电晶体传感器,它的工作原理是把接收到的超声信号转换成电量,在传感器的外端连接分离放大器,把声音信号放大,再经过光电转换模块,再通过光纤将转换后的信号传输到数据采集卡里,然后在与采集相连接的工控机上显示波形数据。

因为局部放电产生的超声信号特别小,这样在传输的环节上衰减会对原始信号影响较大,这样导致该方法并没有得到推广,最近几年,由于技术的进步,传感器的性能和信号分离放大器的性能也大幅进步,例如长沙鹏翔科技生产的PXPA/PXPB 系列声发射前置放大器,其体积较小,抗撞击,噪音低,高带宽,还有光纤技术的发展这些技术的共同发展也使超声法的测量灵敏度有了大幅提升,也使超声法测局部放电重新得到关注。

在电缆中,发生局部放电时产生的声音信号频带很宽,超声传感器和相连接的分离放大器就放置在需要监测的电缆附近,当有局放发生就会检测到信号[7]。

而且,超声传感器它有设定好的接收信号的带宽带,这也使外界的环境或者电缆和其他设备运行产生的干扰影响降到最低,保证了检测精度,所以超声监测法在电缆运行现场有很好的应用。

相关文档
最新文档