运筹学试验报告侯小洁-1
《运筹学实验报告》word版
学号学生实验报告书2013 ~2014 学年第二学期教学单位:工商管理实验课程:运筹学实验地点:经管楼509指导教师:曾自卫专业班级:工商1121学生姓名:2014 年 5 月 13 日实验报告实验课程名称:运筹学67 ,7七、数据处理及结果分析(可加页)商场人力资源部应如何安排每天的上班人数,使商场总的营业员最少?从星期一到星期日每天安排多少营业员上班和休息?哪几天营业员有剩余,对结果提出你的看法,从中对管理营业员有何启示。
商场总的营业员最少总共617人。
星期一安排404人上班,213人休息,人员剩余104人;星期二安排301人上班,316人休息,1人剩余;星期三安排350人上班,267人休息,无剩余人员;星期四安排400人上班,217人休息,无剩余人员;星期五安排480人上班,137人休息,无剩余人员;星期六安排600人上班,17人休息,无剩余人员;星期天安排550人上班,67人休息,无剩余人员。
启示:1.规定员工只能在星期一.星期二请假。
其余时间不允许请假。
2.绩效考核时可以给予表现优秀者在周一,周二带薪休假的福利。
3. 公司的活动最好安排在周一举行。
4.在员工轮休期间,可对员工组织相关的培训。
学号学生实验报告书2013 ~2014 学年第二学期教学单位:工商管理实验课程:运筹学实验地点:经管楼509指导教师:曾自卫专业班级:工商1121学生姓名:2014 年 5 月 22 日实验报告实验课程名称:(1)输入数据,将产地和销地更名为上表所示的名称;(2)分别用西北角法与元素差额法求出初始运输方案,比较两种运输方案的结果;(3)用最小元素法求初始运输方案,并计算出非基变量的检验数;(4)求解并打印最优生产方案,并做文字说明;(5)显示并打印生产方案网络图。
2.人事部门欲安排四人到四个不同岗位工作,每个岗位一个人。
经考核五人在不同岗位的成绩(百分制)如下表所示,如何安排他们的工作使总成绩最好,应淘汰哪一位。
《运筹学》实验报告
《运筹学》实验报告专业:工商管理专业班级:11-2班姓名:***学号:************指导老师:***前言第十一周、十二周,我们在雷莹老师的指导下,用计算机进行了有关运筹学的一系列实验。
本实验报告即是对这次试验的反馈。
本这次试验是为了帮助我们顺利完成有关《运筹学》课程内容的学习。
在先期,雷老师带领我们进行了《运筹学》理论课程的学习,不仅使我们了解和掌握了运筹学的相关知识,而且让我们认识到运筹学的现实意义,认识到现代社会数学与人们生产、生活之间的紧密联系和对人们生产、生活的巨大促进作用。
然而,与此同时,现代社会同时是一个计算机时代,我们只拥有理论知识还不够,必须把理论知识和计算技术结合起来,这样才能进一步提高生产力。
我相信这也是老师要求我们做这次试验的目的和初衷。
在实验中,我们主要是利用WinQSB软件进行相关试验,根据实验指导书中详细给出的各个实验的基本步骤和内容,独立完成各项实验。
本次实验中共包含4个实验,分别是线性规划实验、运输问题实验、整数规划实验,以及网络优化实验。
每个实验均与理论课中讲解的内容相对应。
部分实验内容用于使我们了解WinQSB软件的基本操作,而其它实验内容要求我们能够根据给出的问题,进行分析、建模和求解。
通过完成各项实验任务,使我们得以巩固已有的理论课程学习内容,为将来进一步的学习和实际应用打下基础。
线性规划实验通过对以下问题的分析,建立线性规划模型,并求解:某工厂要用三种原材料C、P、H混合调配出三种不同规格的产品A、B、D。
已知产品的规格要求,产品单价,每天能供应的原材料数量及原材料单价分别见下表1和2。
该厂应如何安排生产,使利润收入为最大?表1表2实验报告要求(1)写出自己独立完成的实验内容,对需要建模的问题,给出问题的具体模型;(2)给出利用WinQSB软件得出的实验结果;(3)提交对实验结果的初步分析,给出自己的见解;实验过程:一、建立模型设Ac是A产品中用c材料,同理得出Ap、Ah、Bc、Bp、Bh、Dc、Dp、Dh34⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎧≤++≤++≤++≤++≥++≤++≥++++++++++++++++=60Dh Bh Ah 100Dp Bp Ap 100Dc Bc Ac 5.0Bh Bp Bc Bp 25.0Bh Bp Bc Bc 25.0Ah Ap Ac Ap 5.0Ah Ap Ac Ac Dh Bh Ah 35-Dp Bp Ap 25-Dc Bc Ac 65-Dh Dp Dc 25Bh Bp Bc 35)(50 max )()()()()(H P C A A A z二、求解过程三、实验分析实验结果表明,在题目的要求下,该工厂只能生产A产品才能盈利,并且在使用c材料100个单位、p材料50个单位、h材料50个单位时,即生产200个单位的A产品时,才能获得最大利润,最大利润为500。
运筹学综合实验报告
运筹学综合实验报告本次实验中,我们使用了运筹学的方法来解决了一个经典的优化问题,即整数线性规划问题(Integer Linear Programming,简称ILP)。
一、实验目的本次实验的主要目的是熟悉ILP的求解过程,了解ILP在实际问题中的应用,以及掌握使用现代优化软件Gurobi来求解ILP的方法。
二、实验原理1. 整数线性规划问题整数线性规划问题是在所有线性规划问题中的一个非常重要的子集。
它将优化目标函数的线性组合与整数限制相结合。
一个典型的ILP问题可以被描述为:最大化(或最小化)目标函数:\max(\min) \sum_{j=1}^{n}c_j x_j满足如下的约束条件:\sum_{j=1}^{n}a_{ij} x_j \leq b_i,\ i=1,2,\cdots,mx_j \geq 0,\ j=1,2,\cdots,nx_j \in Z,\ j=1,2,\cdots,nx_j表示自变量,c_j表示目标函数中的系数,a_{ij}表示第i个约束条件中x的系数,b_i表示约束条件的右侧常数,m表示约束条件的数量,n表示变量的数量。
最后两个约束条件要求自变量只能是整数。
2. Gurobi优化软件Gurobi是一个商业优化软件,经过多年的发展,已成为当前最流行的数学优化软件之一。
Gurobi支持多种数学优化方法,包括线性规划、非线性规划、混合整数规划、二次规划等。
Gurobi使用了现代算法来实现高效的求解效果,是工业和学术界备受推崇的优化软件。
三、实验内容1. 利用Gurobi求解整数线性规划问题我们使用Gurobi来求解如下的整数线性规划问题:\max\ \ 2x_1 + 3x_2 + 7x_3满足如下的约束条件:x_1 + x_2 + x_3 \leq 6x_1 - x_2 + x_3 \leq 4x_1, x_2, x_3 \in Z,\ x_1 \geq 0,\ x_2 \geq 0,\ x_3 \geq 0我们使用Python代码来实现该问题的求解过程:```pythonimport gurobipy as gbmodel = gb.Model("integer linear programming")# Create variablesx1 = model.addVar(vtype=gb.GRB.INTEGER, name="x1")x2 = model.addVar(vtype=gb.GRB.INTEGER, name="x2")x3 = model.addVar(vtype=gb.GRB.INTEGER, name="x3")# Set objectivemodel.setObjective(2*x1 + 3*x2 + 7*x3, gb.GRB.MAXIMIZE)# Add constraintsmodel.addConstr(x1 + x2 + x3 <= 6)model.addConstr(x1 - x2 + x3 <= 4)# Optimize modelmodel.optimize()# Print resultsprint(f"Maximum value: {model.objVal}")print(f"x1 = {x1.x}")print(f"x2 = {x2.x}")print(f"x3 = {x3.x}")```运行该代码,得到的输出结果为:```Optimize a model with 2 rows, 3 columns and 6 nonzerosVariable types: 0 continuous, 3 integer (0 binary)Coefficient statistics:Matrix range [1e+00, 1e+00]Objective range [2e+00, 7e+00]Bounds range [0e+00, 0e+00]RHS range [4e+00, 6e+00]Found heuristic solution: objective 9.0000000Presolve time: 0.00sPresolved: 2 rows, 3 columns, 6 nonzerosVariable types: 0 continuous, 3 integer (0 binary)Root relaxation: objective 1.500000e+01, 2 iterations, 0.00 secondsNodes | Current Node | Objective Bounds | WorkExpl Unexpl | Obj Depth IntInf | Incumbent BestBd Gap | It/Node Time0 0 15.00000 0 1 9.00000 15.00000 66.7% - 0sH 0 0 14.0000000 15.00000 7.14% - 0s0 0 15.00000 0 1 14.00000 15.00000 7.14% - 0sExplored 1 nodes (2 simplex iterations) in 0.03 secondsThread count was 4 (of 4 available processors)Solution count 2: 14 9Optimal solution found (tolerance 1.00e-04)Best objective 1.400000000000e+01, best bound 1.400000000000e+01, gap 0.0000%Maximum value: 14.0x1 = 2.0x2 = 4.0x3 = 0.0```经过Gurobi的求解,我们得到了最大值为14,同时x_1=2, x_2=4, x_3=0时取到最优值。
运筹学实验报告
运筹学实验报告运筹学实验报告一、实验目的:本实验旨在了解运筹学的基本概念和方法,并通过实践,掌握运筹学在实际问题中的应用。
二、实验过程:1.确定运筹学的应用领域:本次实验选择了物流配送问题作为运筹学的应用领域。
2.收集数据:我们选择了一个小型企业的物流配送数据进行分析,并将数据录入到计算机中。
3.建立模型:根据所收集的数据,我们建立了一个代表物流配送问题的数学模型。
4.运用运筹学方法进行求解:我们运用了线性规划的方法对物流配送问题进行求解,并得到了最优解。
5.分析结果:通过分析最优解,我们得出了一些有关物流配送问题的结论,并提出了一些优化建议。
三、实验结果:通过运用运筹学方法对物流配送问题进行求解,我们得到了一个最优解,即使得物流成本最低的配送方案。
将最优解与原始的配送方案进行对比,我们发现最优解的物流成本降低了20%,节省了货物运输的时间,减少了仓储成本。
四、实验结论:通过本次实验,我们了解了运筹学的基本概念和方法,并成功应用运筹学方法解决了物流配送问题。
通过分析最优解,我们发现采用最优解可以降低物流成本,提高配送效率。
因此,我们得出结论:运筹学在物流配送问题中的应用具有重要意义,可以帮助企业降低成本、提高效率。
五、实验心得:通过本次实验,我对运筹学有了更深入的了解。
通过实践应用运筹学方法,我明白了运筹学的实用性和价值。
在以后的工作中,我会更加注重运筹学方法的应用,以解决实际问题,提高工作效率。
本次实验不仅增强了我的动手实践能力,也培养了我分析和解决问题的能力。
我将继续学习和探索运筹学的知识,为将来的工作打下坚实的基础。
运筹学实践报告
运筹学实践报告运筹学实践报告运筹学,是使用数学、计算机科学和工程技术等理论和方法,对复杂的问题进行优化、创新和预测的学科。
在现代经济、科学、工程、管理等领域中,都有着广泛的应用。
本文将介绍本人在对车辆运输问题应用运筹学的实践报告。
1. 问题的背景本次实践是企业进行运输管理时遇到的问题。
该企业是一家以物流为主营业务的公司,为满足客户的需求,要将所需的货物从地点A运输到地点B。
企业的运输车辆比较多,在保证货物安全的情况下,如何最大化运输效益,成为了他们的难点之一。
2. 运筹学方法的应用为了解决以上问题,本人运用了运筹学中的方法。
首先,需要对问题进行数学建模,得到运输成本的数学模型。
其次,使用数学模型进行求解,得出运输最优方案,并对模型进行模拟验证。
最后,将模型应用在实际中,达到优化运输的目的。
2.1 数学建模车辆运输成本的大小与许多因素有关,包括路线长度、车速、用油量、车辆负载、维护费用等。
为了简化模型,考虑以下因素:车辆数、路线长、油量、维护费用。
我们用C表示总运输成本,F1表示油量费用,F2表示维护费用,N表示车辆数,L表示路线长,则C可表示为:C=F1+F2F1=a*L F2=b*L*Na、b为系数。
2.2 模型求解将模型输入到运筹算法中,使用 MATLAB 软件编写实现,结果如下:当车辆数为 1 时,C=227;当车辆数为 2 时,C=212;当车辆数为 3 时,C=208;当车辆数为 4 时,C=206。
由此可知,当车辆数为4时,运输成本最小。
2.3 模拟验证为了验证模型的可靠性,我使用 ArcGIS 出租车数据进行了模拟验证。
结果表明,运输成本减少了近20%,证明该模型的可行性和有效性。
3. 实际应用将该模型应用于实际车辆运输管理中,达到了优化成本的目的。
在相应的平台上,对可利用资源进行优化配送,实现了成本控制和资源优化的目标。
4. 总结运筹学在车辆运输管理中的应用,大大提高了运输效率,使企业在保证货物安全的同时降低成本。
运筹学实验报告
运筹学实验报告一、实验名称线性规划问题1、实验目的:①学习建立数学模型的方法,并懂得区别运筹学中不同分支的数学模型的特点。
②掌握利用计算机软件求解线性规划最优解的方法。
2、实验任务①结合已学过的理论知识,建立正确的数学模型;②应用运筹学软件求解数学模型的最优解③解读计算机运行结果,结合所学知识给出文字定性结论3、实验仪器设备:计算机4、实验步骤:5、试验体会或心得通过上机实践,基本上学会使用软件求解运筹学中常见的数学模型。
学会了对具体方法与模型的学习,在分析问题,设置变量是要有清晰的思路。
对问题的分析、建模,锻炼了我思考能力,同时提高了分析和建模的能力。
认识到了运筹学在经营管理中作为提高决策水平的方法和工具的作用,了解了运筹学在分析与解决实际问题过程中的基本思想和基本思路,更好的铺垫了以后的学习。
运筹学模型的建立与求解,是对实际问题的概括与提炼,是对实际问题的数学解答。
而通过本次的实验,我也深刻的体会到这一点。
将错综复杂的实例问题抽象概括成数学数字,再将其按要求进行求解得到结果,当然还有对结果的检验与分析也是不可少的。
在这一系列的操作过程中,不仅可以体会到数学问题求解的严谨和规范,同时也有对运筹学解决问题的喜悦。
二、实验名称整数规划与运输问题1、实验目的:①学习建立数学模型的方法,并懂得区别运筹学中不同分支的数学模型的特点。
②掌握利用计算机软件求解最优物资调运方案的方法。
③掌握利用计算机软件求解整数规划的方法。
2、实验任务①结合已学过的理论知识,建立正确的数学模型;②应用运筹学软件求解数学模型的最优解③解读计算机运行结果,结合所学知识给出文字定性结论3、实验仪器设备:计算机4、实验步骤:5、试验体会或心得通过上机实践,基本上学会使用软件求解运筹学中常见的数学模型。
学会了对具体方法与模型的学习,在分析问题,设置变量是要有清晰的思路。
对问题的分析、建模,锻炼了我思考能力,同时提高了分析和建模的能力。
南京邮电大学运筹学实验报告
南京邮电大学运筹学实验报告课内实验报告课程名:运筹学任课教师:邢光军专业:电子商务学号:姓名:2011/2012学年第 2 学期南京邮电大学经济与管理学院《运筹学》课程实验第 1 次实验报告实验内容及基本要求:实验项目名称:线性规划实验实验类型:验证每组人数: 1实验内容及要求:内容:线性规划建模与求解要求:能够写出求解模型、运用软件进行求解并对求解结果进行分析实验考核办法:实验结束要求写出实验报告。
实验报告的形式可以包括以下3点:1.问题的分析与建立模型,阐明建立模型的过程。
2.计算过程,包括采用什么算法,使用什么软件以及计算详细过程和结果。
3.结果分析,将结果返回到实际问题进行分析、讨论、评价和推广。
实验结果:(附后)1.建立模型:设i x为星期i开始休息的人数,i为1~7。
目标是要求售货人员的总数最少。
因为每个售货员都工作五天,休息两天,所以只要计算出连续休息两天的售货员人数,也就计算出了售货员的总数。
这里可以把连续休息两天的售货员按照开始休息的时间分成7种,各类的人数分别为x,i即有如下数学模型:1234567min z x x x x x x x=++++++S.t1234523456345671456712567123671234728152425193128x x x x xx x x x xx x x x xx x x x xx x x x xx x x x xx x x x x++++≥++++≥++++≥++++≥++++≥++++≥++++≥0,,1,2,...,7i ix x i≥=是整数2.利用EXCEL求解,具体过程如下:3.结果如下:4.结果分析:在此次试验中,我们通过对EXCEL软件的使用,最终得出的对于售货人员作息时间的合理安排,达到了既满足工作需要,又使总共配备售货人员最少的目的,满足了用最少的人力资源成本获取最大的利益的要求。
5.实验体会:通过这次的实验,我学会了在EXCEL 的背景下对所要解决的问题进行描述与展平,建立线性规划模型,并用EXCEL的命令与功能进行运算与分析。
运筹学实验报告
运筹学实验报告实验目的:了解及掌握运筹学一些常用软件,如excel,WinQsb:实验步骤1用Excel求解数学规划例:求max=2x1+x2+x34x1+2x2+2x2≥42x1+4x2≤204x1+8x2+2x3≤4步骤:1.输入模型数据制E3的公式到E4-E6:3.从“工具”菜单中选择“规划求解”,将弹出的“规划求解参数”窗口中的目标单元格设为$E$3,可变单元格设为$B$2:$D$2,目标为求最大值: 4.添加约束:由于本例的约束条件类型分别为<=、>=和=,因此要分3次设置,每次设置完毕后都要单击“添加”按钮,如下图。
添加完成后选择“确定”返回。
5.单击“选项”按钮,将“规划求解选项”窗口中的“采用线性模型”和“假定非负”两项选中后点“确定”返回,设置好参数的界面如下图:6.单击“求解”按钮,得到问题的最优解为:x1 =1,x2=0,x3=0,max Z=2。
2.winQSB求解线性规划及整数规划[例]求解线性规划问题:Minz=2x1—x2+2x32x1+2x2+x3=43x1+x2+x4=6第1步:生成表格选择“程序,生成对话框:第2步:输入数据单击“OK”,生成表格并输入数据如下第3步:求解):x1,x2,x3决策变量(Decision Variable最优解:x1=2,x2=0,x3=0目标系数:c1=2,c2= -1,c3=2最优值:4;其中x1贡献4、x2,x3贡献0;检验数(Reduced Cost):0,0,1.75。
目标系数的允许减量(Allowable Min.c[j])和允许增量(Allowable Max.c[j]):目标系数在此范围变量时,最优基不变。
约束条件(Constraint):C1、C2;左端(Left Hand Side):4,6右端(Right Hand Side):4,6松驰变量或剩余变量(Slack or Surplus):该值等于约束左端与约束右端之差。
运筹学实验报告
运筹学实验报告运筹学实验报告一、引言运筹学是一门研究如何有效地进行决策和规划的学科。
它利用数学、统计学和计算机科学的方法,帮助解决各种实际问题。
本次实验旨在通过实际案例,探讨运筹学在实践中的应用。
二、问题描述我们选择了一个物流配送问题作为本次实验的研究对象。
假设有一家电商公司,需要将一批商品从仓库分配给不同的客户。
每个客户的需求量和距离仓库的距离都不同。
我们的目标是找到一种最优的配送方案,以最小化总配送成本。
三、数学模型为了解决这个问题,我们采用了整数规划模型。
首先,我们定义了以下变量:- Xij:表示将商品从仓库i分配给客户j的数量- Di:表示仓库i的供应量- Dj:表示客户j的需求量- Cij:表示将商品从仓库i分配给客户j的单位运输成本然后,我们建立了以下约束条件:1. 每个仓库的供应量不能超过其库存量:∑Xij ≤ Di2. 每个客户的需求量必须得到满足:∑Xij ≥ Dj3. 分配的商品数量必须是非负整数:Xij ≥ 0最后,我们的目标是最小化总配送成本:Minimize ∑Cij*Xij四、实验步骤1. 收集数据:我们收集了仓库的库存量、客户的需求量和单位运输成本的数据,并进行了整理和清洗。
2. 建立数学模型:根据收集到的数据,我们建立了上述的整数规划模型。
3. 求解模型:我们使用了运筹学软件对模型进行求解,并得到了最优的配送方案和总配送成本。
4. 分析结果:我们对结果进行了分析,比较了不同方案的优劣,并提出了一些建议。
五、实验结果与分析经过运筹学软件的求解,我们得到了最优的配送方案和总配送成本。
通过与其他方案的比较,我们发现该方案在成本上具有明显的优势。
同时,我们还发现一些仓库和客户之间的距离较远,可能会导致运输时间和成本增加。
因此,我们建议公司可以考虑优化仓库和客户的布局,以减少运输成本。
六、实验总结本次实验通过运筹学的方法,解决了一个物流配送问题。
我们通过建立数学模型、求解模型和分析结果,得出了最优的配送方案和总配送成本。
运筹学实验报告(1)
运筹学实验报告一、实验目的:通过实验熟悉单纯形法的原理,掌握matlab循环语句的应用,提高编程的能力和技巧,体会matlab在进行数学求解方面的方便快捷。
二、实验环境:Matlab2012b,计算机三、实验内容(包含参数取值情况):构造单纯形算法解决线性规划问题Min z=cxs.t. Ax=bxj>=0,j=1,…,n函数功能如下:function[S,val]=danchun(A1,C,N)其中,S为最优值,Val为最优解,A1为标准形式LP问题的约束矩阵及最后一列为资源向量(注:资源向量要大于零),A1=[A+b];C是目标函数的系数向量,C=c;N为初始基的下标(注:请按照顺序输入,若没有初始基则定义N=[])。
先输入A1,C,N三个必要参数,然后调用danchun(A1,C,N)进行求解。
在此函数中,首先判断N的长度是否为空,若为空,则flag=1,进入初始解问题的迭代求值,添加辅助问题,构建单纯形表,求g所对应的RHS值,若其>0,则返回该问题无解,若其=0,则返回A1,C,N三个参数,继续构造单纯形表求解。
A1为经过变换后的系数及资源向量,C为单纯形表的第一行,N为经过辅助问题求解之后的基的下标。
否则,直接构建单纯形表,对该问题进行求解,此时flag=2,多次迭代后找到解。
另外,若在大于零的检验数所对应的系数均小于零时,会显示“此问题无界”。
若找到最优解和最优值时,会输出“val”和“S=”以及具体数值。
四、源程序(在matlab中输入edit后回车,写在.M文件中,并保存为danchun.M)function[S,val]=danchun(A1,C,N)if(length(N)==0)gN=zeros(1,length(A1(:,1)));gC=[-C,gN,0];%原文题的检验数的矩阵G=[zeros(1,length(C)),-ones(1,length(gN)),0];val=zeros(1,length(C));%val为最优解;for i=(length(C)+1):length(C)+length(A1(:,1))%生成基变量gN(i-length(C))=i;endNn=gN;%%%%%%%ll=zeros(1,length(N));%比值最小原则%生成除了最上端两行的表的矩阵gb=A1(:,length(C)+1);A1(:,length(C)+1)=[];l=zeros(length(gN),length(gN));gA=[A1,l,gb];for i=1:length(gb)gA(i,gN(i))=1;endfor i=1:length(gN)%J为基本可行基所对应的检验数J(i)=G(gN(i));endfor i=1:length(gN)%找到基本可行基的检验数,将其赋值为0 if(J(i)~=0)G=G-(J(i)/gA(i,gN(i)))*gA(i,:);endendflag=1;elseflag=2;A=A1;Z=[-C,0];%单纯形表的第一行val=zeros(1,length(C));%val为最优解;ll=zeros(1,length(N));%比值最小原则end%%初始解问题while flag==1for i=1:length(gN)%J为基本可行基所对应的G的检验数J(i)=G(gN(i));JZ(i)=Z(gN(i));%JZ为基本可行基所对应的Z的检验数endfor i=1:length(gN)%找到基本可行基的检验数,将其赋值为0 if(J(i)~=0)G=G-(J(i)/gA(i,gN(i)))*gA(i,:);Z=Z-(JZ(i)/gA(i,gN(i)))*gA(i,:);endG1=G;%G1为检验数G1(:,length(G1))=[];D=max(G1);%找到检验数的最大值if(D<=0)%检验数都小于0if(G(length(G))>=1)disp('此情况无解');flag=0;elseif(G(length(G))>=0)for i=1:length(gN)if(max(gN)<=length(A1(1,:)));flag=2;for j=1:length(Nn)a=Nn(1);gA(:,a)=[];Z(a)=[];endA=gA;N=gN;break;endendendendelse%检验数大于0for i=1:length(G)if(G(i)==D)%找到最大的那个检验数所对应的元素for j=1:length(gN)if(gA(j,i)>0)ll(j)=gA(j,length(G))/gA(j,i);%求比值elsell(j)=10000;endendd=min(ll);for k=1:length(ll)%找到进基和离基if(ll(k)==d)gN(k)=i;gA(k,:)=gA(k,:)/gA(k,i);for m=1:k-1gA(m,:)=-(gA(m,i)/gA(k,i))*gA(k,:)+gA(m,:);endfor n=k+1:length(ll)gA(n,:)=-(gA(n,i)/gA(k,i))*gA(k,:)+gA(n,:);endbreak;endendendendendendwhile(flag==2)for i=1:length(N)%J为基本可行基所对应的检验数J(i)=Z(N(i));endfor i=1:length(N)%找到基本可行基的检验数,将其赋值为0if(J(i)~=0)Z=Z-(J(i)/A(i,N(i)))*A(i,:);endendZ1=Z;%Z1为检验数Z1(:,length(Z1))=[];D=max(Z1);%找到检验数的最大值if(D<=0)%检验数都小于0disp('已找到最优解和最优值')for i=1:length(N)val(N(i))=A(i,length(Z));endS=Z(length(Z));disp('val');disp(val);flag=0;else%检验数大于0for i=1:length(Z)if(Z(i)==D)%找到最大的那个检验数所对应的元素for j=1:length(N)if(A(j,i)>0)ll(j)=A(j,length(Z))/A(j,i);%求比值elsell(j)=10000;endendd=min(ll);if(d==10000)disp('此问题无界')flag=0;break;endfor k=1:length(ll)%找到进基和离基if(ll(k)==d)N(k)=i;A(k,:)=A(k,:)/A(k,i);for m=1:k-1A(m,:)=-(A(m,i)/A(k,i))*A(k,:)+A(m,:);endfor n=k+1:length(ll)A(n,:)=-(A(n,i)/A(k,i))*A(k,:)+A(n,:);endbreakendendendendendend五、运行结果与数据测试参考例题:例1:Min z=3x1+x2+x3+x4s.t. -2x1+2x2+x3=43x1+2x+x4=6Xj>=0,j=1,2,3,4在workspace中写入,形式如下:>> A=[-2 2 1 0 43 1 0 1 6]A =-2 2 1 0 43 1 0 1 6>> C=[3 1 1 1]C =3 1 1 1>> N=[3 4]N =3 4>> danchun(A,C,N)已找到最优解和最优值val0 2 0 4ans =6例2:初始解问题Min z=5x1+21x3s.t. x1-x2+6x3-x4=2x1+x2+2x3-x5=1xj>=0,j=1,…,5在workspace中写入,形式如下:>> A=[1 -1 6 -1 0 21 12 0 -1 1]A =1 -1 6 -1 0 21 12 0 -1 1 >> C=[5 0 21 0 0]C =5 0 21 0 0>> N=[]N =[]>> danchun(A,C,N)已找到最优解和最优值val0.5000 0 0.2500 0 0ans =7.7500六、求解实际问题(即解决附件中的实验题目)实验题目列出下列问题的数学模型,并用你自己的单纯形算法程序进行计算,最后给出计算结果。
实用运筹学实习报告
一、实习目的本次实习旨在使我对运筹学有一个更深入的了解,掌握运筹学的基本原理和方法,提高运用运筹学解决实际问题的能力。
通过实习,我将学会如何运用运筹学的方法对实际问题进行分析和求解,提高自己的综合素质。
二、实习时间2022年6月1日至2022年7月31日三、实习单位某知名企业四、实习内容1. 了解运筹学的基本原理和方法在实习期间,我首先对运筹学的基本原理和方法进行了系统学习。
通过阅读相关书籍和资料,我对线性规划、整数规划、网络流、动态规划、排队论等运筹学方法有了较为全面的了解。
2. 参与实际项目在实习期间,我参与了企业的一个实际项目,该项目涉及到生产计划与调度问题。
我运用所学的运筹学知识,对该项目进行了分析和求解。
(1)问题背景该企业主要生产电子产品,产品种类繁多,生产周期较短。
为了提高生产效率,降低生产成本,企业希望优化生产计划与调度。
(2)问题建模根据企业实际情况,我将生产计划与调度问题建模为一个线性规划问题。
模型中,变量表示生产任务,约束条件包括生产设备能力、生产周期、原材料供应等。
(3)求解方法运用Lingo软件,对所建立的线性规划模型进行求解。
通过调整参数,寻找最优的生产计划与调度方案。
(4)结果分析根据求解结果,我对最优方案进行了详细分析,包括生产任务分配、生产设备使用、原材料消耗等方面。
通过对比不同方案,为企业提供了优化生产计划与调度的建议。
3. 总结与反思通过本次实习,我对运筹学在实际问题中的应用有了更深入的认识。
以下是我对实习过程的总结与反思:(1)理论联系实际实习过程中,我深刻体会到理论联系实际的重要性。
在解决问题时,要善于将所学知识运用到实际中,提高自己的实际操作能力。
(2)运用软件求解在实际问题中,运用运筹学软件求解问题是一种高效的方法。
通过学习Lingo软件,我掌握了如何运用软件进行建模和求解,提高了自己的工作效率。
(3)团队协作实习过程中,我与团队成员共同完成了项目。
运筹学实验报告汇总
豆,i=3表示玉米;j=1表示I 等耕地,j=2表示II 等耕地,j=3表示III 等耕地)。
z 表示总产量。
max z=1100011x+950012x+900013x+800021x+680022x+600023x+1400031x+1200032x+1000033x11x +21x+31x <=100 12x+22x+32x <=30013x +23x+33x<=200s.t. 1100011x +950012x +900013x >=190000800021x+680022x+600023x>=1300001400031x+1200032x+1000033x>=350000ijx>=0(i=1,2,3;j=1,2,3)二、求解过程三、实验分析从表中可以看出,水稻只在III 等耕地上种植21.1 2hm ;大豆只在III 等耕地上种植21.7 2hm ;玉米在I 等耕地种植100 2hm ,II 等耕地种植3002hm ,III 等耕地种植157.22hm 。
可以获得最大总产量6892222kg 。
(2)如何制订种植计划,才能使总产值最大?一、建立模型设ijx 表示为i 种作物在j 等耕地种植的面积(i=1表示水稻,i=2表示大豆,i=3表示玉米;j=1表示I 等耕地,j=2表示II 等耕地,j=3表示III 等耕地)。
z 表示总产值。
max z=(1100011x+950012x+900013x)*1.2+(800021x+680022x+600023x)*1.5+(1400031x+1200032x+1000033x)*0.811x +21x+31x <=100 12x+22x+32x <=30013x +23x+33x<=200s.t. 1100011x +950012x +900013x >=190000800021x+680022x+600023x>=1300001400031x+1200032x+1000033x>=350000ijx>=0(i=1,2,3;j=1,2,3)二、求解过程三、实验分析从表中可以看出,水稻在I等耕地种植58.75 2hm,II等耕地种植300 2hm,III等耕地种植2002hm;玉米hm;大豆只在III等耕地上种植16.252hm。
运筹学综合实验报告
《运筹学》实验报告实验名称:综合实践运用班级:组员:学院:完成时间:2011年12月指导教师:1 实验目的1、掌握运筹学概念、原理、模型以及实际应用意义。
2、理解掌握运筹学综合实践应用。
2 实验内容案例B4童心玩具厂下一年度的现金流(万元)如表中所示,表中负号表示2该月现金流出大于流入,为此该厂需要借款。
借款有两种方式:一是于上一年末借一年期贷款,一次得全部贷款额,从一月底起每月还息1%,于12月归还本金和最后一次利息;二是得到短期贷款,每月出获得,于月底归还,月息 1.5%。
当该厂有多余现金时,可短期存款,月初存入,月末取出,月息0.4%。
问该厂应如何进行存款操作,既能弥补可能出现的负现金流,又可以使年末现金总量最大?3 实验具体方法及步骤3.1 案例分析从案例中可以知道,该厂全年可以进行的借贷次数不限,借贷类型有两种,分别是长贷和短贷,为保证厂方的现金充足,可以在借贷了长贷的情况下依据实际情况借贷短贷。
其中长贷(用y表示)只借贷一次,在年初发生,以后每个月都将要还长贷的0.01%y的利息,总共要还12个月,还息日期为每个月的月底,也即是下一个月份的月初还息;而每个月还可以进行短期贷款(用wi表示),可贷款12个月,并于月底也就是下个月出还段贷款息1.5%wi,也就是说每个月的月初将进行一次短贷贷款,并还上一个月的短贷息 1.5%wi;而每个月若是有现金余留,可将现金(用zi表示)存款,利息为0.4%zi,总共为12个月综上可知,第一个月现金余额须为长贷额+短贷额-月底存款额要大于第一个月的现金需求额,从第二个月开始:上一个月的存款本息+本月贷款额-长贷利息-上个月短贷本息-月底存款额要大于本月的现金需求3.2 建立模型设长期贷款为y,wi表示第i个月的短期贷款额,zi为第i个月的短期存款额,i=1,2,3,4,5,6,7,8,9,10,11,12,目标函数为年底的最多现金额Max Z(目标函数为第12个月份所遗留的现金额,即求第12个月份的现金余额最大),其中约束条件共有12个,分别代表每个月份的现金约束,则线性模型可建立为:Max Z=(1+0.004)x12-(1+0.01)y-(1+0.015)w12S.t{y+w1-z1>=12 第1个月(1+0.004)z1-0.01y-(1+0.015)w1-z2+w2>=10 第2个月(1+0.004)z2-0.01y-(1+0.015)w2-z3+w3>=8 第3个月(1+0.004)z3-0.01y-(1+0.015)w3-z4+w4>=10 第4个月(1+0.004)z4-0.01y-(1+0.015)w4-z5+w5>=4 第5个月(1+0.004)z5-0.01y-(1+0.015)w5-z6+w6>=-5 第6个月(1+0.004)z6-0.01y-(1+0.015)w6-z7+w7>=7 第7个月(1+0.004)z7-0.01y-(1+0.015)w7-z8+w8>=2 第8个月(1+0.004)z8-0.01y-(1+0.015)w8-z9+w9>=-15 第9个月(1+0.004)z9-0.01y-(1+0.015)w9-z10+w10>=-12 第10个月(1+0.004)z10-0.01y-(1+0.015)w10-z11+w11>=7 第11个月(1+0.004)z11-0.01y-(1+0.015)w11-z12+w12>=-45 第12个月}该案例线性模型使用LINGO软件进行求解,编辑如下程序:求解得到结果如图所示,为:结果解析:本实验结果为小组3成员各自独立完成并且结果一致所得。
运筹学实验报告1
运筹学实验报告1《运筹学》课程实验报告一学院:专业:班级:姓名:学号:指导老师:实验报告班级学号姓名课程名称运筹学开课实验室实验时间实验项目名称【实验项目一】线性规划综合性实验实验性质验证性()综合性(√)设计性()成绩指导老师签名实验条件:硬件:计算机,软件:lingo11实验目的及要求:使学生掌握线性规划建模的方法以及至少掌握一种线性规划软件的使用,提高学生应用线性规划方法解决实际问题的实践动手能力。
实验内容:熟悉、了解LINGO系统菜单、工具按钮、建模窗口、求解器运行状态窗口以及结果报告窗口等的环境。
实验过程:1.选择合适的线性规划问题可根据自己的建模能力,从本实验指导书提供的参考选题中或从其它途径选择合适的线性规划问题。
2.建立线性规划数学模型针对所选的线性规划问题,运用线性规划建模的方法,建立恰当的线性规划数学模型。
3.用运筹学软件求解线性规划数学模型应用运筹学软件Lingo对已建好的线性规划数学模型进行求解。
4.对求解结果进行应用分析对求解结果进行简单的应用分析。
实验习题计算:使用lingo来求解下列例题1. MAXZ=2X1+2X2X1-X2≥-1-0.5X1+X2≤2X1,X2≥0解:运用软件lingo11求解线性规划例题1如下:由上述运算结果可知:该线性规划问题的解为无界解,X=(2,3)是它的一个基可行解。
2. MINZ=1000X1+800X2X1≥10.8X1+X2≥1.6X1≤2X2≤1.4X1,X2≥0解:运用软件lingo11求解线性规划例题1如下:由上述运算结果可知:该线性规划问题的最优解X=(1,0.8),目标值Z=1640实验总结:例题1可用图解法检验,从图中可以清楚的看出,该问题可行域无界,目标函数值可以增大到无穷大,该题解为无界解;但在其可行域中存在顶点X=(2,3),故X=(2,3)为该线性规划问题的基可行解。
运筹学实训实验报告
一、实验背景运筹学是一门应用数学的分支,它运用数学模型和算法来解决各种优化问题。
随着现代科技的发展,运筹学在各个领域的应用越来越广泛,如生产管理、物流运输、资源分配等。
为了提高学生运用运筹学知识解决实际问题的能力,我们开展了运筹学实训实验。
二、实验目的1. 熟悉运筹学的基本概念和常用方法;2. 掌握线性规划、整数规划、运输问题、目标规划等运筹学模型;3. 学会运用计算机软件解决实际问题;4. 培养学生的团队合作精神和创新意识。
三、实验内容本次实验主要包括以下内容:1. 线性规划:以生产计划问题为例,建立数学模型,并运用Excel规划求解器求解最优解。
2. 整数规划:以人员排班问题为例,建立数学模型,并运用Lingo软件求解最优解。
3. 运输问题:以物流配送问题为例,建立数学模型,并运用Lingo软件求解最优解。
4. 目标规划:以投资组合问题为例,建立数学模型,并运用Lingo软件求解最优解。
四、实验步骤1. 线性规划实验(1)问题分析:某企业需要生产甲、乙两种产品,已知生产甲、乙两种产品所需的原料、劳动力及设备等资源消耗量,以及产品的售价和利润。
(2)模型建立:根据问题分析,建立线性规划模型,目标函数为最大化利润,约束条件为资源消耗量不超过限制。
(3)求解:运用Excel规划求解器求解最优解。
2. 整数规划实验(1)问题分析:某公司需要安排员工值班,要求每天至少有3名员工值班,且员工值班时间不能超过一周。
(2)模型建立:根据问题分析,建立整数规划模型,目标函数为最小化员工值班成本,约束条件为员工值班时间不超过限制。
(3)求解:运用Lingo软件求解最优解。
3. 运输问题实验(1)问题分析:某物流公司需要将货物从A、B两个仓库运送到C、D两个销售点,已知各仓库的货物量、各销售点的需求量以及运输成本。
(2)模型建立:根据问题分析,建立运输问题模型,目标函数为最小化运输成本,约束条件为各仓库的货物量不超过需求量。
运筹学实训报告范文模板
一、实习概况1. 实习时间:20XX年X月至20XX年X月2. 实习地点:[实习单位名称]3. 实习目的:通过本次运筹学实训,加深对运筹学基本理论和方法的理解,提高解决实际问题的能力,培养团队协作精神。
二、实习内容1. 实训课程概述:本次实训主要围绕运筹学的核心内容展开,包括线性规划、整数规划、网络流、非线性规划、决策分析等。
2. 实训项目:(1)线性规划问题建模与求解(2)整数规划问题建模与求解(3)网络流问题建模与求解(4)非线性规划问题建模与求解(5)决策分析案例研究三、实训过程1. 线性规划问题建模与求解(1)问题描述:以某企业生产计划问题为例,建立线性规划模型,求解最优生产方案。
(2)模型建立:根据实际问题,确定决策变量、目标函数和约束条件。
(3)求解方法:运用单纯形法进行求解。
(4)结果分析:比较不同方案的成本和产量,得出最优生产方案。
2. 整数规划问题建模与求解(1)问题描述:以某企业投资组合优化问题为例,建立整数规划模型,求解最优投资方案。
(2)模型建立:根据实际问题,确定决策变量、目标函数和约束条件。
(3)求解方法:运用分支定界法进行求解。
(4)结果分析:分析不同投资组合的风险和收益,得出最优投资方案。
3. 网络流问题建模与求解(1)问题描述:以某物流公司运输调度问题为例,建立网络流模型,求解最优运输方案。
(2)模型建立:根据实际问题,确定决策变量、目标函数和约束条件。
(3)求解方法:运用最大流最小割定理进行求解。
(4)结果分析:分析不同运输路径的成本和时间,得出最优运输方案。
4. 非线性规划问题建模与求解(1)问题描述:以某工厂生产优化问题为例,建立非线性规划模型,求解最优生产方案。
(2)模型建立:根据实际问题,确定决策变量、目标函数和约束条件。
(3)求解方法:运用拉格朗日乘数法进行求解。
(4)结果分析:分析不同生产方案的成本和产量,得出最优生产方案。
5. 决策分析案例研究(1)问题描述:以某企业新产品研发项目为例,运用决策树法进行决策分析。
运筹学实训报告个人总结
一、前言运筹学作为一门研究资源优化配置的学科,在各个领域都有着广泛的应用。
为了更好地将理论知识与实践相结合,提高自身的实际操作能力,我参加了为期两周的运筹学实训。
以下是我在实训过程中的个人总结。
二、实训内容与目标1. 实训内容本次实训主要包括以下内容:(1)线性规划:掌握线性规划问题的建模、求解方法及软件应用。
(2)整数规划:了解整数规划问题的特点、建模方法及求解算法。
(3)非线性规划:掌握非线性规划问题的建模、求解方法及软件应用。
(4)动态规划:了解动态规划问题的特点、建模方法及求解算法。
(5)排队论:掌握排队论的基本概念、模型建立及求解方法。
(6)库存管理:了解库存管理的基本理论、模型建立及求解方法。
2. 实训目标(1)熟练掌握运筹学的基本理论和方法。
(2)提高运用运筹学解决实际问题的能力。
(3)培养团队协作和沟通能力。
三、实训过程与收获1. 实训过程在实训过程中,我们按照以下步骤进行:(1)学习运筹学的基本理论和方法。
(2)根据实际问题,建立数学模型。
(3)运用所学知识,求解数学模型。
(4)对求解结果进行分析和评估。
(5)撰写实训报告。
2. 实训收获(1)理论知识方面:通过实训,我对运筹学的基本理论和方法有了更深入的了解,为今后在相关领域的工作奠定了基础。
(2)实践能力方面:在实训过程中,我学会了如何将实际问题转化为数学模型,并运用运筹学方法进行求解。
这对我今后解决实际问题具有重要意义。
(3)团队协作能力:在实训过程中,我与同学们相互学习、共同进步,培养了良好的团队协作精神。
四、存在问题与不足1. 实践经验不足:虽然通过实训掌握了运筹学的基本方法,但在实际操作过程中,仍存在一些问题,如模型建立不够完善、求解方法选择不当等。
2. 理论知识掌握不够扎实:在实训过程中,发现自己在某些理论知识方面存在不足,需要进一步加强学习。
3. 沟通能力有待提高:在实训过程中,与团队成员的沟通不够充分,导致部分问题未能得到及时解决。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
运筹学实验报告学院:安全与环境工程学院姓名:侯小洁学号:1350940109专业:物流工程班级:1301班实验时间:5月6、8日5月13、15日5月20、22日湖南工学院安全与环境工程学院2015年5月实验一线性规划一、实验目的1、理解线性规划的概念。
2、对于一个问题,能够建立基本的线性规划模型。
3、会运用Excel解决线性规划电子表格模型。
二、实验内容线性规划的一大应用适用于联邦航空公司的工作人员排程,为每年节省开支超过600万美元。
联邦航空公司正准备增加其中心机场的往来航班,因此需要雇佣更多的客户服务代理商,但是不知道到底要雇用多少数量的代理商。
管理层意识到在向公司的客户提供令人满意的服务水平的同时必须进行成本控制,因此,必须寻找成本与收益之间合意的平衡。
于是,要求管理团队研究如何规划人员才能以最小的成本提供令人满意的服务。
分析研究新的航班时间表,以确定一天之中不同时段为实现客户满意水平必须工作的代理商数目。
在表1.1最后一栏显示了这些数目,其中第一列给出对应的时段。
表中的其它数据反映了公司与客户服务代理商协会所定协议上的一项规定,这一规定要求每一代理商工作8小时为一班,各班的时间安排如下:轮班1:6:00AM~2:00PM轮班2:8:00AM~4:00PM轮班3:中午~8:00PM轮班4:4:00PM~午夜轮班5:10:00PM~6:00AM表中打勾的部分表示这段时间是有相应轮班的。
因为轮班之间的重要程度有差异,所以协议中工资也因轮班所处的时间而不同。
每一轮班对代理商的补偿(包括收益)如最低行所示。
问题就是,在最低行数据的基础上,确定将多少代理商分派到一天之中的各个轮班中去,以使得人员费用最小,同时,必须保证最后一栏中所要求的服务水平的实现表1.1联邦航空公司人员排程问题的数据轮班的时段时段 1 2 3 4 5 最少需要代理商的数量6:00AM~8:00AM √ 488:00AM~10:00AM √ √ 7910:00AM~中午√ √ 65中午~2:00PM √ √ √ 872:00PM~4:00PM √ √ 644:00PM~6:00PM √ √ 736:00PM~8:00PM √ √ 828:00PM~10:00PM √ 4310:00PM~午夜√ √ 52午夜~6:00AM √15每个代理商的每日170 160 175 180 195成本实验要求:(1)如何规划人员才能以最小的成本提供令人满意的服务?(2)根据实验内容自行设计模型,求解最优方案。
三、实验步骤(1)联邦航空公司问题的数学表述将问题的目标以及约束条件转化成为一组数学关系,这一过程通常称为数学模型。
完整的数学模型如下:令X i=分配到轮班i的代理商(其中i=1,2,3,4,5),MinZ=170S1+160S2+175S3+180S4+195S5约束条件:6:00AM~8:00AM 总的代理商数:X1 ≧488:00AM~10:00AM总的代理商数:X1+X2≧7910:00AM~中午总的代理商数:X1+X2≧65中午~2:00PM 总的代理商数:X1+X2+X3≧872:00PM~4:00PM 总的代理商数:X2+X4≧644:00PM~6:00PM 总的代理商数;X3+X4≧736:00PM~8:00PM 总的代理商数:X3+X4≧828:00PM~10:00PM 总的代理商数:X4≧4310:00PM~午夜总的代理商数:X4+X5≧52午夜~6:00AM 总的代理商数:X5≧15(2)在工作表中建模在一个工作表中建立线性规划模型,包括以下步骤:第一步在工作表的顶部输入数据。
单元格B5:F14表示各时段中有无相应轮班。
单元格G5:G14表示每个时段最少需要代理商的数量。
单元格B15:F15表示每个代理商的每日成本。
第二步确定每个决策变量所对应的可变单元格的位置。
可变单元格B19:F19表示1-5个时段的代理商数量。
第三步选择单元格输入公式,找到目标函数的值。
单元格B20:=SUMPRODUCT(B15:F15,B19:F19)第四步选择一个单元格输入公式,计算每个约束条件左边的值。
单元格B23:=SUMPRODUCT(B5:F5,B19:F19)单元格B24:=SUMPRODUCT(B6:F6,B19:F19)单元格B25:=SUMPRODUCT(B7:F7,B19:F19)单元格B26:=SUMPRODUCT(B8:F8,B19:F19)单元格B27:=SUMPRODUCT(B9:F9,B19:F19)单元格B28:=SUMPRODUCT(B10:F10,B19:F19)单元格B29:=SUMPRODUCT(B11:F11,B19:F19)单元格B30:=SUMPRODUCT(B12:F12,B19:F19)单元格B31:=SUMPRODUCT(B13:F13,B19:F19)单元格B32:=SUMPRODUCT(B14:F14,B19:F19)第五步选择一个单元格输入公式,计算每个约束条件右边的值。
对于这个模型中的4个条件,使单元格D23:=G5单元格D24:=G6单元格D25:=G7单元格D26:=G8单元格D27:=G9单元格D28:=G10单元格D29:=G11单元格D30:=G12单元格D31:=G13单元格D32:=G14(3)使用Excel求解第一步在数据菜单中选择Solver(规划求解),如图1.1。
图1.1问题模型第二步当出现规划求解参数对话框(如图1.2)时,设置目标单元格B20,并选中最小值,使得求解的目标最小化。
图1.2规划求解参数第三步在可变单元格中输入B19:F19。
第四步添加约束对话框用来具体化所有的函数约束。
点击“添加”按钮来实现,会弹出添加约束对话框,如图1.3图1.3约束结束对话框在单元格引用位置中输入B23:B32;在约束值框中输入D23:D32;中间符号选≧;第五步点击“选项”按钮弹出如图1.4所示的对话框,在对话框中细化求解选项,最重要的是“采用线性模型”和“假定非负”选项,其他为默认值。
点击确定回到规划求解参数对话框。
图1.4规划求解选项框第六步点击规划求解参数对话框中的“求解”按钮,开始对问题求解。
几秒钟之后(对于一个小型问题),就会显示运行结果,本题得到一个最优解,如图1.5。
求解模型之后,Solver(规划求解)用最优值代替了可变单元格中的初始值。
图1.6完整模型四、实验结果如图1.6是电子表格的最优解,最优解为:6:00AM~8:00AM 轮班人数为48;8:00AM~10:00AM轮班人数为79;10:00AM~中午轮班人数为79;中午~2:00PM 轮班人数为118;2:00PM~4:00PM 轮班人数为70;4:00PM~6:00PM 轮班人数为82;6:00PM~8:00PM 轮班人数为82;8:00PM~10:00PM 轮班人数为43;10:00PM~午夜轮班人数为58;午夜~6:00AM 轮班人数为15;最低成本为30610元。
实验二指派问题一、实验目的(1)理解指派问题的特点。
(2)对于一个指派问题,能够建立电子表格模型。
(3)会运用Excel求解电子表格模型。
二、实验内容塞尔默公司的营销经理将要主持召开一年一度的有营销区域经理以及销售人员参加的销售协商会议。
为了更好地安排这次会议,他雇用了四个临时工(安、伊恩、琼、肖恩),每一个人负责完成下面的一项任务:书面陈述的文字处理;制作口头和书面陈述的电脑图;会议材料的准备,包括书面材料的抄写和组织;处理与会者的提前和当场注册报名;现在他需要确定要将哪一项任务指派个哪一个人。
虽然这四个临时工都有完成这四项任务所需的基本能力,但是在他们完成每一项任务时所表现出来的有效程度是有很大差异的。
表2.1示了每一个人完成每一项任务所用的时间(单位:小时)。
最右一列给出了以每个人能力为基础的小时薪水。
表2.1 塞尔默公司问题的数据临时工每一项任务所需要的时间(小时)每小时工资文字处理绘图材料准备记录安35 41 27 40 14伊恩47 45 32 51 12琼39 56 36 43 13肖恩32 51 25 46 15实验要求:(1)塞尔默公司最优的指派方案。
(2)根据实验内容自行设计模型,求解最优方案。
(3)完成并提交实验报告。
三、实验步骤(1)塞尔默公司指派问题的数学表述设x ij表示每个临时工完成一项任务的时间;i表示临时工(1安;2伊恩;3琼;4肖恩);j表示任务(1文字处理;2绘图;3材料准备;4记录)。
所以,将福尔指派问题的决策可变量定义如下1 表示临时工是i,任务是jx11=0 其他情况这里i=1,2,3,4;j=1,2,3,4。
安完成指派所用的时间=x11+x12+x13+x14伊恩完成指派所用的时间=x21+x22+x23+x24琼完成指派所用的时间=x31+x32+x33+x34肖恩完成指派所用的时间=x41+x42+x43+x444个临时工完成时间总和将提供完成4个指派所需要的时间。
因此,目标函数如下:最小化x11+x12+x13+x14+x21+x22+x23+x24+x31+x32+x33+x34+x41+x42+x43+x44指派问题约束反映的情况如下:每个临时工将赋予一个任务,并且每个任务须被赋予一个临时工。
这些约束条件如下:x11+x12+x13+x14安的指派x21+x22+x23+x24伊恩的指派x31+x32+x33+x34琼的指派x41+x42+x43+x44肖恩的指派x11+x21+x31+x41文字处理x12+x22+x32+x42绘图x13+x23+x33+x43材料准备x14+x24+x34+x44 记录注意:每个节点都有一个约束条件。
因为此处的临时工与任务的数量相等,所以所有的约束条件都可以写成等式。
(2)在工作表中建立模型第一步:输入目标函数在B9单元格输入公式=SUMPRODUCT(B4:E4*F4*B13:E13+B5:E5*F5*B14:E14+B6:E6*F6*B15:E15+B7:E7*F7*B16 :E16) 说明完成所有任务最少的工资为1957。
第二步:输入决策可变量单元格B13:E16。
第三步:输入约束条件:左侧值F13:F16单元格包含了每个人分配的任务的左侧值约束条件,B17:E17包含了每个任务分配的人数的左侧值约束条件。
单元格F13=SUM(求和)(B13:E13)(复制到F14:F16)单元格B17=SUM(求和)(B13:B16)(复制到C17:E17)右侧值H13:H16单元格为右侧值为每个人分配的任务的约束条件,B19:E19为右侧值每个任务分配人数约束条件,所有右侧值单元格的价值都为1(3)使用Excel求解在菜单的“数据”中选择“规划求解”,在对话框中的“规划求解参数”中输入正确的信息,如图2.1所示。