函数的最值与导数测试题

合集下载

专题15导数与函数的极值最值(基础训练)(原卷版)

专题15导数与函数的极值最值(基础训练)(原卷版)

专题15 导数与函数的极值、最值[基础题组练]1.(2020·辽宁沈阳一模)设函数f (x )=x e x +1,则( )A .x =1为f (x )的极大值点B .x =1为f (x )的极小值点C .x =-1为f (x )的极大值点D .x =-1为f (x )的极小值点2.函数y =x e x 在[0,2]上的最大值是( ) A.1eB .2e 2C .0D .12e 3.(2020·广东惠州4月模拟)设函数f (x )在R 上可导,其导函数为f ′(x ),且函数f (x )在x =-2处取得极小值,则函数y =x ·f ′(x )的图象可能是( )4.(2020·河北石家庄二中期末)若函数f (x )=(1-x )(x 2+ax +b )的图象关于点(-2,0)对称,x 1,x 2分别是f (x )的极大值点与极小值点,则x 2-x 1=( )A .- 3B .2 3C .-2 3D . 35.已知函数f (x )=x 3+3x 2-9x +1,若f (x )在区间[k ,2]上的最大值为28,则实数k 的取值范围为( )A .[-3,+∞)B .(-3,+∞)C .(-∞,-3)D .(-∞,-3]6.函数f (x )=x 3+bx 2+cx +d 的大致图象如图所示,则x 21+x 22=________.7.若函数f (x )=x 3-3ax 在区间(-1,2)上仅有一个极值点,则实数a 的取值范围为________.8.函数f (x )=x 3-3a 2x +a (a >0)的极大值是正数,极小值是负数,则a 的取值范围是________.9.已知函数f (x )=13x 3-12(a 2+a +2)x 2+a 2(a +2)x ,a ∈R .(1)当a =-1时,求函数y =f (x )的单调区间;(2)求函数y =f (x )的极值点.10.已知函数f (x )=ln x x -1.(1)求函数f (x )的单调区间;(2)设m >0,求函数f (x )在区间[m ,2m ]上的最大值.[综合题组练]1.(2020·重庆模拟)已知函数f (x )=2e f ′(e)ln x -x e (e 是自然对数的底数),则f (x )的极大值为() A .2e -1 B .-1eC .1D .2ln 22.若函数f (x )=13x 3+x 2-23在区间(a ,a +5)上存在最小值,则实数a 的取值范围是( )A .[-5,0)B .(-5,0)C .[-3,0)D .(-3,0)3.(2020·河南驻马店模拟)已知函数f (x )=⎩⎪⎨⎪⎧2x 3+3x 2+2,x ≤0,e ax ,x >0在[-2,2]上的最大值为3,则实数a 的取值范围是( )A .(ln 3,+∞)B .⎣⎡⎦⎤0,12ln 3 C.⎝⎛⎦⎤-∞,12ln 3 D .(-∞,ln 3]4.若x =-2是函数f (x )=(x 2+ax -1)e x -1的极值点,则a =________,f (x )的极小值为________.5.(2020·石家庄市质量检测)已知函数f (x )=a e x -sin x ,其中a ∈R ,e 为自然对数的底数.(1)当a =1时,证明:∀x ∈[0,+∞),f (x )≥1;(2)若函数f (x )在⎝⎛⎭⎫0,π2上存在极值,求实数a 的取值范围. 6.已知函数f (x )=a ln x +1x(a >0). (1)求函数f (x )的单调区间和极值;(2)是否存在实数a ,使得函数f (x )在[1,e]上的最小值为0?若存在,求出a 的值;若不存在,请说明理由.。

导数与极值最大值与最小值问题练习题

导数与极值最大值与最小值问题练习题

导数与极值最大值与最小值问题练习题在微积分中,导数与极值问题是一类经典且重要的题型。

通过求取导数,我们可以确定函数的极值点,即最大值和最小值。

本文将给出一些导数与极值问题的练习题,帮助读者加深对该类型问题的理解与应用。

练习题一:求函数f(x) = x^3 - 6x^2 + 9x + 2的极值点。

解析:首先,我们需要求出函数的导数f'(x)。

对于f(x) = x^3 - 6x^2 + 9x + 2,导数为f'(x) = 3x^2 - 12x + 9。

接下来,我们将导数f'(x)置为零,求得极值点。

即,3x^2 - 12x + 9= 0。

通过求解这个方程,我们得到x = 1和x = 3两个解。

然后,我们需要分别计算这两个x值对应的函数值f(x)。

当x = 1时,f(x) = 1^3 - 6(1)^2 + 9(1) + 2 = 6;当x = 3时,f(x) = 3^3 - 6(3)^2 + 9(3)+ 2 = -2。

综上所述,在函数f(x) = x^3 - 6x^2 + 9x + 2中,极小值为-2,极大值为6,对应的x值分别为1和3。

练习题二:求函数g(x) = e^x - 4x的极值点。

解析:与前一题类似,我们首先求取函数g(x) = e^x - 4x的导数g'(x)。

根据指数函数的导数性质以及常数倍规则,我们有g'(x) = e^x - 4。

将导数g'(x)置为零,求得极值点。

即,e^x - 4 = 0。

通过求解这个方程,我们得到x = ln(4)。

接下来,计算x = ln(4)对应的函数值g(x)。

g(x) = e^x - 4x = e^(ln(4)) - 4(ln(4)) = 4 - 4ln(4)。

因此,在函数g(x) = e^x - 4x中,存在唯一的极值点x = ln(4),对应的极值为4 - 4ln(4)。

练习题三:求函数h(x) = x^4 - 8x^2 + 16的极值点。

函数的最大(小)值与导数课后同步检测(基础卷)(解析版)

函数的最大(小)值与导数课后同步检测(基础卷)(解析版)

5.3.2函数的最大(小)值与导数课后同步检测(基础卷) 一、单选题1. 函数y =x -sin x ,x ∈⎣⎢⎡⎦⎥⎤π2,π的最大值是( )A.π-1B.π2-1C.πD.π+1【解析】y ′=1-cos x ,当x ∈⎣⎢⎡⎦⎥⎤π2,π时,y ′>0,则函数在区间⎣⎢⎡⎦⎥⎤π2,π上单调递增,所以y 的最大值为y max =π-sin π=π. 2. 函数f (x )=x 3-3x (|x |<1)( ) A.有最值,但无极值 B.有最值,也有极值 C.既无最值,也无极值 D.无最值,但有极值【解析】f ′(x )=3x 2-3=3(x +1)(x -1), 当x ∈(-1,1)时,f ′(x )<0, 所以f (x )在(-1,1)上单调递减, 无最大值和最小值,也无极值.3. 当0<x <1时,f ()x =ln xx ,则下列大小关系正确的是( ) A.f 2()x <f ()x 2<f ()x B.f ()x 2<f 2()x <f ()x C.f ()x <f ()x 2<f 2()x D.f ()x 2<f ()x <f 2()x【解析】根据0<x <1得到0<x 2<x <1,而f ′()x =1-ln xx 2,所以根据对数函数的单调性可知,当0<x <1时,1-ln x >0, 从而可得f ′()x >0,函数f ()x 单调递增, 所以f ()x 2<f ()x <f ()1=0,而f 2()x =⎝ ⎛⎭⎪⎫ln x x 2>0,所以有f ()x 2<f ()x <f 2()x .4. 已知函数f (x ),g (x )均为[a ,b ]上的连续可导函数,且f ′(x )<g ′(x ),则f (x )-g (x )的最大值为( )A .f (a )-g (a )B .f (b )-g (b )C .f (a )-g (b )D .f (b )-g (a )【解析】令F (x )=f (x )-g (x ),因为f ′(x )<g ′(x ),所以F ′(x )=f ′(x )-g ′(x )<0,所以F (x )在[a ,b ]上单调递减,所以F (x )max =F (a )=f (a )-g (a ).故选A.5. 已知f (x )=2x 3-6x 2+m (m 为常数)在[-2,2]上有最大值3,那么此函数在[-2,2]上的最小值是( )A .-37B .-29C .-5D .-3【解析】因为f ′(x )=6x 2-12x =6x (x -2),所以f (x )在(-2,0)上单调递增,在(0,2)上单调递减,所以当x =0时,f (0)=m 最大,所以m =3.因为f (-2)=-37,f (2)=-5,所以最小值为-37.6. 函数f (x )=13x 3-x 2+a ,函数g (x )=x 2-3x ,它们的定义域均为[1,+∞),并且函数f (x )的图象始终在函数g (x )图象的上方,那么a 的取值范围是( )A .(0,+∞)B .(-∞,0) C. ⎝⎛⎭⎪⎫-43,+∞ D. ⎝⎛⎭⎪⎫-∞,-43【解析】设h (x )=f (x )-g (x )=13x 3-2x 2+3x +a ,则h ′(x )=x 2-4x +3=(x -3)(x -1),所以当x ∈(1,3)时,h (x )单调递减;当x ∈(3,+∞)时,h (x )单调递增.当x =3时,函数h (x )取得最小值。

课时导数与函数的极值、最值检测题与详解答案

课时导数与函数的极值、最值检测题与详解答案

导数与函数的极值、最值测试题与详解答案A 级——保大分专练1.(2019·辽宁鞍山一中模拟)已知函数f (x )=x 3-3x -1,在区间[-3,2]上的最大值为M ,最小值为N ,则M -N =( )A .20B .18C .3D .0解析:选 A ∵f ′(x )=3x 2-3=3(x -1)(x +1),∴f (x )在(-∞,-1)和(1,+∞)上单调递增,在(-1,1)上单调递减,又∵f (-3)=-19,f (-1)=1,f (1)=-3,f (2)=1,∴M =1,N =-19,M -N =1-(-19)=20.2.(2018·梅州期末)函数y =f (x )的导函数的图象如图所示,则下列说法错误的是( )A .(-1,3)为函数y =f (x )的单调递增区间B .(3,5)为函数y =f (x )的单调递减区间C .函数y =f (x )在x =0处取得极大值D .函数y =f (x )在x =5处取得极小值解析:选C 由函数y =f (x )的导函数的图象可知,当x <-1或3<x <5时,f ′(x )<0,y =f (x )单调递减;当x >5或-1<x <3时,f ′(x )>0,y =f (x )单调递增.所以函数y =f (x )的单调递减区间为(-∞,-1),(3,5),单调递增区间为(-1,3),(5,+∞).函数y =f (x )在x =-1,5处取得极小值,在x =3处取得极大值,故选项C 错误.3.(2019·湖北襄阳四校联考)函数f (x )=12x 2+x ln x -3x 的极值点一定在区间( )A .(0,1)内B .(1,2)内C .(2,3)内D .(3,4)内解析:选B 函数的极值点即导函数的零点,f ′(x )=x +ln x +1-3=x +ln x -2,则f ′(1)=-1<0,f ′(2)=ln 2>0,由零点存在性定理得f ′(x )的零点在(1,2)内,故选B.4.已知函数f (x )=x 3+3x 2-9x +1,若f (x )在区间[k,2]上的最大值为28,则实数k 的取值范围为( )A .[-3,+∞)B .(-3,+∞)C .(-∞,-3)D .(-∞,-3]解析:选D 由题意知f ′(x )=3x 2+6x -9,令f ′(x )=0,解得x =1或x =-3,所以f ′(x ),f (x )随x 的变化情况如下表:3.5.(2019·皖南八校联考)已知函数f (x )=-13x 3+bx 2+cx +bc 在x =1处有极值-43,则b =( )A .-1B .1C .1或-1D .-1或3解析:选A f ′(x )=-x 2+2bx +c ,因为f (x )在x =1处有极值-43,所以⎩⎪⎨⎪⎧f =-1+2b +c =0,f=-13+b +c +bc =-43,Δ=4b 2+4c >0,解得⎩⎪⎨⎪⎧b =-1,c =3,故选A.6.设直线x =t 与函数h (x )=x 2,g (x )=ln x 的图象分别交于点M ,N ,则当|MN |最小时t 的值为( )A .1 B.12C.52D.22解析:选D 由已知条件可得|MN |=t 2-ln t , 设f (t )=t 2-ln t (t >0),则f ′(t )=2t -1t,令f ′(t )=0,得t =22, 当0<t <22时,f ′(t )<0;当t >22时,f ′(t )>0. ∴当t =22时,f (t )取得最小值,即|MN |取得最小值时t =22. 7.(2019·江西阶段性检测)已知函数y =ax -1x2在x =-1处取得极值,则a =________.解析:因为y ′=a +2x3,所以当x =-1时,a -2=0,所以a =2,经验证,可得函数y=2x -1x2在x =-1处取得极值,因此a =2.答案:28.f (x )=2x +1x 2+2的极小值为________.解析:f ′(x )=x 2+-2x x +x 2+2=-x +x -x 2+2.令f ′(x )<0,得x <-2或x >1; 令f ′(x )>0,得-2<x <1.∴f (x )在(-∞,-2),(1,+∞)上是减函数,在(-2,1)上是增函数, ∴f (x )极小值=f (-2)=-12.答案:-129.若商品的年利润y (万元)与年产量x (百万件)的函数关系式为y =-x 3+27x +123(x >0),则获得最大利润时的年产量为________百万件.解析:y ′=-3x 2+27=-3(x +3)(x -3), 当0<x <3时,y ′>0;当x >3时,y ′<0. 故当x =3时,该商品的年利润最大. 答案:310.已知函数f (x )=x 3+3ax 2+3bx +c 在x =2处有极值,其图象在x =1处的切线平行于直线6x +2y +5=0,则f (x )的极大值与极小值之差为________.解析:因为f ′(x )=3x 2+6ax +3b ,所以⎩⎪⎨⎪⎧f =3×22+6a ×2+3b =0,f=3×12+6a +3b =-3⇒⎩⎪⎨⎪⎧a =-1,b =0.所以y ′=3x 2-6x ,令3x 2-6x =0,得x =0或x =2. 当x <0或x >2时,y ′>0;当0<x <2时,y ′<0.故当x =0时,f (x )取得极大值,当x =2时,f (x )取得极小值, 所以f (x )极大值-f (x )极小值=f (0)-f (2)=4. 答案:411.设函数f (x )=a ln xx+b (a ,b ∈R),已知曲线y =f (x )在点(1,0)处的切线方程为y =x -1.(1)求实数a ,b 的值;(2)求f (x )的最大值.解:(1)因为f (x )的定义域为(0,+∞),f ′(x )=a-ln xx 2.所以f ′(1)=a ,又因为切线斜率为1,所以a =1. 由曲线y =f (x )过点(1,0),得f (1)=b =0. 故a =1,b =0.(2)由(1)知f (x )=ln x x ,f ′(x )=1-ln xx2. 令f ′(x )=0,得x =e.当0<x <e 时,有f ′(x )>0,得f (x )在(0,e)上是增函数; 当x >e 时,有f ′(x )<0,得f (x )在(e ,+∞)上是减函数. 故f (x )在x =e 处取得最大值f (e)=1e .12.已知函数f (x )=ln x -ax (a ∈R). (1)当a =12时,求f (x )的极值;(2)讨论函数f (x )在定义域内极值点的个数.解:(1)当a =12时,f (x )=ln x -12x ,函数f (x )的定义域为(0,+∞),f ′(x )=1x -12=2-x2x. 令f ′(x )=0,得x =2,于是当x 变化时,f ′(x ),f (x )的变化情况如下表:故f (x )(2)由(1)知,函数f (x )的定义域为(0,+∞), f ′(x )=1x -a =1-axx(x >0).当a ≤0时,f ′(x )>0在(0,+∞)上恒成立,即函数f (x )在(0,+∞)上单调递增,此时函数f (x )在定义域上无极值点; 当a >0时,令f ′(x )=0,得x =1a.当x ∈⎝⎛⎭⎪⎫0,1a 时,f ′(x )>0,当x ∈⎝ ⎛⎭⎪⎫1a,+∞时,f ′(x )<0,故函数f (x )在x =1a处有极大值.综上所述,当a ≤0时,函数f (x )无极值点; 当a >0时,函数f (x )有一个极大值点.B 级——创高分自选1.已知函数f (x )=x 3-3ax +b 的单调递减区间为(-1,1),其极小值为2,则f (x )的极大值是________.解析:因为f (x )的单调递减区间为(-1,1),所以a >0. 由f ′(x )=3x 2-3a =3(x -a )(x +a ),可得a =1, 由f (x )=x 3-3x +b 在x =1处取得极小值2, 可得1-3+b =2,故b =4.所以f (x )=x 3-3x +4的极大值为f (-1)=(-1)3-3×(-1)+4=6. 答案:62.(2019·“超级全能生”高考全国卷26省联考)已知函数f (x )=t 3x 3-32x 2+2x +t 在区间(0,+∞)上既有极大值又有极小值,则t 的取值范围是________.解析:f ′(x )=tx 2-3x +2,由题意可得f ′(x )=0在(0,+∞)上有两个不等实根,即tx 2-3x +2=0在(0,+∞)有两个不等实根,所以⎩⎪⎨⎪⎧t ≠0,3t>0,2t >0,Δ=9-8t >0,解得0<t <98.答案:⎝ ⎛⎭⎪⎫0,98 3.已知函数f (x )=a ln x +1x(a >0).(1)求函数f (x )的单调区间和极值;(2)是否存在实数a ,使得函数f (x )在[1,e]上的最小值为0?若存在,求出a 的值;若不存在,请说明理由.解:由题意,知函数的定义域为(0,+∞),f ′(x )=a x -1x 2=ax -1x2(a >0).(1)由f ′(x )>0,解得x >1a,所以函数f (x )的单调递增区间是⎝ ⎛⎭⎪⎫1a,+∞;由f ′(x )<0,解得0<x <1a,所以函数f (x )的单调递减区间是⎝⎛⎭⎪⎫0,1a .所以当x =1a时,函数f (x )有极小值f ⎝ ⎛⎭⎪⎫1a =a ln 1a+a =a -a ln a ,无极大值.(2)不存在实数a 满足条件.由(1)可知,当x ∈⎝⎛⎭⎪⎫0,1a 时,函数f (x )单调递减;当x ∈⎝ ⎛⎭⎪⎫1a,+∞时,函数f (x )单调递增.①若0<1a≤1,即a ≥1时,函数f (x )在[1,e]上为增函数,故函数f (x )的最小值为f (1)=a ln 1+1=1,显然1≠0,故不满足条件a ≥1. ②若1<1a <e ,即1e <a <1时,函数f (x )在⎣⎢⎡⎭⎪⎫1,1a 上为减函数,在⎝ ⎛⎦⎥⎤1a ,e 上为增函数, 故函数f (x )的最小值为f (x )的极小值f ⎝ ⎛⎭⎪⎫1a=a ln 1a+a =a -a ln a =a (1-ln a )=0,即ln a =1,解得a =e ,故不满足条件1e<a <1.③若1a ≥e,即0<a ≤1e 时,函数f (x )在[1,e]上为减函数,故函数f (x )的最小值为f (e)=a ln e +1e =a +1e=0,即a =-1e ,故不满足条件0<a ≤1e.综上所述,不存在这样的实数a ,使得函数f (x )在[1,e]上的最小值为0.。

(完整版)导数与极值、最值练习题

(完整版)导数与极值、最值练习题

三、知识新授(一)函数极值的概念(二)函数极值的求法:(1)考虑函数的定义域并求f'(x);(2)解方程f'(x)=0,得方程的根x(可能不止一个)(3)如果在x0附近的左侧f'(x)>0,右侧f'(x)<0,那么f(x)是极大值;反之,那么f(x)是极大值题型一图像问题1、函数()f x的导函数图象如下图所示,则函数()f x在图示区间上()(第二题图) A.无极大值点,有四个极小值点 B.有三个极大值点,两个极小值点C.有两个极大值点,两个极小值点D.有四个极大值点,无极小值点2、函数()f x的定义域为开区间()a b,,导函数()f x'在()a b,内的图象如图所示,则函数()f x在开区间()a b,内有极小值点()A.1个 B.2个 C.3个 D.4个3、若函数2()f x x bx c=++的图象的顶点在第四象限,则函数()f x'的图象可能为()D.C.B.A.4、设()f x'是函数()f x的导函数,()y f x'=的图象如下图所示,则()y f x=的图象可能是()C.A.5、已知函数()f x 的导函数()f x '的图象如右图所示,那么函数()f x的图象最有可能的是( )-11 f '(x )yxO6、()f x '是()f x 的导函数,()f x '的图象如图所示,则()f x 的图象只可能是( )2xO222D.C.B.A.OxOx x Ox y7、如果函数()y f x =的图象如图,那么导函数()y f x '=的图象可能是( )yyyxx xyxDCBA xyy=f(x)8、如图所示是函数()y f x =的导函数()y f x '=图象,则下列哪一个判断可能是正确的( )A .在区间(20)-,内()y f x =为增函数B .在区间(03),内()y f x =为减函数C .在区间(4)+∞,内()y f x =为增函数D .当2x =时()y f x =有极小值9、如果函数()y f x =的导函数的图象如图所示,给出下列判断:①函数()y f x =在区间13,2⎛⎫-- ⎪⎝⎭内单调递增;②函数()y f x =在区间1,32⎛⎫- ⎪⎝⎭内单调递减; ③函数()y f x =在区间(4,5)内单调递增; ④当2x =时,函数()y f x =有极小值; ⑤当12x =-时,函数()y f x =有极大值; 则上述判断中正确的是___________. 10、函数321()2f x x x =-+的图象大致是 ( )DCBA11、己知函数()32f x ax bx c=++,其导数()f x '的图象如图所示,则函数()f x 的极小值是( )A .a b c ++B .84a b c ++C .32a b +D .c题型二 极值求法 1 求下列函数的极值(1)f(x)=x 3-3x 2-9x+5; (2)f(x)=ln x x (3)f(x)=1cos ()2x x x ππ+-<<2、设a 为实数,函数y=e x -2x+2a,求y 的单调区间与极值3、设函数f(x)=313x -+x 2+(m 2-1)x,其中m>0。

【高二】函数的最值与导数综合测试题(附答案)

【高二】函数的最值与导数综合测试题(附答案)

【高二】函数的最值与导数综合测试题(附答案)选修2-2 1.3.3 函数的最值与导数一、1.函数y=f(x)在区间[a,b]上的最大值是M,最小值是m,若M=m,则f′(x)()A.等于0 B.大于0C.小于0 D.以上都有可能[答案] A[解析] ∵M=m,∴y=f(x)是常数函数∴f′(x)=0,故应选A.2.设f(x)=14x4+13x3+12x2在[-1,1]上的最小值为( )A.0 B.-2C.-1 D.1312[答案] A[解析] y′=x3+x2+x=x(x2+x+1)令y′=0,解得x=0.∴f(-1)=512,f(0)=0,f(1)=1312∴f(x)在[-1,1]上最小值为0.故应选A.3.函数y=x3+x2-x+1在区间[-2,1]上的最小值为( )A.2227 B.2C.-1 D.-4[答案] C[解析] y′=3x2+2x-1=(3x-1)(x+1)令y′=0解得x=13或x=-1当x=-2时,y=-1;当x=-1时,y=2;当x=13时,y=2227;当x=1时,y=2.所以函数的最小值为-1,故应选C.4.函数f(x)=x2-x+1在区间[-3,0]上的最值为( ) A.最大值为13,最小值为34B.最大值为1,最小值为4C.最大值为13,最小值为1D.最大值为-1,最小值为-7[答案] A[解析] ∵y=x2-x+1,∴y′=2x-1,令y′=0,∴x=12,f(-3)=13,f12=34,f(0)=1.5.函数y=x+1-x在(0,1)上的最大值为( )A.2 B.1C.0 D.不存在[答案] A[解析] y′=12x-121-x=12?1-x-xx?1-x 由y′=0得x=12,在0,12上y′>0,在12,1上y′<0.∴x=12时y极大=2,又x∈(0,1),∴ymax=2.6.函数f(x)=x4-4x (x<1)( )A.有最大值,无最小值B.有最大值,也有最小值C.无最大值,有最小值D.既无最大值,也无最小值[答案] D[解析] f′(x)=4x3-4=4(x-1)(x2+x+1).令f′(x)=0,得x=1.又x∈(-1,1)∴该方程无解,故函数f(x)在(-1,1)上既无极值也无最值.故选D.7.函数y=2x3-3x2-12x+5在[0,3]上的最大值和最小值分别是( )A.5,-15 B.5,4C.-4,-15 D.5,-16[答案] A[解析] y′=6x2-6x-12=6(x-2)(x+1),令y′=0,得x=2或x=-1(舍).∵f(0)=5,f(2)=-15,f(3)=-4,∴ymax=5,ymin=-15,故选A.8.已知函数y=-x2-2x+3在[a,2]上的最大值为154,则a等于( )A.-32 B.12C.-12 D.12或-32[答案] C[解析] y′=-2x-2,令y′=0得x=-1.当a≤-1时,最大值为f(-1)=4,不合题意.当-1最大值为f(a)=-a2-2a+3=154,解得a=-12或a=-32(舍去).9.若函数f(x)=x3-12x在区间(k-1,k+1)上不是单调函数,则实数k的取值范围是( )A.k≤-3或-1≤k≤1或k≥3B.-3C.-2D.不存在这样的实数[答案] B[解析] 因为y′=3x2-12,由y′>0得函数的增区间是(-∞,-2)和(2,+∞),由y′<0,得函数的减区间是(-2,2),由于函数在(k-1,k+1)上不是单调函数,所以有k-110.函数f(x)=x3+ax-2在区间[1,+∞)上是增函数,则实数a的取值范围是( )A.[3,+∞) B.[-3,+∞)C.(-3,+∞) D.(-∞,-3)[答案] B[解析] ∵f(x)=x3+ax-2在[1,+∞)上是增函数,∴f′(x)=3x2+a≥0在[1,+∞)上恒成立即a≥-3x2在[1,+∞)上恒成立又∵在[1,+∞)上(-3x2)max=-3∴a≥-3,故应选B.二、题11.函数y=x32+(1-x)32,0≤x≤1的最小值为______.[答案] 22由y′>0得x>12,由y′<0得x<12.此函数在0,12上为减函数,在12,1上为增函数,∴最小值在x=12时取得,ymin =22.12.函数f(x)=5-36x+3x2+4x3在区间[-2,+∞)上的最大值________,最小值为________.[答案] 不存在;-2834[解析] f′(x)=-36+6x+12x2,令f′(x)=0得x1=-2,x2=32;当x>32时,函数为增函数,当-2≤x≤32时,函数为减函数,所以无最大值,又因为f(-2)=57,f32=-2834,所以最小值为-2834.13.若函数f(x)=xx2+a(a>0)在[1,+∞)上的最大值为33,则a的值为________. [答案] 3-1[解析] f′(x)=x2+a-2x2(x2+a)2=a-x2(x2+a)2令f′(x)=0,解得x=a或x=-a(舍去)当x>a时,f′(x)<0;当00;当x=a时,f(x)=a2a=33,a=32<1,不合题意.∴f(x)max=f(1)=11+a=33,解得a=3-1.14.f(x)=x3-12x+8在[-3,3]上的最大值为M,最小值为m,则M-m=________.[答案] 32[解析] f′(x)=3x2-12由f′(x)>0得x>2或x由f′(x)<0得-2∴f(x)在[-3,-2]上单调递增,在[-2,2]上单调递减,在[2,3]上单调递增.又f(-3)=17,f(-2)=24,f(2)=-8,f(3)=-1,∴最大值M=24,最小值m=-8,∴M-m=32.三、解答题15.求下列函数的最值:(1)f(x)=sin2x-x-π2≤x≤π2;(2)f(x)=x+1-x2.[解析] (1)f′(x)=2cos2x-1.令f′(x)=0,得cos2x=12.又x∈-π2,π2,∴2x∈[-π,π],∴2x=±π3,∴x=±π6.∴函数f(x)在-π2,π2上的两个极值分别为fπ6=32-π6,f-π6=-32+π6.又f(x)在区间端点的取值为fπ2=-π2,f-π2=π2.比较以上函数值可得f(x)max=π2,f(x)min=-π2.(2)∵函数f(x)有意义,∴必须满足1-x2≥0,即-1≤x≤1,∴函数f(x)的定义域为[-1,1].f′(x)=1+12(1-x2)-12?(1-x2)′=1-x1-x2 .令f′(x)=0,得x=22 .∴f(x)在[-1,1]上的极值为f22=22+1-222=2.又f(x)在区间端点的函数值为f(1)=1,f(-1)=-1,比较以上函数值可得f(x)max =2,f(x)min=-1.16.设函数f(x)=ln(2x+3)+x2.求f(x)在区间-34,14上的最大值和最小值.[解析] f(x)的定义域为-32,+∞.f′(x)=2x+22x+3=4x2+6x+22x+3=2(2x+1)(x+1)2x+3.当-320;当-1当x>-12时,f′(x)>0,所以f(x)在-34,14上的最小值为f-12=ln2+14.又f-34-f14=ln32+916-ln72-116=ln37+12=121-ln499<0,所以f(x)在区间-34,14上的最大值为 f14=ln72+116.17.(2021?安徽理,17)设a为实数,函数f(x)=ex-2x+2a,x∈R.(1)求f(x)的单调区间及极值;(2)求证:当a>ln2-1且x>0时,ex>x2-2ax+1.[分析] 本题考查导数的运算,利用导数研究函数的单调区间,求函数的极值和证明函数不等式,考查运算能力、综合分析和解决问题的能力.解题思路是:(1)利用导数的符号判定函数的单调性,进而求出函数的极值.(2)将不等式转化构造函数,再利用函数的单调性证明.[解析] (1)解:由f(x)=ex-2x+2a,x∈R知f′(x)=ex-2,x∈R.令f′(x)=0,得x=ln2.于是当x变化时,f′(x),f(x)的变化情况如下表:x(-∞,ln2)ln2(ln2,+∞)f′(x)-0+f(x)单调递减 ?2(1-ln2+a)单调递增 ?故f(x)的单调递减区间是(-∞,ln2),单调递增区间是(ln2,+∞),f(x)在x=ln2处取得极小值,极小值为f(ln2)=eln2-2ln2+2a=2(1-ln2+a).(2)证明:设g(x)=ex-x2+2ax-1,x∈R,于是g′(x)=ex-2x+2a,x∈R.由(1)知当a>ln2-1时,g′(x)最小值为g′(ln2)=2(1-ln2+a)>0.于是对任意x∈R,都有g′(x)>0,所以g(x)在R内单调递增.于是当a>ln2-1时,对任意x∈(0,+∞),都有g(x)>g(0).而g(0)=0,从而对任意x∈(0,+∞),g(x)>0.即ex-x2+2ax-1>0,故ex>x2-2ax+1.18.已知函数f(x)=4x2-72-x,x∈[0,1].(1)求f(x)的单调区间和值域;(2)设a≥1,函数g(x)=x3-3a2x-2a,x∈[0,1].若对于任意x1∈[0,1],总存在x0∈[0,1],使得g(x0)=f(x1)成立,求a的取值范围.[解析] (1)对函数f(x)求导,得f′(x)=-4x2+16x-7(2-x)2=-(2x-1)(2x-7)(2-x)2令f′(x)=0解得x=12或x=72.当x变化时,f′(x),f(x)的变化情况如下表:x0(0,12)12(12,1)1f′(x)-0+f(x)-72?-4 ?-3所以,当x∈(0,12)时,f(x)是减函数;当x∈12,1时,f(x)是增函数.当x∈[0,1]时,f(x)的值域为[-4,-3].(2)g′(x)=3(x2-a2).因为a≥1,当x∈(0,1)时,g′(x)<0.因此当x∈(0,1)时,g(x)为减函数,从而当x∈[0,1]时有g(x)∈[g(1),g(0)].又g(1)=1-2a-3a2,g(0)=-2a,即x∈[0,1]时有g(x)∈[1-2a-3a2,-2a].任给x1∈[0,1],f(x1)∈[-4,-3],存在x0∈[0,1]使得g(x0)=f(x1)成立,则[1-2a-3a2,-2a]?[-4,-3].即1-2a-3a2≤-4,①-2a≥-3.②解①式得a≥1或a≤-53;解②式得a≤32.感谢您的阅读,祝您生活愉快。

高考数学必考点专项第9练 导数与函数的极值、最值(练习及答案)(全国通用)(新高考专用)

高考数学必考点专项第9练 导数与函数的极值、最值(练习及答案)(全国通用)(新高考专用)

高考数学必考点专项第9练 导数与函数的极值、最值习题精选一、单选题1. 若2x =-是函数2-1()=(+-1)x f x x ax e 的极值点,则()f x 的极小值为( ) A. 1-B. 32e --C. 35e -D. 12. 正项等比数列中的14031,a a 是函数的极值点,则20166log a = ( ) A. 1 B. 2D. 1-3. 若在上有两个极值点,则a 的取值范围为( )A.B.C.D.4. 已知函数3221()13f x x ax b x =+++,若a 是从1,2,3三个数中任取的一个数,b是从0,1,2三个数中任取的一个数,则该函数有两个极值点的概率为( )A.79 B. 13C. 59D.235. 设0a ≠,若x a =为函数2()()()f x a x a x b =--的极大值点,则( ) A. a b <B. a b >C. 2ab a <D. 2ab a >二、多选题6. 已知()f x 是定义在(0,3)上的连续可导函数.若()f x 的最大值为(1)f ,则( )321()4633f x x x x =-+-A. (1)0f '=B. ()f x -在1x =-处有最大值C. ()f x -在1x =处有极小值D. ()f x --在1x =-处有最大值7. 声音是由物体振动产生的声波,其中包含着正弦函数.纯音的数学模型是函数sin y A t ω=,我们听到的声音是由纯音合成的,称之为复合音.若一个复合音的数学模型是函数,则下列结论正确的是( )A. 2π是的一个周期;B. 在上有3个零点;C.的最大值为334; D. 在上是增函数.8. 已知定义在R 上的奇函数()f x 在(,0]-∞上单调递增,则“对于任意的(0,1],x ∈不等式2(2)(ln )0x f ae x f x x x ++-恒成立”的充分不必要条件可以是( )A. 10a e-<B.4312ea e <C.3211e a e <D.1a e e< 三、填空题9. 函数()|21|2ln f x x x =--的最小值为__________.10. 函数()ln f x x =的定义域为__________,最大值为__________. 11. 若直线2y x b =+是曲线2ln y a x =的切线,且0a >,则实数b 的最小值是__________.()f x ()f x [0,2]π()f x ()f x12. 已知函数在上无极值,则a =__________,()f x 在上的最小值是__________.13. 已知函数()f x 为奇函数,()g x 为偶函数,对于任意x R ∈均有()+2()=mx 4f x g x -,若()3lnx 0f x --对任意(0,+)x ∈∞都成立,则实数m 的取值范围是__________. 四、解答题14. 已知函数2()12.f x x =-(1)求曲线()y f x =的斜率等于2-的切线方程;(2)设曲线()y f x =在点(,())t f t 处的切线与坐标轴围成的三角形的面积为()S t ,求()S t 的最小值.15. 已知函数232().xf x x a-=+ (1)若0a =,求曲线()y f x =在(1,(1))f 处的切线方程;(2)若函数()f x 在1x =-处取得极值,求()f x 的单调区间,以及最大值和最小值.16. 已知函数21()ln (1)(0).2f x a x a x x a =-++->(1)讨论()f x 的单调性; (2)若21()2f x x ax b -++恒成立,求实数ab 的最大值.17. 已知函数2().xf x e ax x =+-(1)当1a =时,讨论()f x 的单调性;(2)当0x 时,31()12f x x +,求a 的取值范围.18. 已知函数()sin ln()f x x a x b =++,()g x 是()f x 的导函数.(1)若0a >,当1b =时,函数()g x 在(,4)π内有唯一的极小值,求a 的取值范围; (2)若1a =-,1e 2b π<<-,试研究()f x 的零点个数.19. 已知函数,(1)若,求的最值;(2)若存在使得,求实数m 的取值范围.20. 已知函数,其中0.m >(1)讨论函数的单调区间;(2)若函数有两个极值点1x ,2x ,且12x x <,是否存在实数a 使得恒成立,如果存在请求出实数a 的取值范围,如果不存在请说明理由.()f x ()f x ()f x答案和解析1.【答案】A解: 函数2-1()=(+-1)x f x x ax e ,可得-12-1()=(2+)+(+-1)x x f x x a ex ax e ',又2x =-是函数2-1()=(+-1)x f x x ax e的极值点,可得-3-3(-2)=(-4+)+(4-2-1)=0f a e a e ', 即-4++(3-2)=0a a ,解得 1.a =- 可得2-1()=(+-2)x f x x x e',令()=0f x ',解得12x =-,2=1.x当2x <-或1x >时,()0f x '>,()f x 单调递增, 当(-2,1)x ∈时,()0f x '<,()f x 单调递减, 可知=1x 时,函数取得极小值, 即21-1(1)=(1-1-1) 1.f e =-故选.A2.【答案】A解:321()4633f x x x x =-+-, 2()860f x x x ∴'=-+=,1a ,4031a 是函数321()4633f x x x x =-+-的极值点, 140316a a ∴⋅=,又0n a >,2016a ∴=20161.∴=故选.A3.【答案】D解:令sin x t =,(0,1],t ∈ 则2120.t t a -+-= 令,(0,1];t ∈当(0,1],a ∈函数()g t 在上与y a =只有一个交点,(1)0,sin g t x ==对应的x 值有两个.故而(0,1].a ∈ 故选.D4.【答案】D解:求导数可得22()2f x x ax b '=++,要满足题意需2220x ax b ++=有两不等实根, 即224()0a b ∆=->,即a b >, 又a ,b 的取法共339⨯=种,其中满足a b >的有(1,0),(2,0),(2,1),(3,0),(3,1),(3,2)共6种, 故所求的概率为6293P == 故选D5.【答案】D解:因为0a ≠,()Ⅰ所以当a b =时,函数在单调,无极值,不合条件;()Ⅱ当a b ≠时,因为,所以,①若0a >并且a b <时,23a ba +<, 由,得:x a <或23a bx +>, 由,得:23a ba x +<<, 所以这时在上单调递增,在上单调递减,x a =是函数的极大值点,符合条件;②若0a >,并且a b >时,23a ba +>, 由,得:23a bx +<或x a >, 由,得:23a bx a +<<, 所以这时在上单调递减,在上单调递增,x a =是函数的极小值点,不符合条件;③若0a <,并且a b <时,23a ba +<, 由,得:23a ba x +<<, 由,得:x a <或23a bx +>, 这时在上单调递减,在上单调递增,x a =是函数的极小值()0f x '>()0f x '<()f x ()f x ()0f x '>()0f x '<()f x (,)a +∞()f x ()0f x '>()0f x '<()f x ()f x点,不符合条件;④若0a <,并且a b >时,23a ba +>, 由,得:23a bx a +<<, 由,得:23a bx +<或x a >, 所以这时在上单调递增,在上单调递减,x a =是函数的极大值点,符合条件;因此,若x a =为函数的极大值点,则a ,b 必须满足条件:0a >并且a b <或0a <并且.a b >由此可见,A ,B 均错误; 又总有成立,所以C 错误,D 正确.故选.D6.【答案】ABC解:()f x 是定义在(0,3)上的连续可导函数.若()f x 的最大值为(1)f , 则()f x 在1x =处取得极大值,故(1)0f '=,故A 正确;将()y f x =的图象关于y 轴翻折得到()y f x =-,所以()f x -在1x =-处有最大值,故B 正确;将()y f x =的图象关于x 轴翻折得到()y f x =-,所以()f x -在1x =处有极小值,故C 正确;将()y f x =的图象关于y 轴翻折,再关于x 轴翻折得到()y f x =--,此时()y f x =与()y f x =--关于原点对称,()0f x '>()0f x '<()f x (,)a +∞()f x 2()()()f x a x a x b =--所以()f x --在1x =-处有最小值,故D 错误, 故选.ABC7.【答案】ABC解:11(2)sin(2)sin 2(2)sin sin 222f x x x x x πππ+=+++=+,A 正确;由()0f x =得到sin sin cos 0x x x +=,sin 0x ∴=或1cos 0x +=,x k π∴=,或2x k ππ=+,k Z ∈,∴函数()f x 在[0,2]π上有三个零点0,π,2π,B 正确;()cos cos 2f x x x '=+,∴当3x π=时,()0f x '=,且当03x π<<时()0f x '>,当3x ππ<<时,()0f x '<,()f x ∴在3x π=时取得最大值,121()sin sin 33232f πππ=+==,C 正确, 由上述求解知函数在[,]32ππ上一定递减,D 错误.故选.ABC8.【答案】CD解:因为定义在R 上的奇函数()f x 在(,0]-∞上单调递增,所以()f x 在R 上单调递增,所以不等式2(2)(ln )0x f ae x f x x x ++-即为22(2)(ln )(ln )xf ae x f x x x f x x x +--=-对于任意的(0,1]x ∈恒成立,所以22ln xae x x x x +-,也即ln 20xae x x x+-+对于任意的(0,1]x ∈恒成立.令,则,当0a 时,在(0,1]x ∈恒成立,所以在单调递增,又当0x →时,,所以不成立; 令,则在(0,1]x ∈恒成立,所以在单调递增,所以,即1.x x e e所以当1ae时,0xae x -在(0,1]x ∈恒成立,所以在(0,1]x ∈恒成立,所以在单调递减,所以有成立,故1ae时在(0,1]x ∈恒成立;当10a e<<时,存在,使得000xae x -=,所以当00x x <<时,0x ae x ->,所以,所以在单调递减;当01x x <时,0x ae x -<,所以,所以在单调递增.所以,因为000xae x -=,所以00x aex =,且,所以,所以由,可得31ae ,所以311a e e<时在(0,1]x ∈恒成立.综上所述,31ae 时在(0,1]x ∈恒成立.所以“对于任意的(0,1],x ∈不等式2(2)(ln )0x f ae x f x x x ++-恒成立”的充分不必要条件可以是.CD 故选:.CD()g x (0,1]()h x (0,1]()g x (0,1]()g x ()g x9.【答案】1解:函数()|21|2ln f x x x =--的定义域为(0,)+∞, 当102x<时,()|21|2ln 212ln f x x x x x =--=-+-, 此时函数()f x 在1(0,]2上为减函数,所以111()()212ln 2ln 2222f x f =-⨯+-=; 当12x >时,()|21|2ln 212ln f x x x x x =--=--, 则22(1)()2x f x x x-'=-=, 当1(,1)2x ∈时,()0f x '<,()f x 单调递减, 当(1,)x ∈+∞时,()0f x '>,()f x 单调递增,∴当1x =时()f x 取得最小值,为(1)2112ln11f =⨯--=,2ln 2ln 4ln 1e =>=,∴函数()|21|2ln f x x x =--的最小值为1.故答案为:1.10.【答案】(0,1]0 解:由,得0 1.x <∴函数()1ln f x x x =-⋅的定义域为(0,1];令1x t -=,[0,1),t ∈则21x t =-,函数()1ln f x x x =-⋅化为2()ln(1)g t t t =⋅-,[0,1),t ∈2222()ln(1)01t g t t t-'=-+-, ()g t ∴在[0,1)上为减函数,则max ()(0)0g t g ==,则函数()ln f x x =的最大值为0, 故答案为(0,1];0.11.【答案】2-解:2ln y a x =的导数为2a y x'=, 由于直线2y x b =+是曲线2ln y a x =的切线, 设切点为(,)m n ,则22am=,m a ∴=, 又22ln m b a m +=,2ln 2(0)b a a a a ∴=->,2(ln 1)22ln b a a '=+-=,当1a >时,0b '>,函数b 递增,当01a <<时,0b '<,函数b 递减,1a ∴=为极小值点,也为最小值点, b ∴的最小值为2ln12 2.-=-故答案为: 2.-12.【答案】232π-【解答】 函数()f x 的导数为22()cos 2(2)sin 1(12sin )(2)sin 12sin f x a x a x a a x a x a a x '=++--=-++--=-(2)sin 1(2sin 1)(sin 1).a x x a x ++-=---当1sin 2x =,即[,]622x πππ=∈-时,()0.f x '=所以要使()f x 在[,]22ππ-上无极值,则2a =,此时2()(2sin 1)0f x x '=--恒成立,即()f x 单调递减,故在区间[,]22ππ-上()f x 的最小值为3().22f ππ=- 13.【答案】解:由已知得……①, 所以,又因为为奇函数,为偶函数, 所以……②,①②联立解得,,将代入不等式得3ln 0mx x --,对任意都成立,即3ln xmx x+,对任意都成立, 设,则,令,解得21x e =, 由()0h x '>得2lnx 0-->,得210x e<<, 由()0h x '<得2lnx 0--<,得21e x >, ()f x ()g x (0,)x ∈+∞(0,)x ∈+∞()0h x '=所以在区间上单调递增,在区间21(,)e +∞上单调递减, 所以的最大值为,即2m e ,所以实数m 的取值范围是故答案为14.【答案】解:2(1)()12f x x =-的导函数()2f x x '=-,令切点为(,)m n ,可得切线的斜率为22m -=-,1m ∴=,12111n ∴=-=,∴切线的方程为213y x =-+;(2)曲线()y f x =在点(,())t f t 处的切线的斜率为2k t =-,切线方程为2(12)2()y t t x t --=--, 令0x =,可得212y t =+,令0y =,可得162x t t=+, 2116()||(12)22S t t t t∴=⋅+⋅+,由()()S t S t -=,可知()S t 为偶函数, 不妨设0t >,则2112()()(12)4S t t t t=++, 2222211443(4)(12)()(324)44t t S t t t t-+∴'=+-=⋅, 由()0S t '=,得2t =,当2t >时,()0S t '>,()S t 单调递增; 当02t <<时,()0S t '<,()S t 单调递减, 则()S t 在2t =处取得极小值,且为最小值32,()h x ()h x所以()S t 的最小值为32.15.【答案】解:(1)当0a =时,232()xf x x-=, 24322(32)26()x x x x f x x x ----'==,因此(1)1f =,()4f x '=-,所以曲线()y f x =在(1,(1))f 处的切线方程为14(1)y x -=--, 即为45y x =-+;(2)因为232()xf x x a-=+的导数为2222()2(32)()()x a x x f x x a -+--'=+, 而函数()f x 在1x =-处取得极值, 所以(1)0f '-=,即2820(1)aa -=+,解得4a =,因此232()4xf x x -=+,222(1)(4)().(4)x x f x x +-'=+ 由()0f x '>得4x >或1x <-;由()0f x '<得14x -<<, 因此函数()f x 在和上单调递增,在上单调递减,所以函数()f x 在1x =-处取得极大值1,在4x =处取得极小值1.4-又因为当32x <时,()0f x >;当32x <时,()0f x <, 作函数()y f x =的图象如下图,由图可知:函数()f x 在1x =-处取得最大值1;在4x =处取得最小值1.4- 所以函数()f x 的单调递增区间为和,单调递减区间为;()f x 的最大值为1,最小值为1.4-16.【答案】解:,(0,0)a x >>,①1a =时,,()f x ∴在(0,)+∞上单调递减;②01a <<时,由()0f x '>,解得:1a x <<,()f x ∴在(,1)a 上单调递增,在(0,)a ,(1,)+∞上单调递减;③1a >时,同理()f x 在(1,)a 上单调递增,在(0,1),(,)a +∞上单调递减;21(2)()2f x x ax b -++恒成立,ln 0a x x b ∴-+恒成立,令()ln g x a x x b =-+,则()a xg x x-'=, ()g x ∴在(0,)a 上单调递增,在(,)a +∞上单调递减.max ()()ln 0g x g a a a a b ∴==-+,ln b a a a ∴-,22ln ab a a a ∴-,令22()ln (0)h x x x x x =->,则()(12ln )h x x x '=-,()h x ∴在上单调递增,在)+∞上单调递减,max ()2e h x h e e ∴==-=, .2e ab∴ 即ab 的最大值为.2e17.【答案】解:(1)当1a =时,2()x f x e x x =+-,()21x f x e x '=+-,设()()g x f x =',因为()20xg x e '=+>,可得()g x 在R 上递增,即()f x '在R 上递增, 因为(0)0f '=,所以当0x >时,()0f x '>;当0x <时,()0f x '<, 所以()f x 的增区间为(0,)+∞,减区间为(,0)-∞;(2)当0x 时,31()12f x x +恒成立, ①当0x =时,不等式恒成立,可得a R ∈;②当0x >时,可得32112xx x e a x++-恒成立, 设32112()x x x e h x x++-=,则231(2)(1)2()x x e x x h x x ----'=, 可设21()12x m x e x x =---,可得()1x m x e x '=--,令()()t x m x =',()1x t x e '=-, 由0x ,可得()0t x '恒成立,可得()m x '在(0,)+∞递增, 所以min ()(0)0m x m '='=,即()0m x '恒成立,即()m x 在(0,)+∞递增,所以min ()(0)0m x m ==, 再令()0h x '=,可得2x =,当02x <<时,()0h x '>,()h x 在(0,2)递增;2x >时,()0h x '<,()h x 在(2,)+∞递减,所以2max7()(2)4e h x h -==,所以274e a -,综上可得a 的取值范围是27[,).4e -+∞18.【答案】解:(1)当1b =时,()sin ln (1)f x x a x =++,()()cos 1ag x f x x x ='=++, 在单调递增,2()0(1)a g ππ'=-<+,(4)sin 425ag '=--, 当(4)sin 4025ag '=--时,()g x 在(,4)π单调递减,无极值; 当(4)sin 4025ag '=-->时,0(,4)x π∃∈,使得0()0g x '=, 从而()g x 在0(,)x π单调递减,在0(,4)x 单调递增,0x 为()g x 唯一的极小值点, 所以;(2)当1a =-时,()sin ln()f x x x b =-+,(1,)2b e π∈-,可知,时,()0f x <,无零点;所以只需研究(,)b π-上()f x 零点情况;()(,)2ii x ππ∈时,1()cos 0f x x x b'=-<+,可知()f x 单调递减,(,4)π()1ln()1ln()02222f b e ππππ=-+>-+-=,()0f π<, 存在唯一的(,)2s ππ∈,使得()0f s =;()iii 当(,)2x b π∈-,令1()()cos h x f x x x b'==-+, 则21()sin ()h x x x b '=-++单调递减, 且21(0)00h b '=+>,21()102()2h b ππ'=-+<+, 则1(0,)2x π∃∈,使得1()0h x '=,则在1(,)b x -单调递增,1(,)2x π单调递减,并且lim ()0x bf x +→-'<,,1()022f b ππ'=-<+, 所以2(,0)x b ∃∈-,2()0f x '=,3(0,)2x π∃∈,3()0f x '=,且知在单调递减,在单调递增,在3(,)2x π单调递减,又因为lim ()0x bf x +→->,,()02f π>,(,0)m b ∃∈-,()0f m =,(0,)2n π∃∈,()0f n =,综上所述,由()()()i ii iii 可知,()f x 有3个零点.19.【答案】的定义域为,,令,得1x =, 当时,,单调递减;()f x '()f x (0,)+∞()0f x '=()0f x '<()f x当时,,单调递增又,所以,; (2)由题意知:只需,由(1)知在单调递减,单调递增,①若01m <,则在单调递减,则只需, 即2ln 210m m m m e--+, 记,01m <, 因为,所以在单调递减,单调递增, 而,,所以在01m <恒成立,又因为2ln 0m m ,所以2ln 210m m m m e--+对任意01m <恒成立. ②若1m >,,只需, 即,解得1ln3m <, 综上,20.【答案】解:,定义域为 所以,(0,)x ∈+∞,令,(0,)x ∈+∞,对于方程,164m ∆=-,①当04m <<时,0∆>,有两个根,为12x =22x =120x x <<()0f x '>()f x ()f x (0,1)(1,)+∞()f x (0,)+∞2()4g x x x m =-+在和上;在上,所以函数的单调增区间为和; 单调减区间为, ②当4m 时,0∆,恒成立,所以函数的单调增区间为,无减区间. (2)由(1)知,若有两个极值点,则04m <<,又1x ,2x 是240x x m -+=的两个根,则124x x +=,12x x m ⋅= 所以214x x =-,,由(1)知,124x m=--,, 恒成立,,令,,只要即可; ,令则,,令,则,所以在上单调递减,在1(,2)e上单调递增. ,所以存在12a e -,使得恒成立. ()0f x '>()0f x '<()f x ()f x (0,)+∞()f x (0,2)t ∈min ()a h t ()h t。

导数与函数的极值、最值 最新习题(含解析)

导数与函数的极值、最值 最新习题(含解析)

导数与函数的极值、最值课时作业一、选择题1.如图2是函数y=f(x)的导函数y=f′(x)的图象,给出下列命题:图2①-2是函数y=f(x)的极值点;②1是函数y=f(x)的极值点;③y=f(x)的图象在x=0处切线的斜率小于零;④函数y=f(x)在区间(-2,2)上单调递增.则正确命题的序号是()A.①③B.②④C.②③D.①④解析:根据导函数图象可知,-2是导函数的零点且-2的左右两侧导函数符号异号,故-2是极值点;1不是极值点,因为1的左右两侧导函数符号一致;0处的导函数值即为此点的切线斜率,显然为正值,导函数在(-2,2)上恒大于或等于零,故为函数的增区间,所以选D.答案:D2.设f(x)=12x2-x+cos(1-x),则函数f(x)()A.仅有一个极小值B.仅有一个极大值C.有无数个极值D.没有极值解析:由f(x)=12x2-x+cos(1-x),得f′(x)=x-1+sin(1-x).设g(x)=x-1+sin(1-x),则g′(x)=1-cos(1-x)≥0.所以g(x)为增函数,且g(1)=0.所以当x∈(-∞,1)时,g(x)<0,f′(x)<0,则f(x)单调递减;当x∈(1,+∞)时,g(x)>0,f′(x)>0,则f(x)单调递增.又f′(1)=0,所以函数f(x)仅有一个极小值f(1).故选A.答案:A3.已知函数f(x)=x3+ax2+bx+a2在x=1处取极值10,则a=()A .4或-3B .4或-11C .4D .-3 解析:∵f (x )=x 3+ax 2+bx +a 2, ∴f ′(x )=3x 2+2ax +b .由题意得⎩⎨⎧f ′(1)=3+2a +b =0,f (1)=1+a +b +a 2=10, 即⎩⎨⎧2a +b =-3,a +b +a 2=9,解得⎩⎨⎧a =-3,b =3或⎩⎨⎧a =4,b =-11.当⎩⎨⎧a =-3,b =3时,f ′(x )=3x 2-6x +3=3(x -1)2≥0,故函数f (x )单调递增,无极值.不符合题意.∴a =4.故选C. 答案:C 4.函数f (x )=2+ln x x +1在[1e ,e]上的最小值为 ( ) A .1 B.e 1+e C.21+e D.31+e解析:∵f ′(x )=x +1x -(2+ln x )(x +1)2=1x-1-ln x (x +1)2,∴当e ≥x >1时,f ′(x )<0;当1e ≤x <1时,f ′(x )>0. 所以f (x )的最小值为min ⎩⎨⎧⎭⎬⎫f (1e ),f (e )=min{e 1+e ,31+e }=e 1+e ,选B.答案:B5.若函数f (x )=(a +1)e 2x -2e x +(a -1)x 有两个极值点,则实数a 的取值范围是 ( )A .(0,62)B .(1,62)C .(-62,62)D .(63,1)∪(1,62) 解析:∵f (x )=(a +1)e 2x -2e x +(a -1)x , ∴f ′(x )=2(a +1)e 2x -2e x +a -1,∵f (x )=(a +1)e 2x -2e x +(a -1)x 有两个极值点, ∴f ′(x )=0有两个不等实根,设t =e x >0,则关于t 的方程2(a +1)t 2-2t +a -1=0有两个不等正根,可得⎩⎪⎨⎪⎧a -12(a +1)>0,22(a +1)>0,4-8(a -1)(a +1)>0⇒1<a <62,∴实数a 的取值范围是(1,62),故选B. 答案:B 6.图1如图1,可导函数y =f (x )在点P (x 0,f (x 0))处的切线为l :y =g (x ),设h (x )=f (x )-g (x ),则下列说法正确的是( )A .h ′(x 0)=0,x =x 0是h (x )的极大值点B .h ′(x 0)=0,x =x 0是h (x )的极小值点C .h ′(x 0)≠0,x =x 0不是h (x )的极值点D .h ′(x 0)≠0,x =x 0是h (x )的极值点解析:由题意可得函数f (x )在点(x 0,f (x 0))处的切线方程为y =f ′(x 0)(x -x 0)+f (x 0), ∴h (x )=f (x )-g (x )=f (x )-f ′(x 0)(x -x 0)-f (x 0), ∴h ′(x )=f ′(x )-f ′(x 0), ∴h ′(x 0)=f ′(x 0)-f ′(x 0)=0. 又当x <x 0时,f ′(x )<f ′(x 0), 故h ′(x )<0,h (x )单调递减; 当x >x 0时,f ′(x )>f ′(x 0), 故h ′(x )>0,h (x )单调递增.∴x =x 0是h (x )的极小值点.故选B. 答案:B7.若函数g (x )=mx +sin xe x 在区间(0,2π)内有一个极大值和一个极小值,则实数m 的取值范围是 ( )A .[-e -2π,e -π2)B .(-e -π,e -2π)C .(-e π,e -5π2) D .(-e -3π,e π) 解析:函数g (x )=mx +sin xe x , 求导得g ′(x )=m +cos x -sin xe x. 令f (x )=m +cos x -sin x e x,则f ′(x )=-2cos xe x .易知,当x ∈(0,π2)时,f ′(x )<0,f (x )单调递减; 当x ∈(π2,3π2)时,f ′(x )>0,f (x )单调递增; 当x ∈(3π2,2π)时,f ′(x )<0,f (x )单调递减. 且f (0)=m +1,f (π2)=m -e -π2,f (3π2)=m +e -3π2, f (2π)=m +e -2π,有f (π2)<f (2π),f (0)>f (3π2).根据题意可得⎩⎪⎨⎪⎧f (π2)=m -e -π2<0,f (2π)=m +e -2π≥0,解得-e-2π≤m <e -π2.故选A.答案:A8.函数y =2x 3-3x 2-12x +5在[0,3]上的最大值和最小值分别是 ( )A .-4,-15B .5,-15C .5,-4D .5,-16 解析:由题意知y ′=6x 2-6x -12, 令y ′>0,解得x >2或x <-1,故函数y=2x3-3x2-12x+5在[0,2]上递减,在[2,3]上递增,当x=0时,y=5;当x=3时,y=-4;当x=2时,y=-15.由此得函数y=2x3-3x2-12x+5在[0,3]上的最大值和最小值分别是5,-15.故选B.答案:B9.若函数f(x)=13x3-⎝⎛⎭⎪⎫1+b2x2+2bx在区间[-3,1]上不是单调函数,则f(x)在R上的极小值为()A.2b-43 B.32b-23C.0 D.b2-16b3解析:由题意得f′(x)=(x-b)(x-2).因为f(x)在区间[-3,1]上不是单调函数,所以-3<b<1.由f′(x)>0,解得x>2或x<b;由f′(x)<0,解得b<x<2.所以f(x)的极小值为f(2)=2b-43.故选A.答案:A10.已知函数f(x)=ln x+a,g(x)=ax+b+1,若∀x>0,f(x)≤g(x),则ba的最小值是()A.1+e B.1-e C.e-1D.2e-1解析:由题意,∀x>0,f(x)≤g(x),即ln x+a≤ax+b+1,即ln x-ax+a≤b+1,设h(x)=ln x-ax+a,则h′(x)=1x-a,当a≤0时,h′(x)=1x-a>0,函数h(x)单调递增,无最大值,不合题意;当a>0时,令h′(x)=1x-a=0,解得x=1a,当x∈(0,1a)时,h′(x)>0,函数h(x)单调递增;当x∈(1a,+∞)时,h′(x)<0,函数h(x)单调递减,所以h(x)max=h(1a)=-ln a+a-1,故-ln a+a-1≤b+1,即-ln a+a-b-2≤0,令ba=k,则b=ak,所以-ln a+(1-k)a-2≤0,设φ(a)=-ln a+(1-k)a-2,则φ′(a)=-1a+(1-k),若1-k≤0,则φ′(a)<0,此时φ(a)单调递减,无最小值,所以k<1,由φ′(a)=0,得a=11-k,此时φ(a)min=ln(1-k)-1≤0,解得k≥1-e,所以k的小值为1-e,故选B.答案:B11.已知函数f(x)=-x3+ax2-4在x=2处取得极值,若m,n∈[-1,1],则f(m)+f′(n)的最小值是()A.-13 B.-15 C.10 D.15解析:∵f′(x)=-3x2+2ax,函数f(x)=-x3+ax2-4在x=2处取得极值,∴-12+4a=0,解得a=3,∴f′(x)=-3x2+6x,f(x)=-3x3+3x2-4,∴n∈[-1,1]时,f′(n)=-3n2+6n,当n=-1时,f′(n)最小,最小为-9,当m∈[-1,1]时,f(m)=-m3+3m2-4,f′(m)=-3m2+6m,令f′(m)=0,得m=0或m=2,所以当m=0时,f(m)最小,最小为-4,故f(m)+f′(n)的最小值为-9+(-4)=-13.故选A.答案:A12.设函数y=f(x)在(a,b)上的导函数为f′(x),f′(x)在(a,b)上的导函数为f″(x),若在(a,b)上,f″(x)<0恒成立,则称函数f(x)在(a,b)上为“凸函数”.已知当m≤2时,f(x)=16x3-12mx2+x在(-1,2)上是“凸函数”,则f(x)在(-1,2)上() A.既有极大值,也有极小值B.没有极大值,有极小值C.有极大值,没有极小值D.没有极大值,也没有极小值解析:由题设可知,f″(x)<0在(-1,2)上恒成立,由于f ′(x )=12x 2-mx +1,从而f ″(x )=x -m ,所以有x -m <0在(-1,2)上恒成立,故知m ≥2,又因为m ≤2,所以m =2,从而f (x )=16x 3-x 2+x ,f ′(x )=12x 2-2x +1=0,得x 1=2-2∈(-1,2),x 2=2+2∉(-1,2),且当x ∈(-1,2-2)时,f ′(x )>0,当x ∈(2-2,2)时,f ′(x )<0,所以f (x )在x =2-2处取得极大值,没有极小值.答案:C 二、填空题13.已知函数f (x )=1-x x +ln x ,则f (x )在[12,2]上的最大值等于________.解析:∵函数f (x )=1-xx +ln x , ∴f ′(x )=-1x 2+1x =x -1x 2.故f (x )在[12,1]上单调递减,在[1,2]上单调递增, 又∵f (12)=1-ln2,f (2)=ln2-12,f (1)=0, f (12)-f (2)=32-2ln2>0,∴f (x )max =1-ln2,故答案为1-ln2. 答案:1-ln214.已知函数f (x )=x 3+3ax 2+3bx +c 在x =2处有极值,其图象在x =1处的切线平行于直线6x +2y +5=0,则f (x )极大值与极小值之差为________.解析:求导得f ′(x )=3x 2+6ax +3b ,因为函数f (x )在x =2处取得极值,所以f ′(2)=3·22+6a ·2+3b =0,即4a +b +4=0 ①,又因为图象在x =1处的切线与直线6x +2y +5=0平行, 所以f ′(1)=3+6a +3b =-3,即2a +b +2=0 ②, 联立①②可得a =-1,b =0, 所以f ′(x )=3x 2-6x =3x (x -2), 当f ′(x )>0时,x <0或x >2; 当f ′(x )<0时,0<x <2,∴函数的单调增区间是(-∞,0)和(2,+∞),函数的单调减区间是(0,2), 因此求出函数的极大值为f (0)=c , 极小值为f (2)=c -4,故函数的极大值与极小值的差为c -(c -4)=4, 故答案为4. 答案:415.若函数f (x )=2x 3-ax 2+1(a ∈R )在(0,+∞)内有且只有一个零点,则f (x )在[-1,1]上的最大值与最小值的和为________.解析:由f ′(x )=6x 2-2ax =0,得x =0或x =a3,因为函数f (x )在(0,+∞)上有且仅有一个零点且f (0)=1,所以a 3>0,f (a 3)=0,因此2(a 3)3-a (a3)2+1=0,a =3.从而函数f (x )在[-1,0]上单调递增,在[0,1]上单调递减,所以f (x )max =f (0),f (x )min =min{f (-1),f (1)}=f (-1),f (x )max +f (x )min =f (0)+f (-1)=1-4=-3.答案:-316.已知函数f (x )=x 3+ax 2+(a +6)x +1,(1)若函数f (x )的图象在点(1,f (1))处的切线斜率为6,则实数a =________;(2)若函数在(-1,3)内既有极大值又有极小值,则实数a 的取值范围是________.解析:∵f (x )=x 3+ax 2+(a +6)x +1, ∴f ′(x )=3x 2+2ax +(a +6), ∴f ′(1)=3a +9=6,∴a =-1.函数在(-1,3)内既有极大值又有极小值,则f ′(x )=3x 2+2ax +(a +6)=0在(-1,3)内有不同的实数根,则⎩⎪⎨⎪⎧Δ=4a 2-12(a +6)>0,f ′(-1)=-a +9>0,f ′(3)=7a +33>0,-1<-2a 6<3,∴-337<a <-3.答案:-1 (-337,-3) 三、解答题17.已知函数f (x )=x +ax ln x (a ∈R ).(1)讨论函数f (x )的单调性;(2)若函数f (x )=x +ax ln x 存在极大值,且极大值点为1,证明:f (x )≤e -x +x 2. 解:(1)由题意x >0,f ′(x )=1+a +a ln x ,①当a =0时,f (x )=x ,函数f (x )在(0,+∞)上单调递增; ②当a >0时,函数f ′(x )=1+a +a ln x 单调递增,f ′(x )=1+a +a ln x =0⇒x =e -1-1a >0,故当x ∈(0,e -1-1a )时,f ′(x )<0,当x ∈(e -1-1a ,+∞)时,f ′(x )>0,所以函数f (x )在(0,e -1-1a )上单调递减,函数f (x )在(e -1-1a ,+∞)上单调递增;③当a <0,函数f ′(x )=1+a +a ln x 单调递减,f ′(x )=1+a +a ln x =0⇒x =e -1-1a >0,故当x ∈(0,e -1-1a )时,f ′(x )>0,当x ∈⎝ ⎛⎭⎪⎫e -1-1a ,+∞时,f ′(x )<0,所以函数f (x )在⎝ ⎛⎭⎪⎫0,e -1-1a 上单调递增,函数f (x )在⎝ ⎛⎭⎪⎫e -1-1a ,+∞上单调递减. (2)由f ′(1)=0,得a =-1,令h (x )=e -x +x 2-x +x ln x ,则h ′(x )=-e -x +2x +ln x ,h ″(x )=e -x +2+1x >0,∴h ′(x )在(0,+∞)上单调递增,∵h ′⎝ ⎛⎭⎪⎫1e =-e -1e +2e -1<0,h ′(1)=-e -1+2>0, ∴∃x 0∈⎝ ⎛⎭⎪⎫1e ,1,使得h ′(x 0)=0,即-e -x 0+2x 0+ln x 0=0. ∴当x ∈(0,x 0)时,h ′(x )<0; 当x ∈(x 0,+∞)时,h ′(x )>0,∴h (x )在(0,x 0)上单调递减,在(x 0,+∞)上单调递增, ∴h (x )≥h (x 0).由-e -x 0+2x 0+ln x 0=0,得e -x 0=2x 0+ln x 0, ∴h (x 0)=e -x 0+x 20-x 0+x 0ln x 0 =(x 0+1)(x 0+ln x 0).当x 0+ln x 0<0时,ln x 0<-x 0⇒x 0<e -x 0 ⇒-e -x 0+x 0<0,所以-e -x 0+x 0+x 0+ln x 0<0与-e -x 0+2x 0+ln x 0=0矛盾; 当x 0+ln x 0>0时,ln x 0>-x 0⇒x 0>e -x 0⇒-e -x 0+x 0>0, 所以-e -x 0+x 0+x 0+ln x 0>0与-e -x 0+2x 0+ln x 0=0矛盾; 当x 0+ln x 0=0时,ln x 0=-x 0⇒x 0=e -x 0⇒-e -x 0+x 0=0, 得-e -x 0+2x 0+ln x 0=0,故x 0+ln x 0=0成立, 得h (x 0)=(x 0+1)(x 0+ln x 0)=0,所以h (x )≥0, 即f (x )≤e -x +x 2.18.已知函数f (x )=x ln x .(1)求函数y =f (x )的单调区间和最小值;(2)若函数F (x )=f (x )-a x 在[1,e]上的最小值为32,求a 的值; (3)若k ∈Z ,且f (x )+x -k (x -1)>0对任意x >1恒成立,求k 的最大值. 解:(1)f (x )的单调增区间为[1e ,+∞),单调减区间为⎝ ⎛⎦⎥⎤0,1e , f (x )min =f (1e )=-1e .(2)F (x )=ln x -ax ,F ′(x )=x +a x 2,(ⅰ)当a ≥0时,F ′(x )>0,F (x )在[1,e]上单调递增,F (x )min =F (1)=-a =32,所以a =-32∉[0,+∞),舍去.(ⅱ)当a <0时,F (x )在(0,-a )在上单调递减, 在(-a ,+∞)上单调递增,①若a ∈(-1,0),F (x )在[1,e]上单调递增,F (x )min =F (1)=-a =32,所以a =-32∉(-1,0),舍去;②若a ∈[-e ,-1],F (x )在[1,-a ]上单调递减,在[-a ,e]上单调递增,所以F (x )min =F (-a )=ln(-a )+1=32,解得a =-e ∈[-e ,-1];③若a ∈(-∞,-e), F (x )在[1,e]上单调递减, F (x )min =F (e)=1-a e =32,所以a =-e 2∉(-∞,-e),舍去.综上所述, a =- e.(3)由题意得,k (x -1)<x +x ln x 对任意x >1恒成立,即k <x ln x +x x -1对任意x >1恒成立. 令h (x )=x ln x +x x -1,则h ′(x )=x -ln x -2(x -1)2, 令φ(x )=x -ln x -2(x >1),则φ′(x )=1-1x =x -1x >0,所以函数φ(x )在(1,+∞)上单调递增,因为方程φ(x )=0在(1,+∞)上存在唯一的实根x 0,且x 0∈(3,4),当1<x <x 0时,φ(x )<0,即h ′(x )<0,当x >x 0时,φ(x )>0,即h ′(x )>0.所以函数h (x )在(1,x 0)上递减,在(x 0,+∞)上单调递增.所以h (x )min =h (x 0)=x 0(1+ln x 0)x 0-1=x 0(1+x 0-2)x 0-1=x 0∈(3,4),所以k <g (x )min =x 0, 又因为x 0∈(3,4),故整数k 的最大值为3.19.高三模拟考试)已知函数f (x )=-4x 3+ax ,x ∈R .(1)讨论函数f (x )的单调性;(2)若函数f (x )在[-1,1]上的最大值为1,求实数a 的取值集合.解:(1)f ′(x )=-12x 2+a .当a =0时,f (x )=-4x 3在R 上单调递减;当a <0时,f ′(x )=-12x 2+a <0,即f (x )=-4x 3+ax 在R 上单调递减;当a >0时,f ′(x )=-12x 2+a =0,解得x 1=36a ,x 2=-3a 6,∴当x ∈⎝⎛⎭⎪⎫-∞,-3a 6时,f ′(x )<0, f (x )在⎝⎛⎭⎪⎫-∞,-3a 6上递减;当x ∈⎝⎛⎭⎪⎫-3a 6,3a 6时,f ′(x )>0, f (x )在⎝⎛⎭⎪⎫-3a 6,3a 6上递增; 当x ∈⎝ ⎛⎭⎪⎫3a 6,+∞时,f ′(x )<0, f (x )在⎝ ⎛⎭⎪⎫3a 6,+∞上递减. 综上,当a ≤0时,f (x )在R 上单调递减;当a >0时,f (x )在⎝⎛⎭⎪⎫-∞,-3a 6上递减; 在⎝ ⎛⎭⎪⎫-3a 6,3a 6上递增;在⎝ ⎛⎭⎪⎫3a 6,+∞上递减. (2)∵函数f (x )在[-1,1]上的最大值为1,∴对任意x ∈[-1,1],f (x )≤1恒成立,即-4x 3+ax ≤1对任意x ∈[-1,1]恒成立,变形可得ax ≤1+4x 3.当x =0时,a ·0≤1+4·03,即0≤1,可得a ∈R ;当x ∈(0,1]时,a ≤1x +4x 2,则a ≤⎝ ⎛⎭⎪⎫1x +4x 2min, 令g (x )=1x +4x 2,则g ′(x )=-1x 2+8x =8x 3-1x 2.当x ∈⎝ ⎛⎭⎪⎫0,12时,g ′(x )<0,当x ∈⎝ ⎛⎦⎥⎤12,1时, g ′(x )>0. 因此,g (x )min =g ⎝ ⎛⎭⎪⎫12=3, ∴a ≤3.当x ∈[-1,0)时,a ≥1x +4x 2,则a ≥⎝ ⎛⎭⎪⎫1x +4x 2max, 令g (x )=1x +4x 2,则g ′(x )=-1x 2+8x =8x 3-1x 2,当x ∈[-1,0)时,g ′(x )<0,因此,g (x )max =g (-1)=3,∴a ≥3.综上,a=3.∴a的取值集合为{3}。

有关函数的极值与导数的测试题及答案

有关函数的极值与导数的测试题及答案

有关函数的极值与导数的测试题及答案一、选择题1.已知函数fx在点x0处连续,下列命题中,正确的是A.导数为零的点一定是极值点B.如果在点x0附近的左侧fx0,右侧fx0,那么fx0是极小值C.如果在点x0附近的左侧fx0,右侧fx0,那么fx0是极大值D.如果在点x0附近的左侧fx0,右侧fx0,那么fx0是极大值[答案] C[解析] 导数为0的点不一定是极值点,例如fx=x3,fx=3x2,f0=0,但x=0不是fx的极值点,故A错;由极值的定义可知C正确,故应选C.2.函数y=1+3x-x3有A.极小值-2,极大值2B.极小值-2,极大值3C.极小值-1,极大值1D.极小值-1,极大值3[答案] D[解析] y=3-3x2=31-x1+x令y=0,解得x1=-1,x2=1当x-1时,y0,函数y=1+3x-x3是减函数,当-11时,y0,函数y=1+3x-x3是增函数,当x1时,y0,函数y=1+3x-x3是减函数,当x=-1时,函数有极小值,y极小=-1.当x=1时,函数有极大值,y极大=3.3.设x0为fx的极值点,则下列说法正确的是A.必有fx0=0B.fx0不存在C.fx0=0或fx0不存在D.fx0存在但可能不为0[答案] C[解析] 如:y=|x|,在x=0时取得极小值,但f0不存在.4.对于可导函数,有一点两侧的导数值异号是这一点为极值的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件[答案] C[解析] 只有这一点导数值为0,且两侧导数值异号才是充要条件.5.对于函数fx=x3-3x2,给出命题:①fx是增函数,无极值;②fx是减函数,无极值;③fx的’递增区间为-,0,2,+,递减区间为0,2;④f0=0是极大值,f2=-4是极小值.其中正确的命题有A.1个 B.2个C.3个 D.4个[答案] B[解析] fx=3x2-6x=3xx-2,令fx0,得x2或x0,令fx0,得02,①②错误. 6.函数fx=x+1x的极值情况是A.当x=1时,极小值为2,但无极大值B.当x=-1时,极大值为-2,但无极小值C.当x=-1时,极小值为-2;当x=1时,极大值为2D.当x=-1时,极大值为-2;当x=1时,极小值为2[答案] D[解析] fx=1-1x2,令fx=0,得x=1,函数fx在区间-,-1和1,+上单调递增,在-1,0和0,1上单调递减,当x=-1时,取极大值-2,当x=1时,取极小值2.7.函数fx的定义域为开区间a,b,导函数fx在a,b内的图象如图所示,则函数fx在开区间a,b内有极小值点A.1个 B.2个C.3个 D.4个[答案] A[解析] 由fx的图象可知,函数fx在区间a,b内,先增,再减,再增,最后再减,故函数fx在区间a,b内只有一个极小值点.8.已知函数y=x-ln1+x2,则函数y的极值情况是A.有极小值B.有极大值C.既有极大值又有极小值D.无极值[答案] D[解析] ∵y=1-11+x2x2+1=1-2xx2+1=x-12x2+1令y=0得x=1,当x1时,y0,当x1时,y0,函数无极值,故应选D.9.已知函数fx=x3-px2-qx的图象与x轴切于1,0点,则函数fx的极值是 A.极大值为427,极小值为0B.极大值为0,极小值为427C.极大值为0,极小值为-427D.极大值为-427,极小值为0[答案] A[解析] 由题意得,f1=0,p+q=1①f1=0,2p+q=3②由①②得p=2,q=-1.fx=x3-2x2+x,fx=3x2-4x+1=3x-1x-1,令fx=0,得x=13或x=1,极大值f13=427,极小值f1=0.10.下列函数中,x=0是极值点的是A.y=-x3 B.y=cos2xC.y=tanx-x D.y=1x[答案] B[解析] y=cos2x=1+cos2x2,y=-sin2x,x=0是y=0的根且在x=0附近,y左正右负,x=0是函数的极大值点.二、填空题11.函数y=2xx2+1的极大值为______,极小值为______.[答案] 1-1[解析] y=21+x1-xx2+12,令y0得-11,令y0得x1或x-1,当x=-1时,取极小值-1,当x=1时,取极大值1.12.函数y=x3-6x+a的极大值为____________,极小值为____________.[答案] a+42 a-42[解析] y=3x2-6=3x+2x-2,令y0,得x2或x-2,令y0,得-22,当x=-2时取极大值a+42,当x=2时取极小值a-42.13.已知函数y=x3+ax2+bx+27在x=-1处有极大值,在x=3处有极小值,则a =______,b=________.[答案] -3-9[解析] y=3x2+2ax+b,方程y=0有根-1及3,由韦达定理应有14.已知函数fx=x3-3x的图象与直线y=a有相异三个公共点,则a的取值范围是________.[答案] -2,2[解析] 令fx=3x2-3=0得x=1,可得极大值为f-1=2,极小值为f1=-2,y=fx的大致图象如图观察图象得-22时恰有三个不同的公共点.三、解答题15.已知函数fx=x3-3x2-9x+11.1写出函数fx的递减区间;2讨论函数fx的极大值或极小值,如有试写出极值.[解析] fx=3x2-6x-9=3x+1x-3,令fx=0,得x1=-1,x2=3.x变化时,fx的符号变化情况及fx的增减性如下表所示:x -,-1 -1 -1,3 3 3,+fx + 0 - 0 +fx 增极大值f-1 减极小值f3 增1由表可得函数的递减区间为-1,3;2由表可得,当x=-1时,函数有极大值为f-1=16;当x=3时,函数有极小值为f3=-16.16.设函数fx=ax3+bx2+cx,在x=1和x=-1处有极值,且f1=-1,求a、b、c的值,并求出相应的极值.[解析] fx=3ax2+2bx+c.∵x=1是函数的极值点,-1、1是方程fx=0的根,即有又f1=-1,则有a+b+c=-1,此时函数的表达式为fx=12x3-32x.fx=32x2-32.令fx=0,得x=1.当x变化时,fx,fx变化情况如下表:x -,-1 -1 -1,1 1 1,+fx + 0 - 0 +fx ? 极大值1 ? 极小值-1 ?由上表可以看出,当x=-1时,函数有极大值1;当x=1时,函数有极小值-1.17.已知函数fx=ax3+bx2-3x在x=1处取得极值.1讨论f1和f-1是函数fx的极大值还是极小值;2过点A0,16作曲线y=fx的切线,求此切线方程.[解析] 1fx=3ax2+2bx-3,依题意,f1=f-1=0,即解得a=1,b=0.fx=x3-3x,fx=3x2-3=3x-1x+1.令fx=0,得x1=-1,x2=1.若x-,-11,+,则fx>0,故fx在-,-1上是增函数,fx在1,+上是增函数.若x-1,1,则fx<0,故fx在-1,1上是减函数.f-1=2是极大值;f1=-2是极小值.2曲线方程为y=x3-3x.点A0,16不在曲线上.设切点为Mx0,y0,则点M的坐标满足y0=x30-3x0.∵fx0=3x20-1,故切线的方程为y-y0=3x20-1x-x0.注意到点A0,16在切线上,有16-x30-3x0=3x20-10-x0.化简得x30=-8,解得x0=-2.切点为M-2,-2,切线方程为9x-y+16=0.18.2021北京文,18设函数fx=a3x3+bx2+cx+da0,且方程fx-9x=0的两个根分别为1,4.1当a=3且曲线y=fx过原点时,求fx的解析式;2若fx在-,+内无极值点,求a的取值范围.[解析] 本题考查了函数与导函数的综合应用.由fx=a3x3+bx2+cx+d得fx=ax2+2bx+c∵fx-9x=ax2+2bx+c-9x=0的两根为1,4.1当a=3时,由*式得,解得b=-3,c=12.又∵曲线y=fx过原点,d=0.故fx=x3-3x2+12x.2由于a0,所以“fx=a3x3+bx2+cx+d在-,+内无极值点”等价于“fx=ax2+2bx+c0在-,+内恒成立”由*式得2b=9-5a,c=4a.又∵=2b2-4ac=9a-1a-9解得a[1,9],即a的取值范围[1,9].感谢您的阅读,祝您生活愉快。

《导数与极值》基础练习题

《导数与极值》基础练习题

《导数与极值》基础练习题一、单选题 1.已知3()x xf x e=,则()f x ( ) A .在(,)-∞+∞上单调递增 B .在(,1)-∞上单调递减 C .有极大值3e ,无极小值 D .有极小值3e,无极大值 2.已知函数()f x 的导函数()'f x 的图像如下,若()f x 在0x x =处有极值,则0x 的值为( )A .3-B .0C .3D .73.已知函数()y f x =的导函数()y f x '=的图象如图所示,则函数()y f x =在区间(),a b 内的极小值点的个数为( ) A .1 B .2 C .3 D .4 4.若函数1()sin sin 33f x a x x =+在3x π=处有最大(小)值,则a 等于( ) A .2B .1C .233D .05.如图是函数()y f x =的导函数()y f x ='的图象,则函数()y f x =的极小值点的个数为( )A .0B .1C .2D .36.关于x 的函数32()33f x x x x a =++-的极值点的个数有( )A .2个B .1个C .0个D .由a 确定7.函数3()1f x ax x =++有极值的充要条件是 ( )A .0a >B .0a ≥C .0a <D .0a ≤8.已知函数()ln f x x ax =-在2x =处取得极值,则a =( )A .1B .2C .12D .-29.已知a 为函数3()27f x x x =-的极小值点,则a =( )A .3B .-2C .4D .210.函数()()x f x x x e 2=-3+1的极大值为()A .2e -B .15e -C .3254e -D .2e -11.函数()sin xf x ae x =-在0x =处有极值,则a 的值为( )A .1-B .0C .1D .e12.函数()ln f x kx x =-的极值点为2x =,则k 的值为( )A .2B .1C .12D .12-13.已知1x =是2()(3)23xf x x a x a e ⎡⎤=-+++⎣⎦的极小值点,则实数a 的取值范围是( )A .(1,)+∞B .(1,)-+∞C .(,1)-∞-D .(,1)-∞14.函数()[]2cos 0,f x x x π=+在上的极小值点为( )A .0B .6πC .56π D .π15.设()21cos 2=+f x x x ,则函数()f x ( ) A .有且仅有一个极小值 B .有且仅有一个极大值 C .有无数个极值 D .没有极值 16.已知函数()31f x ax bx =++的图象在点()1,1a b ++处的切线斜率为6,且函数()f x 在2x =处取得极值,则a b +=( ) A .263-B .7C .223D .26317.若1x =是函数3221()(1)(33)3f x x a x a a x =++-+-的极值点,则a 的值为( ) A .-3B .2C .-2或3D .–3或218.已知是函数2x =就函数3()32f x x ax =-+的极小值点,那么函数()f x 的极大值为( )A .-2B .6C .17D .18二、多选题19.函数()f x 的定义域为R ,它的导函数()y f x '=的部分图象如图所示,则下面结论正确的是( )A .在()1,2上函数()f x 为增函数B .在()3,5上函数()f x 为增函数C .在()1,3上函数()f x 有极大值D .3x =是函数()f x 在区间[]1,5上的极小值点20.已知函数39,0(),0x x x f x xe x ⎧-≥=⎨<⎩,若()f x 的零点为α,极值点为β,则( )A .=0αB .+=1αβC .()f x 的极小值为1e --D .()f x 有最大值 三、填空题21.函数2sin y x x =-在()0,π上的极值点为______. 22.函数()ln f x x x =的极值点是x =__________.23.函数()f x 的定义域为开区间(),a b ,导函数()f x 在(),a b 内的图象如图所示,则函数()f x 在开区间(),a b 内有极小值点___________个.24.已知函数()ln f x x x =,则()y f x =的极小值为______. 25.若函数32()4f x x ax =-+-在2x =处取得极值,则a =________. 26.若x =2是f (x )=ax 3-3x 的一个极值点,则a =________. 27.函数()ln f x x x =-的极大值是______.28.已知a 为函数()212f x x x =-的极小值点,则a =______ .29.已知函数()2()e xf x x ax =+的一个极值点为1,则曲线()y f x =在点(0,(0))f 处的切线方程为______.30.函数f (x )=x 3+ax 2+(a +6)x +1有极值,则a 的取值范围是_____.31.设函数()2xf x e x ax =+-,若0x =是()f x 的极值点,则曲线()y f x =在点()()1,1f 处的切线的斜率为_______.32.已知函数()xf x e ax =+在1x =处取得极小值,则实数a =__________.33.设x =-2与x =4是函数f(x)=x 3+ax 2+bx 的两个极值点,则常数a -b 的值为________. 34.已知函数f (x )=x 3+3mx 2+nx +m 2在x =-1时有极值0,则m +n =________. 35.若函数f (x )=a sin x +cos x 在x 3π=处有极值,则实数a 等于________.四、双空题 36.若函数2'1()(2)ln 2f x x f x ⋅=+,则()f x 的极大值点为_______,极大值为_________.五、解答题37.函数()ln 1f x x x ax =-+在点(1,(1))A f 处的切线斜率为2-.(1)求实数a 的值;(2)求()f x 的单调区间和极值.38.已知函数()()3223168f x x a x ax =-+++,其中a R ∈,已知()f x 在3x =处取得极值.(1)求()f x 的解析式;(2)求()f x 在点()()1,1A f 处切线的方程.39.已知函数3()31f x x x =-+.(1)求()f x 的单调区间; (2)求函数的极值;(要列表).40.已知函数()ln(1)f x x =+与函数2()g x x ax b =++在0x =处有公共的切线.(1)求实数a ,b 的值;(2)记()()()F x f x g x =-,求()F x 的极值.《导数与极值》参考答案1.C 【解析】由题意3(1)()xx f x e-'=,当1x <时,()0f x '>,()f x 递增,1x >时,()0f x '<,()f x 递减,(1)f 是函数的极大值,也是最大值3(1)f e=,函数无极小值.故选:C .2.B 【解析】由()'f x 知,0x =时,(0)0f '=,30x -<<时,()0f x '>,03x <<时,()0f x '<,0是极值点.虽然有(7)0f '=,但在7的两侧,()0f x '<,7不是极值点.故选:B .3.A 【解析】由图象,设()'f x 与x 轴的两个交点横坐标分别为c 、d 其中c d <,知在(,)c -∞,(),d +∞上()0f x '≥,所以此时函数()f x 在(,)c -∞,(,)d +∞上单调递增,在(,)c d 上,()0f x '<,此时()f x 在(,)c d 上单调递减,所以x c =时,函数取得极大值,x d=时,函数取得极小值.则函数()y f x =的极小值点的个数为1.故选: A4.A 【解析】∵()f x 在3x π=处有最大(小)值,∴3x π=是函数()f x 的极值点.又∵()cos cos3()f x a x x x R =+∈',∴cos cos 033f a πππ'⎛⎫=+=⎪⎝⎭,解得2a =.故选:A 5.B 【解析】由图象,设()f x '与x 轴的两个交点横坐标分别为a 、b 其中a b <,知在(,)a -∞,(,)b +∞上()0f x '>,所以此时函数()f x 在(,)a -∞,(,)b +∞上单调递增,在(,)a b 上,()0f x '<,此时()f x 在(,)a b 上单调递减,所以x a =时,函数取得极大值,x b=时,函数取得极小值.则函数()y f x =的极小值点的个数为1.故选: B6.C 【解析】因为,32()33f x x x x a =++-,所以,令2'()3630f x x x =++=,得,2(1)0x +=,在x=-1附近,导函数值不变号,所以,关于x 的函数32()33f x x x x a =++-的极值点的个数为0,选C .7.C 【解析】因为2()31f x ax '=+,所以221()31030f x ax a x =+=⇒=-<',即0a <,故选C . 8.C 【解析】()'1f x a x =-,依题意()'20f =,即110,22a a -==.此时()()'112022x f x x x x-=-=>,所以()f x 在区间()0,2上递增,在区间()2,+∞上递减,所以()f x 在2x =处取得极大值,符合题意.所以12a =.故选:C 9.A 【解析】3'22()27()3273(9)03f x x x f x x x x =-⇒=-=-=⇒=±.当3x >时,'()0f x >,因此函数单调递增,当33x -<<时,'()0f x <,因此函数单调递减,当3x <-时,'()0f x >,因此函数单调递增,所以3x =是函数的极小值点,故3a =.故选:A 10.B 【解析】依题意()()'22x fx x x e =--()()21x x x e =-+,故函数在()(),1,2,-∞-+∞上递增,在()1,2-上递减,所以函数在1x =-处取得极大值为()115f e --=.故选B. 11.C 【解析】由题意得:()cos xf x ae x '=-.()f x 在0x =处有极值,()0cos010f a a '∴=-=-=,解得:1a =经检验满足题意,本题正确选项:C12.C 【解析】因为()ln f x kx x =-,所以()´1fx k x=-;又()ln f x kx x =-的极值点为2x =,所以()´20f=,即12k =.故选C 13.D 【解析】依题意()()()1xf x x a x e '=--,零点为121,x x a ==,要1x =是函数的极小值点,则必须1a <,此时函数在(),1a 上递减,在()1,+∞上递增,在1x =处取得极小值.故本题选D. 14.C 【解析】y′=1﹣2sinx =0,得x π6=或x 5π6=,故y =x+2cosx 在区间[0,π6]上是增函数,在区间[π6,5π6]上是减函数,在[5π6,π]是增函数.∴x 5π6=是函数的极小值点,故选:C . 15.A 【解析】()sin f x x x '=-,()1cos 0f x x ''=-≥,∴()f x '单调递增且()00f '=,∴当0x <时,()0f x '<,函数()f x 单调递减,当0x >时,()0f x '>,函数()f x 单调递增,故()f x 有唯一的极小值点.故选:A. 16.C 【解析】由题可知:()'23fx ax b =+,则36,120,a b a b +=⎧⎨+=⎩解得23a =-,8b =.经检验,当23a =-,8b =时,()f x 在2x =处取得极大值,所以223a b +=.故选:C 17.D 【解析】由题意,知:22()2(1)(33)f x x a x a a '=++-+-且()01f '=,∴260+-=a a ,解得:3a =-或2a =.当3a =-时,2()43(1)(3)f x x x x x '=-+=--,即在1x =的左侧(0)30f '=>,右侧(2)10f '=-<,所以1x =是极值点,而非拐点;当2a =时,2()67(1)(7)f x x x x x '=+-=-+,即在1x =的左侧(0)70f '=-<,右侧(2)90f '=>,所以1x =是极值点,而非拐点;故选:D18.D 【解析】函数3()32f x x ax =-+的导数()233f x x a '=-, 由题意得,()20f '=,即1230a -=,4a =. ()3122f x x x =-+,()()()2312322f x x x x '=-=-+,令()0f x '>,得2x >或2x <-;()0f x <′,得22x -<<, 所以当时2x =-取极大值,即()()8242218f x f -=-=++=极大值. 故选:D .19.AC 【解析】由图象可知()f x 在区间()1,2和()4,5上()'0fx >,()f x 递增;在区间()2,4上()'0f x <,()f x 递减.所以A 选项正确,B 选项错误.在区间()1,3上,()f x 有极大值为()2f ,C 选项正确.在区间[]1,5上,4x =是()f x 的极小值点,D 选项错误.故选:AC20.BC 【解析】当0x <时,()0x f x xe =<,此时函数无零点,当0x ≥时,()39x f x =-,函数的零点为2,所以2α=,当0x <时,()(1)x x xf x e xe e x ='=++,由()0f x '<得1x <-,由()0f x '>,得10x -<<,所以函数在1x =-处取得极小值,极小值点为1-,极小值为1(1)f e --=-,当0x ≥时,()39x f x =-为递增函数,此时()f x 无极值,也无最大值,所以1β=-,所以2(1)1αβ+=+-=,故选:BC21.3π【解析】∵'12cos y x =-,∴当03x π<<时,'0y <;当3x ππ<<时,'0y >.故极值点为3π. 22.1e 【解析】令()'ln 10f x x =+=,解得1e x =.则函数()ln f x x x =的极值点是1ex =, 23.1【解析】从导函数的图象上可得导数的零点有4个,其中满足零点左侧附近导数小于零且右侧附近导数大于零的零点有1个,24.1e-【解析】因为()ln f x x x =,所以()ln 1f x x '=+,由()0f x '>得1x e>;由()0f x '<得10x e <<;所以函数()ln f x x x =在10,e ⎛⎫ ⎪⎝⎭上单调递减,在1,e ⎛⎫+∞ ⎪⎝⎭上单调递增,所以()y f x =的极小值为1111ln f e e e e⎛⎫==- ⎪⎝⎭.25.3【解析】由题意,得2()32f x x ax '=-+,因为2x =是函数()f x 的极值点,可得()20f '=,所以34220a -⨯+⨯=,解得3a =.26.14【解析】因为3()3f x ax x =-,所以2()33f x ax '=-,因为x =2是f (x )=ax 3-3x 的一个极值点,所以(2)1230f a '=-=,故14a =,经验证当14a =时,2x =是()f x 的一个极值点.所以14a =.27.-1【解析】()f x 的定义域为(0,)+∞,∵()ln f x x x =-,∴()1'1f x x=-,令()'0f x =,解得1x =,当01x <<时,()'0f x >;当1x >时,()'0f x <,()f x ∴递增区间是(0,1),递减区间是(1,)+∞,故()f x 在1x =处取得极大值,极大值为()1ln111f =-=-.28.6【解析】由()212f x x x =-有()()221226f x x x '=-=-.令()0f x '>,得6x >,则()f x 在()6+,∞上单调递增.令()0f x '<,得6x <,则()f x 在()6,-∞上单调递减.所以()f x 在6x =处取得极小值,所以6a =29.320x y +=【解析】2()(2)e x x x a a f x ⎡⎤=+++⎣⎦',由()01f '=,有32a =-,又切点为(0,0),3(0)2f '=-,则切线方程为32y x =-,320x y +=.30.{a |a <﹣3或a >6}【解析】函数32()(6)1f x x ax a x ++++=有极值,则2()3260f x x ax a '=+++=有两个不相等的实数解,22412(6)4(318)0a a a a ∆=-+=-->,3a ∴<-或6a >.31.1e +【解析】由已知()2xf x e x a '=+-,所以()010f a '=-=,得1a =,所以()1211f e e '=+-=+,32.e -【解析】因为()xf x e ax =+,所以()´x fx e a =+,又函数()xf x eax =+在1x =处取得极小值,所以()´1e 0fa =+=,故a e =-.33.21【解析】因为()32f x x ax bx =++,所以()2'32f x x ax b =++£®因为2x =-与4x =是函数,()32f x x ax bx =++的两个极值点,可得()()2124044880f a b f a b ⎧-=-+=⎪⎨=++=''⎪⎩,解得3a =-,24b =-,所以21a b -=£® 34.11【解析】()()3222336f x x mx nx m f x x mx n =+++∴'=++, 依题意可得()()210130 10360f m n m f m n ⎧-⎧-+-+⎪⇒⎨⎨'--+⎪⎩⎩====,联立可得29m n =⎧⎨=⎩或1?3m n =⎧⎨=⎩;当1,3m n ==时函数()32331f x x x x =+++,()()22363310f x x x x '=++=+≥,所以函数()f x 在R 上单调递增,故函数()f x 无极值,所以1,3m n ==舍去;所以2,9m n ==,所以+11m n =. 35解析】由函数f (x )=asinx +cosx ,则f ′(x )=acosx ﹣sinx ,由函数f (x )在x 3π=处有极值,则'()03f π=,即acos3π-sin 3π=0,故a =36()1ln 212-【解析】2'''11()(2)ln ()(2)2f x x f x f x x f x=+⇒⋅=⋅+,因此有 '''11(2)2(2)(2)22f f f =⋅+⇒=-,所以2'111()ln ,()42f x x x f x x x=-+=-+2'112()22x f x x x x -+=-+==,因为0x >,所以当x >,函数()f x 单调递减,当02x时, 函数()f x 单调递增,因此()f x,极大值为11(ln 21)22f =-+=-.37.【解析】(1)函数()ln 1f x x x ax =-+的导数为()ln 1f x x a '=+-,在点(1,(1))A f 处的切线斜率为12k a =-=,(1)2f '∴=-,即12a -=-,3a ∴=;(2)由(1)得,()ln 2,(0,)f x x x '=-∈+∞, 令()0f x '>,得2x e >,令()0f x '<,得20x e <<,即()f x 的增区间为()2,e +∞,减区间为()20,e .在2x e =处取得极小值21e -,无极大值. 38.【解析】(1)()()3223168,f x x a x ax =-+++()()()()2661661f x x a x a x a x ∴=-++=--'而()f x 在3x =处取得极值,故()'30f=,得3a =,经检验,当3a =时,()f x 在3x =处取得极值. 所以()32212188f x x x x =-++.(2)由(1)得,()()()631f x x x -'=-所以,切线的斜率()10k f '==,而()116f =,所以切线的方程为160y -=. 39.【解析】(1)3()31=-+f x x x ,/2()333(1)(1)∴=-=-+f x x x x ,设'()0f x =可得1x =或1x =-. ①当/()0f x >时,1x >或1x <-; ②当/()0f x <时,11x -<<,所以()f x 的单调增区间为()(),1,1,-∞-+∞,单调减区间为:()1,1-.(2)由(1)可得,当x 变化时,/()f x ,()f x 的变化情况如下表:当1x =-时,()f x 有极大值,并且极大值为(1)3f -= 当1x =时,()f x 有极小值,并且极小值为(1)1f =-. 40.【解析】(1)()11f x x '=+,()2g x x a '=+, 由题意得()()00f g '=',()()00f g =,解得1a =,0b =. (2)()()()()2ln 1F x f x g x x x x =-=+--,()()23121(1)11x x F x x x x x -+=--=>-++', ()F x ',()F x 的变化情况如下表:x()1,0-()0,∞+()F x ' +-()F x极大值由表可知,()F x 的极大值为()00F =,无极小值.。

导数与函数的最值问题的综合练习题

导数与函数的最值问题的综合练习题

导数与函数的最值问题的综合练习题在微积分学中,导数和函数的最值问题是非常重要的内容。

通过求解导数和应用极值理论,我们可以找到函数的最大值和最小值,从而解决各种实际问题。

本文将为大家提供一系列综合练习题,以帮助读者更好地理解和应用导数与函数的最值问题。

题目一:求函数f(x)=x^3-3x^2的极值点及极值。

题目二:求函数g(x)=x^2e^x在定义域[-1,2]上的最大值和最小值。

题目三:函数h(x)在开区间(0,2π)上连续。

当x∈(0,2π)时,h(x)满足h'(x)=4sin2x-2sinx,且h(π/6)=0。

求h(x)在(0,2π)上的最大值和最小值。

解答一:首先,我们需要求函数f(x)的导数。

对f(x)进行求导得到f'(x)=3x^2-6x。

要确定极值点,我们需要找出f'(x)=0的解。

将f'(x)置零,我们得到3x^2-6x=0,简化得到x(x-2)=0。

解这个方程可得x=0或x=2。

接下来,我们可以通过求解二阶导数来判断极值的类型。

f''(x)=6x-6,当x=0时f''(x)=-6,当x=2时f''(x)=6。

当f''(x)<0时,函数在该处取得极大值;当f''(x)>0时,函数在该处取得极小值。

所以,当x=0时,函数取得极大值;当x=2时,函数取得极小值。

代入f(x)得到f(0)=0和f(2)=-4。

因此,函数f(x)=x^3-3x^2在x=0处取得极大值0,在x=2处取得极小值-4。

解答二:首先,我们需要求函数g(x)在定义域内的导数。

对g(x)进行求导得到g'(x)=(2x+1)e^x。

要找到定义域[-1,2]上的最大值和最小值,我们需要判断极值点。

首先,我们需要找到g'(x)=0的解。

将g'(x)置零,我们得到(2x+1)e^x=0。

专题15 导数与函数的极值、最值(原卷版)

专题15  导数与函数的极值、最值(原卷版)
基本方法:
1.已知极值求参数。若函数f(x)在点(x0,y0)处取得极值,则f′(x0)=0,且在该点左、右两侧的导数值符号相反。
2、对于求解析式中含有参数的函数极值问题,一般要对方程f′(x)=0的根的情况进行讨论,分两个层次讨论.第一层次,讨论在定义域内是否有根;第二层次,在有根的条件下,再讨论根的大小.
2023高考一轮复习讲与练
专题15导数与函数的极值、最值
练高考 明方向
1.(2022·全国甲(文T8)(理T6)).当 时,函数 取得最大值 ,则 ()
A. B. C. D. 1
2.(2022·新高考Ⅰ卷T10)已知函数 ,则()
A. 有两个极值点B. 有三个零点
C.点 是曲线 的对称中心D.直线 是曲线 的切线
8.(2019·北京高考理科·T19同2019·北京高考文科·T20)已知函数f(x)= x3-x2+x.
(1)求曲线y=f(x)的斜率为1的切线方程.
(2)当x∈[-2,4]时,求证:x-6≤f(x)≤x.
(3)设F(x)=|f(x)-(x+a)|(a∈R),记F(x)在区间[-2,4]上的最大值为M(a),当M(a)最小时,求a的值.
(2)对于求解析式中含有参数的函数极值问题,一般要对方程f′(x)=0的根的情况进行讨论,分两个层次讨论.第一层次,讨论在定义域内是否有根;第二层次,在有根的条件下,再讨论根的大小.
类型三、含参的极值问题
基本题型:
1.(求参数的值)设函数f(x)=lnx+ax2- x,若x=1是函数f(x)的极大值点,则函数f(x)的极小值为()
基本方法:
求函数f(x)在[a,b]上的最值的方法
(1)若函数在区间[a,b]上单调递增或递减,则f(a)与f(b)一个为最大值,一个为最小值;

2023年高考数学一轮复习第三章一元函数的导数及其应用3导数与函数的极值最值练习含解析

2023年高考数学一轮复习第三章一元函数的导数及其应用3导数与函数的极值最值练习含解析

导数与函数的极值、最值考试要求 1.借助函数图象,了解函数在某点取得极值的必要和充分条件.2.会用导数求函数的极大值、极小值.3.会求闭区间上函数的最大值、最小值.知识梳理1.函数的极值(1)函数的极小值函数y=f(x)在点x=a的函数值f(a)比它在点x=a附近其他点的函数值都小,f′(a)=0;而且在点x=a附近的左侧f′(x)<0,右侧f′(x)>0,则a叫做函数y=f(x)的极小值点,f(a)叫做函数y=f(x)的极小值.(2)函数的极大值函数y=f(x)在点x=b的函数值f(b)比它在点x=b附近其他点的函数值都大,f′(b)=0;而且在点x=b附近的左侧f′(x)>0,右侧f′(x)<0,则b叫做函数y=f(x)的极大值点,f(b)叫做函数y=f(x)的极大值.(3)极小值点、极大值点统称为极值点,极小值和极大值统称为极值.2.函数的最大(小)值(1)函数f(x)在区间[a,b]上有最值的条件:如果在区间[a,b]上函数y=f(x)的图象是一条连续不断的曲线,那么它必有最大值和最小值.(2)求y=f(x)在区间[a,b]上的最大(小)值的步骤:①求函数y=f(x)在区间(a,b)上的极值;②将函数y=f(x)的各极值与端点处的函数值f(a),f(b)比较,其中最大的一个是最大值,最小的一个是最小值.常用结论对于可导函数f(x),“f′(x0)=0”是“函数f(x)在x=x0处有极值”的必要不充分条件.思考辨析判断下列结论是否正确(请在括号中打“√”或“×”)(1)函数f(x)在区间(a,b)上不存在最值.( ×)(2)函数的极小值一定是函数的最小值.( ×)(3)函数的极小值一定不是函数的最大值.( √)(4)函数y=f′(x)的零点是函数y=f(x)的极值点.( ×)教材改编题1.如图是f (x )的导函数f ′(x )的图象,则f (x )的极小值点的个数为( )A .1B .2C .3D .4 答案 A解析 由题意知只有在x =-1处f ′(-1)=0,且其两侧导数符号为左负右正. 2.函数f (x )=x 3-ax 2+2x -1有极值,则实数a 的取值范围是( ) A .(-∞,-6]∪[6,+∞) B .(-∞,-6)∪(6,+∞) C .(-6,6) D .[-6,6] 答案 B解析 f ′(x )=3x 2-2ax +2,由题意知f ′(x )有变号零点,∴Δ=(-2a )2-4×3×2>0, 解得a >6或a <- 6.3.若函数f (x )=13x 3-4x +m 在[0,3]上的最大值为4,则m =________.答案 4解析 f ′(x )=x 2-4,x ∈[0,3],当x ∈[0,2)时,f ′(x )<0,当x ∈(2,3]时,f ′(x )>0,所以f (x )在[0,2)上单调递减,在(2,3]上单调递增.又f (0)=m ,f (3)=-3+m .所以在[0,3]上,f (x )max =f (0)=4,所以m =4.题型一 利用导数求函数的极值问题 命题点1 根据函数图象判断极值例1 (2022·广州模拟)设函数f (x )在R 上可导,其导函数为f ′(x ),且函数y =(x -1)f ′(x )的图象如图所示,则下列结论中正确的是( )A.函数f(x)有极大值f(-3)和f(3)B.函数f(x)有极小值f(-3)和f(3)C.函数f(x)有极小值f(3)和极大值f(-3)D.函数f(x)有极小值f(-3)和极大值f(3)答案 D解析由题图知,当x∈(-∞,-3)时,y>0,x-1<0⇒f′(x)<0,f(x)单调递减;当x∈(-3,1)时,y<0,x-1<0⇒f′(x)>0,f(x)单调递增;当x∈(1,3)时,y>0,x-1>0⇒f′(x)>0,f(x)单调递增;当x∈(3,+∞)时,y<0,x-1>0⇒f′(x)<0,f(x)单调递减.所以函数有极小值f(-3)和极大值f(3).命题点2 求已知函数的极值例2 已知函数f(x)=x-1+ae x(a∈R,e为自然对数的底数).(1)若曲线y=f(x)在点(1,f(1))处的切线平行于x轴,求a的值;(2)求函数f(x)的极值.解(1)因为f(x)=x-1+ae x ,所以f′(x)=1-ae x,又因为曲线y=f(x)在点(1,f(1))处的切线平行于x轴,所以f′(1)=0,即1-ae1=0,所以a=e.(2)由(1)知f′(x)=1-ae x ,当a≤0时,f′(x)>0,所以f(x)在(-∞,+∞)上单调递增,因此f(x)无极大值与极小值;当a>0时,令f′(x)>0,则x>ln a,所以f(x)在(ln a,+∞)上单调递增,令f′(x)<0,则x<ln a,所以f(x)在(-∞,ln a)上单调递减,故f(x)在x=ln a处取得极小值,且f(ln a)=ln a,但是无极大值,综上,当a≤0时,f(x)无极大值与极小值;当a >0时,f (x )在x =ln a 处取得极小值ln a ,但是无极大值. 命题点3 已知极值(点)求参数例3 (1)(2022·大庆模拟)函数f (x )=x 3+ax 2+bx +a 2在x =1处取得极值10,则a +b 等于( ) A .-7 B .0 C .-7或0 D .-15或6答案 A解析 由题意知,函数f (x )=x 3+ax 2+bx +a 2, 可得f ′(x )=3x 2+2ax +b , 因为f (x )在x =1处取得极值10, 可得⎩⎪⎨⎪⎧f ′1=3+2a +b =0,f1=1+a +b +a 2=10,解得⎩⎪⎨⎪⎧a =4,b =-11,或⎩⎪⎨⎪⎧a =-3,b =3,检验知,当a =-3,b =3时,可得f ′(x )=3x 2-6x +3=3(x -1)2≥0,此时函数f (x )单调递增,函数无极值点,不符合题意;当a =4,b =-11时,可得f ′(x )=3x 2+8x -11=(3x +11)(x -1), 当x <-113或x >1时,f ′(x )>0,f (x )单调递增;当-113<x <1时,f ′(x )<0,f (x )单调递减,当x =1时,函数f (x )取得极小值,符合题意. 所以a +b =-7.(2)(2022·南京模拟)已知函数f (x )=x (ln x -ax )在区间(0,+∞)上有两个极值,则实数a 的取值范围为( ) A .(0,e)B.⎝ ⎛⎭⎪⎫0,1eC.⎝ ⎛⎭⎪⎫0,12 D.⎝ ⎛⎭⎪⎫0,13 答案 C解析 f ′(x )=ln x -ax +x ⎝ ⎛⎭⎪⎫1x-a=ln x +1-2ax ,由题意知ln x +1-2ax =0在(0,+∞)上有两个不相等的实根,2a =ln x +1x,设g (x )=ln x +1x,则g ′(x )=1-ln x +1x 2=-ln x x2. 当0<x <1时,g ′(x )>0,g (x )单调递增; 当x >1时,g ′(x )<0,g (x )单调递减, 所以g (x )的极大值为g (1)=1, 又当x >1时,g (x )>0, 当x →+∞时,g (x )→0, 当x →0时,g (x )→-∞, 所以0<2a <1,即0<a <12.教师备选1.(2022·榆林模拟)设函数f (x )=x cos x 的一个极值点为m ,则tan ⎝⎛⎭⎪⎫m +π4等于( )A.m -1m +1B.m +1m -1 C.1-mm +1D.m +11-m答案 B解析 由f ′(x )=cos x -x sin x =0, 得tan x =1x ,所以tan m =1m,故tan ⎝⎛⎭⎪⎫m +π4=1+tan m 1-tan m =m +1m -1. 2.已知a ,b ∈R ,若x =a 不是函数f (x )=(x -a )2(x -b )·(e x -1-1)的极小值点,则下列选项符合的是( ) A .1≤b <a B .b <a ≤1 C .a <1≤b D .a <b ≤1答案 B解析 令f (x )=(x -a )2(x -b )(e x -1-1)=0,得x 1=a ,x 2=b ,x 3=1.下面利用数轴标根法画出f (x )的草图,借助图象对选项A ,B ,C ,D 逐一分析. 对选项A ,若1≤b <a ,由图可知x =a 是f (x )的极小值点,不符合题意;对选项B ,若b <a ≤1,由图可知x =a 不是f (x )的极小值点,符合题意; 对选项C ,若a <1≤b ,由图可知x =a 是f (x )的极小值点,不符合题意; 对选项D ,若a <b ≤1,由图可知x =a 是f (x )的极小值点,不符合题意.思维升华 根据函数的极值(点)求参数的两个要领(1)列式:根据极值点处导数为0和极值这两个条件列方程组,利用待定系数法求解; (2)验证:求解后验证根的合理性.跟踪训练1 (1)(2022·长沙模拟)若x =1是函数f (x )=(x 2+ax -1)e x -1的极值点,则f (x )的极大值为( ) A .-1 B .-2e -3C .5e -3D .1答案 C解析 因为f (x )=(x 2+ax -1)e x -1,故可得f ′(x )=(2x +a )ex -1+(x 2+ax -1)ex -1=ex -1[x 2+(a +2)x +a -1],因为x =1是函数f (x )=(x 2+ax -1)e x -1的极值点,故可得f ′(1)=0,即2a +2=0,解得a =-1. 此时f ′(x )=ex -1(x 2+x -2)=ex -1(x +2)(x -1).令f ′(x )=0,解得x 1=-2,x 2=1, 由f ′(x )>0可得x <-2或x >1; 由f ′(x )<0可得-2<x <1,所以f (x )在区间(-∞,-2)上单调递增, 在(-2,1)上单调递减,在(1,+∞)上单调递增,故f (x )的极大值点为x =-2.则f (x )的极大值为f (-2)=(4+2-1)e -3=5e -3.(2)(2022·芜湖模拟)函数f (x )=ln x +12x 2-ax (x >0)在⎣⎢⎡⎦⎥⎤12,3上有且仅有一个极值点,则实数a 的取值范围是( )A.⎝ ⎛⎭⎪⎫52,103B.⎣⎢⎡⎭⎪⎫52,103C.⎝ ⎛⎦⎥⎤52,103 D.⎣⎢⎡⎦⎥⎤2,103答案 B解析 ∵f (x )=ln x +12x 2-ax (x >0),∴f ′(x )=1x+x -a ,∵函数f (x )=ln x +12x 2-ax (x >0)在⎣⎢⎡⎦⎥⎤12,3上有且仅有一个极值点, ∴y =f ′(x )在⎣⎢⎡⎦⎥⎤12,3上只有一个变号零点. 令f ′(x )=1x +x -a =0,得a =1x+x .设g (x )=1x +x ,则g (x )在⎣⎢⎡⎦⎥⎤12,1上单调递减,在[1,3]上单调递增, ∴g (x )min =g (1)=2, 又g ⎝ ⎛⎭⎪⎫12=52,g (3)=103,∴当52≤a <103时,y =f ′(x )在⎣⎢⎡⎦⎥⎤12,3上只有一个变号零点.∴实数a 的取值范围为⎣⎢⎡⎭⎪⎫52,103.题型二 利用导数求函数最值例4 已知函数g (x )=a ln x +x 2-(a +2)x (a ∈R ). (1)若a =1,求g (x )在区间[1,e]上的最大值; (2)求g (x )在区间[1,e]上的最小值h (a ). 解 (1)∵a =1, ∴g (x )=ln x +x 2-3x , ∴g ′(x )=1x+2x -3=2x -1x -1x,∵x ∈[1,e],∴g ′(x )≥0, ∴g (x )在[1,e]上单调递增, ∴g (x )max =g (e)=e 2-3e +1. (2)g (x )的定义域为(0,+∞),g ′(x )=a x +2x -(a +2)=2x 2-a +2x +ax=2x -a x -1x.①当a2≤1,即a ≤2时,g (x )在[1,e]上单调递增,h (a )=g (1)=-a -1; ②当1<a 2<e ,即2<a <2e 时,g (x )在⎣⎢⎡⎭⎪⎫1,a 2上单调递减,在⎝ ⎛⎦⎥⎤a 2,e 上单调递增,h (a )=g ⎝ ⎛⎭⎪⎫a2=a ln a 2-14a 2-a ;③当a2≥e,即a ≥2e 时,g (x )在[1,e]上单调递减,h (a )=g (e)=(1-e)a +e 2-2e.综上,h (a )=⎩⎪⎨⎪⎧-a -1,a ≤2,a ln a 2-14a 2-a ,2<a <2e ,1-e a +e 2-2e ,a ≥2e.教师备选已知函数f (x )=ln x -ax -2(a ≠0). (1)讨论函数f (x )的单调性;(2)若函数f (x )有最大值M ,且M >a -4,求实数a 的取值范围. 解 (1)f (x )的定义域为(0,+∞), 由f (x )=ln x -ax -2(a ≠0)可得f ′(x )=1x-a , 当a <0时,f ′(x )>0,所以f (x )在(0,+∞)上单调递增; 当a >0时,令f ′(x )=0,得x =1a,所以当x ∈⎝⎛⎭⎪⎫0,1a 时,f ′(x )>0,f (x )单调递增;当x ∈⎝ ⎛⎭⎪⎫1a,+∞时,f ′(x )<0,f (x )单调递减,综上所述,当a <0时,f (x )在(0,+∞)上单调递增;当a >0时,f (x )在⎝⎛⎭⎪⎫0,1a 上单调递增,在⎝ ⎛⎭⎪⎫1a ,+∞上单调递减.(2)由(1)知,当a <0时,f (x )在(0,+∞)上单调递增,无最大值, 当a >0时,f (x )在⎝ ⎛⎭⎪⎫0,1a 上单调递增,在⎝ ⎛⎭⎪⎫1a ,+∞上单调递减, 所以当x =1a时,f (x )取得最大值,即f (x )max =f ⎝ ⎛⎭⎪⎫1a =ln 1a -a ×1a-2=ln 1a-3=-ln a -3,因此有-ln a -3>a -4,得ln a +a -1<0, 设g (a )=ln a +a -1,则g ′(a )=1a+1>0,所以g (a )在(0,+∞)上单调递增, 又g (1)=0,所以g (a )<g (1),得0<a <1, 故实数a 的取值范围是(0,1).思维升华 (1)求函数f (x )在闭区间[a ,b ]上的最值时,在得到极值的基础上,结合区间端点的函数值f (a ),f (b )与f (x )的各极值进行比较得到函数的最值.(2)若所给的闭区间[a ,b ]含参数,则需对函数f (x )求导,通过对参数分类讨论,判断函数的单调性,从而得到函数f (x )的最值.跟踪训练2 某村庄拟修建一个无盖的圆柱形蓄水池(不计厚度),设该蓄水池的底面半径为r 米,高为h 米,体积为V 立方米.假设建造成本仅与表面积有关,侧面的建造成本为100元/平方米,底面的建造成本为160元/平方米,该蓄水池的总建造成本为12000π元(π为圆周率).(1)将V 表示成r 的函数V (r ),并求该函数的定义域;(2)讨论函数V (r )的单调性,并确定r 和h 为何值时该蓄水池的体积最大. 解 (1)∵蓄水池的侧面的总成本为 100×2πrh =200πrh (元), 底面的总成本为160πr 2元,∴蓄水池的总成本为(200πrh +160πr 2)元. 由题意得200πrh +160πr 2=12000π, ∴h =15r(300-4r 2).从而V (r )=πr 2h =π5(300r -4r 3).由h >0,且r >0,可得0<r <5 3. 故函数V (r )的定义域为(0,53). (2)由(1)知V (r )=π5(300r -4r 3),故V ′(r )=π5(300-12r 2),令V ′(r )=0,解得r 1=5,r 2=-5(舍).当r ∈(0,5)时,V ′(r )>0,故V (r )在(0,5)上单调递增; 当r ∈(5,53)时,V ′(r )<0,故V (r )在(5,53)上单调递减. 由此可知,V (r )在r =5处取得最大值,此时h =8, 即当r =5,h =8时,该蓄水池的体积最大.课时精练1.若函数f (x )=x 2+2xex的极大值点与极小值点分别为a ,b ,则a +b 等于( )A .-4 B. 2 C .0 D .2答案 C解析 f ′(x )=2-x2e x ,当-2<x <2时,f ′(x )>0; 当x <-2或x >2时,f ′(x )<0. 故f (x )=x 2+2xex的极大值点与极小值点分别为2,-2,则a =2,b =-2,所以a +b =0.2.如图是函数y =f (x )的导函数的图象,下列结论中正确的是( )A .f (x )在[-2,-1]上单调递增B .当x =3时,f (x )取得最小值C .当x =-1时,f (x )取得极大值D .f (x )在[-1,2]上单调递增,在[2,4]上单调递减 答案 D解析 根据题图知,当x ∈(-2,-1),x ∈(2,4)时,f ′(x )<0,函数y =f (x )单调递减;当x ∈(-1,2),x ∈(4,+∞)时,f ′(x )>0,函数y =f (x )单调递增.所以y =f (x )在[-2,-1]上单调递减,在(-1,2)上单调递增,在(2,4)上单调递减,在(4,+∞)上单调递增,故选项A 不正确,选项D 正确;故当x =-1时,f (x )取得极小值,选项C 不正确;当x =3时,f (x )不是取得最小值,选项B 不正确.3.已知函数f (x )=2ln x +ax 2-3x 在x =2处取得极小值,则f (x )的极大值为( )A .2B .-52C .3+ln2D .-2+2ln2答案 B解析 由题意得,f ′(x )=2x+2ax -3,∵f (x )在x =2处取得极小值, ∴f ′(2)=4a -2=0,解得a =12,∴f (x )=2ln x +12x 2-3x ,f ′(x )=2x+x -3=x -1x -2x,∴f (x )在(0,1),(2,+∞)上单调递增,在(1,2)上单调递减, ∴f (x )的极大值为f (1)=12-3=-52.4.(2022·重庆联考)函数f (x )=x +2cos x 在[0,π]上的最大值为( ) A .π-2 B.π6 C .2 D.π6+ 3 答案 D解析 由题意得,f ′(x )=1-2sin x ,∴当0≤sin x ≤12,即x 在⎣⎢⎡⎦⎥⎤0,π6和⎣⎢⎡⎦⎥⎤5π6,π上时,f ′(x )≥0,f (x )单调递增;当12<sin x ≤1,即x 在⎝ ⎛⎭⎪⎫π6,5π6上时, f ′(x )<0,f (x )单调递减,∴f (x )有极大值f ⎝ ⎛⎭⎪⎫π6=π6+3,有极小值 f ⎝ ⎛⎭⎪⎫5π6=5π6-3,而端点值f (0)=2,f (π)=π-2,则f ⎝ ⎛⎭⎪⎫π6>f (0)>f (π)>f ⎝ ⎛⎭⎪⎫5π6,∴f (x )在[0,π]上的最大值为π6+ 3.5.(多选)已知x =1和x =3是函数f (x )=ax 3+bx 2-3x +k (a ,b ∈R )的两个极值点,且函数f (x )有且仅有两个不同零点,则k 值为( )A .-43B.43 C .-1 D .0答案 BD解析 f ′(x )=3ax 2+2bx -3,依题意1,3是f ′(x )=0的两个根, 所以⎩⎪⎨⎪⎧1+3=-2b3a ,1×3=-33a,解得a =-13,b =2.故f (x )=-13x 3+2x 2-3x +k .易求得函数f (x )的极大值为f (3)=k 和极小值为f (1)=-43+k .要使函数f (x )有两个零点,则f (x )极大值k =0或f (x )极小值-43+k =0,所以k =0或k =43.6.(多选)已知函数f (x )=x +sin x -x cos x 的定义域为[-2π,2π),则( ) A .f (x )为奇函数B .f (x )在[0,π)上单调递增C .f (x )恰有4个极大值点D .f (x )有且仅有4个极值点 答案 BD解析 因为f (x )的定义域为[-2π,2π), 所以f (x )是非奇非偶函数,故A 错误; 因为f (x )=x +sin x -x cos x ,所以f ′(x )=1+cos x -(cos x -x sin x )=1+x sin x ,当x ∈[0,π)时,f ′(x )>0,则f (x )在[0,π)上单调递增,故B 正确; 显然f ′(0)≠0,令f ′(x )=0,得sin x =-1x,分别作出y =sin x ,y =-1x在区间[-2π,2π)上的图象,由图可知,这两个函数的图象在区间[-2π,2π)上共有4个公共点,且两图象在这些公共点上都不相切,故f (x )在区间[-2π,2π)上的极值点的个数为4,且f (x )只有2个极大值点,故C 错误,D 正确.7.(2022·潍坊模拟)写出一个存在极值的奇函数f (x )=________. 答案 sin x (答案不唯一)解析 正弦函数f (x )=sin x 为奇函数,且存在极值.8.(2021·新高考全国Ⅰ)函数f (x )=|2x -1|-2ln x 的最小值为________. 答案 1解析 函数f (x )=|2x -1|-2ln x 的定义域为(0,+∞). ①当x >12时,f (x )=2x -1-2ln x ,所以f ′(x )=2-2x=2x -1x, 当12<x <1时,f ′(x )<0, 当x >1时,f ′(x )>0,所以f (x )min =f (1)=2-1-2ln1=1;②当0<x ≤12时,f (x )=1-2x -2ln x 在⎝ ⎛⎦⎥⎤0,12上单调递减, 所以f (x )min =f ⎝ ⎛⎭⎪⎫12=-2ln 12=2ln2=ln4>lne =1.综上,f (x )min =1.9.已知函数f (x )=ln x -2x -2x +1.(1)求函数f (x )的单调区间;(2)设g (x )=f (x )-4+ax +1+2(a ∈R ),若x 1,x 2是函数g (x )的两个极值点,求实数a 的取值范围.解 (1)由题知函数f (x )的定义域为(0,+∞), f ′(x )=1x-2x +1-2x -1x +12=x -12x x +12≥0对任意x ∈(0,+∞)恒成立,当且仅当x =1时,f ′(x )=0,所以f (x )的单调递增区间为(0,+∞),无单调递减区间.(2)因为g (x )=f (x )-4+a x +1+2=ln x -ax +1,所以g ′(x )=1x+ax +12=x 2+2+a x +1x x +12(x >0).由题意知x 1,x 2是方程g ′(x )=0在(0,+∞)内的两个不同的实数解. 令h (x )=x 2+(2+a )x +1,又h (0)=1>0,所以只需⎩⎪⎨⎪⎧-2-a >0,Δ=2+a2-4>0,解得a <-4,即实数a 的取值范围为(-∞,-4).10.(2022·珠海模拟)已知函数f (x )=ln x -ax ,x ∈(0,e],其中e 为自然对数的底数. (1)若x =1为f (x )的极值点,求f (x )的单调区间和最大值;(2)是否存在实数a ,使得f (x )的最大值是-3?若存在,求出a 的值;若不存在,说明理由. 解 (1)∵f (x )=ln x -ax ,x ∈(0,e], ∴f ′(x )=1-axx,由f ′(1)=0,得a =1. ∴f ′(x )=1-x x,∴x ∈(0,1),f ′(x )>0,x ∈(1,+∞),f ′(x )<0, ∴f (x )的单调递增区间是(0,1),单调递减区间是(1,e];f (x )的极大值为f (1)=-1,也即f (x )的最大值为f (1)=-1.(2)∵f (x )=ln x -ax , ∴f ′(x )=1x -a =1-ax x,①当a ≤0时,f (x )在(0,e]上单调递增, ∴f (x )的最大值是f (e)=1-a e =-3, 解得a =4e>0,舍去;②当a >0时,由f ′(x )=1x -a =1-axx=0,得x =1a,当0<1a <e ,即a >1e时,∴x ∈⎝⎛⎭⎪⎫0,1a 时,f ′(x )>0;x ∈⎝ ⎛⎭⎪⎫1a ,e 时,f ′(x )<0,∴f (x )的单调递增区间是⎝⎛⎭⎪⎫0,1a ,单调递减区间是⎝ ⎛⎭⎪⎫1a ,e ,又f (x )在(0,e]上的最大值为-3,∴f (x )max =f ⎝ ⎛⎭⎪⎫1a =-1-ln a =-3,∴a =e 2;当e≤1a ,即0<a ≤1e 时,f (x )在(0,e]上单调递增,∴f (x )max =f (e)=1-a e =-3, 解得a =4e >1e,舍去.综上,存在a 符合题意,此时a =e 2.11.若函数f (x )=(x 2-a )e x的两个极值点之积为-3,则f (x )的极大值为( ) A.6e 3 B .-2eC .-2e D.4e2 答案 A解析 因为f (x )=(x 2-a )e x, 所以f ′(x )=(x 2+2x -a )e x, 由f ′(x )=(x 2+2x -a )e x=0, 得x 2+2x -a =0,由函数f (x )=(x 2-a )e x的两个极值点之积为-3, 则由根与系数的关系可知,-a =-3,即a =3, 所以f (x )=(x 2-3)e x ,f ′(x )=(x 2+2x -3)e x, 当x <-3或x >1时,f ′(x )>0; 当-3<x <1时,f ′(x )<0, 故f (x )在(-∞,-3)上单调递增,在(-3,1)上单调递减,在(1,+∞)上单调递增, 所以f (x )的极大值为f (-3)=6e3.12.函数f (x )=ax 3-6ax 2+b 在区间[-1,2]上的最大值为3,最小值为-29(a >0),则a ,b 的值为( ) A .a =2,b =-29B .a =3,b =2C.a=2,b=3 D.以上都不对答案 C解析函数f(x)的导数f′(x)=3ax2-12ax=3ax(x-4),因为a>0,所以由f′(x)<0,计算得出0<x<4,此时函数单调递减,由f′(x)>0,计算得出x>4或x<0,此时函数单调递增,即函数在[-1,0]上单调递增,在[0,2]上单调递减,即函数在x=0处取得极大值同时也是最大值,则f(0)=b=3,则f(x)=ax3-6ax2+3,f(-1)=-7a+3,f(2)=-16a+3,则f(-1)>f(2),即函数的最小值为f(2)=-16a+3=-29,计算得出a=2,b=3.13.(2021·全国乙卷)设a≠0,若x=a为函数f(x)=a(x-a)2(x-b)的极大值点,则( ) A.a<b B.a>bC.ab<a2D.ab>a2答案 D解析当a>0时,根据题意画出函数f(x)的大致图象,如图1所示,观察可知b>a.图1当a<0时,根据题意画出函数f(x)的大致图象,如图2所示,观察可知a>b.图2综上,可知必有ab>a2成立.14.(2022·河南多校联考)已知函数f(x)=2ln x,g(x)=x+2,若f(x1)=g(x2),则x1-x2的最小值为______.答案4-2ln2解析设f(x1)=g(x2)=t,即2ln x1=t,x2+2=t,解得x 1=2e t ,x 2=t -2, 所以x 1-x 2=2e t -t +2,令h (t )=2e t -t +2,则h ′(t )=21e 2t -1,令h ′(t )=0,解得t =2ln2, 当t <2ln2时,h ′(t )<0, 当t >2ln2时,h ′(t )>0,所以h (t )在(-∞,2ln2)上单调递减,在(2ln2,+∞)上单调递增, 所以h (t )的最小值为h (2ln2)=e ln2-2ln2+2=4-2ln2, 所以x 1-x 2的最小值为4-2ln2.15.(多选)已知函数f (x )=x ln x +x 2,x 0是函数f (x )的极值点,以下几个结论中正确的是( ) A .0<x 0<1eB .x 0>1eC .f (x 0)+2x 0<0D .f (x 0)+2x 0>0答案 AD解析 函数f (x )=x ln x +x 2(x >0), ∴f ′(x )=ln x +1+2x , ∵x 0是函数f (x )的极值点, ∴f ′(x 0)=0,即ln x 0+1+2x 0=0,∴f ′⎝ ⎛⎭⎪⎫1e =2e>0,当x >1e 时,f ′(x )>0,∵当x →0时,f ′(x )→-∞, ∴0<x 0<1e,即A 正确,B 不正确;f (x 0)+2x 0=x 0ln x 0+x 20+2x 0=x 0(ln x 0+x 0+2)=x 0(1-x 0)>0,即D 正确,C 不正确.16.已知函数f (x )=x 2-2x +a ln x (a >0). (1)求函数f (x )的单调递增区间;(2)若函数f (x )有两个极值点x 1,x 2,x 1<x 2,不等式f (x 1)≥mx 2恒成立,求实数m 的取值范围.解 (1)f ′(x )=2x -2+a x =2x 2-2x +a x,x >0,一元二次方程2x 2-2x +a =0的Δ=4(1-2a ),①当a ≥12时,f ′(x )≥0,f (x )在(0,+∞)上单调递增;②当0<a <12时,令f ′(x )=0,得x 1=1-1-2a 2>0,x 2=1+1-2a 2>0,所以当0<x <1-1-2a2时,f ′(x )>0,f (x )单调递增,当1-1-2a 2<x <1+1-2a2时, f ′(x )<0,f (x )单调递减,当x >1+1-2a 2时,f ′(x )>0,f (x )单调递增.综上所述,当a ≥12时,f (x )的单调递增区间为(0,+∞),当0<a <12时,f (x )的单调递增区间为⎝ ⎛⎭⎪⎫0,1-1-2a 2,⎝ ⎛⎭⎪⎫1+1-2a 2,+∞.(2)由(1)知,0<a <12,x 1+x 2=1,x 1x 2=a2,则0<x 1<12<x 2,由f (x 1)≥mx 2恒成立, 得x 21-2x 1+a ln x 1≥mx 2,即(1-x 2)2-2(1-x 2)+2(1-x 2)x 2ln(1-x 2)≥mx 2, 即m ≤x 2-1x 2+2(1-x 2)ln(1-x 2),记h (x )=x -1x+2(1-x )ln(1-x ),1>x >12,则h ′(x )=1x 2-2ln(1-x )-1>0⎝⎛⎭⎪⎫1>x >12, 故h (x )在⎝ ⎛⎭⎪⎫12,1上单调递增,h ⎝ ⎛⎭⎪⎫12=-32-ln 2,3 2-ln 2.故m≤-。

专题07 导数与函数的极值、最值(课时训练)原卷版

专题07 导数与函数的极值、最值(课时训练)原卷版

专题07 导数与函数的极值、最值A 组 基础巩固1.(2022·黑龙江·哈师大附中高三期末(理))已知函数()2e 2ln xf x k x kx x=+-,若 2x = 是函数 ()f x 的唯一极值点,则实数 k 的取值范围是 ( )A .(]02,B .[)2+∞,C .e ,2∞⎛⎤- ⎥⎝⎦ D .2e ,4∞⎛⎤- ⎥⎝⎦ 2.(2022·江西南昌·高二期末(文))函数()y f x =的导函数()f x '的图象如图所示,则下列说法正确的是( )A .函数()y f x =在(),0∞-上单调递增B .函数()y f x =的递减区间为()3,5C .函数()y f x =在3x =处取得极大值D .函数()y f x =在4x =处取得极小值3.(2022·山西吕梁·)已知函数3()4f x ax x b =-+在2x =处取得极小值43-,则ab =( )A .43B .43-C .83D .83-4.(2022·江西宜春·高三期末(理))设函数()2sin cos 4x f x x x x =+-,则下列是函数f (x )极大值点的是( ) A .53πB .-53π C .23πD .-π35.(2021·山西吕梁·一模(理))“6c =”是“函数()()2f x x x c =-在2x =处有极大值”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件6.(2022·福建福州·高二期末)函数()ln f x x x =-在区间(0,e )上的极小值为( ) A .-eB .1-eC .-1D .17.(2022·江西南昌·高二期末(文))已知等差数列{}n a 中的3a 、7a 是函数()321261f x x x x =-+-的两个不同的极值点,则25log a 的值为( )A .12B .1C .2D .38.(2022·河南·模拟预测(文))已知函数()2ln f x x ax =-的极值为12-,则=a ( )A .eB .1e 2C .12D .149.(2022·福建福州·高二期末)已知函数()()2f x x x c =-在2x =处有极小值,则c 的值为( ) A .2B .4C .6D .2或610.(2022·重庆八中高二期末)已知函数()32f x x x =-+在[]1,m -上的最小值为0,则m 的取值范围是( ) A .()0,1B .[]0,1C .()0,∞+D .[)1,+∞11.(2022·江西吉安·高二期末(文))若1x =是函数()()21e x f x x ax =+-的一个极值点,则()f x 的极大值为( )A .e -B .1e -C .2eD .25e -12.(2022·安徽阜阳·高三期末(文))若函数2()4ln f x x x a x =-+有唯一的极值点,则实数a 的取值范围为( ) A .(,0)-∞B .(,0){2}-∞C .(,0]-∞D .(,0]{2}-∞13.(2022·黑龙江·双鸭山一中高二期末)已知函数()21ln 2f x ax x x a =-+有且只有一个极值点,则实数a 构成的集合是___________.14.(2021·江苏·高二专题练习)已知3x =是函数()32322f x ax x =-+的一个极值点,不等式()[]24b f x x <∈,,时恒成立,则b 的取值范围为_______ 15.(2022·全国·高三专题练习)若函数3()31f x x x =--在区间(2,23)a a -+上有最大值,则实数a 的取值范围是_________.16.(2021·河南南阳·高三期末(文))已知函数()21ln 2f x x x mx =+有两个极值点,则实数m 的取值范围为___________.17.(2021·全国·高二课时练习)函数()3231f x x x =-+的极小值为______.18.(2021·湖南·临澧县第一中学高三阶段练习)已知函数()21()ln 22g x a x x ax =-+-,且()1,x ∀∈+∞,()0<g x 恒成立,则实数a 的取值范围是_____________.19.(2021·全国·高二课时练习)设函数3()4f x ax bx =++在2x =处取得极小值,曲线()y f x =在点()()3,3f 处的切线与直线15y x =-互相垂直,则函数()y f x =在(],0-∞上的最大值为__________.B 组 能力提升20.(2022·江苏苏州·高三期末)(多选题)已知函数3211()132f x x ax =++,则( ) A .a ∀∈R ,函数()f x 在R 上均有极值 B .a ∃∈R ,使得函数()f x 在R 上无极值C .a ∀∈R ,函数()f x 在(,0)-∞上有且仅有一个零点D .a ∃∈R ,使得函数()f x 在(,0)-∞上有两个零点21.(2021·全国全国·模拟预测)(多选题)已知函数21()2x f x x x e ⎛⎫=- ⎪⎝⎭,则( )A .当2x <-()0f x <B .a ∀∈R ,方程()f x a =有实根C .方程()f x a =有3个不同实根的一个必要不充分条件是“0a <”D .若10a >,20a <且方程1()f x a =有1个实根,方程2()f x a =有2个实根,则121a a =-22.(2021·山东省胶州市第一中学高三阶段练习)(多选题)已知函数()2sin f x x x =+,则下列说法正确的是( ) A .()f x 只有一个极值点 B .设()()()g x f x f x =⋅-,则()g x 与()f x 的单调性相同C .()f x 在0,2π⎡⎤⎢⎥⎣⎦上单调递增D .()f x 有且只有两个零点23.(2021·河北·高三阶段练习)(多选题)已知函数()2ln f x x x =,下列说法正确的是( )A .当1x >时,()0f x >;当01x <<时,()0f x <B .函数()f x 的减区间为(e ,增区间为),e +∞C .函数()f x 的值域1,2e ⎡⎫-+∞⎪⎢⎣⎭D .()1f x x ≥-恒成立24.(2021·天津市红桥区教师发展中心高二期末)函数2()ln (21)f x x ax a x =+-+.(0a >) (1)设1a =时,求函数()f x 的单调区间; (2)求函数()f x 的极值.25.(2022·四川绵阳·二模(理))已知函数2()(2)e x f x x ax x =---.(1)当12a =-时,求函数()f x 的极值;(2)若曲线()f x 在()2,1-上任意一点处切线的倾斜角均为钝角,求实数a 的取值范围.26.(2022·河南焦作·一模(文))已知函数()()e ln 1=-+xf x k x ,R k ∈.(1)若12x =是()f x 的极值点,求曲线()y f x =在()()1,1f 处的切线方程; (2)证明:当()0,e k ∈时,()0f x >.27.(2021·安徽·淮南第一中学高三阶段练习(理))已知函数()()221ln f x x a x a x =---,其中a ∈R .(1)求函数()y f x =的极值;(2)若函数()f x 有两个不同的零点,求实数a 的取值范围.28.(2022·山东潍坊·高三期末)已知函数()()()()22133e 2x f x a x x x x a -=++++∈R .(1)当1a =-时,求曲线()y f x =在点(0,f (0))处的切线方程;(2)若函数f (x )有三个极值点1x ,2x ,3x ,且321x x x <<.证明:3121120x x x ++>.29.(2022·重庆南开中学高二期末)已知3x =是函数()3291f x x ax x =--+的一个极值点.(1)求实数a 的值;(2)求函数()f x 在区间[]2,0-上的最大值和最小值.30.(2022·重庆八中高二期末)已知函数()e 1x f x x =+. (1)求曲线()y f x =在点(0,(0))f 处的切线方程; (2)求函数()f x 的极值.。

高中数学利用导数研究函数的最值精选题

高中数学利用导数研究函数的最值精选题

利用导数研究函数的最值精选题25道一.选择题(共9小题)1.已知f(x)=ln(x2+1),g(x)=()x﹣m,若∀x1∈[0,3],∃x2∈[1,2],使得f(x1)≥g(x2),则实数m的取值范围是()A.[,+∞)B.(﹣∞,]C.[,+∞)D.(﹣∞,﹣] 2.设直线x=t与函数f(x)=x2,g(x)=lnx的图象分别交于点M,N,则当|MN|达到最小时t的值为()A.1B.C.D.3.函数f(x)=x3﹣3x﹣1,若对于区间[﹣3,2]上的任意x1,x2都有|f(x1)﹣f(x2)|≤t,则实数t的最小值是()A.20B.18C.3D.04.已知函数f(x)=lnx﹣x+﹣1,g(x)=x2﹣2bx+4,若对任意的x1∈(0,2)存在x2∈[1,2],使f(x1)≥g(x2),则实数b的取值范围是()A.[,+∞)B.(﹣∞,]C.(﹣∞,2]D.[2,+∞)5.已知函数f(x)=e x﹣aln(ax﹣a)+a(a>0),若关于x的不等式f(x)>0恒成立,则实数a的取值范围为()A.(0,e2]B.(0,e2)C.[1,e2]D.(1,e2)6.若函数f(x)=x3+x2﹣在区间(a,a+5)内存在最小值,则实数a的取值范围是()A.[﹣5,0)B.(﹣5,0)C.[﹣3,0)D.(﹣3,0)7.f(x)=x3﹣3x2+2在区间[﹣1,1]上的最大值是()A.﹣2B.0C.2D.48.直线x=t(t>0)与函数f(x)=x2+1,g(x)=lnx的图象分别交于A、B两点,当|AB|最小时,t值是()A.1B.C.D.9.已知关于x的不等式﹣x﹣alnx≥1对于任意x∈(1,+∞)恒成立,则实数a的取值范围为()A.(﹣∞,1﹣e]B.(﹣∞,﹣3]C.(﹣∞,﹣2]D.(﹣∞,2﹣e2]二.填空题(共13小题)10.已知函数f(x)=2sin x+sin2x,则f(x)的最小值是.11.若函数f(x)=2x3﹣ax2+1(a∈R)在(0,+∞)内有且只有一个零点,则f(x)在[﹣1,1]上的最大值与最小值的和为.12.f(x)=x3﹣3x2+2在区间[﹣1,1]上的最大值是.13.设实数λ>0,若对任意的x∈(0,+∞),不等式eλx﹣≥0恒成立,则λ的取值范围是14.已知不等式e x﹣1≥kx+lnx,对于任意的x∈(0,+∞)恒成立,则k的最大值15.函数y=x+2cos x在区间上的最大值是.16.函数在(0,e2]上的最大值是.17.设函数与g(x)=a2lnx+b有公共点,且在公共点处的切线方程相同,则实数b的最大值为.18.已知函数f(x)=xe x﹣mx,若f(x)≥lnx+x+1对x∈(0,+∞)恒成立,则实数m的取值范围是.19.已知函数f(x)=ae x+ln﹣2(a>0),若f(x)>0恒成立,则实数a的取值范围为.20.函数f(x)=(x+1)e x的最小值是21.已知函数f(x)=x﹣1﹣lnx,对定义域内的任意x都有f(x)≥kx﹣2,则实数k的取值范围是.22.函数f(x)=x2+x﹣2lnx的最小值.三.解答题(共3小题)23.已知函数f(x)=ae x﹣lnx﹣1.(1)设x=2是f(x)的极值点,求a,并求f(x)的单调区间;(2)证明:当a≥时,f(x)≥0.24.已知函数f(x)=e x cos x﹣x.(1)求曲线y=f(x)在点(0,f(0))处的切线方程;(2)求函数f(x)在区间[0,]上的最大值和最小值.25.已知f(x)=a(x﹣lnx)+,a∈R.(Ⅰ)讨论f(x)的单调性;(Ⅱ)当a=1时,证明f(x)>f′(x)+对于任意的x∈[1,2]成立.利用导数研究函数的最值精选题25道参考答案与试题解析一.选择题(共9小题)1.已知f(x)=ln(x2+1),g(x)=()x﹣m,若∀x1∈[0,3],∃x2∈[1,2],使得f(x1)≥g(x2),则实数m的取值范围是()A.[,+∞)B.(﹣∞,]C.[,+∞)D.(﹣∞,﹣]【分析】先利用函数的单调性求出两个函数的函数值的范围,再比较其最值即可求实数m的取值范围.【解答】解:因为x1∈[0,3]时,f(x1)∈[0,ln10];x2∈[1,2]时,g(x2)∈[﹣m,﹣m].故只需0≥﹣m⇒m≥.故选:A.【点评】本题主要考查函数恒成立问题以及函数单调性的应用,考查计算能力和分析问题的能力,属于中档题.2.设直线x=t与函数f(x)=x2,g(x)=lnx的图象分别交于点M,N,则当|MN|达到最小时t的值为()A.1B.C.D.【分析】将两个函数作差,得到函数y=f(x)﹣g(x),再求此函数的最小值对应的自变量x的值.【解答】解:设函数y=f(x)﹣g(x)=x2﹣lnx,求导数得=当时,y′<0,函数在上为单调减函数,当时,y′>0,函数在上为单调增函数所以当时,所设函数的最小值为所求t的值为故选:D.【点评】可以结合两个函数的草图,发现在(0,+∞)上x2>lnx恒成立,问题转化为求两个函数差的最小值对应的自变量x的值.3.函数f(x)=x3﹣3x﹣1,若对于区间[﹣3,2]上的任意x1,x2都有|f(x1)﹣f(x2)|≤t,则实数t的最小值是()A.20B.18C.3D.0【分析】对于区间[﹣3,2]上的任意x1,x2都有|f(x1)﹣f(x2)|≤t,等价于对于区间[﹣3,2]上的任意x,都有f(x)max﹣f(x)min≤t,利用导数确定函数的单调性,求最值,即可得出结论.【解答】解:对于区间[﹣3,2]上的任意x1,x2都有|f(x1)﹣f(x2)|≤t,等价于对于区间[﹣3,2]上的任意x,都有f(x)max﹣f(x)min≤t,∵f(x)=x3﹣3x﹣1,∴f′(x)=3x2﹣3=3(x﹣1)(x+1),∵x∈[﹣3,2],∴函数在[﹣3,﹣1]、[1,2]上单调递增,在[﹣1,1]上单调递减∴f(x)max=f(2)=f(﹣1)=1,f(x)min=f(﹣3)=﹣19∴f(x)max﹣f(x)min=20,∴t≥20∴实数t的最小值是20,故选:A.【点评】本题考查导数知识的运用,考查恒成立问题,正确求导,确定函数的最值是关键.4.已知函数f(x)=lnx﹣x+﹣1,g(x)=x2﹣2bx+4,若对任意的x1∈(0,2)存在x2∈[1,2],使f(x1)≥g(x2),则实数b的取值范围是()A.[,+∞)B.(﹣∞,]C.(﹣∞,2]D.[2,+∞)【分析】利用导数研究函数f(x)的最值问题,根据题意对任意x1∈(0,2),存在x2∈[1,2],使f(x1)≥g(x2),只要f(x)的最小值大于等于g(x)的最小值即可.【解答】解:∵函数f(x)=lnx﹣x﹣1,(x>0)∴f′(x)=﹣+==,若f′(x)>0,1<x<3,f(x)为增函数;若f′(x)<0,x>3或0<x<1,f(x)为减函数;f(x)在x∈(0,2)上有极值,f(x)在x=1处取极小值也是最小值f(x)min=f(1)=﹣+﹣1=﹣;∵g(x)=x2﹣2bx+4=(x﹣b)2+4﹣b2,对称轴x=b,x∈[1,2],当b<1时,g(x)在x=1处取最小值g(x)min=g(1)=1﹣2b+4=5﹣2b;当1<b<2时,g(x)在x=b处取最小值g(x)min=g(b)=4﹣b2;当b>2时,g(x)在[1,2]上是减函数,g(x)min=g(2)=4﹣4b+4=8﹣4b;∵对任意x1∈(0,2),存在x2∈[1,2],使f(x1)≥g(x2),∴只要f(x)的最小值大于等于g(x)的最小值即可,当b<1时,≥5﹣2b,解得b≥,故b无解;当b>2时,≥8﹣4b,解得b≥,综上:b≥,故选:A.【点评】本题考查不等式恒成立问题,利用导数求闭区间上函数的最值,根据不等式恒成立转化为最值恒成立是解决本题的关键.综合性较强,运算较大,有一定的难度.5.已知函数f(x)=e x﹣aln(ax﹣a)+a(a>0),若关于x的不等式f(x)>0恒成立,则实数a的取值范围为()A.(0,e2]B.(0,e2)C.[1,e2]D.(1,e2)【分析】根据f(x)>0恒成立可得e x﹣lna+x﹣lna>e ln(x﹣1)+ln(x﹣1),构造函数g(x)=e x+x,由g(x)的单调性可得x﹣lna>ln(x﹣1),用放缩法求出ln(x﹣1)﹣x的最大值,从而得到a的取值范围.【解答】解:∵f(x)=e x﹣aln(ax﹣a)+a>0(a>0)恒成立,∴,∴e x﹣lna+x﹣lna>ln(x﹣1)+x﹣1,∴e x﹣lna+x﹣lna>e ln(x﹣1)+ln(x﹣1).令g(x)=e x+x,易得g(x)在(1,+∞)上单调递增,∴x﹣lna>ln(x﹣1),∴﹣lna>ln(x﹣1)﹣x.∵ln(x﹣1)﹣x≤x﹣2﹣x=﹣2,∴﹣lna>﹣2,∴0<a<e2,∴实数a的取值范围为(0,e2).故选:B.【点评】本题考查了函数恒成立问题和放缩法的应用,考查了转化思想和计算能力,属难题.6.若函数f(x)=x3+x2﹣在区间(a,a+5)内存在最小值,则实数a的取值范围是()A.[﹣5,0)B.(﹣5,0)C.[﹣3,0)D.(﹣3,0)【分析】由题意,求导f′(x)=x2+2x=x(x+2)确定函数的单调性,从而作出函数的简图,由图象求实数a的取值范围.【解答】解:由题意,f′(x)=x2+2x=x(x+2),故f(x)在(﹣∞,﹣2),(0,+∞)上是增函数,在(﹣2,0)上是减函数,作其图象如右图,令x3+x2﹣=﹣得,x=0或x=﹣3;则结合图象可知,;解得,a∈[﹣3,0);故选:C.【点评】本题考查了导数的综合应用及学生作图识图的能力,属于中档题.7.f(x)=x3﹣3x2+2在区间[﹣1,1]上的最大值是()A.﹣2B.0C.2D.4【分析】由题意先对函数y进行求导,解出极值点,然后再根据函数的定义域,把极值点和区间端点值代入已知函数,判断函数在区间上的增减性,比较函数值的大小,求出最大值,从而求解.【解答】解:f'(x)=3x2﹣6x=3x(x﹣2),令f'(x)=0可得x=0或2(2舍去),当﹣1<x<0时,f'(x)>0,当0<x<1时,f'(x)<0,∴当x=0时,f(x)取得最大值为f(0)=2.故选:C.【点评】此题考查导数的定义及利用导数来求闭区间函数的最值,解题的关键是求导要精确.8.直线x=t(t>0)与函数f(x)=x2+1,g(x)=lnx的图象分别交于A、B两点,当|AB|最小时,t值是()A.1B.C.D.【分析】将两个函数作差,得到函数y=f(x)﹣g(x),再求此函数的最小值对应的自变量x的值.【解答】解:设函数y=f(x)﹣g(x)=x2﹣lnx+1,求导数得y′=2x﹣=当0<x<时,y′<0,函数在(0,)上为单调减函数,当x>时,y′>0,函数在(,+∞)上为单调增函数所以当x=时,所设函数的最小值为+ln2,所求t的值为.故选:B.【点评】可以结合两个函数的草图,发现在(0,+∞)上x2>lnx恒成立,问题转化为求两个函数差的最小值对应的自变量x的值.9.已知关于x的不等式﹣x﹣alnx≥1对于任意x∈(1,+∞)恒成立,则实数a的取值范围为()A.(﹣∞,1﹣e]B.(﹣∞,﹣3]C.(﹣∞,﹣2]D.(﹣∞,2﹣e2]【分析】分离参数,构造函数,对x﹣3e x=e x﹣3lnx变形以及e x﹣1≥x,即可求得a的取值范围.【解答】解:由题意可知,分离参数,令,由题意可知,a≤f(x)min,由,又e x﹣1≥x,当x=0时等号成立,所以≥=﹣3,当x﹣3lnx=0时等号成立,由,令,,易知h(x)在(0,e)上单增,在(e,+∞)单减,所以,所以方程有解.所以a≤﹣3,故选:B.【点评】本题考查利用导数的综合应用,考查分离参数方法的应用,考查e x﹣1≥x恒等式的应用,在选择及填空题可以直接应用,在解答题中,需要构造函数证明,然后再利用,考查转化思想,属于中档题.二.填空题(共13小题)10.已知函数f(x)=2sin x+sin2x,则f(x)的最小值是.【分析】由题意可得T=2π是f(x)的一个周期,问题转化为f(x)在[0,2π)上的最小值,求导数计算极值和端点值,比较可得.【解答】解:由题意可得T=2π是f(x)=2sin x+sin2x的一个周期,故只需考虑f(x)=2sin x+sin2x在[0,2π)上的值域,先来求该函数在[0,2π)上的极值点,求导数可得f′(x)=2cos x+2cos2x=2cos x+2(2cos2x﹣1)=2(2cos x﹣1)(cos x+1),令f′(x)=0可解得cos x=或cos x=﹣1,可得此时x=,π或;∴y=2sin x+sin2x的最小值只能在点x=,π或和边界点x=0中取到,计算可得f()=,f(π)=0,f()=﹣,f(0)=0,∴函数的最小值为﹣,故答案为:.【点评】本题考查三角函数恒等变换,涉及导数法求函数区间的最值,属中档题.11.若函数f(x)=2x3﹣ax2+1(a∈R)在(0,+∞)内有且只有一个零点,则f(x)在[﹣1,1]上的最大值与最小值的和为﹣3.【分析】推导出f′(x)=2x(3x﹣a),x∈(0,+∞),当a≤0时,f′(x)=2x(3x ﹣a)>0,f(0)=1,f(x)在(0,+∞)上没有零点;当a>0时,f′(x)=2x(3x ﹣a)>0的解为x>,f(x)在(0,)上递减,在(,+∞)递增,由f(x)只有一个零点,解得a=3,从而f(x)=2x3﹣3x2+1,f′(x)=6x(x﹣1),x∈[﹣1,1],利用导数性质能求出f(x)在[﹣1,1]上的最大值与最小值的和.【解答】解:∵函数f(x)=2x3﹣ax2+1(a∈R)在(0,+∞)内有且只有一个零点,∴f′(x)=2x(3x﹣a),x∈(0,+∞),①当a≤0时,f′(x)=2x(3x﹣a)>0,函数f(x)在(0,+∞)上单调递增,f(0)=1,f(x)在(0,+∞)上没有零点,舍去;②当a>0时,f′(x)=2x(3x﹣a)>0的解为x>,∴f(x)在(0,)上递减,在(,+∞)递增,又f(x)只有一个零点,∴f()=﹣+1=0,解得a=3,f(x)=2x3﹣3x2+1,f′(x)=6x(x﹣1),x∈[﹣1,1],f′(x)>0的解集为(﹣1,0),f(x)在(﹣1,0)上递增,在(0,1)上递减,f(﹣1)=﹣4,f(0)=1,f(1)=0,∴f(x)min=f(﹣1)=﹣4,f(x)max=f(0)=1,∴f(x)在[﹣1,1]上的最大值与最小值的和为:f(x)max+f(x)min=﹣4+1=﹣3.【点评】本题考查函数的单调性、最值,导数的运算及其应用,同时考查逻辑思维能力和综合应用能力,是中档题.12.f(x)=x3﹣3x2+2在区间[﹣1,1]上的最大值是2.【分析】求出函数的导函数,令导函数为0,求出根,判断根是否在定义域内,判断根左右两边的导函数符号,求出最值.【解答】解:f′(x)=3x2﹣6x=3x(x﹣2),令f′(x)=0得x=0或x=2(舍),当﹣1<x<0时,f′(x)>0;当0<x<1时,f′(x)<0,所以当x=0时,函数取得极大值即最大值,所以f(x)的最大值为2,故答案为:2.【点评】本题主要考查利用导数研究函数的最值,属于基础题.13.设实数λ>0,若对任意的x∈(0,+∞),不等式eλx﹣≥0恒成立,则λ的取值范围是[,+∞)【分析】法一:由题意可得(eλx﹣)min≥0,设f(x)=eλx﹣,x>0,求出导数和单调区间、极小值点m和最小值点,可令最小值为0,解方程可得m,λ,进而得到所求最小值;法二:由于y=eλx与y=互为反函数,故图象关于y=x对称,采用极限思想求解.【解答】解:实数λ>0,若对任意的x∈(0,+∞),不等式eλx﹣≥0恒成立,即为(eλx﹣)min≥0,设f(x)=eλx﹣,x>0,f′(x)=λeλx﹣,令f′(x)=0,可得eλx=,由指数函数和反比例函数在第一象限的图象,可得y=eλx和y=有且只有一个交点,设为(m,n),当x>m时,f′(x)>0,f(x)递增;当0<x<m时,f′(x)<0,f(x)递减.即有f(x)在x=m处取得极小值,且为最小值.即有eλm=,令eλm﹣=0,可得m=e,λ=.则当λ≥时,不等式eλx﹣≥0恒成立.则λ的最小值为另解:由于y=eλx与y=互为反函数,故图象关于y=x对称,考虑极限情况,y=x恰为这两个函数的公切线,此时斜率k=1,再用导数求得切线斜率的表达式为k=,即可得λ的最小值为.故答案为:[,+∞).【点评】本题考查不等式恒成立问题的解法,注意运用转化思想,以及运用导数求得单调区间、极值和最值,考查方程思想,以及运算能力,属于中档题.14.已知不等式e x﹣1≥kx+lnx,对于任意的x∈(0,+∞)恒成立,则k的最大值e﹣1【分析】不等式e x﹣1≥kx+lnx,对于任意的x∈(0,+∞)恒成立.等价于对于任意的x∈(0,+∞)恒成立.求得,(x>0),的最小值即可k 的取值.【解答】解:不等式e x﹣1≥kx+lnx,对于任意的x∈(0,+∞)恒成立.等价于对于任意的x∈(0,+∞)恒成立.令,(x>0),,令g(x)=e x(x﹣1)+lnx,(x>0),则g′(x)=xe x+>0∴g(x)在(0,+∞)单调递增,g(1)=0,∴x∈(0,1)时,g(x)<0,x∈(1,+∞)时,g(x)>0.∴x∈(0,1)时,f′(x)<0,x∈(1,+∞)时,f′(x)>0.∴x∈(0,1)时,f(x)单调递减,x∈(1,+∞)时,f(x)单调递增.∴f(x)min=f(1)=e﹣1∴k≤e﹣1.故答案为:e﹣1.【点评】本题考查不等式恒成立问题的解法,考查构造函数法,以及导数的运用:求单调性和最值,考查运算能力,属于中档题.15.函数y=x+2cos x在区间上的最大值是.【分析】对函数y=x+2cos x进行求导,研究函数在区间上的极值,本题极大值就是最大值.【解答】解:∵y=x+2cos x,∴y′=1﹣2sin x令y′=0而x∈则x=,当x∈[0,]时,y′>0.当x∈[,]时,y′<0.所以当x=时取极大值,也是最大值;故答案为【点评】本题考查了利用导数求闭区间上函数的最大值问题,属于导数的基础题.16.函数在(0,e2]上的最大值是.【分析】求出导函数,求解极值点,然后判断函数的单调性求解函数的最大值即可.【解答】解:函数,,令f′(x)=0,解得x=e.因为0<e<e2,函数f(x)在x∈(0,e]上单调递增,在x∈[e,e2]单调递减;x=e时,f(x)取得最大值,f(e)=.故答案为:.【点评】本题考查函数的导数的应用,熟练掌握利用导数研究函数的单调性、极值与最值是解题的关键.17.设函数与g(x)=a2lnx+b有公共点,且在公共点处的切线方程相同,则实数b的最大值为.【分析】设公共点坐标为(x0,y0),求出两个函数的导数,利用f'(x0)=g'(x0),推出,然后构造函数,利用导函数单调性求解函数的最值即可.【解答】解:设公共点坐标为(x0,y0),则,所以有f'(x0)=g'(x0),即,解出x0=a(舍去),又y0=f(x0)=g(x0),所以有,故,所以有,对b求导有b'=﹣2a(1+lna),故b关于a的函数在为增函数,在为减函数,所以当时b有最大值.故答案为:.【点评】本题考查函数的导数的应用,切线方程以及函数的单调性、最值的求法,考查计算能力.18.已知函数f(x)=xe x﹣mx,若f(x)≥lnx+x+1对x∈(0,+∞)恒成立,则实数m的取值范围是(﹣∞,0].【分析】函数f(x)=xe x﹣mx,若f(x)≥lnx+x+1对x∈(0,+∞)恒成立,等价于:m+1≤e x﹣,x∈(0,+∞)恒成立.令g(x)=e x﹣,x∈(0,+∞),利用导数研究函数的单调性极值与最值即可得出结论.另解:令g(x)=e x﹣x﹣1,可得g(x)在R上的单调性,原命题等价于:xe x﹣(x+lnx)﹣1≥mx.即e x+lnx﹣(x+lnx)﹣1≥mx.令h(x)=x+lnx,利用其单调性即可证明结论.【解答】解:函数f(x)=xe x﹣mx,若f(x)≥lnx+x+1对x∈(0,+∞)恒成立,等价于:m+1≤e x﹣,x∈(0,+∞)恒成立.令g(x)=e x﹣,x∈(0,+∞),则g′(x)=e x+=,令h(x)=x2e x+lnx,则h′(x)=(x2+2x)e x+>0,∴函数h(x)在x∈(0,+∞)上单调递增,又h()=﹣1<0,h(1)=e>0,∴存在唯一x0∈(,1),使得+lnx0=0,化为:x0=,两边取对数可得:x0+lnx0=ln(﹣lnx0)+(﹣lnx0),令u(x)=x+lnx,可得函数u(x)在x∈(0,+∞)上单调递增,因此x0=﹣lnx0,可得=.∴函数g(x)在(0,x0)上单调递减,在(x0,+∞)上单调递增.∴g(x)min=g(x0)=﹣=﹣=1,∴m+1≤1,解得m≤0.故实数m的取值范围是(﹣∞,0].另解:令g(x)=e x﹣x﹣1,g′(x)=e x﹣1,可得g(x)在(﹣∞,0)上单调递减,在(0,+∞)上单调递增.∴g(x)=e x﹣x﹣1≥g(0)=0,即e x﹣x﹣1≥0.原命题等价于:xe x﹣(x+lnx)﹣1≥mx.即e x+lnx﹣(x+lnx)﹣1≥mx.令h(x)=x+lnx,可得:h(x)在(0,+∞)上单调递增.h()=﹣1<0,h(1)=1>0,∴存在唯一x0∈(,1),使得h(x0)=0,∴≥0,因此m≤0.故答案为:(﹣∞,0].【点评】本题考查了利用导数研究函数的单调性极值与最值、方程与不等式的解法、同构法、等价转化方法,注意对于函数零点存在又无法求出的问题的解决方法,考查了推理能力与计算能力,属于难题.19.已知函数f(x)=ae x+ln﹣2(a>0),若f(x)>0恒成立,则实数a的取值范围为(e,+∞).【分析】求出e x+lna+x+lna>e ln(x+2)+ln(x+2),得到lna>ln(x+2)﹣x,令g(x)=ln (x+2)﹣x,(x>﹣2),根据函数的单调性求出g(x)的最大值,求出a的取值范围即可.【解答】解:f(x)=ae x+ln﹣2(a>0),函数f(x)的定义域是(﹣2,+∞),若f(x)>0恒成立,则e x+lna+lna>ln(x+2)+2,两边加上x得到:e x+lna+x+lna>x+2+ln(x+2)=e ln(x+2)+ln(x+2),∵y=e x+x单调递增,∴x+lna>ln(x+2),即lna>ln(x+2)﹣x,令g(x)=ln(x+2)﹣x,(x>﹣2),则g′(x)=﹣1=,∵x∈(﹣2,﹣1)时,g′(x)>0,g(x)递增,x∈(﹣1,+∞)时,g′(x)<0,g(x)递减,故lna>g(x)max=g(﹣1)=1,故a>e,故答案为:(e,+∞).【点评】本题考查了函数的单调性,最值问题,考查导数的应用以及函数恒成立问题,考查转化思想,是中档题.20.函数f(x)=(x+1)e x的最小值是【分析】求出函数f(x)=(x+1)e x的导数,进一步求出函数f(x)=(x+1)e x的单调区间,得到函数f(x)=(x+1)e x的最小值;【解答】解:由f(x)=(x+1)e x,得f′(x)=(x+2)e x;当x<﹣2时,f′(x)<0,当x>﹣2时,f′(x)>0,所以函数f(x)=(x+1)e x在(﹣∞,﹣2)上单调递减,在(﹣2,+∞)上单调递增;所以当x=﹣2时,函数f(x)=(x+1)e x有最小值;故答案为:.【点评】本题考查函数最值,考查利用函数导数分析函数单调性从而得到函数最值,属于基础题.21.已知函数f(x)=x﹣1﹣lnx,对定义域内的任意x都有f(x)≥kx﹣2,则实数k的取值范围是(﹣∞,1﹣].【分析】先分离出k,得到k≤1+﹣在x>0时恒成立,再处理g(x)=1+,x>0的最小值即可解决问题.【解答】解:∵f(x)=x﹣1﹣lnx≥kx﹣2,∴kx≤x+1﹣lnx,x>0,也即k≤1+﹣在x>0时恒成立.令g(x)=1+,x>0,则g′(x)=,x>0,令g′(x)=0⇒x=e2.易知g(x)在x∈(0,e2)上单调递减,g(x)在x∈(e2,+∞)上单调递增,故g(x)min=g(e2)=1﹣,∴k.故填:(﹣∞,1﹣].【点评】本题主要考查导数在处理最值问题中的简单应用,属于基础题.22.函数f(x)=x2+x﹣2lnx的最小值.【分析】求出函数的导数,利用函数的单调性转化求解函数的最小值.【解答】解:因为,易知f(x)在(0,1)上单调递减,在(1,+∞)上单调递增,所以.故答案为:.【点评】本题考查函数的导数的应用,函数的最值的求法,考查计算能力.三.解答题(共3小题)23.已知函数f(x)=ae x﹣lnx﹣1.(1)设x=2是f(x)的极值点,求a,并求f(x)的单调区间;(2)证明:当a≥时,f(x)≥0.【分析】(1)推导出x>0,f′(x)=ae x﹣,由x=2是f(x)的极值点,解得a=,从而f(x)=e x﹣lnx﹣1,进而f′(x)=,由此能求出f(x)的单调区间.(2)法一:当a≥时,f(x)≥﹣lnx﹣1,设g(x)=﹣lnx﹣1,x>0,则﹣,由此利用导数性质能证明当a≥时,f(x)≥0.法二:f(x)≥0,即a≥,x>0,令g(x)=,x>0,则,利用导数性质得g(x)在(0,1)单调递增,在(1,+∞)单调递减,g(x)≤g(1)=,由此能证明当a≥时,f(x)≥0.法三:当a时,f(x)≥,即只需证明,再通过构造函数,利用导数研究函数的单调性,即可求解.【解答】解:(1)∵函数f(x)=ae x﹣lnx﹣1.∴x>0,f′(x)=ae x﹣,∵x=2是f(x)的极值点,∴f′(2)=ae2﹣=0,解得a=,∴f(x)=e x﹣lnx﹣1,∴f′(x)=,当0<x<2时,f′(x)<0,当x>2时,f′(x)>0,∴f(x)的单调递减区间是(0,2),单调递增区间是(2,+∞).(2)证法一:当a≥时,f(x)≥﹣lnx﹣1,设g(x)=﹣lnx﹣1,x>0,则﹣,由﹣=0,得x=1,当0<x<1时,g′(x)<0,当x>1时,g′(x)>0,∴x=1是g(x)的最小值点,故当x>0时,g(x)≥g(1)=0,∴当a≥时,f(x)=ae x﹣lnx﹣1≥0.证法二:∵函数f(x)=ae x﹣lnx﹣1,∴f(x)≥0,即a≥,x>0,令g(x)=,x>0,则,x>0,∴g′(1)=0,当0<x<1时,,﹣lnx>0,g′(x)>0,当x>1时,,﹣lnx<0,g′(x)<0,∴g(x)在(0,1)单调递增,在(1,+∞)单调递减,g(x)≤g(1)=,∵a≥,∴a≥g(x).∴当a≥时,f(x)≥0.证法三:当a时,f(x)≥,即只需证明,由于,则e x≥elnex⇔xe x≥exlnex⇔xe x≥e lnex lnex,令g(x)=xe x,则g'(x)=e x(x+1)>0,即g(x)为增函数,又易证x≥lnex=lnx+1,故g(x)≥g(lnex),即xe x≥e lnex lnex成立,故当时,f(x)≥0.【点评】本题考查函数的单调性、导数的运算及其应用,同时考查逻辑思维能力和综合应用能力,是中档题.24.已知函数f(x)=e x cos x﹣x.(1)求曲线y=f(x)在点(0,f(0))处的切线方程;(2)求函数f(x)在区间[0,]上的最大值和最小值.【分析】(1)求出f(x)的导数,可得切线的斜率和切点,由点斜式方程即可得到所求方程;(2)求出f(x)的导数,再令g(x)=f′(x),求出g(x)的导数,可得g(x)在区间[0,]的单调性,即可得到f(x)的单调性,进而得到f(x)的最值.【解答】解:(1)函数f(x)=e x cos x﹣x的导数为f′(x)=e x(cos x﹣sin x)﹣1,可得曲线y=f(x)在点(0,f(0))处的切线斜率为k=e0(cos0﹣sin0)﹣1=0,切点为(0,e0cos0﹣0),即为(0,1),曲线y=f(x)在点(0,f(0))处的切线方程为y=1;(2)函数f(x)=e x cos x﹣x的导数为f′(x)=e x(cos x﹣sin x)﹣1,令g(x)=e x(cos x﹣sin x)﹣1,则g(x)的导数为g′(x)=e x(cos x﹣sin x﹣sin x﹣cos x)=﹣2e x•sin x,当x∈[0,],可得g′(x)=﹣2e x•sin x≤0,即有g(x)在[0,]递减,可得g(x)≤g(0)=0,则f(x)在[0,]递减,即有函数f(x)在区间[0,]上的最大值为f(0)=e0cos0﹣0=1;最小值为f()=cos﹣=﹣.【点评】本题考查导数的运用:求切线的方程和单调区间、最值,考查化简整理的运算能力,正确求导和运用二次求导是解题的关键,属于中档题.25.已知f(x)=a(x﹣lnx)+,a∈R.(Ⅰ)讨论f(x)的单调性;(Ⅱ)当a=1时,证明f(x)>f′(x)+对于任意的x∈[1,2]成立.【分析】(Ⅰ)求出原函数的导函数,然后对a分类分析导函数的符号,由导函数的符号确定原函数的单调性;(Ⅱ)方法一、构造函数F(x)=f(x)﹣f′(x),令g(x)=x﹣lnx,h(x)=.则F(x)=f(x)﹣f′(x)=g(x)+h(x),利用导数分别求g(x)与h(x)的最小值得到F(x)>恒成立.由此可得f(x)>f′(x)+对于任意的x∈[1,2]成立;方法二、不等式f(x)>f′(x)+对于任意的x∈[1,2]成立,即x﹣lnx+﹣>0,结合x﹣1≥lnx,利用放缩法可得x﹣lnx+﹣>,然后说明不等式右侧的代数式恒大于等于0,则结论得证.【解答】(Ⅰ)解:由f(x)=a(x﹣lnx)+,得f′(x)=a(1﹣)+==(x>0).若a≤0,则ax2﹣2<0恒成立,∴当x∈(0,1)时,f′(x)>0,f(x)为增函数,当x∈(1,+∞)时,f′(x)<0,f(x)为减函数;当a>0,若0<a<2,当x∈(0,1)和(,+∞)时,f′(x)>0,f(x)为增函数,当x∈(1,)时,f′(x)<0,f(x)为减函数;若a=2,f′(x)≥0恒成立,f(x)在(0,+∞)上为增函数;若a>2,当x∈(0,)和(1,+∞)时,f′(x)>0,f(x)为增函数,当x∈(,1)时,f′(x)<0,f(x)为减函数;(Ⅱ)方法一、解:∵a=1,令F(x)=f(x)﹣f′(x)=x﹣lnx﹣1=x﹣lnx+.令g(x)=x﹣lnx,h(x)=.则F(x)=f(x)﹣f′(x)=g(x)+h(x),由,可得g(x)≥g(1)=1,当且仅当x=1时取等号;又,设φ(x)=﹣3x2﹣2x+6,则φ(x)在[1,2]上单调递减,且φ(1)=1,φ(2)=﹣10,∴在[1,2]上存在x0,使得x∈(1,x0)时φ(x0)>0,x∈(x0,2)时,φ(x0)<0,∴函数h(x)在(1,x0)上单调递增;在(x0,2)上单调递减,由于h(1)=1,h(2)=,因此h(x)≥h(2)=,当且仅当x=2取等号,∴f(x)﹣f′(x)=g(x)+h(x)>g(1)+h(2)=,∴F(x)>恒成立.即f(x)>f′(x)+对于任意的x∈[1,2]成立.方法二、不等式f(x)>f′(x)+对于任意的x∈[1,2]成立,即x﹣lnx+﹣>0,令h(x)=x﹣lnx﹣1,得h′(x)=1﹣=,可得当x∈[1,2]时,h′(x)≥0,h(x)单调递增,h(x)≥0,即x﹣1≥lnx,于是,x﹣lnx+﹣≥=.当且仅当x=1时上式等号成立.又x∈[1,2]时,3x2﹣2>0,2﹣x≥0,2x3>0,∴x﹣lnx+﹣=≥0.等号当且仅当x=2时取得,故两个等号不能同时取到,∴x﹣lnx+﹣>0,即f(x)>f′(x)+对于任意的x∈[1,2]成立.【点评】本题考查利用导数加以函数的单调性,考查了利用导数求函数的最值,考查了分类讨论的数学思想方法和数学转化思想方法,是压轴题。

高二数学利用导数求最值和极值试题答案及解析

高二数学利用导数求最值和极值试题答案及解析

高二数学利用导数求最值和极值试题答案及解析1.若函数在(0,1)内有极小值,则()A.0<<1B.<1C.>0D.<【答案】A【解析】,由于存在极值,因此令,得,为函数的极小值,则,解得.【考点】函数的导数与极值.2.函数的定义域为开区间,导函数在内的图象如图所示,则函数在开区间内有极小值点()A.个B.个C.个D.个【答案】A【解析】函数为增函数, 函数为减函数, 当且左侧,右侧时为极小值点,从而只有一个满足,答案选A..【考点】函数的导数与极值3.已知函数.(1)若函数在区间上存在极值点,求实数a的取值范围;(2)如果当时,不等式恒成立,求实数k的取值范围;【答案】(1)(2)【解析】(1)对函数求导,求出极值点,范围在内,得到不等式关系,解不等式即可;(2)要对恒成立问题转化,转化为求最值问题,令,求出在的最小值.试题解析:(1)当x>0时,,有;所以在(0,1)上单调递增,在上单调递减,函数在处取得唯一的极值.由题意,且,解得所求实数的取值范围为.(2)当时,令,由题意,在上恒成立令,则,当且仅当时取等号.所以在上单调递增,.因此,在上单调递增,.所以.【考点】导数运算,化归思想.4.已知函数,其中。

(1)若,求函数的极值点和极值;(2)求函数在区间上的最小值。

【答案】(1)极小值点为,极小值为;极大值点为,极大值为;(2)【解析】(1)把代入原函数,求出的导函数,令导函数等于求出根即可得极值点,把极值点代入原函数得极值。

(2)因为,所以把分两种情况来讨论,当时,函数在区间为单调递增函数,最小值为,当时,求出函数的导函数,并令得增区间,令得减区间,最后得出的最小值。

试题解析:解:(1)当时,。

2分令,得或。

所以,在区间上,,函数是增函数;在区间上,,函数是减函数;在区间上,,函数是增函数。

4分[所以,函数的极小值点为,极小值为;极大值点为,极大值为。

8分(2)当时,是R上的增函数,在区间上的最小值为。

高二数学利用导数求最值和极值试题答案及解析

高二数学利用导数求最值和极值试题答案及解析

高二数学利用导数求最值和极值试题答案及解析1.函数的定义域为开区间,导函数在内的图象如图所示,则函数在开区间内有极小值点()A.个B.个C.个D.个【答案】A【解析】函数为增函数, 函数为减函数, 当且左侧,右侧时为极小值点,从而只有一个满足,答案选A..【考点】函数的导数与极值2.若函数在[-1,1]上有最大值3,则该函数在[-1,1]上的最小值是__________【答案】【解析】令得或,当时, ,当时, ,因此当时, ,所以,当时, ,当时, ,因此,答案为.【考点】导数与最值3.设函数,则的极小值点为()A.B.C.D.【答案】D【解析】因为,令得解得,又因为函数的定义域为,当时,,所以时为减函数;当时,,所以时为增函数;所以当时函数取得极小值;【考点】导数在求函数极值中的应用;4.已知函数,且是函数的极值点。

给出以下几个问题:①;②;③;④其中正确的命题是__________。

(填出所有正确命题的序号)【答案】①③【解析】的定义域为,,所以有,所以有即即,所以有;因为,所以有。

【考点】导数在求函数极值中的应用5.已知函数在处有极大值.(Ⅰ)求的值;(Ⅱ)若过原点有三条直线与曲线相切,求的取值范围;(Ⅲ)当时,函数的图象在抛物线的下方,求的取值范围.【答案】(Ⅰ)(Ⅱ)(Ⅲ)【解析】(Ⅰ)通过对函数f(x)求导,根据函数在x=2处有极值,可知f'(2)=0,解得a的值.(Ⅱ)把(1)求得的a代入函数关系式,设切点坐标,进而根据导函数可知切线斜率,则切线方程可得,整理可求得b的表达式,令g'(x)=0解得x1和x2.进而可列出函数g(x)的单调性进而可知-64<b<0时,方程b=g(x)有三个不同的解,结论可得.(Ⅲ)当x∈[-2,4]时,函数y=f(x)的图象在抛物线y=1+45x-9x2的下方,进而可知x3-12x2+36x+b<1+45x-9x2在x∈[-2,4]时恒成立,整理可得关于b的不等式,令h(x)=-x3+3x2+9x+1,对h(x)进行求导由h'(x)=0得x1和x2.分别求得h,h(-1),h(3),h(4),进而可知h(x)在[-2,4]上的最小值是,进而求得b的范围.试题解析:(Ⅰ),或,当时,函数在处取得极小值,舍去;当时,,函数在处取得极大值,符合题意,∴.(3分)(Ⅱ),设切点为,则切线斜率为,切线方程为,即,∴.令,则,由得,.函数的单调性如下:↗极大值↘极小值↗∴当时,方程有三个不同的解,过原点有三条直线与曲线相切.(8分)(Ⅲ)∵当时,函数的图象在抛物线的下方,∴在时恒成立,即在时恒成立,令,则,由得,.∵,,,,∴在上的最小值是,.(12分)【考点】等比关系的确定;利用导数研究函数的极值.6.已知函数,在点处的切线方程是(e为自然对数的底)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

函数的最值与导数
一、选择题
1.函数y =f (x )在区间[a ,b ]上的最大值是M ,最小值是m ,若M =m ,则f ′(x )( )
A .等于0
B .大于0
C .小于0
D .以上都有可能 [答案] A
[解析] ∵M =m ,∴y =f (x )是常数函数
∴f ′(x )=0,故应选A..
3.函数y =x 3+x 2-x +1在区间[-2,1]上的最小值为( )
A.2227
B .2
C .-1
D .-4 [答案] C
[解析] y ′=3x 2+2x -1=(3x -1)(x +1)
令y ′=0解得x =13
或x =-1 当x =-2时,y =-1;当x =-1时,y =2;
当x =13时,y =2227
;当x =1时,y =2. 所以函数的最小值为-1,故应选C.
8.已知函数y =-x 2-2x +3在[a,2]上的最大值为154
,则a 等于( ) A .-32
B.12 C .-12
D.12或-32
[答案] C
[解析] y ′=-2x -2,令y ′=0得x =-1.
当a ≤-1时,最大值为f (-1)=4,不合题意.
当-1<a <2时,f (x )在[a,2]上单调递减,
最大值为f (a )=-a 2-2a +3=154
, 解得a =-12或a =-32
(舍去). 9.若函数f (x )=x 3-12x 在区间(k -1,k +1)上不是单调函数,则实数k 的取值范围是
() A.k≤-3或-1≤k≤1或k≥3
B.-3<k<-1或1<k<3
C.-2<k<2
D.不存在这样的实数
[答案] B
[解析]因为y′=3x2-12,由y′>0得函数的增区间是(-∞,-2)和(2,+∞),由y′<0,得函数的减区间是(-2,2),由于函数在(k-1,k+1)上不是单调函数,所以有k-1<-2<k+1或k-1<2<k+1,解得-3<k<-1或1<k<3,故选B.
10.函数f(x)=x3+ax-2在区间[1,+∞)上是增函数,则实数a的取值范围是() A.[3,+∞) B.[-3,+∞)
C.(-3,+∞) D.(-∞,-3)
[答案] B
[解析]∵f(x)=x3+ax-2在[1,+∞)上是增函数,∴f′(x)=3x2+a≥0在[1,+∞)上恒成立
即a≥-3x2在[1,+∞)上恒成立
又∵在[1,+∞)上(-3x2)max=-3
∴a≥-3,故应选B.
二、填空.
14.f(x)=x3-12x+8在[-3,3]上的最大值为M,最小值为m,则M-m=________.
[答案]32
[解析]f′(x)=3x2-12
由f′(x)>0得x>2或x<-2,
由f′(x)<0得-2<x<2.
∴f(x)在[-3,-2]上单调递增,在[-2,2]上单调递减,在[2,3]上单调递增.
又f(-3)=17,f(-2)=24,f(2)=-8,
f(3)=-1,
∴最大值M=24,最小值m=-8,
∴M-m=32.
1.(本小题满分12分)已知c bx ax x x f +++=23)(,在1=x 与2-=x 时,都取得极值。

(Ⅰ)求b a ,的值; (Ⅱ)若[]2,3-∈x 都有c 的取值范围。

【答案】(Ⅰ)a =
,b =-6. 【解析】
试题分析:(Ⅰ)由题设有b ax x x f ++=23)(2'=0的两根为2,1-==x x , a =,b =-6. (6分)
(Ⅱ)当[]2,3-∈x 时,由(1)得有{})1(),3(m in )(min f f x f -=,(8分)
所以由题意有min )(x f =-(10分)
(12分)
考点:函数导数求极值,最值
点评:不等式恒成立转化为求函数最值
2,x x x g ln )(+=,其中0>a 。

(1)若1=x 是函数)()()(x g x f x h +=的极值点,求实数a 的值。

(2)若对任意的1x ,[]e x ,12∈(e 为自然对数的底数)都有)()(21x g x f ≥成立,求实数a 的取值范围。

【答案】(1(2)a 的取值范围为【解析】本试题主要是考查了导数在研究函数中的求解极值和最值的运用。

(10,∞+) (1分)
1=x 是)(x h 的极值点0)1('=∴h
(2)对任意的1x ,[]e x ,12∈都有)()(21x g x f ≥成立⇔对任意1x ,[]e x ,12∈都有[][]max min )()(x g x f ≥,运用转化思想来求解最值即可
5.已知函数3()3()f x x ax x =-∈R . (Ⅰ)当1a =时,求()f x 的极小值;
(Ⅱ)若直线0x y m ++=对任意的m ∈R 都不是...曲线()y f x =的切线,求a 的取值范围.
【答案】(Ⅰ))(x f 的极小值为2)1(-=f . 单调性和极值问题,以及导数的几何意义求解切线方程的综合运用。

(1)利用当a=1,确定解析式然后求解导数,分析单调区间,得到其极值。

(2)因为要使直线对于任意的ms 实数,x+y+m=0都不是曲线的切线,说米呢了导数值大于其斜率值 解:(Ⅰ)因为当1=a 时,33)(2-='x x f ,令0)(='x f ,得1x =-或1=x . 当(1,1)x ∈-时,0)(<'x f ;当(,1)(1,)x ∈-∞-+∞时,0)(>'x f .所以)(x f 在(1,1)-上单调递减,在[)(,1],1,-∞-+∞上单调递增. 所以)(x f 的极小值为2)1(-=f .
(Ⅱ)因为2()333f x x a a '=--≥, 所以,要使直线0=++m y x 对任意的m ∈R 总
不是曲线)(x f y =的切线,当且仅当a 31-<-,即。

相关文档
最新文档