开关电源EMC问题实战案例
mos管辐射整改案例
mos管辐射整改案例
1.案例简介:
某公司生产的一款开关电源在EMC测试中发现辐射超标,主要问题集中在MOS管的开关谐波辐射。
2.整改措施:
●优化PCB布局:缩短MOS管的开关回路,减小寄生电感和电容。
●增加滤波电路:在MOS管两端增加RC吸收电路,抑制开关谐波。
●更换MOS管:选择具有更低开关损耗和更小寄生参数的MOS管。
3.整改效果:
●经过上述整改措施,开关电源的辐射超标问题得到解决,顺利通过EMC测
试。
4.具体整改步骤:
●分析辐射源:通过测量和分析,确定辐射源是MOS管的开关谐波。
优化PCB布局:缩短MOS管的开关回路,减小寄生电感和电容。
具体措施包括:
●将MOS管和驱动芯片尽量靠近放置。
●使用大铜箔面积减小回路阻抗。
●优化PCB走线,避免形成环路。
增加滤波电路:在MOS管两端增加RC吸收电路,抑制开关谐波。
具体措施包括:
●选择合适的电阻和电容值,根据开关频率和谐波频率进行设计。
●尽量靠近MOS管放置滤波电路。
●更换MOS管:选择具有更低开关损耗和更小寄生参数的MOS管。
具体措施包
括:
●选择RDS(on)较小的MOS管。
●选择Coss和Crss较小的MOS管。
5.注意事项:
●整改措施需要根据具体情况进行调整。
●整改后需要进行EMC测试,验证整改效果。
6.总结:
MOS管辐射整改的关键是优化PCB布局、增加滤波电路和更换MOS管。
通过综合采取以上措施,可以有效降低MOS管的开关谐波辐射,提高EMC性能。
开关电源EMC设计实例
开关电源EMC设计实例[摘要] 目前大多数电子产品都选用开关电源供电,以节省能源和提高工作效率;同时越来越多的产品也都含有数字电路,以提供更多的应用功能。
开关电源电路和数字电路中的时钟电路是目前电子产品中最主要的电磁干扰源,它们是电磁兼容设计的主要内容。
下面我们以一个开关电源的电磁兼容设计过程来进行分析。
[关键词] 开关电源设计图1是一个普遍应用的反激式(或称为回扫式)开关电源工作原理图,50Hz 或60Hz交流电网电压首先经整流堆整流,并向储能滤波电容器C5充电,然后向变压器T1与开关管V1组成的负载回路供电。
图2是进行过电磁兼容设计后的电气原理图。
图1 图21、对电流谐波的抑制一般电容器C5的容量很大,其两端电压纹波很小,大约只有输入电压的10%左右,而仅当输入电压Ui大于电容器C5两端电压的时候,整流二极管才导通,因此在输入电压的一个周期内,整流二极管的导通时间很短,即导通角很小。
这样整流电路中将出现脉冲尖峰电流。
这种脉冲尖峰电流如用傅立叶级数展开,将被看成由非常多的高次谐波电流组成,这些谐波电流将会降低电源设备的使用效率,即功率因数很低,并会倒灌到电网,对电网产生污染,严重时还会引起电网频率的波动,即交流电源闪烁。
脉冲电流谐波和交流电源闪烁测试标准为:IEC61000-3-2及IEC61000-3-3。
一般测试脉冲电流谐波的上限是40次谐波频率。
解决整流电路中出现脉冲尖峰电流过大的方法是在整流电路中串联一个功率因数校正(PFC)电路,或差模滤波电感器。
PFC电路一般为一个并联式升压开关电源,其输出电压一般为直流400V,没有经功率因数校正之前的电源设备,其功率因数一般只有0.4~0.6,经校正后最高可达到0.98。
PFC电路虽然可以解决整流电路中出现脉冲尖峰电流过大的问题,但又会带来新的高频干扰问题,这同样也要进行严格的EMC设计。
用差模滤波电感器可以有效地抑制脉冲电流的峰值,从而降低电流谐波干扰,但不能提高功率因数。
大功率开关电源的EMC测试分析及正确选择EMI滤波器
大功率开关电源的EMC测试分析及正确选择EMI滤波器开关电源具有体积小、重量轻、效率高等优点,广泛应用于各个领域。
由于开关电源固有的特点,自身产生的各种噪声却形成一个很强的电磁干扰源。
所产生的干扰随着输出功率的增大而明显地增强,使整个电网的谐波污染状况愈加严重。
对电子设备的正常运行构成了潜在的威胁,因此解决开关电源的电磁干扰是减小电网污染的必要手段,本文对一台15kW开关电源的EMC测试,分析其测试结果,并介绍如何合理地正确选择EMI滤波器,以达到理想的抑制效果。
1 开关电源产生电磁干扰的机理图1为所测的15kW开关电源的传导骚扰值,由图中可以看出在0、15~15MHz大范围超差。
这是因为开关电源所产生的干扰噪声所为。
开关电源所产生的干扰噪声分为差模噪声和共模噪声。
图1未加任何抑制措施所测得的传导骚扰1.1共模噪声共模噪声是由共模电流,IcM所产生,其特征是以相同幅度、相同相位往返于任一电源线(L、N)与地线之间的噪声电流所产生。
图2为典型的开关电源共模噪声发射路径的电原理图。
图2 共模噪声电原理图由于开关电源的频率较高,在开关变压器原、副边及开关管外壳及其散热器(如接地)之间存在分布电容。
当开关管由导通切换到关断状态时,开关变压器分布电容(漏感等)存储的能量会与开关管集电极与地之问的分布电容进行能量交换,产生衰减振荡,导致开关管集电极与发射极之间的电压迅速上升。
这个按开关频率工作的脉冲束电流经集电极与地之问的分布电容返回任一电源线,而产牛共模噪声。
1.2差模噪声差模噪声是由差模电流IDM昕产生,其特征是往返于相线和零线之间且相位相反的噪声电流所产生。
1.2.1差模输入传导噪声图3为典型的开关电源差模输入传导噪声的电原理图。
其一是当开关电源的开关管由关断切换到导通时,回路电容C 通过开关管放电形成浪涌电流,它在回路阻抗上产生的电压就是差模噪声。
图3差模输入传导噪声电原理图其二是工频差模脉动噪声,它是由整流滤波电容c 在整流电压上升与下降期问的充放电过程中而产生的脉动电流与放电电流,也含有大量谐波成分构成差模噪声。
【开关电源设计】AN-0 Coconut EMC整改案例
1. 测试结果产品Coconut1首次EMC测试时,辐射、静电、浪涌均失败。
1.1 辐射超标50MHz、100MHz、130MHz、200MHz,4个频点明显超标,其中130MHz左右最明显,超出19dB;后将电路板仅仅保留开关电源部分,150MHz附近超标严重,下图为垂直位置的辐射(因为整个实验过程中垂直位置整体结果较水平要差,因此全文仅针对垂直位置的辐射结果进行阐述)。
1.2 静电对RS485端口施加4kV接触静电时,系统指示灯会熄灭。
1.3 浪涌对RS485端口施加共模4kV,系统指示灯熄灭。
1内部代号2. 辐射整改2.1 问题定位1. 从频率上来看,辐射源不可能是射频模块以及后级LDO电路,纵览整个电路系统各个电路功能的工作频率,只可能是MCU的8MHz晶振以及前级开关电源2造成的;2. 在检测机构辐射测试超标后,第一时间将射频模块、MCU及其外围(包括晶振)全部停止供电,仍然超标,至此可以确认是开关电源导致的辐射问题;3. 回到实验室,重点寻找辐射的来源,利用示波器的探头可以快速扫描板上辐射严重的区域,如下图所示:Figure 2-1 简易探测环原理将鳄鱼夹夹至探头探针,便形成了一个探测环,将探测环缓慢地在PCB板上方1~2cm附近移动,如果某处存在高频干扰,则会在附近形成变化的磁力线分布,磁力线穿过探测环便形成了磁通,变化的磁通将会在环上形成感应电压,此时,将示波器设置为“余辉”模式,若某处辐射强烈,则会将波形抬高,利用这种方法找出波形最高时对应的探测位置。
当然,也可自行绕制一个多匝空心线圈以提高灵敏度 。
Figure 2-1出自《High-Speed Digital Design》Measurement Techniques章节的第87页,该章节本意是用于说明为什么测量电源纹波时不能使用鳄鱼夹,而在本案例中,反其道而行之,故意让探头收集更多的噪声以更快发现干扰源。
通过这种简单的办法,很快发现开关电源芯片上方的辐射最为强烈,与其紧挨的器件是一颗肖特基二极管,即续流二极管。
【开关电源设计】电磁兼容设计和测试的案例分析
2009-8-15
QIANZHENYU
20
为了说明变压器屏蔽层对抑制共模骚扰的作用,做以下试 验:
根据前图所示结构绕制变压器,并在交流整流滤波后增设 13mH差模滤波电感和6.8uF差模滤波电容,对开关电源 进行传导EMI测试,结果如下图所示。可见,传导EMI非 常严重,不能通过电磁干扰测试。
2009-8-15
处理意见:①将金属螺柱改成塑料螺柱,但存在一个强度 问题;②在塑料机壳的结构上作点变化,以便将金属螺柱 缩短。以上两个处理意见都能满足辐射测试要求 ,但从结 构的强度看,第一个意见稍为差些。
2009-8-15
QIANZHENYU
18
案例4:开关电源高频变压器的屏蔽问题 开关电源中产生电磁骚扰的根本原因在于存在着电流、电 压的高频急剧变化,其通过导线的传导以及电感、电容的 耦合形成传导的电磁骚扰。 以反激式变换器为例,其的主电路如图所示。输入整流后 的电流为尖脉冲电流,开关开通和关断时变换器中电压、 电流变化率很高,这些波形中含有丰富的高频谐波。另 外,在主开关管开关过程和整流二极管反向恢复过程中, 电路的寄生电感、电容会发生高频振荡,以上这些都是电 磁干扰的来源。
QIANZHENYU
21
进一步试验,在交流整流前增设35mH共模滤波电感,传 导EMI测试结果如下图所示,产品可以通过测试。比较测 试结果,可以得出结论:开关电源主要是由于在工作过程 中产生大量共模传导电磁骚扰才使得电源不能通过测试。
2009-8-15
QIANZHENYU
22
去掉共模滤波电感,并在变压器中增设如图所示的初级屏 蔽绕组,并将屏蔽绕组抽头与A点(电容Cin正极)相连。 测试结果见后图左。由于在共模传导EMI的模型中输入滤 波电容Cin是短路的,所以将屏蔽绕组抽头与电容Cin负极 (E点)相连,则屏蔽绕组对传导EMI的抑制效果接E点与 A点相连的情况应该是一样的,测试结果如后图右所示。
开关电源前端EMC概述
05
开关电源前端EMC案例分析
案例一:某企业开关电源前端EMC整改
总结词:成功案例
详细描述:某企业由于开关电源前端EMC问题导致产品在电磁环境下性能不稳定 ,经过EMC整改,包括优化电路设计、添加滤波器、加强屏蔽等措施,产品性能 得到显著提升,顺利通过了相关电磁兼容性测试。
案例二:某品牌手机充电器EMC设计
测试设备与环境
测试设备
包括电磁干扰测试接收机、信号ห้องสมุดไป่ตู้生 器、功率分析仪、阻抗稳定网络等。
测试环境
需要满足电磁兼容性测试的场地,包 括开阔场地、屏蔽室等,以确保测试 结果的准确性和可靠性。
测试方法与流程
测试方法
包括传导发射测试、辐射发射测试、抗扰度测试等,每种测试方法都有相应的测试标准 和规范。
测试流程
制。
以上内容仅供参考,如需获取更 准确的信息,建议查阅相关的国 际、国内标准以及企业内部的
EMC标准和规范。
03
开关电源前端EMC设计技术
滤波技术
滤波器类型
滤波器性能测试
包括无源滤波器和有源滤波器,用于 抑制开关电源产生的谐波电流,减小 对电网的干扰。
需要使用专业的测试设备和方法,对 滤波器的性能进行测试和评估,确保 其满足EMC标准要求。
组成
开关电源前端EMC主要由输入滤波器、共模电感和电容组成,用于抑制电磁干扰 ,提高设备的电磁兼容性。
发展趋势与挑战
发展趋势
随着技术的不断进步和应用需求的不断提高,开关电源前端 EMC技术也在不断发展。未来,开关电源前端EMC将朝着更 高效、更环保、更智能的方向发展。
挑战
尽管开关电源前端EMC技术取得了一定的进展,但仍面临诸 多挑战。如何提高电磁兼容性的同时降低能耗和成本,以及 如何应对复杂多变的电磁环境等,都是亟待解决的问题。
高频开关电源的EMC
高频开关电源的EMC开关电源相对以往传统的线性工频电源,体积小,重量轻,效率高,目前已得到普遍推广应用,但是,由于开关电源的工作频率高,高频电压或电流脉冲波含有丰富的谐波分量,所以电磁干扰(EMI )问题日益严重。
特别是随着电源技术的发展,开关频率越来越高,电源和所供电的负载系统越来越靠近,EMI 的影响就日益突出。
电磁兼容(EMC )的设计和优化必须贯穿于电源设计的每个环节,EMC 指标也成为衡量电源质量的一个重要方面。
下面会涉及开关电源EMC 的基本概念和原则,并提供抑制开关电源EMI 的常规需注意的设计方法。
首先,需要明确EMI (电磁干扰)和EMC (电磁兼容)这两个术语的含义是对立的。
EMI 一般定义为:通过电磁能量传递方式,一台电子设备对另一台正在运行的电子设备造成的干扰。
而EMC 则是没有EMI ,运行的电子设备之间不形成相互干扰。
从EMI 的定义来看,我们可以得出产生EMI 的三要素:电磁能量发生线路(干扰源);不同线路之间干扰的传递途径(耦合方式);接收干扰的电子线路(敏感源)。
上述三要素必须全部存在的情况下,EMI 才会产生。
也就是说,只要消除其中任意一个要素,就能避免EMI ,达到不同线路(或设备)之间的EMC 。
在抑制电磁干扰的措施中,尽管屏蔽或隔离等措施能有效地切断干扰的耦合途径或使敏感源避免受到干扰信号的影响,不失为一种有效的EMC 策略和手段。
但是,一般推荐的EMC 策略还是消除或抑制干扰源,相对消除干扰三要素中的其他两要素而言,消除干扰源最为直接,也最为经济,所以对干扰源的研究和抑制是EMC 的重要内容。
一. EMI 的物理概念在一般的线路介绍的教科书中,EMI 的相关论述相对较少,在线路实践过程中,遇到的EMI 问题给人的感觉是比较复杂,不易解释。
但是,实际情况是EMI 的产生和抑制的基本原理还是相对简单的。
在开关电源中,快速变化的电压或电流脉冲波,能产生一种所谓的场,脉冲波和场之间的量化关系可以由Maxwell 方程式来描述。
EMC整改对策实例
EMC整改对策实例EMC问题整改对策实例:1.完善设计阶段的EMC考虑:在产品设计阶段,需要充分考虑EMC因素,采取相应的措施来降低电磁辐射和提高抗干扰能力:(1)合理布局:合理布置线路和电磁元件,将不同频率、功率的电路和元件分开,避免相互干扰;(2)优化接地:合理设计接地方案,减少接地回路的阻抗,降低共模电流和电压;(3)屏蔽设计:采用合适的屏蔽措施,如屏蔽罩、屏蔽屏、屏蔽壳等,避免电磁波的辐射和入侵;(4)EMC滤波器:在输入和输出端口使用合适的滤波器,抑制高频干扰和共模电流;(5)散热设计:合理设计散热系统,降低温升,减少电磁辐射。
2.加强制造过程的EMC控制:在产品制造过程中,需要加强对EMC方面的控制,保证产品的一致性和稳定性:(1)严格执行规范:制定并严格执行EMC相关的制造规范和标准,确保产品符合要求;(2)质量检测:建立完善的质量检测流程,对产品进行EMC性能的全面测试和验证;(3)防静电措施:加强防静电措施,避免静电对电子设备的损害和干扰;(4)物料管理:严格管理物料采购和入库,确保物料的质量和电磁兼容性;(5)培训教育:对制造人员进行EMC相关知识的培训,提高整体素质和意识。
3.强化测试验证环节:在产品生产完成后,需要进行EMC性能的测试和验证,确保符合相应的标准和要求:(1)EMC测试设备:建立适当的EMC测试设备和实验室,进行电磁兼容性测试;(2)EMC测试方法:使用合适的测试方法和标准进行测试,如辐射测试、传导测试等;(3)数据分析:对测试数据进行统计和分析,及时发现问题和异常,采取相应的整改措施;(4)测试记录:建立完善的测试记录和档案,追溯产品的EMC性能和改进历程;(5)持续改进:根据测试结果和数据分析,不断优化设计和整改措施,提高产品的EMC性能。
4.加强与供应商的合作和管理:在供应链管理过程中,需要与供应商建立良好的合作关系(1)供应商评估:评估供应商的质量管理体系和EMC能力,选择合适的供应商;(2)技术交流:与供应商进行技术交流和合作,共同解决EMC问题和提高性能;(3)供应链管理:建立供应链管理体系,监控和管理供应商的质量和EMC能力;(4)供应商培训:对供应商进行EMC方面的培训和指导,提高其技术水平和认识;(5)合作改进:与供应商共同改进和优化产品设计和制造过程,提高整体EMC性能。
实训1 开关电源EMC设计
1.5 开关电源说明书的编写模板
2.开关电源方案的选择
2.1 确定开关电源芯片的厂商 现在用的最广泛的有PI,Fairchild,IR,Infineon,TI,ST等,其中PI的型 号最多,抗干扰性能也不错,但价格较高.其它的厂商型号都比较少, 但用在产品中的性能都差别不大,应尽量选择比较熟悉的芯片
3.9.4 根据厂家的磁芯的参数表可得出磁芯的A e, Le, A , Bw. 3.9.5 初级匝数Np的计算公式如下 1) N U max* 10
L
8 P
4 f * Bm * Ae
2) N Uin * ton *10 Ae * ( Bm Br )
8 P
两个公式计算出的值会有很大的差别,因此,任何公式的 计算都无法达到满意的需求,必须经过反复的调试,才 能达到满意的效果,且值也不是唯一的.
3.4 Dmax 由以下公式确定
3.5 电流波形参数Kip的确定 3.5.1 当Kip≤1时,Kip=Krp=Ir/Ip 如下图
3.5.2 当Kip≥1时,
如下图
3.5.3 连续模式下,宽电压输入时一般取Kip=0.4 ,230V 时,Kip=0.6. 3.5.4 断续模式下,取Kip=1.
4.4 EMI 预测试
4.4.1 交流电源线的传导骚扰测量(0.15~30MHZ) 传导骚扰测量分为峰值检波,准峰值检波,平均值检波.一般由准峰值和平均 值是否超标来判别.但由于准峰值扫描很慢,所以一般先扫描峰值,如果峰值 低于准峰值和平均值,则没必要再往下测试,产品一定合格.只有当峰值超标 时,可对超标部分扫描准峰值扫描,判别是否超标,这样可以加快测试时间. 一般预测试产品必须低于极限值2dB,才能保证产品合格,最好低于6dB. 4.4.2 辐射骚扰的场强测量(30~1000MHZ) 辐射测量要在半电波暗室中测量,被试产品放在转台上,由天线接受器对产 品的各个角度进行测量.一般分3m和10m距离的测量.同上被测试的产品低 于极限值越多越好. 4.4.3 骚扰功率的测量(30~300MHZ) 骚扰功率一般用吸收钳法测量设备的辐射发射,主要用于家电和电动工具 的辐射发射的测量.吸收钳在电源线上移动,以找到最大的辐射发射点,一般 在1/2波长处,骚扰功率最大. 4.4.4 谐波电流测量 一般要求完成40次谐波以下的测量.对于家用电器,只要电路板不是设计的 非常差,一般都能通过测量.在设计中不是考虑的重点.
赛盛技术EMC整改成功案例20060920
产品EMC整改成功案例赛盛技术专家具有多年在专业实验室从事EMC、防雷对策经验,熟悉对策过程中的对策增加的器件成本,确保在最短的工作时间内为你的产品提供快速、高效、低成本的测试对策整改方案,使产品在量产时采用最低成本方案,达成客户的利益最大化。
赛盛技术在军用产品设计整改上面有自己独特的优势,我们的技术专家曾经多次参加军用产品的EMC设计开发、测试整改、以及认证,为多家军工企业进行过多种产品的工程设计与方案整改,并且取得了在国家军队指定专业电磁兼容实验室,有军代表做现场目击的情况下都是一次通过国军标GJB 151A-97严格要求的好成绩,取得了国家专业军品测试实验室的报告,得到军工企业、军代表的一致认可和好评。
部分成功案例军用电子产品目前已经经过深圳市赛盛技术有限公司整改过的产品有陆军地面野战通讯指挥车载交换机、军用台战式计算机、野战移动式通讯指挥设备、加固军用计算机、军队作战指挥多业务设备、军队地面野战通讯车载路由器等;军用设备具有系统接口种类较多,信号端口密集,设备需要能够抵抗外界强电磁环境的干扰,具有较强的防电磁泄漏能力,通过我司设计整改,一次性通过北京,上海等指定军品实验室测试,满足国军标GJB 151A-97的标准要求。
核心高端路由设备此款产品为高端高速数据交换设备,信号接口速率很高,背板交换容量大,数字电源种类繁多,时钟电路复杂, 并且为复杂机架式产品。
设计需要满足国家信息产业部相关标准要求,欧洲 CE 认证、日本 VCCI 认证需求。
具体执行下列标准: GB/T9254,GB/T17618,EN55022 ,EN55024,ETSI EN300386,EN60950,GB4943 等。
设计难点和重点:由于系统单板速率很高,单板的原理图设计,PCB设计是重点,电源拓扑结构复杂,需要考虑合理的系统滤波方案,屏蔽与接地设计是结构设计的要点,另外敏感的光接口需要特别考虑防静电设计。
由于产品功耗大、接口种类繁多复杂, 对于安规设计接口电路的隔离、器件选型和散热设计也都是重中之重。
emc研究案例
emc研究案例EMC(电磁兼容性)研究案例:1. EMC设计优化案例:某家电公司开发了一款新型家用电器,但在进行EMC测试时发现其辐射干扰严重超标。
经过研究,发现是电路布局不合理导致的,通过优化电路布局和添加滤波器,成功降低了辐射干扰,使产品符合EMC标准。
2. EMC故障排查案例:某铁路信号系统出现频繁的通信故障,经过调查发现是因为信号线路与高压输电线路相近,导致电磁干扰引起的。
通过重新布线、增加屏蔽措施等方法,成功解决了通信故障问题。
3. EMC电容选择案例:某汽车电子系统在高温环境下出现电容失效的问题,经过研究发现是电容选择不当导致的。
通过更换适合高温环境的电容,解决了电容失效的问题,提高了产品的可靠性。
4. EMC电磁兼容设计指导案例:某航空电子设备在实际使用中出现了严重的电磁干扰问题,经过研究发现是设备的电磁屏蔽设计不足导致的。
通过改进屏蔽结构和增加屏蔽材料,成功降低了电磁干扰,保证了设备的正常运行。
5. EMC电源线抗干扰设计案例:某工业控制设备在电源线上遭受到严重的电磁干扰,导致设备无法正常工作。
经过研究发现是电源线抗干扰设计不足导致的。
通过增加滤波器和改进接地措施,成功降低了电磁干扰,保证了设备的正常运行。
6. EMC防护设计案例:某军事通讯设备在电磁环境中遭受到严重的辐射干扰,导致通讯信号质量下降。
经过研究发现是设备的外壳屏蔽不足导致的。
通过增加金属屏蔽罩和优化接地结构,成功提高了设备的抗干扰能力,保证了通讯信号的稳定性。
7. EMC辐射源定位案例:某医疗设备在使用过程中出现了无线电干扰的问题,经过研究发现是附近的无线电发射台产生的辐射干扰。
通过使用EMC测试仪器定位辐射源,并采取屏蔽措施,成功解决了干扰问题,保证了设备的正常工作。
8. EMC标准研究案例:某电子产品公司开发的一款新型消费电子产品需要符合EMC标准,但在进行测试时发现不符合要求。
经过研究发现是产品的辐射和抗干扰能力需要改进。
13 开关电源电磁兼容设计,试验和对策案例分析(共193页,要点
2010-12-3QIANZHENYU 113开关电源电磁兼容设计开关电源电磁兼容设计,, 试验和对策案例分析钱振宇2010-12-3QIANZHENYU 2本章讲述开关电源的电磁兼容性设计,试验和对策案例分析,一部分是作者和部分同事在日常工作中的体会,还有一部分是通过不同途径收集得到的资料,现将它们汇集在一起,以满足读者的需要。
2010-12-3QIANZHENYU 3案例1:电磁干扰问题的诊断和整改步骤当一个产品无法通过电磁骚扰发射测试时,不能先入为主地主观确定要在哪些地方采取措施。
因为最后发现问题的地方往往都是起先认为不太可能的地方。
由于电磁骚扰发射问题的错综复杂性,因此不论产品熟悉与不熟悉,都要逐一确认,甚至要多次确认。
下面是一套电磁干扰诊断参考步骤,能快速找出产品的电磁骚扰发射问题,有较强的实用性。
2010-12-3QIANZHENYU 4■ 步骤一将桌子转到被试设备最大发射的位置,初步诊断造成被试设备辐射大的原因。
并关掉被试设备电源加以确认。
说明:在测试设备的辐射骚扰发射时,被试设备必须旋转360360°°,测量用天线的高度要在1m 到4m 内变化,其目的是要记录辐射最大的情况。
同样,在发现无法通过测试时,首先要将天线位置移至接收噪声为最大的高度,然后将桌子也转到噪声为最大的角度。
由于被试设备目前面对天线的这一面辐射为最强,故可以初步推测造成辐射过强的原因,例如在这个位置上是不是设备的屏蔽不好,或者太靠近设备内部的辐射源,以及这个位置上有没有电线电缆经过等等。
辐射源,以及这个位置上有没有电线电缆经过等等。
必必要时还可以借助测量探头、频谱仪(或测量接收机,甚至是示波器来探测造成辐射过强的部位,从而探究造成辐射过强的原因辐射过强的原因。
2010-12-3QIANZHENYU 5另外,必须注意的是,要关掉被试设备的电源,看噪声是否存在,以确定噪声是不是的确是由被试设备所产生。
EMC 整改案例1 电容用在变压器初始地与次级地的跨接用法
EMC 整改案例1:Y 电容用在变压器初始地与次级地的跨接用法在开关电源 EMI 的整改过程中,相信很多工程师都对X 电容、Y 电容、共模电感的用法及相关属性都是非常了解的。
这里,我也就对Y 电容用在变压器初始地与次级地的用法。
测试过程中,我平时有仔细观察每一位客户在传导测试过程中对Y 电容的调节用法,其中有将Y 电容增大、将Y 电容减小、将Y 电容两只脚套磁珠、我也有一次的传导整改中将Y 电容串联一颗6uH 的穿心电感。
为什么说,对Y 电容的不同的调节都会、或者都有可能将其传导的问题解决掉?往往有很多的客户一味的将Y 电容加大、加大、再加大,直到安规测试不合格后,这时EMI 问题还是没有解决,这时,我让客户对其Y 电容减小、减小、再减小,直至EMI 问题得到解决,这时候有些工程师就一头雾水了!为什么会出现这种情况呢?我在这里简单诉述一下,在变压器的线圈绕组层与层之间的分布电容的存在,导致在工作时势必将储存一个电压,这里将产生一个骚扰源头。
如若不对此骚扰源进行处理,那么对于EMI 测试来讲将是非常严酷的。
那么这时候在变压器初始地与次级地之间跨接一颗Y 电容后,势必将对此变压器分布电容储存的骚扰电压源提供一个泄放的路径,这将减少其对AC 端子及向外发射的骚扰源。
这里添加了这颗Y 电容物极必反,另外一条向外发射的途径,及将势必导致EMI 测试结果的恶劣。
所以,这就造就了此颗Y 电容的大小及相关用法导致的不同的EMI 效果。
不管是哪种EMI 元件,包括Y 电容不一定是用的大就好,就会效果好。
我们一定要分析出器件特性,以及电路工作原理,骚扰源头的建模分析,骚扰路径的分析等,这样才能更快更好的解决EMC 问题,更快速的拿到认证证书。
ITL 拥有世界顶级的测试仪器,专业的屏蔽室以及符合国际标准相关的测试环境,并获得国家CNAS。
(完整word版)EMC整改对策实例
EMC整改对策实例标题:EMI快速诊断与对策2008—01—06 12:30:35EMI快速诊断与对策EMI FAST DIAGNOSIS AND COUNTERMEA SURE深圳电子产品质量检测中心邓志新李思雄摘要文章主要介绍EMI快速诊断与对策,指出EMI改进的关键是EMI问题诊断,解决电磁兼容问题的根本办法,是进行电磁兼容设计。
EMI设计核心是紧紧围绕降低骚扰源频率f和减小高频电流环面积两大措施。
文章倡导人性化工作态度,作者认为,只要不断的学习和总结,EMC是逐渐“看得见和摸得着”的,是有规可循的。
关键词认证EMI 规律诊断对策设计Abstract In this article, EMI fast diagnosis an d countermeasure is introduced。
EMI diagnosis is the key of EMI improvement, EMC design is the fundamentals of solving EMC problem。
The core of EMC design is to take two mea sures—to reduce EMI source frequency and to reduce the acreage of high frequency curren t loop 。
Author sparkplug humanistic attitude to EMC,and author think that EMC will come into view and can be found out,a rule shall be there to be useable. Keywords certification,EMI, rule, diagnosis, countermeasure, design 电磁辐射骚扰的远场测量是指在半电波暗室或者EMC 开阔场进行的测量,测量天线与被测物的距离一般为3米或3米以上,给出的结果是一张频谱图,即各个频率点的电磁辐射骚扰强度。
开关电源前端EMC概述
测量开关电源前端设备产生的谐波电流分量,以评估其对公共电网的 干扰和污染。
静电放电测试
模拟人体或其他物体与开关电源前端设备接触时产生的静电放电现象, 以评估其对设备的电磁干扰和损坏风险。
评估指标与注意事项
01
02
03
电磁辐射强度
评估开关电源前端设备对 周围环境的电磁干扰程度, 通常以dB(分贝)为单位表 示。
线路保护
使用适当的线径和线材,以减小 线路的电感和电阻。
屏蔽技术
屏蔽材料
选择导电性能良好的材料,如铜、铝等。
屏蔽设计
根据电磁干扰的频率和强度,设计合适的屏蔽结 构和方式。
接地与连接
确保屏蔽层正确接地,以提高屏蔽效果。
04 开关电源前端EMC的案例 分析
案例一:某品牌手机充电器EMC问题分析
问题描述
将设备的外壳或机架连接 到大地,以减少电击风险。
信号接地
为电路提供参考电平,确 保信号的稳定传输。
混合接地
根据实际情况,采用不同 的接地方式以满足电磁兼 容性要求。
线路布局与布线技术
线路布局
合理安排电源线、信号线和接地 线的位置,以减小电磁干扰。
布线技巧
遵循最短、最直接的原则,尽量 减少线路长度和弯曲度。
集成化设计
集成化设计是开关电源前端EMC的重要发展方向,通过将 多个功能模块集成在一个芯片或模块中,实现小型化、轻 量化和高效化的设计。
智能化控制
智能化控制技术使得开关电源前端EMC能够实现自适应调 节、故障诊断和预测等功能,提高了系统的稳定性和可靠 性。
市场趋势与竞争格局
市场需求持续增长
随着电子设备的普及和智能化的发展,开关电源前端EMC的市场需求持续增长, 尤其在通信、数据中心、电动汽车等领域具有广阔的应用前景。
(完整word)EMC整改秘籍(有实例)
EMC整改步骤之一前言电磁干扰的观念与防制﹐在国内已逐渐受到重视。
虽然目前国内并无严格管制电子产品的电磁干扰(EMI)﹐但由于欧美各国多已实施电磁干扰的要求﹐加上数字产品的普遍使用﹐对电磁干扰的要求已是刻不容缓的事情。
笔者由于工作的关系﹐经常遇到许多产品已完成成品设计﹐因无法通过EMI测试﹐而使设计工程师花费许多时间和精力投入EMI的修改﹐由于属于事后的补救﹐往往投入许多时间与金钱﹐甚而影响了产品上市的时机2.正确的诊断要解决产品上的EMI问题﹐若能在产品设计之初便加以考虑﹐则可以节省事后再投入许多时间与金钱。
由于目前EMI Design—in的观念并不是十分普遍﹐而且由于事先的规划并不能保证其成品可以完全符合电磁干扰的测试在﹐所以如何正确的诊断EMI问题﹐对于设计工程师及EMI工程师是非常重要的。
事实上﹐我们如果把EMI当做一种疾病﹐当然平时的预防保养是很重要的﹐而一旦有疾病则正确的诊断﹐才能得到快速的痊愈﹐没有正确的诊断﹐找不到病症的源头﹐往往事倍功半而拖延费时.故在EMI的问题上﹐常常看到一个EMI有问题的产品﹐由于未能找到造成EMI问题的关键﹐花了许多时间﹐下了许多对策﹐却始终无法解决﹐其中亦不乏专业的EMI工程师。
以往谈到EMI往往强调对策方法﹐甚而视许多对策秘决或绝招﹐然而没有正确的诊断﹐而在产品上加了一大堆EMI抑制组件﹐其结果往往只会使EMI情况更糟。
笔者起初接触产品EMI对策修改时﹐会听到资深EMI工程师说把所有EMI对策拿掉﹐就可以通过测试。
初听以为是句玩笑话﹐如今回想这是很宝贵的经验谈.而后亦听到许多EMI工程师谈到类似的经验。
本文中将举出实际的例子﹐让读者更加了解EMI的对策观念。
一般提到如何解决EMI问题﹐大多说是case by case,当然从对策上而言﹐每一个产品的特性及电路板布线(layout)情况不同﹐故无法用几套方法而解决所有EMI的问题﹐但是长久以来﹐我们一直想要把处理EMI 问题并做适当的对策﹐另外也提供专业的EMI工程师一种参考方法.在此我们把电磁干扰与对策的一些心得经验整理﹐希望能对读者有些帮助。
分享一个电源EMC整改的案例
分享一个电源EMC整改的案例前言(电源)(EMC)问题是令很多(工程师)都觉得头痛的,不管是测电源的辐射还是电源的传导。
所以今天我们来分享一个电源整改的案例来增加一点大家在整改遇到电源问题时的思路。
原理分析上图为(DC)DC电源的BUCK电路最基本原理图,我们知道EMI 问题的产生都是由于电压变化du/dt或者(电流)变化di/dt产生的,开关闭合时,①位置的电压为Vin,开关打开时,①位置的电压为0,所以,在遇到BUCK电路的EMC问题的时候,我们可以知道源头是电感前端,所以我们一般在电感前端做一些滤波措施或者其它措施来抑制噪声产生。
实际案例分享上图为某个车载DCDC电源在使用2欧(电阻)当负载时的一个电流法50mm和750mm的测试结果。
在50mm的测试结果中,我们可以看到的是一个大概是130KHz的一个开关频率问题;在750mm的测试结果中,我们可以看到的是一个69.8MHz和一个194MHz的两个电源包络问题。
上图为该车载DCDC电源的原理图,我们可以看到在(芯片)的前端已经有一个π型滤波,它除了有一个储能作用,还能起到纹波滤波有效,在芯片的输出端有一个(电容)C5也是起到一个滤波的作用,所以我们测试得出超标的点并没有很多。
针对(电源开关)频率问题:在(开关电源)芯片的输入引脚4Vin处对地并联一个2.2uF 电容。
计算公式:f=1/2π√ ̄LC L取值0.5nH。
针对100M左右的噪声,推测是因为电源线束过长引起的,所以在电源输入的正极和负极绕一个磁环,发现100M左右的噪声有明显的改善,把磁环换成我们(公司)的大电流共模(滤波器),根据封装和电流要求,所以选择了TLDCM7035-2-701(TF)的大电流共模滤波器。
根据公式:E=12.6*10^-7fIL/r【E:电场强度(V/m) f :电流的频率(MHz)L:电缆的长度(m)I :电流的强度(mA) r :(测试点)到电流环路的距离(m)】,我们通过减小噪声输出的(天线)长度来降低噪声。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
开关电源EMC问题实战案例
1电源AC端口CE/RE问题分析
CE测试数据
RE测试数据1. 198kHz这个点超标
198k为低频,低频一般是差模噪声。
常用手段为:
增加差模滤波插损,增加电感感量或者增加电容。
2. CE高频段超标
CE高频段通常为共模接地不良及近场耦合,无法通过电感滤波改善。
常用手段为:
高频共模电容滤波;
调整共模电容接地点,减小共模环路及接地阻抗;
减小近场耦合;
3. RE低频段超标
RE低频段由电源开关噪声引起的辐射问题。
常用手段为:
端口高频滤波电容;
加强电源参考地与机壳搭接;
开关上升沿调整(影响效率);
分析完了问题,接下来从下面几个方面介绍AC端口滤波电路优化方案。
2优化方案
1. 滤波电路优化
电源AC端口滤波电路
优化后的电源AC端口滤波电路
2. PCB电路优化
电源AC端口滤波电路
PCB优化点1:优化共模噪声路径布线,共模电容布线短而粗,减小共模环路阻抗PCB优化点2:靠近电源内部的共模电容单点接地,减小共模环路面积,解决两级共模电容共地问题。
3. 近场耦合优化
AC电源连接器内部cable线较长,且靠近两级共模电感正上方,极易与共模电感产生近场耦合。
经过对比验证发现,电源CE高频段噪声,为该cable线导致,调整cable 线的位置,该频点降低5dB以上。
调整前:
调整后:
4. 共模电感优化
在不增加占板面积,pin to pin的前提下,优化共模电感。
并通过对共模电感单体测试,识别器件单体差异。
从共模电感的感量变化曲线可知,15~20匝共模电感的共模分量谐振点大于200kHz,而30匝共模电感共模分量谐振点在150k~200kHz之间。
4款电感的差模分量在200kHz之间较为稳定,未出现谐振点。
3结语
一般来讲,电路形式、器件参数等,仅决定了滤波器的低频特性,而器件的种类、电路组装的方式,以及滤波器的结构等,决定了滤波器的高频特性。
要提高开关频率,提高开关电源产品的质量,电磁兼容性是不容忽视的问题。
产生开关电源电磁干扰的因素还很多,抑制电磁干扰还有大量的工作。
只有在设计时充分考虑电磁兼容问题,才能使开关电源得到更普遍的应用。