Peirce-逻辑代数中的几个符号及其它
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Peirce*逻辑代数中的几个符号及其它
1
现代逻辑常被人们追溯到她的奠基人Frege (Lebniz是先驱者的地位);接着谈现代逻辑,人们会自然地找到其身后的Peano、Russell、Whitehead、Wittgenstein、Carnap(维也纳学派时期)、Quine等人,如此就认为是勾勒出了现代逻辑的脉络。这一看法多年来几乎是毫无异议的。但随着逻辑科学尤其是现代逻辑的不断发展,有潜心思考的研究者(Fisch、Zeman、Hinttika等)发现
了那多年来一直被忽视但却蕴藏在现代逻辑诞生之初的分歧,认为分歧之中与权威相对的另一面应该值得重新或深入的研究,这另一面就是由Boole开始经由Peirce、Schröder直至后期Carnap、Tarski、Skolem等人维持的一条路线,它可看作是对逻辑基础研究的另一途径或方法(approach)。著名Peirce研究学者M.H.Fisch一语道出这一分歧的实际情形:“但Boole-Peirce-Schröder (在下文中我们简写为BPS)路线不是被Frege-Peano-Russell-Whitehead (在下
文我们简写为FPR)路线取代了吗?不;它只是被掩盖了。”
在BPS传统中,Peirce(18---1914)是位极其重要的人物,这倒不仅是因为他天才般的思维和对哲学和逻辑史上后来工作者的实际影响(美国本土哲学家James、Dewey、Mead、Lewis等无不受其影响,甚至欧洲大陆的等人的思想也多直接源于Peirce),也不仅是因为他涉足领域的广泛(除哲学和逻辑学之外,还有数学、天文学、物理学、语言学、化学、大地测量、心理学、现象学等等);而主要是因为他在现代逻辑理论史上的诸多实质性的贡献。我们已经很难统计他敏锐的洞察力到底涉及到多少逻辑贡献,但根据迄今为止Peirce学者的研究成果,以下的领域是当然的和主要的:形式逻辑(主要是对传统逻辑的改进)、逻辑代数、关系逻辑、命题逻辑、谓词逻辑、三值逻辑、模态逻辑、语言逻辑、逻辑哲学、归纳逻辑以及逻辑史研究。
Peirce早期的逻辑研究(从1865年到约1885年)主要集中于逻
辑代数。在当时,布尔逻辑刚创立不久,布尔的追随者很多,著名的有Venn、Schröder、De Morgon等人,他们之间的研究有相互启发与借鉴之处(有关贡献的纷争,可参看Kneale的《逻辑学的发展》),但主要还是相互独立的。Peirce 就是其中一位极具独立性又最有创新的突出人物。身为著名数学家Benjamin Peirce(美国当时科学界的一权威)的儿子,Peirce本人也是一数学家,他对
于代数在逻辑中的应用,得心应手,他甚至曾把“三段论”作为“联结词的代数”
来研究。事实上,当时的符号逻辑就是逻辑代数(algebra of logic)。
2
在Peirce看来,现代逻辑的研究实质上就是代数到逻辑的一场“类推(analogy)”,这种“类推”的前提,首先就是对代数中的符号的选择。不同的逻辑代数研究者都有着自己的选择,它们或者是从代数中原封不动地引入,或者是对代数中的相关符号做出逻辑意义上的改进。我们这里从Peirce逻辑代数研究中所运用的诸多符号中选取以下主要的几个,其中有的是Peirce本人独创性地提出,有的是Peirce同其他人同时提出和使用,有的是BPS传统所特有的:
一、包含于(inclusion in 或 is或as small as)符号“—<”(它是“≤”的一种方便的写法)的引入。这是最重要的一点,它被Peirce本人多次提到,也被后来的研究者所普遍注意。但Peirce本人称,这一符号是由他和同时引入的。Peirce这样定义“—<”:
1、A —< A,无论A是什么;
2 、若A —< B,且B —< C,则A —< C。
他说,这样的定义虽然未区分开包含关系和包含于关系,但为形式逻辑目的,却是足够的。Peirce看到包含于符号具有逻辑上的优点:首先,原来布尔
的符号只能表达,物的某种描述不存在,而不能说某物不存在;而使用包含于和非包含于(—<(超文本阅读注释:要在这一符号上方加一横线)),“Griffin(一种怪兽) —< 喷火”意思就是,“不存在不喷火的Griffin”;同样“动物—<(超文本阅读注释:要在这一符号上方加一横线)水生的”意思为,“存在不是水生的动物”。Peirce这种特别的解释很容易使我们想起前些年一直讨论的传
统三段论中的主词存在问题;同时符号“—<”的解释也使我们联想到现在逻辑研究中广泛运用的实质蕴涵符号”→”(其实,关于实质蕴涵,Peirce有更清
楚的表达:从“x—< y”推到“是y(超文本阅读注释:要在这一字母上方加一横线)的x —<(不可能)”)。其次,在布尔的演算中经常用到的相等号或等
值号“ = ”是一种更加复杂,即有着更大内涵(prehension)或深度(depth)
的关系,而相比之下,“—<”则更为简单方便,我们可以说A=B蕴涵A—
却不能反过来说,事实上A —
人 = 黑人”实际上包含两层意思:“每一非洲人都是黑人”和“每一黑人都是非洲人”。此外,Peirce还看到了使用系词“—<”具有哲学的意义,它与我们自然的逻辑上和形而上学中的观念有着密切的,而且是解决逻辑问题的最容易的方法。
关于Peirce的“—<”符号,还有一点值得一提。在谈到这一系词
的三个属性时,Peirce做出了卓有见识的引申。他说,对于包含(containing)关系,我们可有着不同于通常“—<”的理解,从而会得到与之平行的几种逻辑学说。若令 a—<´ b意为a同b一样小,除了在a同某物一样小时而b不能同这一物一样小之外,a 、b之间没有什么不同;则我们可得到数学或量的逻辑学。若令a—<´´ b意为所有b是a,除了有a能谓述的某物而b不能谓述之外,a 、b之间没有什么不同;这样我们所得到的,在另一方面就仅仅是逻辑学。若令a—<´´´ b表示b是a的后承,除了两者导出的后承不同之外,a 、b没有什么不同;那么我们得到的将是条件句的逻辑学。这样的一种解释,一方面显示了“—<”或蕴涵在逻辑科学中的基础性的重要作用,另一方面也从一极为特别的角度论证了逻辑的多类型。此外,其与后来模型论的思想也有着本质上的吻合。
二、包含(inclusive)意义下的逻辑加(符号为“+(超文本阅读注释:要在这一符号右下方加一逗号)”,有时直接用“+”)的使用。Peirce这样定义逻辑加:
1、A—< A +(超文本阅读注释:要在这一符号右下方加一逗号) B;