小学数学最大公因数与最小公倍数专题练习
五年级下学期最大公因数与最小公倍数应用题及练习题
![五年级下学期最大公因数与最小公倍数应用题及练习题](https://img.taocdn.com/s3/m/79371779f4335a8102d276a20029bd64783e6266.png)
1有一个自然数,被6除余1,被5除余1,被4除余1,这个自然数最小是几2把长120厘米,宽80厘米的铁板裁成面积相等,最大的正方形而且没有剩余,可以裁成多少块3)把长132厘米,宽60厘米,厚36厘米的木料锯成尽可能大的,同样大小的正方体木块,锯后不能有剩余,能锯成多少块4)用长120厘米,宽80厘米的长方形砖块去铺一块正方形地,最少需要多少块砖5)一盒钢笔可以平均分给2、3、4、5、6个同学,这盒钢笔最少有多少枝7)每筐梨,按每份2个梨分多1个,每份3个梨分多2个,每份5个梨分4个,则筐里至少有多少个梨8现在有香蕉42千克,苹果112千克,桔子70千克,平均分给幼儿园的几个班,每班分到的这三种水果的数量分别相等,那么最多分给了多少个班每个班至少分到了三种水果各多少千克9)有三根铁丝,一根长54米,一根长72米,一根长36米,要把它们截成同样长的小段,不许剩余,每段最长是多少米10有一级茶叶96克,二级茶叶156克,三级茶叶240克,价值相等.现将这三种茶叶分别等分装袋均为整数克,每袋价值相等,要使每袋价值最低应如何装袋11一次考试,参加的学生中有17得优,13得良,12得中,其余的得差,已知参加考试的学生不满50人,那么得差的学生有多少人12一次会餐供有三种饮料.餐后统计,三种饮料共用了65瓶;平均每2个人饮用一瓶A饮料,每3人饮用一瓶B饮料,每4人饮用一瓶C饮料.问参加会餐的人数是多少人13把20个梨和25个苹果平均分给小朋友,分完后梨剩下2个,而苹果还缺2个,一共最多有多少个小朋友14因夜间施工需要,要把施工区的一条长120米的路边路灯有间隔6米改成间隔4米,除两端不需移动,中间还有几盏不需移动15两个数的积是6912,最大公因数是24,求它们的最小公倍数16甲、乙、丙三个学生定期向某老师求教,甲每4天去一次,乙每6天去一次,丙每9天去一次,如果这一次他们三人是3月23日都在这个老师家见面,那么下一次三人都在这个老师家见面的时间是几月几日17求被5除余2,被6除余3,被7除4的大于1000、小于1500的所有自然数.最大公因数与最小公倍数练习题一、填空:最大公约数与最小公倍数1、如果自然数A除以自然数B商是17,那么A与B的最大公因数是,最小公倍数是;2、最小质数与最小合数的最大公因数是,最小公倍数是;3、能被5、7、16整除的最小自然数是;4、17、8最大公因数,7,8最小公倍数225,15最大公因数,25、15最小公倍数3140,35最大公因数,140,35最小公倍数424,36最大公因数,24、36最小公倍数53,4,5最大公因数,3,4,5最小公倍数64,8,16最大公因数,4,8,16最小公倍数5、5和12的最小公倍数减去就等于它们的最大公因数;91和13的最小公倍数是它们最大公因数的倍;6、已知两个互质数的最小公倍数是153,这两个互质数是和;7、甲数=2×3×5×7,乙数=2×3×11,甲乙两数的最大公因数是,最小公倍数是;8、3个连续自然数的最小公倍数是60,这三个数是、和;9、被2、3、5除,结果都余1的最小整数是,最小三位整数是;10、一筐苹果4个4个拿,6个6个拿,或者8个8个拿都正好拿完,这筐苹果最少有个;11、三个连续偶数的和是42,这三个数的最大公因数是;12、三个13、自然数m和n,n=m+1,m和n的最大公因数是,最小公倍数是; 14、把自然数a与b分解质因数,得到a=2×5×7×m,b=3×5×m,如果a与b的最小公倍数是2730,那么m=;15、273,231,117最大公因数,273,231,117最小公倍数16、三个数的和是312,这三个数分别能被7、8、9整除,而且商相同;这三个数分别是、和;17、已知A,40=8,A,40=80,那么A=;18、找一个与众不同的数三个方法并说明理由:1、2、3、5、7、9、151:选,因为2:选,因为3:选,因为19、按要求写互质数两个都是质数和;两个都是合数和;一个质数和一个奇数和;一个偶数5和一个合数和;一个质数和一个合数和;一个偶数和一个合数和;二、解决下列的问题:1、有一行数:1,1,2,3,5,8,13,21,34,55……,从第三个数开始,每个数都是前两个数的和,在前100个数中,偶数有多少个不同质数的最小公倍数是105,这三个质数是、和;2、一个长方形的长和宽都是自然数,面积是36平方米,这样的形状不同的长方形共有多少种3、一种长方形的地砖,长24厘米,宽16厘米,用这种砖铺一个正方形,至少需多少块砖4、有一个长80厘米,宽60厘米,高115厘米的长方体储冰容器,往里面装入大小相同的立方体冰块,这个容器最少能装多少数量冰块5、已知某小学六年级学生超过100人,而不足140人;将他们按每组12人分组,多3人;按每组8人分,也多3人;这个学校六年级学生多少6、有四个小朋友,他们的年龄一个比一个大一岁,四个人的年龄的乘积是360;他们中年龄最大是多少岁7、汽车站内每隔3分钟发一辆公交车,4分钟发一辆中巴车,1小时共发了几辆汽车其中有几辆中巴车8、一块长方形铁皮,长96厘米,宽80厘米,要把它剪成同样大小的正方形且没有剩余,这种正方形的边长是多少被剪成几块9、王老师把25本作文和39本数学分别平均分给第一组的同学,结果作文本多1本,数学本多3本,第一组最多有几位同学10、一张长方形纸长16厘米,宽12厘米,把它裁成大小一样的正方形,而没有剩余,最少可以裁成多少个正方形每个正方形的边长是多少11、某班同学,排成7排多3人,排成8排少4人,这个班至少多少人12、五1班同学做操,排成8排少1人,排成10排也少1人,这个班至少多少人。
五年级下册最大公因数和最小公倍数题库
![五年级下册最大公因数和最小公倍数题库](https://img.taocdn.com/s3/m/67902523f4335a8102d276a20029bd64793e6255.png)
最大公因数和最小公倍数是小学数学中的重要内容,对于学生来说,掌握这两个概念不仅可以帮助他们更好地理解数学知识,还能在解决数学问题时起到关键作用。
下面将为大家提供一些五年级下册最大公因数和最小公倍数题目,希望能对大家的学习有所帮助。
1. 求下列各组数的最大公因数和最小公倍数:(1)24和36;(2)18和30;(3)32和48;(4)40和60;(5)56和72。
解析:当我们求两个数的最大公因数和最小公倍数时,可以先将这两个数分解质因数,然后根据分解质因数的结果来求解。
对于上面的题目,我们可以先将24和36分解质因数,得到24=2*2*2*3,36=2*2*3*3,然后比较两个数的质因数,取每个质因数的最小次数,即可求得它们的最大公因数和最小公倍数。
2. 小华和小明站在操场上,小华每隔7步跳一下,小明每隔8步跳一下。
问:他们同时跳到起点的第一个位置是在哪一步?解析:这道题目可以通过求小华和小明的最小公倍数来解决。
小华每隔7步跳一下,小明每隔8步跳一下,他们同时跳到起点的第一个位置就是他们两个步数的最小公倍数。
我们只需要求出7和8的最小公倍数即可得出答案。
3. 甲乙两家各自搬家,甲家每隔6天打扫一次卫生,乙家每隔9天打扫一次卫生。
问:多少天后两家同时打扫卫生?解析:对于这道题目,我们可以通过求两个数的最小公倍数来解决。
甲家每隔6天打扫一次卫生,乙家每隔9天打扫一次卫生,他们同时打扫卫生的时间就是他们两个周期的最小公倍数。
我们只需要求出6和9的最小公倍数即可得出答案。
4. 求下列各组数的最大公因数:(1)21和28;(2)35和49;(3)45和81;(4)63和84;(5)75和105。
解析:这些题目要求求各组数的最大公因数,同样可以通过分解质因数的方法来求解。
将每组数分解质因数,并比较其质因数,取每个质因数的最小次数,即可得出它们的最大公因数。
5. 某学校有540名学生,安排运动会,要求各班同学分别用3人一组、4人一组、5人一组排成若干组,每组人数要一样。
五年级下学期最大公因数和最小公倍数应用题及练习题
![五年级下学期最大公因数和最小公倍数应用题及练习题](https://img.taocdn.com/s3/m/3c500a042f3f5727a5e9856a561252d380eb20ff.png)
五年级下学期最大公因数和最小公倍数应用题及练习题1. 应用题题目一:杰克有18个苹果,要把苹果分成相等的一些堆,每堆有最多10个苹果。
请问杰克最多可以分成几堆?每堆有几个苹果?解析:首先,我们可以知道每堆之间的苹果数要相等。
而且每堆的苹果数应该是苹果数的公因数。
根据题意,每堆最多有10个苹果,所以我们可以列举出18的所有公因数:1、2、3、6、9和18。
根据题目描述的每堆最多有10个苹果的要求,我们可以发现最多可以分成的堆数应该是公因数中小于等于10的数的个数。
因此答案为3堆,每堆6个苹果。
题目二:小明和小红一起做一道数学题。
小明说:“这个数既是15的倍数,又是20的倍数。
”小红听后说:“啊!那这个数一定是300的倍数。
”小明说:“对!”请问小红为什么这样断定?解析:假设这个数为x,根据题目描述,我们可以得到两个条件:(1)x是15的倍数,即$15 \\times n = x$;(2)x 是20的倍数,即$20 \\times m = x$。
我们可以将每个整数分解成质数的乘积形式,即$15 = 3^1 \\times 5^1$,$20 = 2^2 \\times 5^1$。
因为x既是15的倍数,又是20的倍数,所以它的质因数必须包含15和20的所有质因数,即$3^1 \\times 5^1\\times 2^2$。
考虑到15和20的最小公倍数为60,所以x必为60的倍数。
即$x = 60 \\times k$,其中k为任意整数。
而300正是60的倍数,所以小红断定这个数一定是300的倍数。
2. 练习题请计算以下题目中的最大公因数和最小公倍数:题目一:10和15的最大公因数和最小公倍数分别是多少?解析:首先我们可以列举出10和15的所有公因数:1、5。
由于最大公因数是两个数的公因数中最大的一个,所以10和15的最大公因数是5。
最小公倍数可以通过两个数相乘再除以最大公因数得到,即10乘以15再除以最大公因数:$10 \\times 15 ÷ 5 = 30$。
找最大公因数和最小公倍数练习题 (100)
![找最大公因数和最小公倍数练习题 (100)](https://img.taocdn.com/s3/m/dbebf4dd2cc58bd63186bd9e.png)
最小公倍数: 最小公倍数: 最小公倍数:8和3 14和7 32和21最大公因数: 最大公因数: 最大公因数: 最小公倍数: 最小公倍数: 最小公倍数:6和3 18和5 6和27最大公因数: 最大公因数: 最大公因数: 最小公倍数: 最小公倍数: 最小公倍数:6和3 4和5 8和37最大公因数: 最大公因数: 最大公因数: 最小公倍数: 最小公倍数: 最小公倍数:2和5 20和7 32和35最大公因数: 最大公因数: 最大公因数:最小公倍数: 最小公倍数: 最小公倍数:4和9 20和7 24和27最大公因数: 最大公因数: 最大公因数: 最小公倍数: 最小公倍数: 最小公倍数:4和3 14和7 20和21最大公因数: 最大公因数: 最大公因数: 最小公倍数: 最小公倍数: 最小公倍数:8和9 12和15 28和35最大公因数: 最大公因数: 最大公因数: 最小公倍数: 最小公倍数: 最小公倍数:8和3 4和5 6和39最大公因数: 最大公因数: 最大公因数:最小公倍数: 最小公倍数: 最小公倍数:4和7 2和9 12和17最大公因数: 最大公因数: 最大公因数: 最小公倍数: 最小公倍数: 最小公倍数:4和3 16和3 28和9最大公因数: 最大公因数: 最大公因数: 最小公倍数: 最小公倍数: 最小公倍数:8和7 8和13 20和13最大公因数: 最大公因数: 最大公因数: 最小公倍数: 最小公倍数: 最小公倍数: 4和7 8和9 14和3最大公因数: 最大公因数: 最大公因数:最小公倍数: 最小公倍数: 最小公倍数:8和3 8和13 40和39最大公因数: 最大公因数: 最大公因数: 最小公倍数: 最小公倍数: 最小公倍数:4和9 6和9 18和5最大公因数: 最大公因数: 最大公因数: 最小公倍数: 最小公倍数: 最小公倍数:6和5 18和17 16和19最大公因数: 最大公因数: 最大公因数: 最小公倍数: 最小公倍数: 最小公倍数:4和5 20和3 12和21最大公因数: 最大公因数: 最大公因数:最小公倍数: 最小公倍数: 最小公倍数:8和3 14和15 4和19最大公因数: 最大公因数: 最大公因数: 最小公倍数: 最小公倍数: 最小公倍数:2和9 4和5 20和19最大公因数: 最大公因数: 最大公因数: 最小公倍数: 最小公倍数: 最小公倍数:2和3 6和15 14和39最大公因数: 最大公因数: 最大公因数: 最小公倍数: 最小公倍数: 最小公倍数:2和7 8和3 10和27最大公因数: 最大公因数: 最大公因数:最小公倍数: 最小公倍数: 最小公倍数:2和5 20和21 4和27最大公因数: 最大公因数: 最大公因数: 最小公倍数: 最小公倍数: 最小公倍数:8和5 2和9 24和19最大公因数: 最大公因数: 最大公因数: 最小公倍数: 最小公倍数: 最小公倍数:8和3 2和11 16和17最大公因数: 最大公因数: 最大公因数: 最小公倍数: 最小公倍数: 最小公倍数:4和5 14和15 34和39最大公因数: 最大公因数: 最大公因数:最小公倍数: 最小公倍数: 最小公倍数:6和9 4和11 20和27最大公因数: 最大公因数: 最大公因数: 最小公倍数: 最小公倍数: 最小公倍数:6和3 10和19 28和19最大公因数: 最大公因数: 最大公因数: 最小公倍数: 最小公倍数: 最小公倍数:4和3 18和21 2和21最大公因数: 最大公因数: 最大公因数:最小公倍数: 最小公倍数: 最小公倍数:6和9 6和9 4和23最大公因数: 最大公因数: 最大公因数: 最小公倍数: 最小公倍数: 最小公倍数:6和5 6和21 8和9最大公因数: 最大公因数: 最大公因数: 最小公倍数: 最小公倍数: 最小公倍数:4和3 8和21 8和37最大公因数: 最大公因数: 最大公因数: 最小公倍数: 最小公倍数: 最小公倍数:2和3 14和17 18和19最大公因数: 最大公因数: 最大公因数:最小公倍数: 最小公倍数: 最小公倍数:2和9 18和15 4和37最大公因数: 最大公因数: 最大公因数: 最小公倍数: 最小公倍数: 最小公倍数:2和7 2和5 30和37最大公因数: 最大公因数: 最大公因数: 最小公倍数: 最小公倍数: 最小公倍数:8和5 16和19 36和19最大公因数: 最大公因数: 最大公因数: 最小公倍数: 最小公倍数: 最小公倍数:4和5 12和21 16和23最大公因数: 最大公因数: 最大公因数:最小公倍数: 最小公倍数: 最小公倍数:4和9 20和13 34和3最大公因数: 最大公因数: 最大公因数: 最小公倍数: 最小公倍数: 最小公倍数:6和3 12和19 24和41最大公因数: 最大公因数: 最大公因数: 最小公倍数: 最小公倍数: 最小公倍数:2和7 16和19 12和19最大公因数: 最大公因数: 最大公因数: 最小公倍数: 最小公倍数: 最小公倍数: 2和9 12和21 16和13最大公因数: 最大公因数: 最大公因数:最小公倍数: 最小公倍数: 最小公倍数:4和3 20和7 30和35最大公因数: 最大公因数: 最大公因数: 最小公倍数: 最小公倍数: 最小公倍数:2和9 20和21 14和41最大公因数: 最大公因数: 最大公因数: 最小公倍数: 最小公倍数: 最小公倍数:6和7 8和21 16和19最大公因数: 最大公因数: 最大公因数: 最小公倍数: 最小公倍数: 最小公倍数:2和9 2和9 16和9最大公因数: 最大公因数: 最大公因数:最小公倍数: 最小公倍数: 最小公倍数:8和3 10和9 10和3最大公因数: 最大公因数: 最大公因数: 最小公倍数: 最小公倍数: 最小公倍数:4和3 16和13 10和9最大公因数: 最大公因数: 最大公因数: 最小公倍数: 最小公倍数: 最小公倍数:8和9 14和11 12和19最大公因数: 最大公因数: 最大公因数: 最小公倍数: 最小公倍数: 最小公倍数:8和3 6和11 28和13最大公因数: 最大公因数: 最大公因数:最小公倍数: 最小公倍数: 最小公倍数:8和5 4和13 40和35最大公因数: 最大公因数: 最大公因数: 最小公倍数: 最小公倍数: 最小公倍数:4和3 18和5 36和17最大公因数: 最大公因数: 最大公因数: 最小公倍数: 最小公倍数: 最小公倍数:4和5 14和7 12和27最大公因数: 最大公因数: 最大公因数: 最小公倍数: 最小公倍数: 最小公倍数:4和7 14和7 4和29最大公因数: 最大公因数: 最大公因数:最小公倍数: 最小公倍数: 最小公倍数:8和3 10和3 4和39最大公因数: 最大公因数: 最大公因数: 最小公倍数: 最小公倍数: 最小公倍数:2和9 10和7 14和21最大公因数: 最大公因数: 最大公因数: 最小公倍数: 最小公倍数: 最小公倍数:4和5 14和7 10和35最大公因数: 最大公因数: 最大公因数:最小公倍数: 最小公倍数: 最小公倍数:8和5 20和17 32和13最大公因数: 最大公因数: 最大公因数: 最小公倍数: 最小公倍数: 最小公倍数:4和3 8和19 22和13最大公因数: 最大公因数: 最大公因数: 最小公倍数: 最小公倍数: 最小公倍数:4和3 6和9 18和13最大公因数: 最大公因数: 最大公因数: 最小公倍数: 最小公倍数: 最小公倍数:4和5 20和7 4和11最大公因数: 最大公因数: 最大公因数:最小公倍数: 最小公倍数: 最小公倍数:8和5 16和5 38和15最大公因数: 最大公因数: 最大公因数: 最小公倍数: 最小公倍数: 最小公倍数:8和7 4和17 38和21最大公因数: 最大公因数: 最大公因数: 最小公倍数: 最小公倍数: 最小公倍数:6和5 20和7 16和19最大公因数: 最大公因数: 最大公因数: 最小公倍数: 最小公倍数: 最小公倍数:8和3 2和19 32和13最大公因数: 最大公因数: 最大公因数:最小公倍数: 最小公倍数: 最小公倍数:2和3 6和13 4和25最大公因数: 最大公因数: 最大公因数: 最小公倍数: 最小公倍数: 最小公倍数:8和3 2和7 24和27最大公因数: 最大公因数: 最大公因数: 最小公倍数: 最小公倍数: 最小公倍数:4和7 6和21 22和19最大公因数: 最大公因数: 最大公因数: 最小公倍数: 最小公倍数: 最小公倍数: 4和3 12和5 40和29最大公因数: 最大公因数: 最大公因数:最小公倍数: 最小公倍数: 最小公倍数:4和3 4和11 24和21最大公因数: 最大公因数: 最大公因数: 最小公倍数: 最小公倍数: 最小公倍数:8和3 12和17 40和37最大公因数: 最大公因数: 最大公因数: 最小公倍数: 最小公倍数: 最小公倍数:4和9 20和3 18和35最大公因数: 最大公因数: 最大公因数: 最小公倍数: 最小公倍数: 最小公倍数:4和7 18和17 32和17最大公因数: 最大公因数: 最大公因数:最小公倍数: 最小公倍数: 最小公倍数:2和7 12和7 36和41最大公因数: 最大公因数: 最大公因数: 最小公倍数: 最小公倍数: 最小公倍数:2和9 6和21 36和35最大公因数: 最大公因数: 最大公因数: 最小公倍数: 最小公倍数: 最小公倍数:2和9 6和5 6和13最大公因数: 最大公因数: 最大公因数: 最小公倍数: 最小公倍数: 最小公倍数:。
五年级数学最大公因数,最小公倍数练习题(含提高)
![五年级数学最大公因数,最小公倍数练习题(含提高)](https://img.taocdn.com/s3/m/756a73a87375a417866f8fe7.png)
五年级数学最大公因数,最小公倍数练习题(含提高)定义:最大公约数:最大公约数,也称最大公因数、最大公因子,指两个或多个整数共有约数中最大的一个。
a,b的最大公约数记为(a,b),同样的,a,b,c的最大公约数记为(a,b,c),多个整数的最大公约数也有同样的记号。
求最大公约数有多种方法,常见的有质因数分解法、短除法、辗转相除法、更相减损法。
与最大公约数相对应的概念是最小公倍数,a,b的最小公倍数记为[a,b]。
质因数分解法:把每个数分别分解质因数,再把各数中的全部公有质因数提取出来连乘,所得的积就是这几个数的最大公约数。
例如:求24和60的最大公约数,先分解质因数,得24=2×2×2×3,60=2×2×3×5,24与60的全部公有的质因数是2、2、3,它们的积是2×2×3=12,所以,(24、60)=12。
把几个数先分别分解质因数,再把各数中的全部公有的质因数和独有的质因数提取出来连乘,所得的积就是这几个数的最小公倍数。
例如:求6和15的最小公倍数。
先分解质因数,得6=2×3,15=3×5,6和15的全部公有的质因数是3,6独有质因数是2,15独有的质因数是5,2×3×5=30,30里面包含6的全部质因数2和3,还包含了15的全部质因数3和5,且30是6和15的公倍数中最小的一个,所以[6,15]=30。
短除法:短除法求最大公约数,先用这几个数的公约数连续去除,一直除到所有的商互质为止,然后把所有的除数连乘起来,所得的积就是这几个数的最大公约数。
短除法求最小公倍数,先用这几个数的公约数去除每个数,再用部分数的公约数去除,并把不能整除的数移下来,一直除到所有的商中每两个数都是互质的为止,然后把所有的除数和商连乘起来,所得的积就是这几个数的最小公倍数,例如,求12、15、18的最小公倍数。
五年级数学最大公因数,最小公倍数练习题(含提高)
![五年级数学最大公因数,最小公倍数练习题(含提高)](https://img.taocdn.com/s3/m/819398ebcaaedd3383c4d39b.png)
五年级数学最大公因数,最小公倍数练习题(含提高)定义:最大公约数:最大公约数.也称最大公因数、最大公因子.指两个或多个整数共有约数中最大的一个。
a.b的最大公约数记为(a.b).同样的.a.b.c的最大公约数记为(a.b.c).多个整数的最大公约数也有同样的记号。
求最大公约数有多种方法.常见的有质因数分解法、短除法、辗转相除法、更相减损法。
与最大公约数相对应的概念是最小公倍数.a.b的最小公倍数记为[a.b]。
质因数分解法:把每个数分别分解质因数.再把各数中的全部公有质因数提取出来连乘.所得的积就是这几个数的最大公约数。
例如:求24和60的最大公约数.先分解质因数.得24=2×2×2×3.60=2×2×3×5.24与60的全部公有的质因数是2、2、3.它们的积是2×2×3=12.所以.(24、60)=12。
把几个数先分别分解质因数.再把各数中的全部公有的质因数和独有的质因数提取出来连乘.所得的积就是这几个数的最小公倍数。
例如:求6和15的最小公倍数。
先分解质因数.得6=2×3.15=3×5.6和15的全部公有的质因数是3.6独有质因数是2.15独有的质因数是5.2×3×5=30.30里面包含6的全部质因数2和3.还包含了15的全部质因数3和5.且30是6和15的公倍数中最小的一个.所以[6.15]=30。
短除法:短除法求最大公约数.先用这几个数的公约数连续去除.一直除到所有的商互质为止.然后把所有的除数连乘起来.所得的积就是这几个数的最大公约数。
短除法求最小公倍数.先用这几个数的公约数去除每个数.再用部分数的公约数去除.并把不能整除的数移下来.一直除到所有的商中每两个数都是互质的为止.然后把所有的除数和商连乘起来.所得的积就是这几个数的最小公倍数.例如.求12、15、18的最小公倍数。
五年级数学最大公因数与最小公倍数练习题 甄选
![五年级数学最大公因数与最小公倍数练习题 甄选](https://img.taocdn.com/s3/m/f77b9e89f5335a8103d22046.png)
五年级数学最大公因数与最小公倍数练习题(优选.)最大公因数与最小公倍数练习题1)有一个自然数,被6除余1,被5除余1,被4除余1,这个自然数最小是几?2)把长120厘米,宽80厘米的铁板裁成面积相等,最大的正方形而且没有剩余,可以裁成多少块?3)把长132厘米,宽60厘米,厚36厘米的木料锯成尽可能大的,同样大小的正方体木块,锯后不能有剩余,能锯成多少块?4)一盒钢笔可以平均分给2、3、4、5、6个同学,这盒钢笔最小有多少枝?5)用96朵红花和72朵白花做成花束,如果各花束里红花的朵数相同,白花的朵数也相同,每束花里最少有几朵花?6)从小明家到学校原来每隔50米安装一根电线杆,加上两端的两根一共是55根电线杆,现在改成每隔60米安装一根电线杆,除两端的两根不用移动外,中途还有多少根不必移动?7)每筐梨,按每份2个梨分多1个,每份3个梨分多2个,每份5个梨分4个,则筐里至少有多少个梨?8)现在有香蕉42千克,苹果112千克,桔子70千克,平均分给幼儿园的几个班,每班分到的这三种水果的数量分别相等,那么最多分给了多少个班?每个班至少分到了三种水果各多少千克?9)有三根铁丝,一根长54米,一根长72米,一根长36米,要把它们截成同样长的小段,不许剩余,每段最长是多少米?10).有一级茶叶96克,二级茶叶156克,三级茶叶240克,价值相等.现将这三种茶叶分别等分装袋(均为整数克),每袋价值相等,要使每袋价值最低应如何装袋?11).a、b两数的最大公因数是12,已知a有8个因数,b有9个因数,求a与b.12).两个数的积是6912,最大公因数是24,求它们的最小公倍数?13).甲、乙、丙三个学生定期向某老师求教,甲每4天去一次,乙每6天去一次,丙每9天去一次,如果这一次他们三人是3月23日都在这个老师家见面,那么下一次三人都在这个老师家见面的时间是几月几日?14).求被5除余2,被6除余3,被7除4的大于1000、小于1500的所有自然数.最大公因数与最小公倍数练习题班级:姓名:一、填空:1、如果自然数A除以自然数B商是17,那么A与B的最大公因数是(),最小公倍数是()。
最大公因数和最小公倍数习题
![最大公因数和最小公倍数习题](https://img.taocdn.com/s3/m/f8ba85b7ed3a87c24028915f804d2b160b4e86bb.png)
最大公因数和最小公倍数小练习一、写出以下各数的最大公因数和最小公倍数(1) 4和6的最大公因数是;最大公倍数是;(2) 9和3的最大公因数是;最大公倍数是;(3) 9和18的最大公因数是;最大公倍数是;(4) 11和44的最大公因数是;最大公倍数是;(5) 8和11的最大公因数是;最大公倍数是;(6) 1和9的最大公因数是;最大公倍数是;(7) A=2×2×3×5,B=2×3×7,则A、B的最大公因数是;最小公倍数是;(8)A=2×3×5×5,B=3×5×5×11,则A、B的最大公因数是;最小公倍数是。
1.在17、18、15、20和30五个数中,能被2整除的数是〔〕;能被3整除的数是〔〕;能被5整除的数是〔〕;能同时被2、3整除的数是〔〕;能同时被3、5整除的数是〔〕;能同时被2、5整除的数是〔〕;能同时被2、3、5整除的数是〔〕。
2.在20以内的质数中,〔〕加上2还是质数。
3.如果有两个质数的和等于24,可以是〔〕+〔〕,〔〕+〔〕或〔〕+〔〕。
4.把330分解质因数是〔〕。
5.一个能同时被 2、3、5整除的三位数,百位上的数比十位上的数大9,这个数是〔〕。
6.在50以内的自然数中,最大的质数是〔〕,最小的合数是〔〕。
7.既是质数又是奇数的最小的一位数是〔〕。
二、判断题1.两个质数相乘的积还是质数。
〔〕2.成为互质数的两个数,必须都是质数。
〔〕3.任何一个自然数,它的最大约数和最小倍数都是它本身。
〔〕4.一个合数至少得有三个约数。
〔〕5.在自然数列中,除2以外,所有的偶数都是合数。
〔〕6.12是36与48的最大公约数。
〔〕三、选择题1.15的最大约数是〔〕,最小倍数是〔〕。
①1 ②3 ③5 ④152.在14=2×7中,2和7都是14的〔〕。
①质数②因数③质因数3.有一个数,它既是12的倍数,又是12的约数,这个数是〔〕。
小学五年级最大公因数最小公倍数练习题
![小学五年级最大公因数最小公倍数练习题](https://img.taocdn.com/s3/m/5e6b7c8c0875f46527d3240c844769eae109a30e.png)
求最小公倍数,最大公因数练习题一、填空1、当两个数是互质数时,它们的最大公因数是(),它们的最小公倍数是()。
2、甲=2×3×6,乙2×3×7,甲和乙的最大公因数是()×()=(),甲和乙的最小公倍数是()×()×()×()=()。
3、所有自然数的公因数为()。
4、如果m和n是互质数,则它们的最大公因数是(),最小公倍数是()。
5、在4、9、10和16这四个数中,()和()是互质数,()和()是互质数,()和()是互质数。
6、用一个数去除15和30,正好都能整除,这个数最大是()。
7、两个连续自然数的和是21,这两个数的最大公因数是(),最小公倍数是()。
8、两个相邻奇数的和是16,它们的最大公因数是(),最小公倍数是()。
9、某数除以3、5、7时都余1,这个数最小是( )。
10、根据要求写互质数。
(1)、()质数和()奇数。
(2)、()合数和()合数。
(3)、( 9 )和()任意一自然数。
二、判断1、是互质数的两个数必须都是质数。
()2、最小的质数是所有偶数的最大公约数。
()3、有公约数1的两个数,一定是互质数。
()4、 a是质数,b也是质数,a×b-m,(m也是质数),一定是质数。
()5、最大公因数指几个数的共同的因数。
()三、用短除法求最小公倍数。
26和52 69和33 82和1811和77 16和24 688和3444和6 2和9 7和8四、想一想学校买来40支圆珠笔和50本练习本,平均分给四年级三好学生,结果圆珠笔多四支,练习本多二本,四年级有多少三好学生?他们各获得什么奖品?五、生活应用1、五年一班去划船,他们算了一下,如果增加一条船,正好每船坐6个,如果减少一条船,正好每船坐9人,这个班有多少人?2、两个数的最大公约数是15,最小公倍数是90,求这两个数分别是多少?3、一个数被2除余1,被3除余2,被4除余3,被5除余4,被6除余5,此数最小是几?4、甲、乙、丙三人是朋友,他们每隔不同天数到图书馆去一次,甲3天去一次,乙4天去一次,丙5天去一次。
小学数学 五年级 最大公因数和最小公倍数 PPT+作业(带答案)
![小学数学 五年级 最大公因数和最小公倍数 PPT+作业(带答案)](https://img.taocdn.com/s3/m/b2b0c7bf9b89680203d82584.png)
作业5:
如果a,b都是正整数,a<b,且a+b=8,那么a,b的不同取值组合有____3____ 种,其中a,b互 质的情况有____2____种。
a=1 b=7 a=2 b=6 a=3 b=5
作业6:
已知两个自然数的最大公因数是8,最小公倍数是240,过程如下:
求a×b=_____3_0________。
两个数的乘积=最小公倍数×最大公因数
则A=8×5=40
总结:两个数的最大公因数与最小公倍数之积等于这两个数的积。
练习4
一个数和18的最大公因数是9,最小公倍数是126。求这个数。
假设这个数是A,根据题意可得:
9A
18
a
2
9是A和18的最大公因数,所以a和2是互质的, A和18的最小公倍是 9×a×2=126 a=7 则A=7×9=63
8×a×b=240
a×b=30
作业7:
分别求出下面两组数的最大公因数与最小公倍数。
(1)16和20
(2)25和30
2 16 20 2 8 10
45
(16,20)=2×2=4
[16,20]=2×2×4×5=80
5 25 30 56
(25,30)=5 [25,30]=5×5×6=150
作业8:
(1)求16、28和36的最大公因数。 (2)求18、36和63的最小公倍数。
m+n=392+112=504
课后作业
作业1:
求14和18的最大公因数,使用的方法是_短__除__法___。具体过程如下:
=____2____,7和9已经成____互__质__关__系______(填“倍数关系”或“互质关系”), 因此14和18的最大公因数是___2_____。
最大公因数和最小公倍数练习题
![最大公因数和最小公倍数练习题](https://img.taocdn.com/s3/m/f95c03653d1ec5da50e2524de518964bcf84d2d8.png)
最大公因数和最小公倍数练习题最大公因数和最小公倍数练1.求出下列数的最大公因数和最小公倍数:1) 4和6的最大公因数是2;最小公倍数是12.2) 9和3的最大公因数是3;最小公倍数是9.3) 9和18的最大公因数是9;最小公倍数是18.4) 11和44的最大公因数是11;最小公倍数是44.5) 8和11的最大公因数是1;最小公倍数是88.6) 1和9的最大公因数是1;最小公倍数是9.7) 已知A=2×2×3×5,B=2×3×7,那么A、B的最大公因数是6;最小公倍数是420.8) 已知A=2×3×5×5,B=3×5×5×11,那么A、B的最大公因数是15;最小公倍数是1650.2.在17、18、15、20和30五个数中,能被2整除的数是18、20、30;能被3整除的数是15、30;能被5整除的数是15、20、30;能同时被2、3整除的数是6;能同时被3、5整除的数是15;能同时被2、5整除的数是20、30;能同时被2、3、5整除的数是30.3.在20以内的质数中,只有3加上2还是质数。
4.如果有两个质数的和等于24,可以是5+19,7+17或11+13.5.把330分解质因数是2×3×5×11.6.一个能同时被2、3、5整除的三位数,百位上的数比十位上的数大9,这个数是150.7.在50以内的自然数中,最大的质数是47,最小的合数是4.判断题1.错误。
两个质数相乘的积一定是合数。
2.错误。
两个数互质不一定都是质数。
3.正确。
4.错误。
一个合数至少有四个约数,即1、本身和两个不同的因数。
5.错误。
除2以外的偶数都是合数。
6.正确。
选择题1.最大约数是3,最小倍数是30.选项③。
2.2和7都是14的质因数。
选项③。
3.12的倍数必须是12的因数的倍数,因此这个数是12.选项②。
五年级数学最大公因数,最小公倍数练习题(含提高)
![五年级数学最大公因数,最小公倍数练习题(含提高)](https://img.taocdn.com/s3/m/384b94dc76c66137ef06198e.png)
五年级数学最大公因数,最小公倍数练习题(含提高)定义:最大公约数:最大公约数.也称最大公因数.最大公因子.指两个或多个整数共有约数中最大的一个·a.b的最大公约数记为(a.b).同样的.a.b.c的最大公约数记为(a.b.c).多个整数的最大公约数也有同样的记号·求最大公约数有多种方法.常见的有质因数分解法.短除法.辗转相除法.更相减损法·与最大公约数相对应的概念是最小公倍数.a.b的最小公倍数记为[a.b]·质因数分解法:把每个数分别分解质因数.再把各数中的全部公有质因数提取出来连乘.所得的积就是这几个数的最大公约数·例如:求24和60的最大公约数.先分解质因数.得24=2×2×2×3.60=2×2×3×5.24与60的全部公有的质因数是2.2.3.它们的积是2×2×3=12.所以.(24.60)=12·把几个数先分别分解质因数.再把各数中的全部公有的质因数和独有的质因数提取出来连乘.所得的积就是这几个数的最小公倍数·例如:求6和15的最小公倍数·先分解质因数.得6=2×3.15=3×5.6和15的全部公有的质因数是3.6独有质因数是2.15独有的质因数是5.2×3×5=30.30里面包含6的全部质因数2和3.还包含了15的全部质因数3和5.且30是6和15的公倍数中最小的一个.所以[6.15]=30·短除法:短除法求最大公约数.先用这几个数的公约数连续去除.一直除到所有的商互质为止.然后把所有的除数连乘起来.所得的积就是这几个数的最大公约数·短除法求最小公倍数.先用这几个数的公约数去除每个数.再用部分数的公约数去除.并把不能整除的数移下来.一直除到所有的商中每两个数都是互质的为止.然后把所有的除数和商连乘起来.所得的积就是这几个数的最小公倍数.例如.求12.15.18的最小公倍数·[1]短除法的格式短除法的本质就是质因数分解法.只是将质因数分解用短除符号来进行·短除符号就是除号倒过来·短除就是在除法中写除数的地方写两个数共有的质因数.然后落下两个数被公有质因数整除的商.之后再除.以此类推.直到结果互质为止(两个数互质)·而在用短除计算多个数时.对其中任意两个数存在的因数都要算出.其它没有这个因数的数则原样落下·直到剩下每两个都是互质关系·求最大公因数便乘一边.求最小公倍数便乘一圈·无论是短除法.还是分解质因数法.在质因数较大时.都会觉得困难·这时就需要用新的方法·辗转相除法:辗转相除法是求两个自然数的最大公约数的一种方法.也叫欧几里德算法·这就是辗转相除法的原理·辗转相除法的格式例如.求(319.377):∵ 319÷377=0(余319)∴(319.377)=(377.319);∵ 377÷319=1(余58)∴(377.319)=(319.58);∵ 319÷58=5(余29).∴(319.58)=(58.29);∵ 58÷29=2(余0).∴(58.29)= 29;∴(319.377)=29.可以写成右边的格式·用辗转相除法求几个数的最大公约数.可以先求出其中任意两个数的最大公约数.再求这个最大公约数与第三个数的最大公约数.依次求下去.直到最后一个数为止·最后所得的那个最大公约数.就是所有这些数的最大公约数·更相减损法:也叫更相减损术.是出自《九章算术》的一种求最大公约数的算法.它原本是为约分而设计的.但它适用于任何需要求最大公约数的场合·《九章算术》是中国古代的数学专著.其中的“更相减损术”可以用来求两个数的最大公约数.即“可半者半之.不可半者.副置分母.子之数.以少减多.更相减损.求其等也·以等数约之·”翻译成现代语言如下:第一步:任意给定两个正整数;判断它们是否都是偶数·若是.则用2约简;若不是则执行第二步·第二步:以较大的数减较小的数.接着把所得的差与较小的数比较.并以大数减小数·继续这个操作.直到所得的减数和差相等为止·则第一步中约掉的若干个2与第二步中等数的乘积就是所求的最大公约数·其中所说的“等数”.就是最大公约数·求“等数”的办法是“更相减损”法·所以更相减损法也叫等值算法·例1.用更相减损术求98与63的最大公约数·解:由于63不是偶数.把98和63以大数减小数.并辗转相减:98-63=3563-35=2835-28=728-7=2121-7=1414-7=7所以.98和63的最大公约数等于7·这个过程可以简单的写为:(98.63)=(35.63)=(35.28)=(7.28)=(7.21)=(7.14)=(7.7)=7最小公倍数:两个或多个整数公有的倍数叫做它们的公倍数·两个或多个整数的公倍数里最小的那一个叫做它们的最小公倍数·分解质因数法:先把这几个数的质因数写出来.最小公倍数等于它们所有的质因数的乘积(如果有几个质因数相同.则比较两数中哪个数有该质因数的个数较多.乘较多的次数)·比如求45和30的最小公倍数·45=3*3*530=2*3*5不同的质因数是2,3,5·3是他们两者都有的质因数.由于45有两个3.30只有一个3.所以计算最小公倍数的时候乘两个3.最小公倍数等于2*3*3*5=90又如计算36和270的最小公倍数36=2*2*3*3270=2*3*3*3*5不同的质因数是5·2这个质因数在36中比较多.为两个.所以乘两次;3这个质因数在270个比较多.为三个.所以乘三次·最小公倍数等于2*2*3*3*3*5=54020和40的最小公倍数是40[4]公式法:由于两个数的乘积等于这两个数的最大公约数与最小公倍数的积·即(a.b)×[a.b]=a×b·所以.求两个数的最小公倍数.就可以先求出它们的最大公约数.然后用上述公式求出它们的最小公倍数·例如.求[18.20].即得[18.20]=18×20÷(18.20)=18×20÷2=180·求几个自然数的最小公倍数.可以先求出其中两个数的最小公倍数.再求这个最小公倍数与第三个数的最小公倍数.依次求下去.直到最后一个为止·最后所得的那个最小公倍数.就是所求的几个数的最小公倍数·常用结论:在解有关最大公约数.最小公倍数的问题时.常用到以下结论:(1)如果两个自然数是互质数.那么它们的最大公约数是1.最小公倍数是这两个数的乘积·例如8和9.它们是互质数.所以(8.9)=1.[8.9]=72·(2)如果两个自然数中.较大数是较小数的倍数.那么较小数就是这两个数的最大公约数.较大数就是这两个数的最小公倍数·例如18与3.18÷3=6.所以(18.3)=3.[18.3]=18·(3)两个整数分别除以它们的最大公约数.所得的商是互质数·例如8和14分别除以它们的最大公约数2.所得的商分别为4和7.那么4和7是互质数·(4)两个自然数的最大公约数与它们的最小公倍数的乘积等于这两个数的乘积·例如12和16.(12.16)=4.[12.16]=48.有4×48=12×16.即(12.16)× [12.16]=12×16·例1:两个数的最大公因数是15,最小公倍数是90,求这两个数分别是多少?15×1=15,15×6=90;当a1b1分别是2和3时,a.b分别为15×2=30,15×3=45·所以.这两个数是15和90或者30和45·例2:两个自然数的积是360,最小公倍数是120,这两个数各是多少?分析我们把这两个自然数称为甲数和乙数·因为甲.乙两数的积一定等于甲.乙两数的最大公因数与最小公倍数的积·根据这一规律.我们可以求出这两个数的最大公因数是360÷120=3·又因为(甲÷3=a,乙÷3=b)中,3×a×b=120,a和b一定是互质数.所以,a和b可以是1和40,也可以是5和8·当a和b是1和40时.所求的数是3×1=3和3×40=120;当a 和b是5和8时.所求的数是3×5=15和3×8=24·分析甲跑一圈需要600÷3=200秒.乙跑一圈需要600÷4=150秒.丙跑一圈需要600÷2=300秒·要使三人再次从出发点一齐出发.经过的时间一定是200.150和300的最小公倍数·200.150和300的最小公倍数是600,所以.经过600秒后三人又同时从出发点出发·综合练习:一. 填空题·1. 都是自然数.如果.的最大公约数是().最小公倍数是()·2. 甲.乙.甲和乙的最大公约数是()×()=().甲和乙的最小公倍数是()×()×()×()=()·3. 所有自然数的公约数为()·4. 如果m和n是互质数.那么它们的最大公约数是().最小公倍数是()·5. 在4.9.10和16这四个数中.()和()是互质数.()和()是互质数.()和()是互质数·6. 用一个数去除15和30.正好都能整除.这个数最大是()·7. 两个连续自然数的和是21.这两个数的最大公约数是().最小公倍数是()·8. 两个相邻奇数的和是16.它们的最大公约数是().最小公倍数是()·9. 某数除以3.5.7时都余1.这个数最小是()·10. 根据下面的要求写出互质的两个数·(1)两个质数()和()·(2)连续两个自然数()和()·(3)1和任何自然数()和()·(4)两个合数()和()·(5)奇数和奇数()和()·(6)奇数和偶数()和()·11.两个数的最大公因数是6.最小公倍数是144.这两个数的和是()·12.有一个数.同时能被9,10,15整除.满足条件的最大三位数是()·13.筐里装满了鸡蛋.已知这筐鸡蛋两个两个数多一个.五个五个数仍多一个.那么这筐鸡蛋至少有()个·14.有336个苹果.252个橘子.210个梨.用这些果品最多可分成若干份同样的礼物.这时在每份礼物中.三种水果各有()·15.有96多红花和72朵白花扎成花束.如果每个花束里红花的朵数相同.白花的朵数也相同.每个花束至少有()朵花·二. 判断题·1. 互质的两个数必定都是质数·()2. 两个不同的奇数一定是互质数·()3. 最小的质数是所有偶数的最大公约数·()4. 有公约数1的两个数.一定是互质数·()5. a是质数.b也是质数..一定是质数·()三. 直接说出每组数的最大公约数和最小公倍数·26和13() 13和6()4和6() 5和9()29和87() 30和15()13.26和52 () 2.3和7()四.求下面每组数的最大公约数和最小公倍数·(三个数的只求最小公倍数)45和60 36和6027和72 76和8042.105和56 24.36和48五.解答题·1.把一张长120厘米.宽80厘米的长方形的纸裁成正方形.不允许剩余.至少能裁多少张?2.已知两个自然数的最大公因数是12.(1)最小公倍数是72.求这两个数的积(2)满足已知条件的自然数有哪几组?3.一筐梨.按每份2个梨分多一个.每份3个梨多两个.每份5个梨多四个.问筐里至少有多少个梨?4.甲乙丙三人环绕操场步行一周.甲要三分钟.乙要四分钟.丙要六分钟.三人同时同地同向出发.当他们三人第一次相遇时.甲乙丙三人分别绕了多少周?5.某港口停着四艘轮船.一天他们同时开出港口.已知甲船每隔两星期回港一次.乙船每隔四星期回港一次.丙船每隔六星期回港一次.丁船八星期回港一次.至少经过几星期后.这四只轮船再次在港口重新会合?6、有一个自然数.被6除余1.被5除余1.被4除余1.这个自然数最小是几?7、一盒钢笔可以平均分给2.3.4.5.6个同学.这盒钢笔最小有多少枝?8、用96朵红花和72朵白花做成花束.如果各花束里红花的朵数相同.白花的朵数也相同.每束花里最少有几朵花?9、从小明家到学校原来每隔50米安装一根电线杆.加上两端的两根一共是55根电线杆.现在改成每隔60米安装一根电线杆.除两端的两根不用移动外.中途还有多少根不必移动?10.每筐梨.按每份两个梨分多1个.每份3个梨分多2个.每份5个梨分4个.则筐里至少有多少个梨?11.学校买来40支圆珠笔和50本练习本.平均奖给四年级三好学生.结果圆珠笔多4支.练习本多2本.四年级有多少名三好学生.他们各得到什么奖品?12.小明.小红.小王一起分17个苹果.小明分得其中的二分之一.小红分得其中的三分之一.小王分得其中的九分之一.问他们每个人分别分得几个苹果?。
小学数学 五年级 最大公因数和最小公倍数 PPT+作业(带答案)
![小学数学 五年级 最大公因数和最小公倍数 PPT+作业(带答案)](https://img.taocdn.com/s3/m/b2b0c7bf9b89680203d82584.png)
出现两两互质 [15,20,30]=5×3×2×1×2×1=60
总结:求三个数的最大公因数时,只要商出现互质即可; 求三个数的最,24,48)和 [18,24,48]。 (2)求(16,24,32)和 [16,24,32]。
2 18 24
48
39 3
例6
已知两个自然数的最大公因数是6,最小公倍数是120,求这两个自然数。 已知最大公因数和最小公倍数,通过短除法反推
分析芒果数量和梨的数量与小朋友人数的关系。
芒果和梨都能恰好平均分给小朋友们说明: 小朋友的人数是芒果数量和梨的数量的公因数 小朋友最多时,即求最大公因数
(24,32)=8 最多8个小朋友 芒果:24÷8=3(个) 梨:32÷8=4(个) 答:小朋友最多8个人,这时每个小朋友分到3个芒果,4个梨。
总结:区分题目中要求的量是“最小公倍数”还是“最大公因 数”。
总结:配对法找因数——使用乘积的形式一对一对地寻找因数。
例2
(1)求(12,18,24)和 [12,18,24]。 (2)求(15,20,30)和 [15,20,30]。
短除法找最大公因数与最小公倍数
5 15 20
30
3
4
6
出现互质 (15,20,30)=5
5 15 20
30
33
4
6
21
4
2
1
2
1
不满足“互质”
④a=4,b=8 ⑤a=5,b=7
不符合 符合 A=5×3=15 B=7×3=21
总结:两个自然数分别除以他们的最大公因数,所得的商互质。
练习5
运用短除法求A、B的最大公因数时,过程如下:
如果a+b=15,且a<b,那么A、B分别可能等于多少?
最大公因数和最小公倍数的综合练习
![最大公因数和最小公倍数的综合练习](https://img.taocdn.com/s3/m/11dbf0d285868762caaedd3383c4bb4cf7ecb7ac.png)
01
把1到100排成一行,先圈出 6 的倍数,再圈出8的倍数, 如果某个数已经被圈了,就不 再圈,那么一共要画几个圈?
02 思考题:
03
大厅里有100盏电灯,分别编 上1到100号,每盏灯都有一 个拉线开关,每拉一下开关, 电灯就由关变成开,由开变成 关,现在全部处于关闭状态。 现在有个对数学充满好奇的学 生,他先把编号是6 的倍数的 开关拉一下,再把编号是8 的 倍数的开关拉一下。请问现在 大厅里有几盏灯亮着?
是多少厘米?
二.用长12厘米,宽20厘米的长方形纸,拼成一个大正方形, 最少需要多少个这样的长方形?这时边长是多少厘米?
一.红花64朵,黄花48朵,用这两种花搭配成同样的花束,最少可以扎成多少束? 每束有多少朵花?
二.两个义工社团分别有56人和48人,现在要分别分成若干个人数相等的小组, 每组最多有多少人?可以分成几个小组?
独立练习:
一、 用短除法求最大公因数和最小公倍数 20和32 24和30 64和48 12、28和56
二、解决问题 1.把32块橡皮和40枝铅笔全部平均分给同样 数量的小朋友,最多可以分给几个小朋友?每 人分到几块橡皮几只铅笔? 2.有一批地砖,每块长45厘米,宽30厘米。 至少用多少块砖才能铺成一个正方形? 3.一批书不论分给10人还是15人,都多3本, 这批书至少多少本? 4.红花56朵,黄花42朵,用这两种花搭配成 同样的花束,最少可以扎成多少束?
三.学校要做团体操表演,排成每行32人或每行28人都刚好不多不少,参加这次 团体操表演的最少有多少人?
辨析:
拓展:
一.一个数既是6的倍数,又是8的倍数,还是10的倍 数,这个数最小是多少?
二.一个数除以6余2,除以8也余2,除以10还是余2, 这个数最小是多少?
最大公因数和最小公倍数典型例题和专项练习
![最大公因数和最小公倍数典型例题和专项练习](https://img.taocdn.com/s3/m/a6cc7a3fbb1aa8114431b90d6c85ec3a87c28b1c.png)
最大公因数和最小公倍数典型例题和专项练习最大公因数和最小公倍数是数学中的基本概念,经常在实际问题中应用。
下面是一些典型例题和专项练。
典型例题】例1、有三根铁丝,分别长18米、24米、30米。
现在要把它们截成同样长的小段。
每段最长可以有几米?一共可以截成多少段?分析与解:截成的小段一定是18、24、30的最大公因数。
先求这三个数的最大公因数,再求一共可以截成多少段。
解答:(18、24、30)=6,(18+24+30)÷6=12段。
答:每段最长可以有6米,一共可以截成12段。
例2、一张长方形纸,长60厘米,宽36厘米,要把它截成同样大小的长方形,并使它们的面积尽可能大,截完后又正好没有剩余,正方形的边长可以是多少厘米?能截多少个正方形?分析与解:要使截成的正方形面积尽可能大,也就是说,正方形的边长要尽可能大,截完后又正好没有剩余,这样正方形边长一定是60和36的最大公因数。
解答:(36、60)=12,(60÷12)×(36÷12)=15个。
答:正方形的边长可以是12厘米,能截15个正方形。
例3、用96朵红玫瑰花和72朵白玫瑰花做花束。
若每个花束里的红玫瑰花的朵数相同,白玫瑰花的朵数也相同,最多可以做多少个花束?每个花束里至少要有几朵花?分析与解:要把96朵红玫瑰花和72朵白玫瑰花做成花束,每束花里的红白花朵数同样多,那么做成花束的个数一定是96和72的公因数,又要求花束的个数要最多,所以花束的个数应是96和72的最大公因数。
解答:(1)最多可以做多少个花束(96、72)=24,(2)每个花束里有几朵红玫瑰花96÷24=4朵,(3)每个花束里有几朵白玫瑰花72÷24=3朵,(4)每个花束里最少有几朵花4+3=7朵。
例4、公共汽车站有三路汽车通往不同的地方。
第一路车每隔5分钟发车一次,第二路车每隔10分钟发车一次,第三路车每隔6分钟发车一次。
三路汽车在同一时间发车以后,最少过多少分钟再同时发车?分析与解:这个时间一定是5的倍数、10的倍数、6的倍数,也就是说是5、10和6的公倍数,“最少多少时间”,那么,一定是5、10、6的最小公倍数。
最大公因数和最小公倍数练习题(专项练习)
![最大公因数和最小公倍数练习题(专项练习)](https://img.taocdn.com/s3/m/731d790b366baf1ffc4ffe4733687e21ae45ff54.png)
最大公因数和最小公倍数练习题(专项练习)最大公因数和最小公倍数练题一、填空题1.A与B的下一个公倍数应该是20.2.所有自然数的公因数为1.3.如果a÷b=10,a和b的最大公因数是10,最小公倍数是b×10.4.如果m和n是互质数,那么它们的最大公因数是1,最小公倍数是m×n。
5.在4、9、10和16这四个数中,4和9是互质数,4和10是互质数,4和16不是互质数,9和10是互质数,9和16不是互质数,10和16不是互质数。
6.分母是15的最简真分数一共有8个。
三、最大公约数和最小公倍数26和13:最大公约数为13,最小公倍数为26.13和6:最大公约数为1,最小公倍数为78.4和6:最大公约数为2,最小公倍数为12.5和9:最大公约数为1,最小公倍数为45.29和87:最大公约数为29,最小公倍数为87.13、26和52:最大公约数为13,最小公倍数为52.30和15:最大公约数为15,最小公倍数为30.2、3和7:最大公约数为1,最小公倍数为42.四、用短除法求最大公因数和最小公倍数45÷60,余数为45,60÷45,余数为15,45÷15,余数为0,因此最大公因数为15.最小公倍数为45×60÷15=180.五、生活中的应用1.8和14的最小公倍数为56,因此五年级最少有56人。
2.40和50的最大公因数为10,因此这个班有10个人。
3.18和24的最大公因数为6,因此每段最长可以有6米,一共可以截成6段。
4.7路车每5分钟发一班车,12路车每8分钟发一班车,它们同时出发后,至少再经过40分钟后又同时发车。
六、动脑筋,想一想1.这个数是105.2.最大公因数是30,最小公倍数是420.3.钢笔和练本的个数分别为44和54,因此有44个三好学生。
4.这两个连续自然数是10和11,它们的最大公因数是1,最小公倍数是110.5.从起点开始到第一根不需移动的电线杆之间的距离是45米。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
五年级数学最大公因数与最小公倍数练习题、填空:
1、如果自然数A除以自然数B商是17,那么A与B的最大公约数是(),最小公倍数是()。
2、最小质数与最小合数的最大公约数是(),最小公倍数是()。
能被5、7、16 整除的最小自然数是()。
3、()里写最大公因数、
[
]里写最小公倍数
(1)(7、8)= (
)
[7,8 ] = ()
(2)(25,15)= (),[25 、15 ]= ()
(3)(140 ,35 )= (),[140 ,35 ]= ()
(4 )(24,36)= ()
,
[24、36 ]= ()
(5)(3,4,5)= (),[3,4,5 ]= ()
(6)(4,8,16)=()
,
[4,8,16 ]= ()
4、5和12 的最小公倍数减去()就等于它们的最大公约数。
91 和13 的最小公倍数是它们最大公约数的()倍。
5、已知两个互质数的最小公倍数是153 ,这两个互质数是()和()。
6甲数=2 X3X5X7,乙数=2 X3 X11,甲乙两数的最大公约数是(),最小公倍数是()。
7、3 个连续自然数的最小公倍数是60,这三个数是()、()和()。
8、被2、3、5 除,结果都余1 的最小整数是(),最小三位整数是()。
9、一筐苹果4 个4 个拿,6 个6 个拿,或者8 个8 个拿都正好拿完,这筐苹果,最少有
()个。
10、三个连续偶数的和是42,这三个数的最大公约数是()。
11、三个不同质数的最小公倍数是105 ,这三个质数是()、()和()。
12、自然数m 和n,n= m+1 ,m 和n 的最大公约数是(),最小公倍数是()13、13、把自然数a与b分解质因数,得到a=2 X5 X7 X m,b=3 X5X m,如果a与b 的最小公倍数是2730 ,那么m = ()。
14、(273,231 ,117 ):(),[273 ,231 ,117] :()
15、三个数的和是312 ,这三个数分别能被7、8、9 整除,而且商相同。
这三个数分别
是()、()和()
16、已知(A,40)=8,[A,40]=80 ,那么A= ()。
17、选一个自认为与众不同的数(三个方法)并说明选的理由: 1 、2、3、5、7、9、
15
列:选15,因为他的因数有;1、15、3、5;还有他是60 的因数等等。
1 :选,因为
,因为
2:选
3 :选,因为
18、按要求写互质数
两个都是质数()和();两个都是合数()和();一个质数和一个奇数()和();一个5 和一个合数()和();一个质数和一个合数()和();一个偶数和一个合数()和()二、解决下列的问题:
1、有一行数:1 , 1 , 2, 3 ,5 ,8 ,13 , 21 ,34 , 55……,从第三个数开始,每个数都是前两个
数的和,在前100 个数中,偶数有多少个?
2、一个长方形的长和宽都是自然数,面积是36 平方米,这样的形状不同的长方形共有多少种?
3、一种长方形的地砖,长24 厘米,宽16 厘米,用这种砖铺一个正方形,至少需多少块砖?
4、有一个长80 厘米,宽60 厘米,高115 厘米的长方体储冰容器,往里面装入大小相同的立方体冰块,这个容器最少能装多少数量冰块?
5、已知某小学六年级学生超过100 人,而不足140 人。
将他们按每组12 人分组,多3 人;按每组8 人分,也多3 人。
这个学校六年级学生多少?
6、有四个小朋友,他们的年龄一个比一个大一岁,四个人的年龄的乘积是大是多少岁?
360 。
他们中年龄最7、汽车站内每隔3 分钟发一辆公交车,4 分钟发一辆中巴车,1 小时共发了几辆汽
车?其中有几辆中巴车?
8、一块长方形铁皮,长96 厘米,宽80 厘米,要把它剪成同样大小的正方形且没有剩余,这种正方形的边长是多少?被剪成几块?。