人教版七年级数学上册计算专题训练 (无答案)
人教版七年级数学上册《计算重难题型》专题训练-附带答案
人教版七年级数学上册《计算重难题型》专题训练-附带答案一.易错计算强化1.计算:(1)(13−52+16)×(−36);(2)(−1)2022×3−23+(−14)2÷|−125|.试题分析:(1)根据乘法分配律计算即可;(2)先算乘方再算乘除法最后算加减法即可.答案详解:解:(1)(13−52+16)×(−36)=13×(﹣36)−52×(﹣36)+16×(﹣36)=﹣12+90+(﹣6)=72;(2)(−1)2022×3−23+(−14)2÷|−125|=1×3﹣8+116÷132=1×3﹣8+116×32=3﹣8+2=﹣3.2.计算:(1)−14−(−2)3×14−16×(12−14+38).(2)−22−2×[(−3)2−3÷12 ].试题分析:(1)先算乘方再算乘法最后算加减法即可;(2)先算乘方和括号内的式子然后计算括号外的乘法最后算减法即可.答案详解:解:(1)−14−(−2)3×14−16×(12−14+38)=﹣14﹣(﹣8)×14−16×12+16×14−16×38=﹣14+2﹣8+4﹣6=﹣22;(2)−22−2×[(−3)2−3÷1 2 ]=﹣4﹣2×(9﹣3×2)=﹣4﹣2×(9﹣6)=﹣4﹣2×3=﹣4﹣6=﹣10.3.计算:(1)﹣32÷(﹣3)2+3×(﹣2)+|﹣4|;(2)[50−(79−1112+16)×(−6)2]÷(−7)2.试题分析:(1)先算乘方再算乘除法最后算加减法即可;(2)先算乘方再根据乘法分配律计算括号内的式子最后算括号外的除法.答案详解:解:(1)﹣32÷(﹣3)2+3×(﹣2)+|﹣4|=﹣9÷9+3×(﹣2)+4=﹣1+(﹣6)+4=﹣3;(2)[50−(79−1112+16)×(−6)2]÷(−7)2 =[50﹣(79−1112+16)×36]÷49=(50−79×36+1112×36−16×36)÷49 =(50﹣28+33﹣6)÷49 =49÷49 =1.4.计算:(1)(−12)﹣(﹣314)+(+234)﹣(+512);(2)﹣8+12﹣(﹣16)﹣|﹣23|; (3)42×(−23)﹣(−34)÷(﹣0•25); (4)(134−78−712)÷(−78)+(−83);试题分析:按照有理数混合运算的顺序 先乘方后乘除最后算加减 有括号的先算括号里面的 计算过程中注意正负符号的变化.答案详解:解:(1)原式=(−12)+134+114−224 =(−12)+24=0;(2)原式=(﹣8)+12+16﹣23 =﹣3;(3)原式=(﹣28)﹣3 =﹣31; (4)原式=(4224−2124−1424)×(−87)−83=(−13)−83=﹣3. 5.计算下列各题:①−14÷(−5)2×(−53)+|0.8−1|②−52−[(−2)3+(1−0.8×34)÷(−22)×(−2)].试题分析:①原式第一项被除数表示1四次幂的相反数除数表示两个﹣5的乘积再利用除以一个数等于乘以这个数的倒数将除法运算化为乘法运算最后一项利用绝对值的代数意义化简计算即可得到结果;②原式第一项表示5平方的相反数中括号中第一项表示三个﹣2的乘积第二项算计算括号中的运算再利用乘法法则计算即可得到结果.答案详解:解:①原式=﹣1÷25×(−53)+0.2=﹣1×125×(−53)+0.2=115+15=415;②原式=﹣25﹣[﹣8+(1−35)÷(﹣4)×(﹣2)]=﹣25﹣(﹣8+25×14×2)=﹣25+8−15=−17.2.二.二进制与十进制的转化6.我们常用的数是十进制数计算机程序使用的是二进制数(只有数码0和1)它们两者之间可以互相换算如将(101)2(1011)2换算成十进制数为:(101)2=1×22+0×21+1=4+0+1=5;(1011)2=1×23+0×22+1×21+1=11;两个二进制数可以相加减相加减时将对应数位上的数相加减.与十进制中的“逢十进一”、“退一还十”相类似应用“逢二进一”、“退一还二”的运算法则如:(101)2+(11)2=(1000)2;(110)2﹣(11)2=(11)2用竖式运算如右侧所示.(1)按此方式将二进制(1001)2换算成十进制数的结果是9.(2)计算:(10101)2+(111)2=(11100)2(结果仍用二进制数表示);(110010)2﹣(1111)2=35(结果用十进制数表示).试题分析:(1)根据例子可知:若二进制的数有n位那么换成十进制等于每一个数位上的数乘以2的(n﹣1)方再相加即可;(2)关于二进制之间的运算利用“逢二进一”、“退一还二”的运算法则计算即可.答案详解:解:(1)(1001)2=1×23+0×22+0×21+1=9;(2)(10101)2+(111)2=(11100)2;(110010)2﹣(1111)2=(100011)2=1×25+1×21+1=35.所以答案是:9;(11100)2;35.7.我们常用的数是十进制数计算机程序使用的是二进制数(只有数码0和1)它们两者之间可以互相换算如将(101)2(1011)2换算成十进制数应为:(101)2=1×22+0×21+1×20=4+0+1=5;(1011)2=1×23+0×22+1×21+1×20=8+0+2+1=11.按此方式将二进制(1001)2换算成十进制数和将十进制数13转化为二进制的结果分别为()A.9 (1101)2B.9 (1110)2C.17 (1101)2D.17 (1110)2试题分析:首先理解十进制的含义然后结合有理数运算法则计算出结果然后根据题意把13化成按2的整数次幂降幂排列即可求得二进制数.答案详解:解:(1001)2=1×23+0×22+0×21+1×20=9.13=8+4+1=1×23+1×22+0×21+1×20=(1101)2所以选:A.8.计算机程序使用的是二进制数(只有数码0和1)是逢2进1的计数制二进制数与常用的十进制数之间可以互相换算如将(10)2(1011)2换算成十进制数应为:(10)2=1×21+0×20=2 (1011)2=1×23+0×22+1×21+1×20=11.按此方式则(101)2+(1101)2=18.试题分析:仿照所给的方式进行求解即可.答案详解:解:(101)2+(1101)2=1×22+0×21+1×20+1×23+1×22+0×21+1×20=4+0+1+8+4+0+1=18.所以答案是:18.三.数值转化机9.按如图所示的程序运算:当输入的数据为﹣1时则输出的数据是()A.2B.4C.6D.8试题分析:把x=﹣1代入程序中计算判断结果与0的大小即可确定出输出结果.答案详解:解:把x=﹣1代入程序中得:(﹣1)2×2﹣4=2﹣4=﹣2<0把x=﹣2代入程序中得:(﹣2)2×2﹣4=8﹣4=4>0则输出的数据为4.所以选:B.10.下图是计算机计算程序若开始输入x=﹣2 则最后输出的结果是﹣17.试题分析:把﹣2按照如图中的程序计算后若<﹣5则结束若不是则把此时的结果再进行计算直到结果<﹣5为止.答案详解:解:根据题意可知(﹣2)×4﹣(﹣3)=﹣8+3=﹣5所以再把﹣5代入计算:(﹣5)×4﹣(﹣3)=﹣20+3=﹣17<﹣5即﹣17为最后结果.故本题答案为:﹣1711.按照如图所示的操作步骤若输入值为﹣3 则输出的值为55.试题分析:把﹣3代入操作步骤中计算即可确定出输出结果.答案详解:解:把﹣3代入得:(﹣3)2=9<10则有(9+2)×5=55.所以答案是:55.四.类比推理--规律类的钥匙12.观察下列各式:1 1×2+12×3=(11−12)+(12−13)=1−13=23.1 1×2+12×3+13×4=(11−12)+(12−13)+(13−14)=1−14=34.…(1)试求11×2+12×3+13×4+14×5的值.(2)试计算11×2+12×3+13×4+⋯+1n×(n+1)(n为正整数)的值.试题分析:(1)根据已知等式得到拆项规律原式变形后计算即可得到结果;(2)原式利用拆项法变形计算即可得到结果.答案详解:解:(1)原式=1−12+12−13+14−15=1−15=45;(2)原式=1−12+12−13+..+1n−1n+1=1−1n+1=n n+1.13.阅读下面的文字完成后面的问题.我们知道11×2=1−1212×3=12−1313×4=13−14那么14×5=14−1512005×2006=1 2005−1 2006.(1)用含有n的式子表示你发现的规律1n−1n+1;(2)依上述方法将计算:1 1×3+13×5+15×7+⋯+12003×2005=10022005(3)如果n k均为正整数那么1n(n+k)=1k⋅(1n−1n+k).试题分析:观察发现每一个等式的左边都是一个分数其中分子是1 分母是连续的两个正整数之积并且如果是第n个等式分母中的第一个因数就是n第二个因数是n+1;等式的右边是两个分数的差这两个分数的分子都是1 分母是连续的两个正整数并且是第n个等式被减数的分母就是n减数的分母是n+1.然后把n=4 n=2005代入即可得出第5个等式;(1)先将(1)中发现的第n个等式的规律1n(n+1)=1n−1n+1代入再计算即可;(2)先类比(1)的规律得出1n(n+2)=12(1n−1n+1)再计算即可.(3)根据(2)的规律即可得出结论.答案详解:解:∵第一个式子:11×2=1−12;第二个式子:12×3=12−13;第三个式字:13×4=13−14… ∴14×5=14−1512005×2006=12005−12006.所以答案是:14−1512005−12006;(1)由以上得出的规律可知 第n 个等式的规律 1n(n+1)=1n−1n+1;(2)原式=12(1−13+13−14⋯+12003−12005) =12(1−12005) =10022005(3)由(2)可知n k 均为正整数1k⋅(1n−1n+k).14.类比推理是一种重要的推理方法 根据两种事物在某些特征上相似 得出它们在其他特征上也可能相似的结论.阅读感知:在异分母的分数的加减法中 往往先化作同分母 然后分子相加减 例如:12−13=32×3−23×2=3−26=16我们将上述计算过程倒过来 得到16=12×3=12−13这一恒等变形过程在数学中叫做裂项.类似地 对于14×6可以用裂项的方法变形为:14×6=12(14−16).类比上述方法 解决以下问题.【类比探究】(1)猜想并写出:1n×(n+1)=1n −1n+1; 【理解运用】(2)类比裂项的方法 计算:11×2+12×3+13×4+⋯+199×100;【迁移应用】(3)探究并计算:1−1×3+1−3×5+1−5×7+1−7×9+⋯+1−2021×2023.试题分析:(1)根据题目中的例子 可以写出相应的猜想; (2)根据式子的特点 采用裂项抵消法可以解答本题; (3)将题目中的式子变形 然后裂项抵消即可解答本题. 答案详解:解:(1)1n×(n+1)=1n−1n+1所以答案是:1n−1n+1;(2)由(1)易得:(1−12)+(12−13)+(13−14)+⋯+(199−1100) =1−12+12−13+13−14+⋯+199−1100 =1−1100 =99100; (3)1−1×3+1−3×5+1−5×7+1−7×9+...+1−2021×2023=−12×(21×3+23×5+25×7+27×9+⋯+22021×2023)=−12×(1−13+13−15+15−17+17−19+⋯+12021−12023) =−12×(1−12023) =−12×20222023=−10112023. 15.“转化”是一种解决问题的常用策略 有时画图可以帮助我们找到转化的方法.例如借助图① 可以把算式1+3+5+7+9+11转化为62=36.请你观察图② 可以把算式12+14+18+116+132+164+1128转化为127128.试题分析:根据图形观察发现 把正方形看作单位“1” 即算式可以转化成1−1128 再求出答案即可.答案详解:解:12+14+18+116+132+164+1128=1−1128=127128所以答案是:127128.16.观察下列等式:第1个等式:a 1=11×2=1−12; 第2个等式:a 2=12×3=12−13; 第3个等式:a 3=13×4=13−14; 第4个等式:a 4=14×5=14−15⋯ 请解答下列问题:(1)按以上规律写出:第n 个等式a n = 1n(n+1)=1n−1n+1(n 为正整数);(2)求a 1+a 2+a 3+a 4+…+a 100的值; (3)探究计算:11×4+14×7+17×10+⋯+12020×2023.试题分析:(1)对所给的等式进行分析 不难总结出其规律; (2)利用所给的规律进行求解即可;(3)仿照所给的等式 对各项进行拆项进行 再运算即可. 答案详解:解:(1)∵第1个等式:a 1=11×2=1−12; 第2个等式:a 2=12×3=12−13; 第3个等式:a 3=13×4=13−14; 第4个等式:a 4=14×5=14−15; …∴第n 个等式:a n =1n(n+1)=1n −1n+1 所以答案是:1n(n+1)=1n−1n+1;(2)a 1+a 2+a 3+a 4+…+a 100=11×2+12×3+13×4+14×5+⋯+1100×101 =1−12+12−13+13−14+14−15+⋯+1100−1101=1−1101 =100101; (3)11×4+14×7+17×10+⋯+12020×2023 =13×(1−14+14−17+17−110+⋯+12020−12023) =13×(1−12023)=13×20222023=6742023.五.阅读类--化归思想17.阅读下列材料:计算5÷(13−14+112)解法一:原式=5÷13−5÷14+5÷112 =5×3﹣5×4+5×12=55解法二:原式=5÷(412−312+112) =5÷16=5×6=30解法三:原式的倒数=(13−14+112)÷5=(13−14+112)×15 =13×15−14×15+112×15=130∴原式=30(1)上述的三种解法中有错误的解法 你认为解法 一 是错误的(2)通过上述解题过程 请你根据解法三计算(−142)÷(16−314−23+37)试题分析:(1)根据运算律即可判断;(2)类比解法三计算可得.答案详解:解:(1)由于除法没有分配律所以解法一是错误的所以答案是:一;(2)原式的倒数=(16−314−23+37)÷(−142) =(16−314−23+37)×(﹣42) =16×(﹣42)−314×(﹣42)−23×(﹣42)+37×(﹣42) =﹣7+9+28﹣18=12∴原式=112.18.先阅读下面材料 再完成任务:【材料】下列等式:4−35=4×35+1 7−34=7×34+1 … 具有a ﹣b =ab +1的结构特征 我们把满足这一特征的一对有理数称为“共生有理数对” 记作(a b ).例如:(4 35)、(7 34)都是“共生有理数对”.【任务】(1)在两个数对(﹣2 1)、(2 13)中 “共生有理数对”是 (2 13) ; (2)请再写出一对“共生有理数对” (−12 ﹣3) ;(要求:不与题目中已有的“共生有理数对”重复)(3)若(x ﹣2)是“共生有理数对” 求x 的值;(4)若(m n )是“共生有理数对” 判断(﹣n ﹣m ) 是 “共生有理数对”.(填“是”或“不是”)试题分析:(1)读懂题意 根据新定义判断即可;(2)随意给出一个数 设另一个数为x 代入新定义 求出另一个数即可;(3)根据新定义列等式求出x的值;(4)第一对是“共生有理数对”列等式通过等式判断第二对数是否符合新定义.答案详解:解:(1)(﹣2 1)∵(﹣2)﹣1=﹣3 (﹣2)×1+1=﹣1 ﹣3=﹣1∴(﹣2 1)不是“共生有理数对”;(2 1 3)∵2−13=532×13+1=5353=53∴(2 13)是“共生有理数对”;所以答案是:(2 13);(2)设一对“共生有理数对”为(x﹣3)∴x﹣(﹣3)=﹣3x+1∴x=−1 2∴这一对“共生有理数对”为(−12﹣3)所以答案是:(−12﹣3);(3)∵(x﹣2)是“共生有理数对”∴x﹣(﹣2)=﹣2x+1∴x=−1 3;(4)∵(m n)是“共生有理数对”∴m﹣n=mn+1∴﹣n﹣(﹣m)=(﹣n)(﹣m)+1∴(﹣n﹣m)是“共生有理数对”所以答案是:是.19.阅读材料解决下列问题:【阅读材料】求n个相同因数a的积的运算叫做乘方记为a n.若10n=m(n>0 m≠1 m>0)则n叫做以10为底m的对数记作:lgm=n.如:104=10000 此时4叫做以10为底10000的对数记作:lg10000=lg104=4 (规定lg10=1).【解决问题】(1)计算:lg100=2;lg1000=3;lg100000=5;lg1020=20;(2)计算:lg10+lg100+lg1000+⋅⋅⋅+lg1010;【拓展应用】(3)由(1)知:lg100+lg1000与lg100000之间的数量关系为:lg100+lg1000=lg100000;猜想:lga+lgb=lgab(a>0 b>0).试题分析:(1)应用题目所给的计算方法进行计算即可得出答案;(2)应用题目所给的计算方法和有理数乘方法则进行计算即可得出答案;(3)应用题目所给的计算方法进行计算即可得出答案.答案详解:解:(1)根据题意可得lg100=2;lg1000=3;lg100000=5;lg1020=20;所以答案是:2 3 5 20;(2)lg10+lg100+lg1000+⋅⋅⋅+lg1010=1+2+3+……+10=55;(3)∵lg100+lg1000=2+3=5lg100000=5∴lg100+lg1000=lg100000;所以答案是:lg100+lg1000=lg100000;lga+lgb=lgab.所以答案是:lgab.20.阅读下列各式:(a•b)2=a2b2(a•b)3=a3b3(a•b)4=a4b4…回答下列三个问题:(1)验证:(2×12)100=12100×(12)100=1;(2)通过上述验证归纳得出:(a•b)n=a n b n;(abc)n=a n b n c n.(3)请应用上述性质计算:(﹣0.125)2017×22016×42015.试题分析:(1)先算括号内的乘法再算乘方;先乘方再算乘法;②根据有理数乘方的定义求出即可;③根据同底数幂的乘法计算再根据积的乘方计算即可得出答案.答案详解:解:(1)(2×12)100=1 2100×(12)100=1;②(a•b)n=a n b n(abc)n=a n b n c n③原式=(﹣0.125)2015×22015×42015×[(﹣0.125)×(﹣0.125)×2]=(﹣0.125×2×4)2015×1 32=(﹣1)2015×1 32=﹣1×1 32=−132.所以答案是:1 1;a n b n a n b n c n.。
人教版七年级数学上册《有理数的混合运算》专题训练-附参考答案
人教版七年级数学上册《有理数的混合运算》专题训练-附参考答案【解题技巧】主要是要注意混合运算的运算顺序。
一级运算:加减法;二级运算:乘除法;三级运算:乘方运算。
规定:先算高级运算再算低级运算同级运算从左到右依次进行。
(1)有括号先算括号里面的运算按小括号、中括号、大括号依次进行;(2)先乘方、再乘除、最后加减;(3)同级运算按从左往右依次进行。
当然在准守上述计算原则的前提下也需要灵活使用运算律以简化运算。
1.(2022·广西崇左·七年级期末)计算:(1)3312424⎛⎫⎛⎫-⨯÷-⎪ ⎪⎝⎭⎝⎭;(2)2014281|5|(4)(8)5⎛⎫-+-⨯---÷-⎪⎝⎭.【答案】(1)12(2)-7【分析】(1)原式从左到右依次计算即可求出值;(2)原式先算乘方及绝对值再算乘除最后算加减即可求出值.(1)原式9489⎛⎫⎛⎫=-⨯-⎪ ⎪⎝⎭⎝⎭12 =;(2)原式=﹣1+5×(85-)﹣16÷(﹣8)=﹣1﹣8+2=﹣7.【点睛】本题考查了有理数的混合运算熟练掌握运算法则是解本题的关键.2.(2022·内蒙古·七年级期末)计算:(1)31125(25)25424⎛⎫⨯--⨯+⨯-⎪⎝⎭(2)4211(1)3[2(3)]2---÷⨯--【答案】(1)25(2)1 6【分析】(1)根据乘法分配律、有理数乘法法则、减法法则和加法法则计算即可;(2)根据有理数的运算顺序和各个运算法则计算即可.(1)解:原式311252525424⎛⎫=⨯+⨯++- ⎪⎝⎭31125424⎛⎫=⨯+- ⎪⎝⎭251=⨯25=;(2)解:原式111(29)23=--⨯⨯- 11(7)6=--⨯- 761=-+ 16=. 【点睛】此题考查了有理数的混合运算.解题的关键是掌握有理数的混合运算的运算顺序和每一步的运算法则.3.(2022·山东东营·期末)计算: (1)11311338⎛⎫⎛⎫+÷-⨯ ⎪ ⎪⎝⎭⎝⎭; (2)42111(2)|25|623⎛⎫-+-+--⨯- ⎪⎝⎭ 【答案】(1)34- (2)5 【分析】(1)原式先算括号内的 再算乘除;(2)原式先乘方 再中计算括号内及绝对值内的减法 再计算乘法 最后计算加减即可求出值.(1)解:11311338⎛⎫⎛⎫+÷-⨯ ⎪ ⎪⎝⎭⎝⎭ 433328⎛⎫=⨯-⨯ ⎪⎝⎭ 34=- (2)解:42111(2)|25|623⎛⎫-+-+--⨯- ⎪⎝⎭ 111436623=-++-⨯+⨯ 14332=-++-+5=【点睛】此题考查了有理数的混合运算 熟练掌握运算法则是解本题的关键.4.(2022·安徽阜阳·七年级期末)计算:(1)()221113232⎛⎫⎡⎤---÷⨯-- ⎪⎣⎦⎝⎭. (2)2221132() 1.532⎡⎤-⨯-+÷--⎢⎥⎣⎦ 【答案】(1)16(2)-2312 【分析】先计算乘方及小括号内的运算 再计算乘法 最后计算加减法.【详解】(1)解:()221113232⎛⎫⎡⎤---÷⨯-- ⎪⎣⎦⎝⎭=()111723--⨯⨯- =716-+ =16. (2)解:2221132() 1.532⎡⎤-⨯-+÷--⎢⎥⎣⎦ 19(924)34=-⨯-+⨯- 19(1)34=-⨯-- 1934=- =-2312. 【点睛】此题考查了含乘方的有理数的混合运算 正确掌握有理数的运算法则及运算顺序是解题的关键. 5.(2022·湖南娄底·七年级期末)计算:(1)()()220211110.5233⎡⎤---⨯⨯--⎣⎦; (2)()224212512432⎡⎤⎛⎫⎡⎤-÷--+-⨯⎢⎥ ⎪⎣⎦⎝⎭⎢⎥⎣⎦【答案】(1)16(2)6 【分析】(1)原式先计算乘方运算 再计算乘除运算 最后算加减运算即可得到结果.(2)先算乘方 再算乘除 最后算减法;同级运算 应按从左到右的顺序进行计算.【详解】(1)解:原式()117112912366⎛⎫=--⨯⨯-=---= ⎪⎝⎭ (2)解:()224212512432⎡⎤⎛⎫⎡⎤-÷--+-⨯⎢⎥ ⎪⎣⎦⎝⎭⎢⎥⎣⎦ ()2116512434⎛⎫=-÷-+-⨯ ⎪⎝⎭ 21164242434⎛⎫=-÷+⨯-⨯ ⎪⎝⎭410=-+6=【点睛】本题考查的是含乘方的有理数的混合运算 掌握“含乘方的有理数的混合运算的运算顺序”是解本题的关键 运算顺序为:先乘方 再乘除 最后算加减 有括号先计算括号内的运算.6.(2022·天津北辰·七年级期末)(1)24(3)5(2)6⨯--⨯-+;(2)()31162(4)8⎛⎫÷---⨯- ⎪⎝⎭. 【答案】(1)52;(2)-52. 【分析】(1)先算乘方 然后计算乘除 最后算加减即可;(2)先算乘方 然后计算乘除 最后算加减即可.【详解】解:(1)24(3)5(2)6⨯--⨯-+=4×9+10+6=52;(2)()31162(4)8⎛⎫÷---⨯- ⎪⎝⎭=-16÷8-12=-2-12=-52. 【点睛】本题考查了有理数的混合运算 有理数混合运算顺序:先算乘方 再算乘除 最后算加减;同级运算 应按从左到右的顺序进行计算.7.(2022·广西百色·七年级期末)计算:(1)()()22241322⎡⎤---⨯÷⎣⎦.(2)33(2)30(5)34⎛⎫-⨯-+÷--- ⎪⎝⎭. 【答案】(1)8(2)-2【分析】根据有理数的混合运算法则计算即可;含乘方的有理数混合运算法则:1、先乘方 再乘除 最后加减;2、同级运算 从左往右进行;3、如果有括号 先做括号内的运算 按小括号、中括号、大括号依次进行.【详解】(2)解:原式()161924=--⨯÷⎡⎤⎣⎦()16824=--⨯÷⎡⎤⎣⎦8=.解:原式()()51411=÷--+⨯-()551=÷--11=--2=-.【点睛】本题考查了有理数的混合运算 熟练掌握运算法则是解题的关键.8.(2022·河南周口·七年级期末)计算: (1)2022211(1)(1)(32)23-+-⨯+-+ (2)23220213(4)(2)(2)(1)-⨯-+-÷--- 【答案】(1)556- (2)35 【分析】(1)原式先计算乘方运算及括号内的运算 再计算乘除运算 最后计算加减运算即可求出值;(2)先计算乘方运算 再计算乘除运算 最后计算加减运算即可求出值.(1)解:原式=111(92)23+⨯+-+ =1176+- =556-; (2)解:原式=9(4)(8)4(1)-⨯-+-÷--=3621-+=35【点睛】此题考查了有理数的混合运算 熟练掌握运算法则是解本题的关键.9.(2022·江苏扬州·七年级期末)计算: (1)3(6)( 1.55) 3.25(15.45)4---+++-; (2)()()22351222125⎛⎫⎛⎫-÷-⨯-+- ⎪ ⎪⎝⎭⎝⎭ 【答案】(1)-7 (2)98- 【分析】(1)先算同分母分数 再算加减法即可求解;(2)先算乘方 再算乘除 最后算加法;同级运算 应按从左到右的顺序进行计算.(1)解:3(6)( 1.55) 3.25(15.45)4---+++-(6.75 3.25)( 1.5515.45)=++--1017=-7=-;(2)解:()()22351222125⎛⎫⎛⎫-÷-⨯-+- ⎪ ⎪⎝⎭⎝⎭ 254(8)1425=÷-⨯- 2514()14825=⨯-⨯- 118=-- 98=-. 【点睛】本题考查了有理数的混合运算 解题的关键是掌握有理数混合运算顺序:先算乘方 再算乘除 最后算加减;同级运算 应按从左到右的顺序进行计算;如果有括号 要先做括号内的运算.进行有理数的混合运算时 注意各个运算律的运用 使运算过程得到简化.19.(2022·河南南阳·七年级期末)计算(1)243(6)()94-⨯-+; (2)33116(2)()(4) 3.52÷---⨯-+.【答案】(1)11 (2)1【分析】(1)先计算乘方 再利用乘法分配律计算即可;(2)先计算乘方 再计算乘除 最后计算加减即可.(1)解:原式4336()94=⨯-+4336()3694=⨯-+⨯ 1627=-+11=;(2)解:原式116(8)()(4) 3.58=÷---⨯-+20.5 3.5=--+ 1=.【点睛】本题主要考查有理数的混合运算 解题的关键是掌握有理数的混合运算顺序和运算法则.11.(2022·河北邯郸·七年级期末)计算:()()20212132311234⎛⎫-+⨯---⨯- ⎪⎝⎭. 【答案】12-【详解】解:原式()44311213123=-⨯-++⨯⨯- 434912=--+-=-.【点睛】本题考查了有理数的混合运算 熟练掌握混合运算的顺序是解答本题的关键.混合运算的顺序是先算乘方 再算乘除 最后算加减;同级运算 按从左到右的顺序计算.如果有括号 先算括号里面的 并按小括号、中括号、大括号的顺序进行.有时也可以根据运算定律改变运算的顺序.12.(2022·浙江杭州市·七年级期末)计算:(1). (2). (3) (4) 【答案】(1);(2);(3);(4) 【分析】(1)直接约分计算即可;(2)将除法转化为乘法 再约分计算;(3)先算乘方和括号 再算乘除 最后算加减;(4)先算乘方 再算乘除 最后算加减.【详解】解:(1) =; (2)= ==; (3) = 71(5)27⎛⎫-⨯-⨯ ⎪⎝⎭15(0.25)63⎛⎫÷-÷- ⎪⎝⎭231213(2)5⎛⎫---⨯÷- ⎪⎝⎭223(0.25)(8)952⎛⎫⎛⎫-⨯-⨯-+÷- ⎪ ⎪⎝⎭⎝⎭52257920-16571(5)27⎛⎫-⨯-⨯ ⎪⎝⎭5215(0.25)63⎛⎫÷-÷- ⎪⎝⎭131654⎛⎫⎛⎫⨯-÷- ⎪ ⎪⎝⎭⎝⎭()13465⎛⎫⨯-⨯- ⎪⎝⎭25231213(2)5⎛⎫---⨯÷- ⎪⎝⎭31(8)45⎛⎫---÷- ⎪⎝⎭= = =; (4) = = = = 【点睛】本题考查了有理数的混合运算 解题的关键是掌握运算法则和运算顺序.13.(2022·浙江杭州市·七年级期末)计算:(1). (2). (3) (4) 【答案】(1);(2);(3);(4) 【分析】(1)直接约分计算即可;(2)将除法转化为乘法 再约分计算;(3)先算乘方和括号 再算乘除 最后算加减;(4)先算乘方 再算乘除 最后算加减.【详解】解:(1) =; (2)= 14258⎛⎫--⨯- ⎪⎝⎭2410-+7920-223(0.25)(8)952⎛⎫⎛⎫-⨯-⨯-+÷- ⎪ ⎪⎝⎭⎝⎭129(8)9454⎛⎫-⨯-⨯-+÷ ⎪⎝⎭12489459-⨯⨯+⨯445-+16571(5)27⎛⎫-⨯-⨯ ⎪⎝⎭15(0.25)63⎛⎫÷-÷- ⎪⎝⎭231213(2)5⎛⎫---⨯÷- ⎪⎝⎭223(0.25)(8)952⎛⎫⎛⎫-⨯-⨯-+÷- ⎪ ⎪⎝⎭⎝⎭52257920-16571(5)27⎛⎫-⨯-⨯ ⎪⎝⎭5215(0.25)63⎛⎫÷-÷- ⎪⎝⎭131654⎛⎫⎛⎫⨯-÷- ⎪ ⎪⎝⎭⎝⎭==; (3) = = = =; (4) = =12489459-⨯⨯+⨯ =445-+ =165 【点睛】本题考查了有理数的混合运算 解题的关键是掌握运算法则和运算顺序.14.(2022·浙江七年级期末)计算:(1). (2). (3). (4). 【答案】(1)3;(2)1;(3)927;(4)1【分析】(1)先化简符号和括号 再计算加减法;(2)将除法转化为乘法 再约分计算;(3)先算括号内的 再算乘除 最后算加减;(4)先算乘方和括号 再算乘除 最后算加减. ()13465⎛⎫⨯-⨯- ⎪⎝⎭25231213(2)5⎛⎫---⨯÷- ⎪⎝⎭31(8)45⎛⎫---÷- ⎪⎝⎭14258⎛⎫--⨯- ⎪⎝⎭2410-+7920-223(0.25)(8)952⎛⎫⎛⎫-⨯-⨯-+÷- ⎪ ⎪⎝⎭⎝⎭129(8)9454⎛⎫-⨯-⨯-+÷ ⎪⎝⎭11552( 4.8)4566⎡⎤⎛⎫-+--- ⎪⎢⎥⎝⎭⎣⎦94(81)(16)49-÷⨯÷-11304(3)1556⎛⎫÷--⨯-+ ⎪⎝⎭422321(3)(15)35⎛⎫⎡⎤-÷--+-⨯- ⎪⎣⎦⎝⎭【详解】解:(1) = = ==3;(2) = =1;(3) = ==927;(4) = ==1 【点睛】本题考查了有理数的混合运算 解题的关键是掌握运算法则和运算顺序. 28.(2021·湖北恩施·七年级期末)计算下列各题:(1)2(35)(3)(13)--+-⨯-; (2)32422()93-÷⨯-. 【答案】(1)-16 (2)-8【分析】(1)先算括号中的减法 再算乘方 乘法 以及加减即可得到结果; (2)先算乘方 再算乘除即可得到结果.(1)解:原式=359(2)-++⨯-11552( 4.8)4566⎡⎤⎛⎫-+--- ⎪⎢⎥⎝⎭⎣⎦11552 4.84566⎛⎫--+ ⎪⎝⎭145154425566+--107-94(81)(16)49-÷⨯÷-441819916⨯⨯⨯11304(3)1556⎛⎫÷--⨯-+⎪⎝⎭301215301÷++9001215++422321(3)(15)35⎛⎫⎡⎤-÷--+-⨯- ⎪⎣⎦⎝⎭()23168(15)(15)35-÷-+⨯--⨯-2109-+218=- =16-;(2)解:原式=94849-⨯⨯=8-.【点睛】此题考查了有理数的混合运算 熟练掌握运算法则是解本题的关键. 15.(2022·河南驻马店·七年级期末)计算:(1)()22112 2.25554⎛⎫---+-- ⎪⎝⎭; (2)2220212111132322⎛⎫--⨯--+÷⨯ ⎪⎝⎭.【答案】(1)1-;(2)54-【分析】(1)先化简绝对值、去括号 再计算加减法即可得;(2)先计算乘方、除法 再化简绝对值、乘法 然后计算加减法即可得. 【详解】 解:(1)原式2 2.2275.2555--+=- 7255=- 1=-;(2)原式4143111322=--⨯-+⨯3134344=--⨯+-4331344=--⨯+3114=--+ 54=-.【点睛】本题考查了含乘方的有理数混合运算 熟练掌握运算法则是解题关键. 16.(2022·山东青岛·七年级期末)计算: (1)123()3035--+; (2)431116(2)()48-+÷---⨯. 【答案】(1)110; (2)52-【分析】(1)原式利用减法法则变形 计算即可得到结果; (2)原式先算乘方 再算乘除 最后算加减即可得到结果. (1) 原式=1233035+- =12018303030+- =1201830+- =330=110; (2)原式=()1116848⎛⎫-+÷---⨯ ⎪⎝⎭=1122--+=52-.【点睛】本题考查了有理数的加、减、乘、除、乘方的混合运算 正确理解运算顺序并细心计算是解决本题的关键;运算顺序:先乘方、再乘除、后加减 有括号的先算括号里面的. 17.(2022·福建福州·七年级期末)计算: (1)()()()()2356---++-+; (2)()2202241235⎛⎫-+-÷--- ⎪⎝⎭.【答案】(1)0 (2)9-【分析】(1)根据有理数加减混合运算法则进行计算即可; (2)根据有理数的混合运算法则进行计算即可. (1)解:()()()()2356---++-+2356=-++-88=-+0=(2)解:()2202241235⎛⎫-+-÷--- ⎪⎝⎭51434⎛⎫=-+⨯-- ⎪⎝⎭153=--- 9=-【点睛】本题主要考查了有理数的混合运算 熟练掌握有理数混合运算法则 有乘方的先算乘方 再算乘除 最后算加减 有括号的先算小括号里面的 是解题的关键. 18.(2022·湖北孝感·七年级期末)计算:(1)(-5)×(-6)-40+2. (2)(-3)2-|-8|-(1-2×35)÷25.【答案】(1)8- (2)32【分析】(1)先计算有理数的乘法 然后计算加减即可;(2)先计算乘方及绝对值及小括号内的运算 然后计算除法 最后计算加减即可. (1)原式=30-40+2 =-8; (2)原式=9-8-65152⎛⎫-⨯ ⎪⎝⎭=9-8-1552⎛⎫-⨯ ⎪⎝⎭=9-8+12=32. 【点睛】题目主要考查含乘方的有理数的混合运算 绝对值化简 熟练掌握运算法则是解题关键. 19.(2022·山东枣庄·七年级期末)计算(1)22(2)31(0.2)4-+-⨯-÷-+- (2)222172(3)(6)()3-+⨯---÷-【答案】(1)-1 (2)23【分析】(1)先计算乘方 再计算乘除 最后算加减 可得答案;(2)先计算乘方 再计算乘除 最后计算加减 即可得到答案. (1)解:22(2)31(0.2)4-+-⨯-÷-+-4(6)54=-+-++1=-(2)222172(3)(6)()3-+⨯---÷-4929(6)9=-+⨯--⨯491854=-++ 23=【点睛】本题考查的是含乘方的有理数的混合运算 掌握“含乘方的有理数的混合运算的运算顺序”是解本题的关键.20.(2022·湖北荆州·七年级期末)计算:(1)﹣14﹣5+30﹣2 (2)﹣32÷(﹣3)2+3×(﹣2)+|﹣4| 【答案】(1)9 (2)-3【分析】(1)根据有理数的加减法运算法则计算即可求解; (2)先算乘方 再算乘除 最后算加法求解即可. (1)解:-14-5+30-2 =(-14-5-2)+30 =-21+30 =9; (2)-32÷(-3)2+3×(-2)+|-4| =-9÷9-6+4 =-1-6+4 =-3.【点睛】本题考查了有理数的混合运算 有理数混合运算顺序:先算乘方 再算乘除 最后算加减;同级运算 应按从左到右的顺序进行计算;如果有括号 要先做括号内的运算. 21.(2022·河南驻马店·七年级期末)计算:(1)1|2|4--(34-)+11|1|2--; (2)16+(﹣2)319-⨯(﹣3)2﹣(﹣4)4.【答案】(1)312 (2)-249【分析】(1)先求绝对值 再按有理数加减法法则计算即可; (2)先计算乘方 再计算乘法 最后计算加减即可. (1)解:原式=13121442++-=312; (2)解:原式=16-8-19×9-256=16-8-1-256 =-249.【点睛】本题考查有理数混合运算 求绝对值 熟练掌握有理数运算法则是解题的关键. 22.(2022·四川广元·七年级期末)计算:220221256(4)(1)2⎛⎫---+÷-+-⨯- ⎪⎝⎭.【答案】-6 【详解】解:原式()()41241=--⨯-+-⨯ =()()424---+- =()424-++-6=-.【点睛】此题考查了含乘方的有理数的混合运算 正确掌握有理数混合运算法则是解题的关键. 23.(2022·广西崇左·七年级期末)计算(1)2312130.25343-+-- (2)()22122332⎡⎤-+⨯--÷⎢⎥⎣⎦【答案】(1)-1812 (2)2 (1)解∶原式=-2123-13+334-14= -22+312 =-1812 (2)解:原式=()42932-+⨯-⨯ = -4+2×(9-6) =-4+6 =2【点睛】本题主要考查了有理数的混合运算 熟练掌握有理数混合运算法则是解题的关键. 24.(2022·陕西·西安七年级期中)计算: (1)()()2132----+- (2)22212(32)243⎡⎤⨯+-÷⎣⎦ (3)152(18)369⎛⎫-+⨯- ⎪⎝⎭ (4)3202141(1)(13)82⎛⎫-+-÷⨯ ⎪⎝⎭【答案】(1)6-(2)0(3)5(4)34-【分析】(1)利用有理数加法和减法法则按照从左到右的顺序依次计算;(2)先算乘方 并把带分数化成假分数 再计算乘除 最后计算加减 同时按照先算小括号再算中括号的运算顺序计算即可;(3)利用乘法分配律进行计算即可;(4)先计算乘方 再计算乘除 最后计算加法即可.(1)原式=21326-+--=-; (2)原式=()2934294⎡⎤⨯+-÷⎣⎦ =1122⎛⎫+- ⎪⎝⎭=0;(3)原式=()121829⎛⎫-+⨯- ⎪⎝⎭=()()12181829⎛⎫-⨯-+⨯- ⎪⎝⎭=94- =5;(4)原式=()411288-+-÷⨯=111688-+÷⨯=1128-+⨯=114-+=34-. 【点睛】本题考查有理数的加减乘除及乘方的混合运算 解题关键是牢记运算法则 掌握运算顺序. 25.(2022· 绵阳市·九年级专项)计算:(1)211421337⎛⎫⎛⎫⎛⎫-+-÷- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭; (2)11(3)(3)33⎛⎫⨯-÷-⨯- ⎪⎝⎭;(3)11661510155⎛⎫⎛⎫--÷- ⎪ ⎪⎝⎭⎝⎭; (4)67324(6) 3.5784⎛⎫⎛⎫-÷--÷⨯- ⎪ ⎪⎝⎭⎝⎭;(5)111532⎛⎫÷-- ⎪⎝⎭; (6)221782 1.52133699⎡⎤⎛⎫-⨯÷-÷ ⎪⎢⎥⎝⎭⎣⎦;(7)21112 1.48 1.410 1.4333⎛⎫⎛⎫⎛⎫-÷--÷++÷ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭; (8)211113170.12511131628⎡⎤⎛⎫⎛⎫⎛⎫⨯⨯-+÷-÷-- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦.【答案】(1)218-;(2)9-;(3)712-;(4)177;(5)18-;(6)22-;(7)307;(8)16. 【分析】(1)先计算除法 再计算加法 两个有理数相除 同号得正;(2)乘除法 同级运算 从左到右 依次将除法转化为乘法 先确定符号 再将数值相乘; (3)先将除法转化为乘法 再利用乘法分配律解题 注意符号;(4)先算乘除 再算减法 结合加法结合律解题;(5)先算小括号 再算除法;(6)先算小括号 再算中括号;(7)先将除法转化为乘法 再利用乘法分配律的逆运算解题; (8)先算小括号 再算中括号 结合乘法交换律解题. 【详解】解:(1)211421337⎛⎫⎛⎫⎛⎫-+-÷- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭1477833⎛⎫⎛⎫⎛⎫=-+-⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭2414493=-+24218=-; (2)11(3)(3)33⎛⎫⨯-÷-⨯- ⎪⎝⎭()1=(3)3(3)3⨯-⨯-⨯- =9;(3)11661510155⎛⎫⎛⎫--÷- ⎪ ⎪⎝⎭⎝⎭5165101566⎛⎫⎛⎫=--⨯- ⎪ ⎪⎝⎭⎝⎭111123=-++ 712=-; (4)67324(6) 3.5784⎛⎫⎛⎫-÷--÷⨯- ⎪ ⎪⎝⎭⎝⎭617324()762874⎛⎫⎛⎫=--⨯--⨯⨯- ⎪ ⎪⎝⎭⎝⎭1437=++177=; (5)111532⎛⎫÷-- ⎪⎝⎭6155⎛⎫=÷- ⎪⎝⎭5156⎛⎫=⨯- ⎪⎝⎭18=-;(6)221782 1.52133699⎡⎤⎛⎫-⨯÷-÷ ⎪⎢⎥⎝⎭⎣⎦2378261323998⎡⎤⎛⎫=-⨯⨯-÷ ⎪⎢⎥⎝⎭⎣⎦2782241399⎡⎤⎛⎫=--÷ ⎪⎢⎥⎝⎭⎣⎦282223992⎡⎤⎛⎫=-÷ ⎪⎢⎥⎝⎭⎣⎦ 982094⎛⎫=-+⨯ ⎪⎝⎭22442-=22=-;(7)21112 1.48 1.410 1.4333⎛⎫⎛⎫⎛⎫-÷--÷++÷ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭2115128103337⎡⎤⎛⎫⎛⎫⎛⎫=---++⨯ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦2115128103337⎡⎤=-++⨯⎢⎥⎣⎦567=⨯307=; (8)211113170.12511131628⎡⎤⎛⎫⎛⎫⎛⎫⨯⨯-+÷-÷-- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦162113171713388⎡⎤⎛⎫⎛⎫⎛⎫=⨯⨯-⨯-+÷ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦2113(16)33881⎡⎤⎛⎫⎛⎫=⨯-⨯-+⨯ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦()332286⎛⎫=-⨯ ⎪⎝⎭863=⨯16=.【点睛】本题考查有理数的四则混合运算 涉及加法结合律、乘法分配律等知识 是重要考点 掌握相关知识是解题关键.26.(2022·娄底市第二中学七年级期中)请你先认真阅读材料: 计算 解:原式的倒数是=12112()()3031065-÷-+-21121-+()3106530⎛⎫-÷- ⎪⎝⎭2112()(30)31065-+-⨯-=×(﹣30)﹣×(﹣30)+×(﹣30)﹣×(﹣30)=﹣20﹣(﹣3)+(﹣5)﹣(﹣12) =﹣20+3﹣5+12 =﹣10 故原式等于﹣再根据你对所提供材料的理解 选择合适的方法计算:. 【答案】. 【分析】根据题意 先计算出的倒数的结果 再算出原式结果即可.【详解】解:原式的倒数是:故原式. 【点睛】本题主要考查了有理数的除法 读懂题意 并能根据题意解答题目是解决问题的关键. 27.(2022·黑龙江绥化·期中)计算:(1)()()()6.5 3.3 2.5 4.7-+----+; (2)()31612146⎛⎫⨯-⨯-⨯ ⎪⎝⎭; (3)22132412⎡⎤⎛⎫-+⨯-÷-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦(4)()2449525⨯- (5)41399911899999918555⎛⎫⨯+⨯--⨯ ⎪⎝⎭【答案】(1)12- (2)63 (3)9- (4)24954-(5)99900【分析】根据有理数的加减乘除运算法则求解即可. (1)解:()()()6.5 3.3 2.5 4.7-+----+23110162511011322()()4261437-÷-+-114-113224261437⎛⎫⎛⎫-÷-+- ⎪ ⎪⎝⎭⎝⎭132216143742⎛⎫⎛⎫-+-÷- ⎪ ⎪⎝⎭⎝⎭132216143742⎛⎫⎛⎫-+-÷-⎪ ⎪⎝⎭⎝⎭()132********⎛⎫=-+-⨯- ⎪⎝⎭13224242424261437⎛⎫=-⨯-⨯+⨯-⨯ ⎪⎝⎭()792812=--+-14=-114=-6.5 3.3 2.5 4.7=--+-()6.5 3.3 4.7 2.5=-+++14.5 2.5=-+12=-;(2)解:()31612146⎛⎫⨯-⨯-⨯ ⎪⎝⎭ 3761246=⨯⨯⨯ 63=;(3)解:22132412⎡⎤⎛⎫-+⨯-÷-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦ ()9244=-+⨯-9=-;(4)解:()2449525⨯- ()2449525⎛⎫=+⨯- ⎪⎝⎭ 24495525=-⨯-⨯ 242455=-- 42495=-; (5)解:41399911899999918555⎛⎫⨯+⨯--⨯ ⎪⎝⎭ 41399911818555⎛⎫=⨯+--- ⎪⎝⎭ 999100=⨯99900=.【点睛】本题考查有理数的加减乘除混合运算 熟练掌握相关运算法则及运算顺序是解决问题的关键. 28.(2022·河北邯郸·七年级期中)能简算的要简算(1)122 6.6 2.5325⨯+⨯ (2)44444999999999955555++++ (3)16533241787⎡⎤⎛⎫÷⨯-+ ⎪⎢⎥⎝⎭⎣⎦ (4)513.21 3.62812⎡⎤⎛⎫⨯-+⨯ ⎪⎢⎥⎝⎭⎣⎦【答案】(1)25;(2)11110;(3)16;(4)10 【分析】(1)先把小数化为分数 然后根据乘法的结合律进行计算求解即可;(2)先把分数部分和整数部分分别相加然后得到()()()()19199199919999+++++++由此求解即可;(3)直接根据分数的混合计算法则进行求解即可;(4)先把小数化为分数 然后根据分数的混合计算法则进行求解即可.【详解】解:(1)131226232525⨯+⨯132=263255⎛⎫⨯+ ⎪⎝⎭1=2102⨯=25;(2)44444999999999955555++++()44444=999999999955555⎛⎫++++++++ ⎪⎝⎭=49999999999++++()()()()=19199199919999+++++++=10100100010000+++=11110;(3)16533241787⎡⎤⎛⎫÷⨯-+ ⎪⎢⎥⎝⎭⎣⎦1633=977⎡⎤÷+⎢⎥⎣⎦1696=77÷167=796⨯1=6;(4)513.21 3.62812⎡⎤⎛⎫⨯-+⨯ ⎪⎢⎥⎝⎭⎣⎦1631825=58512⎛⎫⨯+⨯ ⎪⎝⎭61825=5512⎛⎫+⨯ ⎪⎝⎭2425=512⨯ =10.【点睛】本题主要考查了分数与小数的混合计算 分数的混合计算 解题的关键在于能够熟练掌握相关计算法则.29.(2022·浙江七年级期中)计算(1) (2) (3) (4) (5) (6) (7) (8) 【答案】(1);(2);(3)-8;(4);(5)8;(6);(7)161;(8) 【分析】根据有理数的混合运算法则分别计算.【详解】解:(1) = = =; (2) = = 3233(10)43434⎛⎫⎛⎫÷-⨯-÷-- ⎪ ⎪⎝⎭⎝⎭()22012201121(0.25)4522--⨯+-÷-1111864126⎛⎫-⨯-++÷ ⎪⎝⎭()2222114(32)333⎡⎤⎛⎫⎛⎫-÷---⨯-+-⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦22222411.35 1.057.7393⎛⎫⎛⎫⎛⎫⨯-+⨯--⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭2432151|2|(3)(2)62⎛⎫⎡⎤-+⨯-----÷- ⎪⎣⎦⎝⎭222311513543⎡⎤⎛⎫⎛⎫⎛⎫-⨯÷---÷-+⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦111112123123100+++++++++++13-174-49613-2001013233(10)43434⎛⎫⎛⎫÷-⨯-÷-- ⎪ ⎪⎝⎭⎝⎭3112123124451034⎛⎫⎛⎫⎛⎫⨯-⨯-÷-- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭110441015153-⨯⨯⨯13-()22012201121(0.25)4522--⨯+-÷-()2012220111422554⎛⎫--⨯+-÷- ⎪⎝⎭2012201151424254⎛⎫-⨯-⨯⎪⎝⎭= =; (3) = = ==-8;(4) = = ==; (5) = = = =8;(6) 2011411444⎛⎫-⨯⨯- ⎪⎝⎭174-1111864126⎛⎫-⨯-++÷ ⎪⎝⎭111866412⎛⎫⨯--⨯ ⎪⎝⎭1114848486412⨯-⨯-⨯8124--()2222114(32)333⎡⎤⎛⎫⎛⎫-÷---⨯-+-⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦()91116(32)349⎡⎤-÷--⨯--⎢⎥⎣⎦111423⎛⎫--- ⎪⎝⎭12323+49622222411.35 1.057.7393⎛⎫⎛⎫⎛⎫⨯-+⨯--⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭44411.35 1.057.7999⨯-⨯+⨯()411.35 1.057.79-+⨯4189⨯2432151|2|(3)(2)62⎛⎫⎡⎤-+⨯-----÷- ⎪⎣⎦⎝⎭= = = =; (7) = = = =160+1=161;(8) == = = = 【点睛】本题考查了有理数的混合运算 解题的关键是掌握运算法则和运算顺序 以及一些常用的简便运算方法.30.(2022·河北邯郸·二模)淇淇在计算:2022311(1)(2)623⎛⎫---+÷- ⎪⎝⎭时 步骤如下: 解:原式()11=202266623---+÷-÷①=202261218-++-① ()5112246274-+⨯+-⨯14125625-+⨯⨯213-+13-222311513543⎡⎤⎛⎫⎛⎫⎛⎫-⨯÷---÷-+⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦3531345254⎛⎫⨯⨯+⨯+ ⎪⎝⎭35141254⎛⎫⨯++⎪⎝⎭511284⨯+111112123123100+++++++++++()()()11111221331100100222+++++⨯+⨯+⨯2222122334100101++++⨯⨯⨯⨯11112122334100101⎛⎫⨯++++ ⎪⨯⨯⨯⨯⎝⎭11111112122334100101⎛⎫⨯-+-+-++- ⎪⎝⎭200101=2048-①(1)淇淇的计算过程中开始出现错误的步骤是________;(填序号)(2)请给出正确的解题过程.【答案】(1)①; (2)见解析.【分析】(1)根据有理数的运算法则可知从①计算错误;(2)根据有理数的运算法则计算即可.(1)解:由题意可知:()20223111(1)(2)6=186236⎛⎫---+÷---+÷ ⎪⎝⎭; 故开始出现错误的步骤是①(2)解:2022311(1)(2)623⎛⎫---+÷- ⎪⎝⎭()1=1866--+÷ =1836++=45.【点睛】本题考查含乘方的有理数的运算 解题的关键是掌握运算法则并能够正确计算.。
人教版七年级上册数学期末专题训练:一元一次方程应用题-方案问题
人教版七年级上册数学期末专题训练:一元一次方程应用题-方案问题1.进入冬季后,某健身房推出两种健身付费方式,方式一:先购买会员证,每张会员证100元,只限本人冬季使用,凭证健身每次再付费5元;方式二:不购买会员证,每次健身付费9元.若王强计划今年冬季健身的总费用为270元,选择哪种付费方式,他健身的次数比较多?请应用方程解决问题.2.2020年双“十一”期间,天猫商场某书店制定了促销方案:若一次性购书超过200元,其中200元按九五折优惠,超过200元的部分按八折优惠.(1)设一次性购买的书箱原价是a元,当a超过200时,实际付款为_________元;(用含a的代数式表示,并化简)(2)若小明购书时一次性付款270元,则所购书籍的原价是多少元?3.公园门票价格规定如下表:某校七年级1班和2班共104人去游园,其中1班有40多人,不足50人,经估算,如果两个班以班为单位购票,则一共应付1240元,问:(1)两班各有多少学生?(2)如果两班联合起来,作为一个团体购票,可省多少钱?4.某中学七年级(1)(2)两个班共104人,要去博物馆进行社会大课堂活动,老师指派小明到网上查阅票价信息,小明查得票价如图:其中七(1)班不足50人,经估算,如果两个班都以班为单位购票,一共应付1240元.(1)两个班各有多少学生?(2)如果两个班联合起来,作为一个团体购票,可以省多少钱?(3)如果七年级(1)班单独组织去博物馆参观,你认为如何购票最省钱?5.在“清洁乡村”活动中,某村长提出了两种购买垃圾桶方案.方案一:买分类垃圾桶,需要费用3000元,以后每月的垃圾处理费用250元;方案二:买不分类垃圾桶,需要费用1000元,以后每月的垃圾处理费用500元;设交费时间为x个月,方案一的购买费和垃圾处理费共为M元,方案二的购买费和垃圾处理费共为N元.(1)用x分别表示M,N;(2)若交费时间为12个月,哪种方案更合适,并说明理由.(3)交费时间为多少个月时,两种方案费用相同?6.某单位计划元旦组织员工到某地旅游,A,B两旅行社的服务质量相同,且组织到该地旅游的价格都是每人300元.该单位在联系时,A旅行社表示可给每位旅客七五折优惠,B旅行社表示可免去一位旅客的费用,其余八折优惠.(1)当该单位旅游人数多少时,支付给A,B两旅行社的总费用相同?(2)若该单位共有30人参加此次旅游,应选择哪家旅行社使费用更少?7.某校计划购买20张书柜和一批书架(书架不少于20只),现从A、B两家超市了解到:同型号的产品价格相同,书柜每张210元,书架每只70元,A超市的优惠政策为每买一张书柜赠送一只书架,B超市的优惠政策为所有商品八折.(1)若在同一超市购买所有的产品,购买多少只书架付出的钱数相等?(2)在(1)的基础上,若规定只能到其中一个超市购买所有物品,什么情况下到A超市购买合算?(3)若学校想购买20张书柜和100只书架,且可到两家超市自由选购.你认为至少要准备多少货款,请用计算说明.8.全球通手机卡收费每分钟0.20元,月租费每月20元;神州行手机卡没有月租费,每分钟0.40元,假如你买了一部手机: (1)若你估计每月通话时间为75分,你应选择哪种手机收费卡?(2)若你估计每月通话时间为120分钟,你应选择哪种手机收费卡?(3)请问你该如何合理地选择手机收费卡?9.我校10位教师和部分学生外出考察,全程票价为25元,对集体购票,客运公司有两种优惠方案可供选择:方案一:所有师生按八八折购票;方案二:前20人购全票,从第21人开始,每人按票价的八折购票.(1)若有30位学生参加考察,问选择哪种方案更省钱?(2)参加考察的学生人数是多少时,两种方案车费一样?10.某校七年级准备观看电影《我和我的祖国》,由各班班长负责买票,每班人数都多于40人,票价每张30元,一班班长问售票员买团体票是否可以优惠,售票员说:40人以上的团体票有两种优惠方案可选择:方案一:全体人员可打8折;方案二:若打9折,有5人可以免票.(1)若二班有41名学生,则他该选择哪个方案?(2)一班班长思考一会儿说,我们班无论选择哪种方案要付的钱是一样的,你知道一班有多少人吗?11.为了丰富学生的校园生活,学校组织了“唱响青春”为主题的合唱比赛.初一(2)班准备统一购买演出服装和领结,班干部花费265元,在甲商场购买了3件演出服装和5个领结,已知每件演出服装的标价比每个领结的标价多75元.(1)求甲商场每件演出服装和每个领结的标价各是多少元?(2)临近元旦,商场都开始促销活动.同学们发现乙商场也在出售同样的演出服装和领结,并且标价与甲商场相同.但甲商场的促销活动是买一送一(即买一件演出服装送一个领结),乙商场的促销活动是所有商品按标价打九折.如果初一(2)班继续购买30件演出服装和60个领结,去哪家商场购买更合算?12.小明用的练习本可以到甲商店购买,也可以到乙商店购买.已知两店的标价都是每本1元,甲商店的优惠条件是买10本以上,从第11本开始按标价的7折卖;乙商店的优惠条件是购买10本以上,每本按标价的8折卖.(1)小明要买20本练习本,到哪个商店较省钱?(2)小明要买10本以上练习本,买多少本时到两个商店付的钱一样多?13.某中学组织七年级学生去红色教育基地,原计划租用45座客车若干辆,但是有15名学生没有座位;若改为租用同样数量的60座客车,则可以少租一辆,且租的客车恰好坐满.已知45座客车的租金为210元每辆,60座客车的租金为290元每辆.问:(1)原计划租用45座客车多少辆?(2)这批学生的人数是多少?(3)若租用同一种客车,同时要使每位学生都有座,应该怎样租用才合算?14.为发展校园足球运动,某校决定购买一批足球运动装备,经过调查发现:甲、乙两家商场以同样的价格出售相同品牌的足球队服和足球,已知每套队服比每个足球多60元,三套队服与四个足球的费用相等.经过协商,甲商场提供的优惠方案是:每购买十套队服,赠送一个足球;乙商场提供的优惠方案是:若购买队服超过90套,则购买足球打七折.(1)求每套队服和每个足球的价格是多少?(2)若需要购买100套队服和40个足球,通过计算说明到哪家商场购买更优惠.15.学校组织学生参加合唱比赛,已知男生和女生共92人,其中男生的人数多于女生的人数,男生的人数不足90人.现要统一购买服装,下面给出的是某服装厂的价格表,(1)如果男生和女生分别单独购买服装,一共应付5000元,求男生和女生各有多少人参加合唱比赛?(2)如果有10名男生要去参加舞蹈比赛,不能参加合唱比赛,请你为男生和女生设计一种最省钱的购买方案.16.学校举行“戏曲进校园”活动,需要购买A,B两种戏服,已知一套A种戏服比一套B种戏服贵20元,且买2套A种戏服与购买3套B种戏服所需费用相同.(1)求两种戏服的单价分别是多少元?(2)学校计划购买35套戏服,商店推出以下两种促销活动:活动一:A种戏服九折,B种戏服六折;活动二:A,B两种戏服都八折;根据以上信息,学校怎么安排购买方案,才能使不论参加哪种活动,所需的费用都相同?。
人教版七年级数学上册 1.3.1.2有理数的加法运算律 同步训练卷
人教版七年级数学上册1.3.1.2有理数的加法运算律同步训练卷一、选择题(共10小题,3*10=30)1.对算式(-8)+(+6)+(+18)运用加法交换律正确的是( )A.(-8)+(-18)+(+6)B.(+8)+(-6)+(+18)C.(+6)+(-18)+(+8)D.(-8)+(+18)+(+6)2.下列变形,运用运算律正确的是( )A .2+(-1)=1+2B .3+(-2)+5=(-2)+3+5C .[6+(-3)]+5=[6+(-5)]+3D .13+(-2)+⎝⎛⎭⎫+23=⎝⎛⎭⎫13+23+(+2)3.计算33+(-32)+7+(-8)的结果是( )A .0B .2C .-1D .54.下面的计算运用的运算律是( )-13+3.2+⎝⎛⎭⎫-23+7.8=-13+⎝⎛⎭⎫-23+3.2+7.8=-⎝⎛⎭⎫13+23+(3.2+7.8)=-1+11=10. A .加法交换律B .加法结合律C .先用加法交换律,再用加法结合律D .先用加法结合律,再用加法交换律5.下列运算中正确的是( )A .7+13+(-8)=13B .(-3.5)+4+(-3.5)=4C .334+(-334)+(-3)=-3 D .3.14+(-7)+3.14=-86. 某地一天早晨的气温是-3 ℃,到中午升高了5 ℃,下午又降低了3 ℃,到晚上又降低了5 ℃,则晚上的气温是( )A .6 ℃B .10 ℃C .-6 ℃D .-8 ℃7.对于算式⎝⎛⎭⎫-12+14+⎝⎛⎭⎫-25+⎝⎛⎭⎫+310,下列运算律运用恰当的是( ) A.⎣⎡⎦⎤⎝⎛⎭⎫-12+14+⎣⎡⎦⎤⎝⎛⎭⎫-25+⎝⎛⎭⎫+310 B.⎣⎡⎦⎤14+⎝⎛⎭⎫-25+⎣⎡⎦⎤⎝⎛⎭⎫-12+⎝⎛⎭⎫+310 C.⎝⎛⎭⎫-12+⎣⎡⎦⎤14+⎝⎛⎭⎫-25+⎝⎛⎭⎫+310 D.⎣⎡⎦⎤⎝⎛⎭⎫-12+⎝⎛⎭⎫-25+⎣⎡⎦⎤14+⎝⎛⎭⎫+310 8.计算(-20)+379+20+⎝⎛⎭⎫-79,最简便的做法是( ) A .把一、三两个加数结合,二、四两个加数结合B .把一、二两个加数结合,三、四两个加数结合C .把一、四两个加数结合,二、三两个加数结合D .把一、二、四这三个加数先结合9.在数+6,-1,15,-3中,任取三个不同的数相加,其中和最小的是( )A .-3B .-1C .3D .210.在防范新冠病毒疫情的例行体温检测中,检查人员将高出37 ℃的部分记作正数,将低于37 ℃的部分记作负数,体温正好是37 ℃的记作“0”.一人在一周内的体温结果分别为+0.1,-0.3,-0.5,+0.1,+0.2,-0.6,-0.4,那么该人一周中测量体温的平均值是( )A .37.1 ℃B .37.31 ℃C .36.69 ℃D .36.8 ℃二.填空题(共8小题,3*8=24)11.计算:(-32)+72+(-8)=____.12. 运用加法结合律计算:[10+(-6)]+(-7)=10+________________=________.13.检修小组从A 地出发,在东西路上检修线路,如果规定向东行驶为正,向西行驶为负,一天中行驶记录如下(单位:千米):-4,+7,-9,+8,+6,-4,-3.则收工时在A 地的____边____千米处.14.等式5+(-3)+7+(-9)+12=(5+7+12)+[(-3)+(-9)]运用了___________________________。
浙江省绍兴县杨汛桥镇中学2012秋七年级数学上册《科学计数法》练习题(无答案) 新人教版
浙江省绍兴县杨汛桥镇中学2012秋七年级数学上册《科学计数法》新人教版一、课前热身:(1)把下面各数写成10的幂的形式:1000() 100000000() 100000000000()(2)指出下列各数是几位数:二、学习目标:1、掌握用科学记数法表示较大数的方法。
2、能将用科学记数法表示的数还原成原数。
3、会进行涉及科学记数法的乘、除、乘方的简单混合运算。
三、学法指导:认真看书P51-52页,完成下列问题知识点一:像这种把一个数表示成a(1≤a<10)与10的幂相乘的形式,叫做科学计数法。
试一试:用科学记数法表示下列各数(1) 1000000= (2) 57000000= (3)123000000000=(4)696000000= (5)300000000= (6)6100000000=知识点二:用科学计数法表示一个n位整数,其中10的指数有_______位。
知识点三:将a×形式还原成原数,原数共有_________位数。
试一试:4×=_______;2.1×=________;3.2×=____________3.96×=_________;1×=___________;7.04×=___________.知识点四:较大的负数用科学计数法表示时,只要在a×加上_____即可.试一试:-230000=______;-56000000=________;-950000000=_________四、例题:计算1 (8.1×108 )÷(9×105 )(2)(5.2×104)×(2.5×102)(3) 8.4×103-4.8×104 (4) 7.8×103 +1.2×103五、基础训练:1、下列用科学计数法表示的数正确的是()A 、31.2×B 、3.12×C 、0.312×D 、25×2、将2630000用科学计数法表示为( )A 、263×B 、2.63×C 、2.63×D 、0.263×3、将某市参加高考人数是三万七千人用科学计数法表示应记作( )A 、37×B 、3.7×C 、0.37×D 、37×4、-2、040×表示原数为( )A 、-204000B 、-0.000204C 、-204.000D 、-20400_5、547000用科学计数法表示为a ×,则a 是________6、4670000用科学计数法表示为4、67×,则n 等于___________ 7、将348000万元用科学计数法表示为______________元。
人教版七年级上册数学第二章《整式的加减》计算题训练(含答案)
3.计算
(1) 2 x 5y 43x 4 y
(2) 4x2 y 3xy 23xy 2 2x2 y
4.计算:
(1) 3a2b 5 5b2 6a2b 7 5b2 4a3 ;
(2) 3ab2 2 2ab2 a2b 3 1 4a2b 10ab2 . 2
5.化简:
8.化简并求值: 2 ab2 2a2b 3 ab2 a2b 1 ,其中 a 2,b 1.
9.先化简,再求值: x2 y2 2xy 3x2 4xy y2 5xy ,其中, x= 1, Nhomakorabeay 2.
10.先化简,再求值 2
ab 3a2
5a2
4ab a2
14.已知 A 3a2 ab , B 5ab a2 (1)求 2A B 的值;
(2)若 2A 与 B C 互为相反数,a、b 满足 a 22 + b+1=0 ,求 C 的值.
15.已知 A 4x2 2xy 3y2, B 4x2 3y2 . (1)求 A B ; (2)当 x 3, y 1 时,求 A B 的值.
18.已知代数式 A 2x2 5xy 7 y 3 , B x2 xy 2
(1)求 3A 2A 3B 的值;
(2)若 A 2B 值与 x 的取值无关,求 y 的值.
1.(1) 1 x2 - 3x + 2 5
(2) 1 a2b 4
2.(1) 2x2 x 1 (2) 3a2 33a 18
3.(1) 6 y 10x (2) 2x2 y 3xy 4
4.(1) 3a2b 4a3 2 (2) 4ab2 6
5.(1) a2b 8ab2 (2) x2 4x
6.(1) 2a2 7b2 ab (2)12a 10b
7. 3x2 4xy 12 , 24 8. ab2 a2b 3 , 5 9. 4x2 xy ;6 10. 2ab ;1 11. 3x2 y 5xy , 2 12. 5x2 xy ,18 13. a2b 6ab2 3 , 89 14.(1) 5a2 3ab (2) 14
人教版七年级上册数学第一章有理数应用题专题训练
人教版七年级上册数学第一章有理数应用题专题训练1.有8箱苹果,以每箱20千克为标准,超过的千克数记为正数,不足的千克数记为负数,称后的记录如下:1.5,-3,-1,0.5,1,-2,2,-2.5,与标准质量相比较,这8箱苹果总计超过或不足多少千克?8箱苹果总质量是多少千克?2.某水果店以每箱40元的价格从水果批发市场购进8箱苹果.若以每箱净重10千克为标准,超过的千克数记为正数,不足的千克数记为负数,称重的记录如下:-1,1,0,-2,-1,-1,-2,1. (1)这8箱苹果的总重量是多少千克?(2)如果把这些苹果全部以零售的形式卖掉,水果店将获利50%,那么苹果零售价应定为每千克多少元?(3)若第一天水果店以(2)中的单价售出了全部苹果的60%,第二天因害怕剩余的苹果腐烂变质,决定降价把剩余的苹果按原零售价的七五折销售完.请计算该水果店在销售这批苹果过程中盈利多少元?3.某快递员骑车从快递公司出发,沿东西方向行驶,依次到达A 地、B 地、C 地、E 地.将向东行驶的路程(单位:km )记为正,向西行驶的路程记为负,则该快递员行驶的各段路程依次对应为:2-,3-,7+,1+,7-,最后该快递员回到快递公司. (1)以快递公司为原点,用1个单位长度表示1km ,在如图所示的数轴上标出表示A 、B 、C 、D 、E 五个地方的位置,并求出B 地与D 地之间的距离;(2)该快递员从公司出发直至回到该公司,一共骑行了多少km ?4.快递小哥骑摩托车从快递公司出发负责送货,向东走了4千米到达小明家,继续走了1.5千米到达小红家,又向西走了10千米到达小丽家,最后回到快递公司.(1)以快递公司为原点,以向东的方向为正方向,用1个单位长度表示1千米,请你在数轴轴上标出小明、小红、小丽家的位置; (2)小明家与小丽家相距多远?(3)若摩托车每千米耗油0.03升,那么快递小哥这次送货共耗油多少升?5.超市购进8筐白菜,以每筐25kg 为准,超过的千克数记作正数,不足的千克数记作负数,称后的记录如下:1.5,3-,2,0.5-,1,2-,2-, 2.5-. (1)这8筐白菜一共多少千克?(2)超市计划这8筐白菜按每千克3元销售,为促销超市决定打九折销售,求这8筐白菜现价比原价便宜了多少钱?6.聪聪和慧慧为了合理计划自己的开支,每天坚持记录自己当天的收支情况如下表,是她们上周各天收支情况(记收入为正,单位:元)根据上表回答下列问题:(1)分别说出聪聪这一行中10,0,-2各数的实际意义. (2)把上表补充完整.7.某口罩加工厂每名工人计划每天生产400个医用口罩,由于种种原因,实际每天生产量与计划量相比有出入.如下表是工人小王某周的生产情况(超产记为正,减产记为负):(1)根据记录的数据可知,小王星期五生产口罩多少个?(2)根据表格记录的数据,求出小王本周实际生产口罩数量.8.出租车司机王师傅某天早上营运时是在东西走向的大街上进行的,如果规定向东为正,向西为负,他这天早上所接六位乘客的行车里程(km)如下:﹣2,+5,﹣4,+1,﹣6,﹣2(1)将最后一位乘客送到目的地时,王师傅在早上出发点的什么位置?(2)若汽车耗油量为0.1L/km,这天早上王师傅接送乘客,出租车共耗油多少升?(3)若出租车起步价为6元,起步里程为2km(包括2km),超过部分(不足1km按1km计算)每千米1.5元,王师傅这天早上共得车费多少元?9.某一出租车一天下午以市民之家为出发地在东西方向营运,向东为正,向西为负,行车里程(单位:km)依先后次序记录如下:+9、-3、-5、+4、-8、+6.(1)将最后一名乘客送到目的地,出租车离市民之家出发点多远?在市民之家的什么方向?(2)若每千米的价格为3元,司机一个下午的营业额是多少?10.某粮库原有大米132吨,一周内该粮库大米的进出情况如表:(运进大米记作“+”,运出大米记作“﹣”).。
人教版七年级数学上册作业课件 第二章 整式的加减 专题训练(四) 整式化简求值的常见类型
4.已知2x2+xy=10,3y2+2xy=6,求4x2+8xy+9y2的值. 解:原式=4x2+2xy+6xy+9y2=2(2x2+xy)+3(3y2+2xy)=2×10+3×6=38 5.已知当x=2时,多项式-ax3-[8-(bx+2ax3)]的值为5,求当x=-2时该多项式的值. 解:-ax3-[8-(bx+2ax3)]=ax3+bx-8, 当x=2时,原式=8a+2b-8=5,所以8a+2b=13; 当x=-2时,原式=-8a-2b-8=-(8a+2b)-8=-13-8=-21
11.已知关于x,y的多项式(2bx2+ax-y+6)-(2x2-3x+5y-1)化简后不含x2项和x项, 求a,b的值. 解:原式=2bx2+ax-y+6-2x2+3x-5y+1=(2b-2)x2+(a+3)x-6y+7. 因为化简后不含x2项与x项,所以2b-2=0且a+3=0,则a=-3,b=1
12.已知A=2x2+3xy-2x-1,B=-x2+xy-1. (1)求3A+6B的值; (2)若3A+6B的值与x取值无关,求y的值. 解:(1)3A+6B=3(2x2+3xy-2x-1)+6(-x2+xy-1) =6x2+9xy-6x-3-6x2+6xy-6=15xy-6x-9 (2)原式=(15y-6)x-9.因为其值与 x 无关,所以 15y-6=0,则 y=25
解:原式=5ab-6ab+8ab2+ab-5ab2=3ab2, 当 a=12 ,b=-23 时,原式=23
(3)3x2y-[2x2y-3(2xy-x2y)-xy],其中 x=-12 ,y=2.
解:原式=3x2y-[2x2y-6xy+3x2y-xy]=3x2y-2x2y+6xy-3x2y+xy= -2x2y+7xy,当 x=-12 ,y=2 时,原式=-2×(-12 )2×2+7×(-12 )×2=-8
2024-2025人教版七年级数学上册《2.2有理数的乘法与除法》自主学习计算能力达标测评(附答案)
2024-2025学年人教版七年级数学上册《2.2有理数的乘法与除法》自主学习计算能力达标测评(附答案)(共20小题,每小题6分,满分120分)1.计算:(1)(−12)×−(2)83×(−0.25).2.计算:(1)−72÷6;(2)0÷−3(3)−−(4)÷−2.25.3.计算:−50×3−−2.5÷0.1.4.计算−35÷+7−−3×−5.乘除计算:1.25÷(−0.5)÷(−212)×16.计算:−12÷710×−47.计算−×0.125××(−8)8.计算:(1)7354;37+13−÷−9.简便计算−47.65×2611+−37.15×−+10.5×10.用简便方法计算:114×−−1314÷16+3×116.11.下面是涵涵同学的一道题的解题过程:2÷−13×−3=2÷−3+2÷×−3,①=2×−3×−3+2×4×−3,②=18-24,③=6,④(1)涵涵同学开始出现错误的步骤是______;原因是______.(2)请给出正确的解题过程.12.用简便方法计算:(1)5×−9−7×+−12÷−(2)292324×−2413.计算:(1)(−47)÷(−314)÷(−23);(2)(−0.65)÷(−57)÷(−213)÷(+310).14.提升计算:(1)−0.75×−÷−4(2)−16+32−×−48.15.简便计算(1)5.8×25%+0.25×4.2(2)18×25%+14×40+42×0.25(3)40×1−10%×1+10%16.计算:(1)−3÷×0.75÷−7×−6;(2)−×−0.1125×−10;(3)−72×−×−÷−17.巧算.(1)2020÷2020202014+15+×15+16−14+15+16+×1518.计算:(1)−3+40+−32+−8÷−+2−−2.75;(2)−48×0.125+48×1−484−25+−35(3)−×16×−÷−1÷−5×÷23×−36−−1×13÷−13.19.下面是两位同学计算(−112)÷(13−34)的解法.小华的解法:(−112)÷(13−34)=(−112)÷13−(−112)÷34=−14+19=−536.小明的解法:原式的倒数为(13−34)÷(−112)=(13−34)×(−12)=−4+9=5,所以(−112)÷(13−34)=15.(1)请你判断:_______同学的解答正确.(2)请你运用上述两位同学中的正确解法计算:(−78)÷(134−78+712).20.12,16,112,120,130,…是一组有规律的数,我们如何求这些连续数的和呢?【阅读理解】1111111114×5+15×6=1−2+23++4−5+=1−12+12−13+13−14+14−15+15−16=1−16=56根据上面得到的启发完成下面的计算:(1)根据规律,1156是第______个数;(2)请直接写出计算的结果:11×2+12×3+13×4+⋅⋅⋅+12023×2024=______;(3)探究并计算:12×4+14×6+16×8+⋅⋅⋅+12022×2024参考答案1.解:(1)−12×−320(2)83×(−0.25)=83×−=−=−232.解:(1)(−72)÷6=−(72÷6)=−12;(2)0÷−3(3)−−=+×49;(4)÷(−2.25)=−÷=−×−=32.3.解:−50×3−−2.5÷0.1=−150+2.5×10=−150+25=−1254.解:−35÷+7−−3×−=−5−2=−75.解:1.25÷−0.5÷×1=54×−2×−×1=16.解:原式=−75×107×−=9.7.解:−70.125××(−8)=−7××0.125×−8=1×−1=−18.解:(1)75××37÷54=75×−×37×45=−2;(237+13−÷−=−35+18−14+27=−4.9.解:−47.65×2611+−37.15×−+10.5×−7=−47.65+37.15×2811×−=−10.5×2811=−10.5×11=−10.5×11011=−105.10.解:原式=114×−−1314×116+3×116=116×−114−1314+3=116×2=1811.(1)解:涵涵同学开始出现错误的步骤是①,错误的原因是除法没有分配律;故答案为①,除法没有分配律;(2)解:2÷−1+4×−3=2÷41212×−3=2÷×−3=2×12×3=72.12.解:(1)原式=5×−+7×−−12×−=−×5+7−12=0;(2)原式=30×−2424=−720+1=−719.13.解:(1)(−47)÷(−314)÷(−23) =−47×143×32=−4;(2)(−0.65)÷(−57)÷(−213)÷(+310) =−65100×75×37×103=−1.3.14.(1)解:−0.75×−÷−=−×−×−=−12.(2)解:−16+32×−48=−16×−48+32×−48−512×−48 =8−72+20=−44.15.(1)解:5.8×25%+0.25×4.2 =5.8×0.25+0.25×4.2=5.8+4.2×0.25=10×0.25=2.5;(2)解:18×25%+14×40+42×0.25 =18×0.25+0.25×40+42×0.25 =18+40+42×0.25=100×0.25=25;(3)解:40×1−10%×1+10%=40×0.9×1+0.1=36×1+0.1=36×1+36×0.1=36+3.6=39.6.16.(1)解:−3÷−1×0.75÷−×−6=3×47×34×73×6=18;(2)解:−×−0.1÷125×−10=−110×25×10=−5;(3)解:−72×−×÷−=723××=48×98=54.17.解:(1)2020÷202020202021=2020÷2020×2021+20202021=2020÷2020×20222021=2020×20212020×2022=20212022(214+11511+15+16+1=14+15+×15+−+14+15+×15+=14+15+415+14+15×17−14+15×15+−1715+=14+15+6×17−17+15=314+15+16−14−15−×17=13×17=12118.(1)解:−3+40+−32+−8÷−−−2.75=−3÷32−94=−3÷1=−3÷−=5;(2)解:−48×0.125+48×18+−48×÷16+−25+24+−35=−48+48−48×10×18÷−20=−480×18÷−20=3;(3)解:原式=−÷46−×−36−−13÷−13=2125÷36−1=2125×135=3125.19.(1)解:∵除法没有分配律,∴小华的解法是错误的,小明的解法是正确的;(2)∵(134−78+712)78)=(134−78+712)×−=−74×87+78×87−712×87.=−2+1−23.=−53.∴(−78)÷(134−78+712)=−35.20.(1)解:根据材料提示得,1156=112×13,∴是第12个数,故答案为:12.(2)解:11×2+12×3+13×4+⋅⋅⋅+12023×2024=1−12+12−13+13−14+⋅⋅⋅+12023−12024=1−12024=20232024,故答案为:20232024.(3)解:114×611=12×4+12×+12×6812×−=12×141416+16−18+⋅⋅⋅+12022−=12×=10114048.。
人教版七年级数学上册第三章《一元一次方程》应用题专题训练(一)
人教版七年级数学上册第三章《一元一次方程》应用题专题训练(三)1.如图,将长方形ABCD分割成1个灰色长方形与148个面积相等的小正方形.若灰色长方形之长与宽的比为5:3,则AD:AB=()A.5:3 B.7:5 C.23:14 D.47:292.小李年初向建设银行贷款5万元用于购房,年利率为5%,按复利计算,若这笔借款分15次等额归还,每年1次,15年还清,并从借后次年年初开始归还,问每年应还大约()A.4819元B.4818元C.4817元D.4816元3.正方形ABCD的轨道上有两个点甲与乙,开始时甲在A处,乙在C处,它们沿着正方形轨道顺时针同时出发,甲的速度为每秒1cm,乙的速度为每秒5cm,已知正方形轨道ABCD的边长为2cm,则乙在第2018次追上甲时的位置()A.AB上B.BC上C.CD上D.AD上4.李飒的妈妈买了几瓶饮料,第一天,他们全家喝了全部饮料的一半零半瓶;第二天,李飒招待来家中做客的同学,又喝了第一天剩下的饮料的一半零半瓶;第三天,李飒喝了剩下的一半零半瓶,正好喝完,则妈妈买的饮料一共有()A.5瓶B.6瓶C.7瓶D.8瓶5.某企业接到为地震灾区生产活动房的任务,此企业拥有九个生产车间,现在每个车间原有的成品活动房一样多,每个车间的生产能力也一样.有A、B两组检验员,其中A组有8名检验员前两天时间将第一、二车间的所有成品(原来的和这两天生产的)检验完毕后,再去检验第三、四车间所有成品,又用去三天时间;同时这五天时间B组检验员也检验完余下的五个车间的所有成品.如果每个检验员的检验速度一样快,那么B组检验员人数为()A.8人B.10人C.12人D.14人6.桌面上有甲、乙、丙三个圆柱形的杯子,杯深均为15公分,各装有10公分高的水,且表记录了甲、乙、丙三个杯子的底面积.今小明将甲、乙两杯内一些水倒入丙杯,过程中水没溢出,使得甲、乙、丙三杯内水的高度比变为3:4:5.若不计杯子厚度,则甲杯内水的高度变为多少公分?()底面积(平方公分)甲杯60乙杯80丙杯100A.5.4 B.5.7 C.7.2 D.7.57.在某月的月历中圈出相邻的3个数,其和为15.这3个数的位置可能是()A.B.C.D.8.小淇在某月的日历中圈出相邻的三个数,算出它们的和是19,那么这三个数的位置可能是()A.B.C.D.9.一家商店将某种服装按成本价提高40%后标价,又以8折优惠卖出,结果每件服装仍可获利24元,则这种服装每件的成本是()A.100元B.180元C.200元D.205元10.有一玻璃密封器皿如图①,测得其底面直径为20厘米,高20厘米,先内装蓝色溶液若干.若如图②放置时,测得液面高10厘米;若如图③放置时,测得液面高16厘米;则该玻璃密封器皿总容量为()立方厘米.(结果保留π)A.1250πB.1300πC.1350πD.1400π11.将连续的奇数1,3,5,7,9,……排成如图所示的数表,则十字形框中的五数之和能等于2020吗?能等于2021吗?()A.能,能B.能,不能C.不能,能D.不能,不能12.某超市正在热销一种商品,其标价为每件12元,打8折销售后每件可获利2元,该商品每件的进价为()A.7.4元B.7.5元C.7.6元D.7.7元13.某商场购进一批服装,又恰巧碰到双十一的促销活动,商场决定将这批服装按标价的五折销售,若打折后每件服装可获纯利润60元,其利润率为10%;若双十一过后,该商场按这批服装的标价打八折出售,那么获得的纯利润是()A.264元B.396元C.456元D.660元14.小明和小亮进行100米赛跑,两人在同一起跑线上,结果第一次比赛时小明胜10米;在进行第二次比赛时,小明的起跑线比原来起跑线推后10米,如果两次他们速度不变,则第二次结果().A.小亮胜B.小明胜C.同时到达D.不能确定15.在古代生活中,有很多时候也要用到不少的数学知识,比如有这样一道题:隔墙听得客分银,不知人数不知银.七两分之多四两,九两分之少半斤.(注:古秤十六两为一斤)请同学们想想有几人,几两银?()A.六人,四十四两银B.五人,三十九两银C.六人,四十六两银D.五人,三十七两银16.如图,小刚将一个正方形纸片剪去一个宽为5cm的长条后,再从剩下的长方形纸片上剪去一个宽为6cm的长条,如果两次剪下的长条面积正好相等,求两个所剪下的长条的面积之和为()A.215cm2B.250cm2C.300cm2D.320cm217.某商场为换季大清仓,以每件120元的价格出售两件衬衫,其中一件盈利20%,另一件亏损20%,那么在这次买卖中商场()A.不亏不赚B.亏了10元C.赚了10元D.赚了20元18.甲、乙两地相距1500千米.飞机从甲地到乙地是顺风,需2小时;从乙地返回甲地是逆风,需2.5小时.则飞机往返的平均速度是()千米/时.A.700 B.666C.675 D.65019.小华在某月的日历上圈出相邻的四个数,算出这四个数的和是36,则这个数阵的形式可能是()A.B.C.D.20.中国古代数学著作《算法统宗》中有这样一段记载,“三百七十八里关;初日健步不为难,次日脚痛减一半,六朝才得到其关.”其大意是;有人要去某关口,路程为378里,第一天健步行走,从第二天起,由于脚痛,每天走的路程都为前一天的一半,一共走了六天才到关口,则此人第一和第六这两天共走了()A.102里B.126里C.192里D.198里21.将连续的奇数1、3、5、7、9、,按一定规律排成如图:图中的T字框框住了四个数字,若将T字框上下左右移动,按同样的方式可框住另外的四个数.若将T字框上下左右移动,则框住的四个数的和不可能得到的数是()A.22 B.70 C.182 D.20622.小明在某月的日历上圈出了三个数a,b,c,并求出了它们的和为39,则这三个数在日历中的排位位置不可能的是()A.B.C.D.23.某套课外书的进价为80元/套,标价为200元/套,“双11”期间某网店打x折销售,此时可获利25%,则x为()A.7 B.6 C.5 D.424.如图,在矩形ABCD中,BC=15cm,动点P从点B开始沿BC边以每秒2cm的速度运动;动点Q从点D开始沿DA边以每秒1cm的速度运动,点P和点Q同时出发,当其中一点到达终点时,另一点也随之停止运动,设动点的运动时间为t秒,则当t=()秒时,四边形ABPQ为矩形.A.3 B.4 C.5 D.625.运动场环形跑道周长400米,小林跑步的速度是爷爷的二倍,他们从同一起点沿跑道的同一方向同时出发,5min 后小林第一次与爷爷相遇,小林跑步的速度是()米/分.A.120 B.160 C.180 D.200参考答案1.解:设灰色长方形的长上摆5x个小正方形,宽上摆3x个小正方形,2(5x+3x)+4=148x=95x=45,3x=27,AD=45+2=47,AB=27+2=29,=.故选:D.2.解:设每年应还x元,则根据题意可知:50000×(1+0.05)15=x×(1+0.05)14+x×(1+0.05)13+ (x)用计算器得出:x=4817故选:C.3.解:设乙走x秒第一次追上甲.根据题意,得5x﹣x=4解得x=1.∴乙走1秒第一次追上甲,则乙在第1次追上甲时的位置是AB上;设乙再走y秒第二次追上甲.根据题意,得5y﹣y=8,解得y=2.∴乙再走2秒第二次追上甲,则乙在第2次追上甲时的位置是BC上;同理:∴乙再走2秒第三次次追上甲,则乙在第3次追上甲时的位置是CD上;∴乙再走2秒第四次追上甲,则乙在第4次追上甲时的位置是DA上;乙在第5次追上甲时的位置又回到AB上;∴2018÷4=504 (2)∴乙在第2018次追上甲时的位置是BC上.故选:B.4.解:设妈妈买的饮料一共有x瓶,则第一天喝了(x+0.5)瓶,那么剩下(x﹣x﹣0.5)瓶,则第二天喝了(x﹣x﹣0.5)+0.5(瓶),那么剩下(x﹣x﹣0.5)﹣[(x﹣x﹣0.5)+0.5](瓶),所以第三天喝了{(x﹣x﹣0.5)﹣[(x﹣x﹣0.5)+0.5]}+0.5(瓶),(x+0.5)+[(x﹣x﹣0.5)+0.5]+{(x﹣x﹣0.5)﹣[(x﹣x﹣0.5)+0.5]}+0.5=x,解得x=7.故选:C.5.解:设每个车间原有成品a件,每个车间每天生产b件产品,根据检验速度相同得:,解得a=4b;则A组每名检验员每天检验的成品数为:2(a+2b)÷(2×8)=12b÷16=b.那么B组检验员的人数为:5(a+5b)÷(b)÷5=45b÷b÷5=12(人).故选:C.6.解:设后来甲、乙、丙三杯内水的高度为3x、4x、5x,根据题意得:60×10+80×10+100×10=60×3x+80×4x+100×5x,解得:x=2.4,则甲杯内水的高度变为3×2.4=7.2(公分).故选:C.7.解:A、设最小的数是x.x+x+7+x+7+1=15x=0故本选项不符合题意;B、设最小的数是x.x+x+6+x+7=15,x=.故本选项不符合题意.C、设最小的数是x.x+x+1+x+8=15,x=2,故本选项符合题意.D、设最小的数是x.x+x+1+x+7=15,x=,故本选项不符合题意.故选:C.8.解:A、设最小的数是x.x+x+7+x+7+1=19x=故本选项不符合题意;B、设最小的数是x.x+x+6+x+7=19,x=2.故本选项符合题意.C、设最小的数是x.x+x+1+x+7=19,x=,故本选项不符合题意.D、设最小的数是x.x+x+1+x+8=19,x=,故本选项不符合题意.故选:B.9.解:设这种服装每件的成本是x元,依题意,得:80%×(1+40%)x﹣x=24,解得:x=200.故选:C.10.解:设该玻璃密封器皿总容量为Vcm3,π×102×10=V﹣π×102×(20﹣16),解得,V=1400π,故选:D.11.解:由表格中的数据可知,这五个数的和等于十字形中间的数的5倍,设十字形中间的数为x,令5x=2020,解得x=404,∵404不是奇数,∴十字形框中的五数之和不能等于2020,再令5x=2021,得x=404.2,∵404.2不是奇数,∴十字形框中的五数之和不能等于2021,故选:D.12.解:设该商品每件的进价为x元,依题意,得:12×0.8﹣x=2,解得:x=7.6.故选:C.13.解:设该服装的标价为x元,由题意得,0.5x﹣60=,解得:x=1320.所以1320×80%﹣=456(元)故选:C.14.解:第一次小明跑100米和小亮跑90米的时间相等,则设小明的速度是a,小亮的速度是a,设第二次比赛,小明经过x秒追上小亮,ax=x+10,∴x=,∴a×=90米,∴小亮跑了90米时,就被小明追上,∴小明胜.故选:B.15.解:设有x两银,,解得,x=46,则人数为:=6,即有6个人,46两银,故选:C.16.解:设原来正方形纸的边长是xcm,则第一次剪下的长条的长是xcm,宽是5cm,第二次剪下的长条的长是(x ﹣5)cm,宽是6cm,则5x=6(x﹣5),解得:x=3030×5×2=300(cm2),答:两个所剪下的长条的面积之和为300cm2.故选:C.17.解:设两件衣服的进价分别为x、y元,根据题意得:120﹣x=20%x,y﹣120=20%y,解得:x=100,y=150,∴120+120﹣100﹣150=﹣10(元).即亏了10元.故选:B.18.解:设飞机往返的平均速度是x千米/时,根据题意,得(2.5+2)x=1500×2.解得x=666.故选:B.19.解:设第一个数为x,根据已知:A:得得x+x+6+x+7+x+8=36,则x=3.75不是整数,故本选项不可能.B:得x+x+1+x+8+x+9=36,则x=4.5不是整数,故本选项不可能.C:得x+x+1+x+7+x+8=36,则x=5,为正数符合题意.D:得x+x+1+x+6+x+7=36,则x=5.5不是整数,故本选项不可能.故选:C.20.解:设第六天走的路程为x里,则第五天走的路程为2x里,依此往前推,第一天走的路程为32x里,依题意,得:x+2x+4x+8x+16x+32x=378,解得:x=6.32x=192,6+192=198,答:此人第一和第六这两天共走了198里,故选:D.21.解:由题意,设T字框内处于中间且靠上方的数为2n﹣1,则框内该数左边的数为2n﹣3,右边的为2n+1,下面的数为2n﹣1+10,∴T字框内四个数的和为:2n﹣3+2n﹣1+2n+1+2n﹣1+10=8n+6.故T字框内四个数的和为:8n+6.A、由题意,令框住的四个数的和为22,则有:8n+6=22,解得n=2.符合题意.故本选项不符合题意;B、由题意,令框住的四个数的和为70,则有:8n+6=70,解得n=8.符合题意.故本选项不符合题意;C、由题意,令框住的四个数的和为182,则有:8n+6=182,解得n=22.符合题意.故本选项不符合题意;D、由题意,令框住的四个数的和为206,则有:8n+6=206,解得n=25.由于数2n﹣1=49,排在数表的第5行的最右边,它不能处于T字框内中间且靠上方的数,所以不符合题意.故框住的四个数的和不能等于206.故本选项符合题意;故选:D.22.解:A、设最小的数是x,则x+(x+1)+(x+8)=39,解得x=10,故本选项不符合题意;B、设最小的数是x,则x+(x+8)+(x+14)=39,解得x=,故本选项符合题意;C、设最小的数是x,则x+(x+8)+(x+16)=39,解得x=5,故本选项不符合题意;D、设最小的数是x,则x+(x+1)+(x+2)=39,解得:x=12,故本选项不符合题意.故选:B.23.解:根据题意得:200×﹣80=80×25%,解得:x=5.故选:C.24.解:设动点的运动时间为t秒,由题意,得15﹣t=2t.解得t=5.故选:C.25.解:设爷爷的速度为x米/分钟,则小林的速度为2x米/分钟,根据题意得:5×(2x﹣x)=400,解得:x=80,∴2x=160.答:爷爷的速度为80米/分钟,小林的速度为160米/分钟.故选:B.。
2020年秋人教版七年级数学上册 1.2-1.3有理数及加法 应用专题训练题
有理数及加法应用专题训练题一、选择题(每小题3分,共30分)-℃低的是()1.下列温度比2A.3-℃B.1-℃C.1℃D.3℃2.如图,检测4个足球的质量,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数.从符合标准质量的角度看,最接近标准的是()A.B.C.D.3.如图,这是某用户银行存折中2012年11月到2013年5月间代扣电费的相关数据,从中可以看出扣缴电费最多的一次达到()A.147.40元B.143.17元C.144.23元D.136.83元4.填数游戏,将1﹣9一共九个数字填到方框里,要保证每一横列和每一竖列都是从小到大排列,其中3和5已经排好,排列方式共有几种()A.5 B.6 C.7 D.85.若a是最小的正整数,b是绝对值最小的数,c是相反数等于它本身的数,d是到原点的距离等于2的负数,e是最大的负整数,则a+b+c+d+e的值为()A.1 B.2 C.-1 D.-26.a、b两数在数轴上位置如图所示,将a、b、﹣a、﹣b用“<”连接,其中正确的是()A.a<﹣a<b<﹣b B.﹣b<a<﹣a<b C.﹣a<b<﹣b<a D.﹣b<a<b<﹣a 7.当前,手机移动支付已经成为新型的消费方式,中国正在向无现金社会发展.下表是妈妈元旦当天的微信零钱支付明细:则元旦当天,妈妈微信零钱最终的收支情况是()A .收入88元B .支出100元C .收入100元D .支出188元8.32-的绝对值的相反数是( ) A .23- B .32C .32-D .239.我国是最早认识负数,并进行相关运算的国家.在古代数学名著《九章算术》里,就记载了利用算筹实施“正负术”的方法,图1表示的是计算3+(-4)= -1的过程.按照这种方法,图2表示的过程应是在计算( )A .(-4)+(-2)=-6B .4+(-2)=2C .(-4)+2 =-2D .4+2=610.2020年3月抗击“新冠肺炎”居家学习期间,小华计划每天背诵6个汉语成语.将超过的个数记为正数,不足的个数记为负数,某一周连续5天的背诵记录如下:4+,0,5+,3-,2+,则这5天他共背诵汉语成语( )A .38个B .36个C .34个D .30个二、填空题(每小题3分,共30分)11.某天最低气温是-1℃,最高气温比最低气温高9℃,则这天的最高气温是________℃. 12.蚂蚁从数轴上A 出发爬了2个单位到了原点,则点A 所表示的数是____.13.某公交车原坐18人,经过3个站点时上下车情况如下(上车为正,下车为负):(3,8)+-, (5,7)+-,(4,2)+-,则现在车上还有________.14.我县2019年1月的一天早晨的气温是﹣11℃,中午的气温比早晨上升了8℃,中午的气温是______℃.15.小明写作业时,不慎将墨水滴在数轴上,根据图中数值,请你确定墨迹盖住部分的整数有______.m+与2-互为相反数,则m的值为_______.16.若117.绝对值不大于3的所有整数的和等于___________________18.下面是某个宾馆的五个时钟,显示了同一时刻国外四个城市时间和北京时间,你能根据表格给出的国外四个城市与北京的时差,分别在时钟的下方表明前四个时钟所在的城市名称_____ _____ _____ ____19.检查5个篮球的质量,把超过标准质量的克数记作正数,不足的克数记作负数,检查结果如表:则最接近标准质量的是________ 号篮球;20.我市永丰林生态园区生产的草莓包装纸箱上标明草莓的质量为千克,如果这箱草莓重4.98千克,那么这箱草莓质量标准.(填“符合”或“不符合”)三、解答题(每小题5分,共60分)21.某工厂一周计划每日生产电动车50辆,由于工人实行轮休,每日上班人数不一定相等,实际每日生产量与计划量相比情况如下表(以计划量为标准,增加的车辆数记为正数,减少的车辆数记为负数):(1)生产量最多的一天比生产量最少的一天多生产多少辆?(2)本周总的生产量是多少辆?22.10袋小麦,每袋小麦以90 kg为标准,超过的千克数记做正数,不足的千克数记做负数,称后的记录如下:+1,+1,+1.5,-1,+1.2,+1.3,-1.3,-1.2,+1.8,+1.1.这10袋小麦一共多少千克?23.有5筐菜,以每筐50千克为准,超过的千克数记为正,不足记为负,称重记录如下:+3,-6,-4,+2,-1,总计超过或不足多少千克?5筐蔬菜的总重量是多少千克?24.为了有效控制酒后驾车,吉安市城管的汽车在一条东西方向的公路上巡逻,如果规定向东为正,向西为负,从出发点开始所走的路程为:+2,﹣3,+2,+1,﹣2,﹣1,﹣2(单位:千米)(1)此时,这辆城管的汽车司机如何向队长描述他的位置?(2)如果队长命令他马上返回出发点,这次巡逻(含返回)共耗油多少升?(已知每千米耗油0.2升)25.下表列出了外国几个城市与北京的时间差(带正号的数表示同一时刻比北京时间早的数值)(1)如果现在的北京时间是7:00,那么现在的纽约时间是多少?(2)如果现在的纽约时间是7:00,那么现在的北京时间是多少?(3)远在芝加哥的姑妈,在当地时间是7:00时想给在巴黎的舅妈打电话,你认为合适吗?A,P T)王先生到市行政中心大楼办事,假定乘电梯向上一楼记作26.(《全优新同步》1114+1,向下一楼记作1-,王先生从1楼出发,电梯上下楼层依次记录如下(单位:层):+-+-+--.6,3,10,8,12,7,10(1)请你通过计算说明王先生最后是否回到出发点1楼.(2)该中心大楼每层高3m,电梯每向上或下1m需要耗电0.2度,根据王先生现在所处位置,请你算算,他办事时电梯需要耗电多少度?27.一只蚂蚁从某点A出发,在一条直线上来回爬行,假定把向右爬行的路程记为正数,向左爬行的路程记为负数,则爬行各段路程(单位:厘米)依次为:+2,−3,+12,−8,−7,+16,−12,(1)通过计算说明蚂蚁是否回到起点A;(2)如果蚂蚁爬行的速度为0.5厘米/秒,那么蚂蚁共爬行了多长时间.28.足球训练中,为了训练球员快速抢断转身,教练设计了折返跑训练.教练在东西方向的足球场上画了一条直线插上不同的折返旗帜,如果约定向西为正,向东为负,练习一组的行驶记录如下(单位:米):+40,-30,+50,-25,+25,-30,+15,-28,+16,-20.(1)球员最后到达的地方在出发点的哪个方向?距出发点多远?(2)球员训练过程中,最远处离出发点多远?(3)球员在一组练习过程中,跑了多少米?29.2014年“十一”黄金周期间,罗浮山风景区在7天假期中每天旅游的人数变化如下表(正数表示比前一天多的人数,负数表示比前一天少的人数):(1)请判断7天中游客人数最多的是哪天?最少的是哪天?它们相差多少万人?(2)若9月30日的游客人数为0.3万人,则这7天的游客总人数是多少万人?30.某班抽查了10名同学的考试成绩,以80分为基数,超出基数的分数记为正数,不足的记为负数,记录的结果如下:+8,-3,+12,-6,-10,+2,-8,+1,0,+10;(1)这10名同学中的最高分是,最低分是.(2)若80分以上(含80分)为优秀,则这10名同学考试成绩的优秀率是.(3)求这10名同学的平均成绩.31.西安市管理部门对“十一”国庆放假期间七天本市某景区客流变化量进行了不完全统计,数据如下(用正数表示客流量比前一天增加,用负数表示客流量比前一天下降):请通过计算解决以下问题:(1)请判断这7天中,哪一天人数最多?哪一天人数最少?(2)与10月3日相比,10月5日的客流量是上升了还是下降了?(3)如图9月30日的客流量为1.5万人,据统计平均每人每天消费200元,请问该景区在“十一”七天国庆假期的总收入为多少万元?32.某工艺厂计划一周生产工艺品2100个,平均每天生产300个,但实际每天生产量与计划相比有出入.下表是某周的生产情况(超产记为正、减产记为负):(1)写出该厂星期一生产工艺品的数量;(2)本周产量最多的一天比最少的一天多生产多少个工艺品?(3)请求出该工艺厂在本周实际生产工艺品的数量;(4)已知该厂实行每周计件工资制,每生产一个工艺品可得60元,若超额完成任务,则超过部分每个另奖50元,少生产一个扣80元.试求该工艺厂在这一周应付出的工资总额.参考答案1.A2.C3.A4.B5.D6.B7.B8.C9.B10.A11.812.±213.13人14.-315.0,1,216.1.17.018.伦敦罗马北京纽约19.320.符合.21.(1)生产量最多的一天比生产量最少的一天多生产13辆;(2)本周总生产量是352辆.22.10袋小麦一共905.4 kg.23.不足6千克;244千克24.(1)这辆城管的汽车司机向队长描述他的位置为出发点以西3千米;(2)这次巡逻(含返回)共耗油3.2升.25.(1)纽约时间是前一天的18点;(2)北京时间是当天的20点;(3)我认为不合适.理由见解析.26.(1)王先生最后回到出发点1楼;(2)需要耗电33.6度.27.(1)小虫能回到起点A;(2)小虫共爬行了120秒.28.(1)球员最后到达的地方在出发点的正西方向,距出发点13米;(2)在最远处离出发点60m;(3)279米29.(1)0.22万人(2)这7天的游客总人数是3.42万人30.(1)92分,70分;(2)60%;(3)10名同学的平均成绩是80.6分.31.(1)最多的日期是10月4日,最少的日期是10月2日;(2)客流量是下降了;(3)6160万元32.(1)305(个);(2)26(个);(3)2200(套)(4)127100(元)。
5.3实际问题与一元一次方程+专题训练2024-2025学年人教版数学七年级上册 (1)
5.3实际问题与一元一次方程专题训练2024-2025学年人教版数学七年级上册一、选择题1.小华的妈妈去年存了一个1年期存款,年利率为3.50%,今年到期后得到利息700元,小华的妈妈去年存款的本金为()A.1000元B.2000元C.10000元D.20000元2.已知某商店有两件进价不同的商品都卖了60元,其中一件盈利20%,另一件亏损20%,在这次买卖中,这家商店()A.盈利5元B.亏损5元C.不盈不亏D.亏损10元3.青神德迈盛超市在“六一”儿童节,将一种儿童玩具按标价9折出售,仍获利润20%,若该玩具标价为40元,那么该玩具进价为()A.29元B.30元C.31元D.32元4.幻方是一种中国传统的数字游戏,游戏规则如下:将数字填入正方形的格子中,使每行、每列和每条对角线上的数字和都相等,如图是填写了部分数字的幻方,根据幻方的游戏规则,其中a的值为()1286aA.9B.10C.13D.145.《九章算术》是中国传统数学最重要的著作之一,书中记载:“今有人共买兔,人出九,盈六;人出七.不足十四.问人数几何?”意思是:“有若干人共同出钱买兔,如果每人出九钱,那么多了六钱;如果每人出七钱,那么少了十四钱,问:共有几个人?”设共有x个人共同出钱买兔,根据题意,可列一元一次方程为()A.9x+6=7x−14B.9x−6=7x+14C.9x−6=7x−14D.9x+6=7x+146.《九章算术》有这样一个问题:今有共买金,人出四百,盈三千四百;人出三百,盈一百.问人数,金价各几何?其大意是:假设合伙买金,每人出400钱,则多出3400钱;每人出300钱,则多出100钱.则合伙买金人数共有()A.33人B.32人C.30人D.29人7.中国古代数学著作《算法统宗》中有这样一段记载:“三百七十八里关,初日健步不为难,次日脚痛减一半,六朝才得到其关.”其大意是:有人要去某关口,路程378里,第一天健步行走,从第二天起,由于脚痛,每天走的路程都为前一天的一半,一共走了六天才到达目的地,则此人第一天走的路程为()A.192里B.189里C.144里D.96里8.某市把足球运球作为中考体育考试选考项目,而足球标志杆是足球运球项目的主要道具,足球标志杆分为底座和杆两部分,某学校欲购买一批足球标志杆供同学们练习使用.该校购买了30个底座和50根杆(杆容易断,所以购买的多),底座的单价比杆的单价多3元,共花费了490元,则底座的单价是()A.10元B.8元C.6元D.5元二、填空题9.一张试卷有25道必答题,答对一题得4分,答错一题扣1分,某学生解答了全部试题共得70分,他答对了道题.10.一组同学一起去种树,如果每人种4棵,还剩下3棵树苗;如果每人种5棵,那么缺少5棵树苗.则需种植的树苗数为棵.11.某商店足球的零售价为每个110元,若足球按8折降价销售,仍可获利10%,则这种足球的进价为每个元.12.某市出租车的收费标准:不超过3千米计费5元;若超过3千米,则超过3千米的部分按2.4元/千米计费(不满1千米按1千米计算).甲在一次乘出租车出行中付费17元,设出租车行驶的里程为x千米,则x的取值范围为.13.如果一个两位数的十位数字与个位数字之和为8,则称该数为“发数”.已知一个“发数”的十位数字是其个位数字的3倍,则这个“发数”是;如果一个“发数”的十位数字的2倍与个位数字的和能被3整除,则满足条件的最大“发数”是.14.中国古代人民很早就在生产生活中发现了许多有趣的数学问题,其中《孙子算经》中有个问题,原文:今有三人共车,二车空;二人共车,九人步,问人与车各几何?译文为:今有若干人乘车,每3 人共乘一车,最终剩余2辆车,若每2人共乘一车,最终剩余9个人无车可乘,则共有人乘车. 15.我国古代数学名著《张邱建算经》中记载:“今有清酒一斗直粟十斗,醑酒一斗直粟三斗.今持粟三斛,得洒五斗,问清、醑酒各几何?”意思是:现在一斗清酒价值10斗谷子,一斗醑酒价值3斗谷子,现在拿30斗谷子,共换了5斗酒,则清酒斗.16.利用两块相同的长方体木块(阴影部分)测量一件长方体物品的高,首先按图1所示的方式放置,再按图2所示的方式放置,测量的数据如图所示,则长方体物品的高是mm.三、解答题17.某中学六年级三个班的同学分别向贫困地区的希望小学捐款图书,已知三个班级学生捐款图书册数之比为5:6:7,如果他们共捐了198册,那么这三个班级各捐多少册?18.星期天,妈妈做饭,小峰和爸爸进行一次家庭卫生大扫除.根据这次大扫除的任务量,若小峰单独完成,需4h;若爸爸单独完成,需2h.当天,小峰先单独打扫了一段时间后,去参加篮球训练,接着由爸爸单独完成剩余的打扫任务.小峰和爸爸这次一共打扫了3h,求这次小峰打扫了多长时间.19.甲、乙两商场以同样的价格出售同样的商品,并且又各自推出不同的优惠方案:在甲商场累计购物超过100元后,超出100元的部分按a折收费;在乙商场累计购物超过50元后,超过50元的部分按九五折收费;若王老师到甲商场购物150元,实际支付145元.(1)求a的值;(2)当累计购物超过100元时,请你分析顾客到哪家商场购物更合算.20.在手工制作课上,老师组织七年级1班的学生用硬纸制作圆柱形茶叶筒七年级1班共有学生48人,其中男生人数比女生人数多2人,并且每名学生每小时剪筒身30个或剪筒底100个.(1)七年级1班男生、女生各有多少人?(2)如果一个筒身需要配两个筒底,那么为使每小时剪出的筒身与筒底刚好配套,应该分配多少名学生剪筒身、多少名学生剪筒底?21.某水果店以10元/千克的价格购进一批水果,由于销售良好,该店又再次购进同一种水果,第二次进货价格比第一次每千克便宜10%,所购进水果重量恰好是第一次购进水果重量的2倍,这样该水果店两次购进该水果共花去8400元.(1)求该水果店两次分别购买了多少千克水果?(2)在销售中,尽管两次进货的价格不同,但水果店仍以相同的价格售出,若第一次购进的水果有5%的损耗,第二次购进的水果有10%的损耗,并且在销售过程中的其他费用为600元,如果该水果店希望售完这些水果共获得7500元的利润,那么该水果店销售该水果每千克应定价为多少元?22.为了推进校园“三大球”体育活动的效果,某学校计划采购100个足球,x个排球(x>50).现有A,B两家体育用品公司参与竞标,两家公司的标价都是足球每个50元,排球每个40元,他们的优惠政策是:A公司:足球和排球一律按标价的8折销售;B公司:每购买2个足球,赠送1个排球.(单买按标价计算)(1)请用含x的代数式分别表示出购买A,B公司体育用品的费用;(2)当购买A,B两个公司体育用品的费用相等时,求此时x的值.。
人教版 七年级上册数学 计算满分训练
人教版七年级上册数学计算满分训练【专题】有理数的计算专题【知识点一】有理数的加减法1.有理数加法(分类讨论思想)(1)同号两数相加:取的符号,并把相加.(2)异号两数相加:取的符号,并用的绝对值减去的绝对值.互为相反数的两个数相加得 .(3)一个数与0相加:仍得 .2.有理数的减法(化归思想)(1)减去一个数,等于这个数的,即 .(2)加减混合运算:利用减法的化归思想,遇到加减混合运算时,只需要把所有的减法都化成加法!【课堂】例题1 计算:(1)(−23)−(−134)−(−223)−(+334)(2)14+(−23)+56+(−14)+(−13)(3)(−3)+(−4)+|−15|+{−[−(−7)]}变式计算:(1)(−1.5)+414+2.75+(−512)(2)(−3)+(−4)−|−15|+{−[−(−7)]}−(−3)(3)200512−200413+200312−200213+⋯+312−212+112−13例题2计算:|12009−12008|+|12010−12008|−|12010−12009|变式计算:|12010−12009|+|12011−12010|+|12012−12011|−|12012−12009|例题3 计算:(1)14×7+17×10+⋯+1100×103(2)11×2+12×3+13×4+⋯+199×100变式计算:(1)37×8+38×9+39×10+310×11(3)13+115+135+⋯+1442例题3 计算:1+3+5+7+⋯+99变式计算:1+2+3+4+⋯+100【专题】有理数的计算专题(满分班)【知识点一】有理数的乘除1.有理数乘法(分类讨论思想)(1)两数相乘:同号得,异号得 . (2)任何数与0相乘,都得 .(3)若干个非0因数相乘:负因数的个数是时,积是;负因数个数是时,积是 .(4)若干个数相乘,若其中有因数为0,积就为 .2.有理数除法(1)倒数:乘积为1的两个数互为倒数. 0没有倒数(2)除以一个数,等于乘以这个数的 . 即 .例题1 计算:(−35)×13×123×(−113)变式计算:(−3)×(−4)×(−5)×(−6)例题2计算:−12×(56−34−12)变式计算:(1)25×34−(−25)×12+25×(−14)(2)(−60)×(34+56−1115−712)例题3 计算:(−81)÷214×49÷(−15)变式计算:−112÷34×(−0.2)×134÷1.4×(−35)【知识点二】有理数的乘方1.有理数乘方的意义一般地,几个相同因数相乘,即,记作______,读作_________,求n个相同因数的______,叫作乘方,乘方的结果叫做____. 在中,叫做______,叫作______.当看作的次方的结果时,也可读作_________.2. 有理数混合运算的运算顺序先算 ,再算 ,最后算 ,如果有括号,就先算 .3. 乘方的符号法则:负数的奇次幂是_______数,负数的偶次幂是______数.正数的任何次幂都是______数,0的任何正整数次幂都是.4. (53)2和 523的异同 (−3)2和−32的异同例题1 计算:(1) 86×(12)6 (2)0.25×(−2)3−[4÷(−23)2+1](3) −32×(−23)3×(1−23)3变式 计算:(1)(−2)2−22−|−14|×(−1)2(2) 0.1252007×(−8)2008(3)−0.52+14−|−22−4|−(−112)3×49例题2 求1+2+22+23+⋯+22012的值,可令s =1+2+22+23+⋯+22012,则 2s =2+22+23+ …+22013,因此2s −s =22013−1,即 s =22013−1,仿照以上推理,求1+5+52+53+⋯+52012 的值.变式计算:10+102+103+⋯+10n【课后作业】计算下列课题(1)[(−2)3×16−(−3)×8]÷(−223)(2)−34+22÷23×32+|−5|(3)76×(16−13)÷314×73(4)3×|−4|−12×(14+16−12)(5)12+|−16|+(−4)2−5(6)(−23)+|0−516|+|−456|+(−913)(7)|33−(−3)3|×21327−12÷(23)2×23(8)−35×10−35×(−53)−35×15(9)2+22−23+⋯−29+210(10)2+4+6+8+⋯+100。
人教版七年级数学上册第一章1.4有理数的乘除法-中考试题汇编含精讲解析
人教版七年级数学上册第一章1.4有理数的乘除法X年中考试题汇编含精讲解析一.选择题(共26小题)1.(X•徐州)﹣2的倒数是()A.2 B.﹣2 C.D.﹣2.(X•珠海)的倒数是()A.B.C.2 D.﹣23.(X•黄石)﹣5的倒数是()A.5 B.C.﹣5 D.4.(X•佛山)﹣3的倒数为()A.﹣B.C.3 D.﹣35.(X•自贡)的倒数是()A.﹣2 B.2 C.D.6.(X•泉州)﹣7的倒数是()A.7 B.﹣7 C.D.﹣7.(X•宿迁)的倒数是()A.﹣2 B.2 C.D.8.(X•巴中)﹣2的倒数是()A.2 B.C.﹣D.﹣29.(X•成都)﹣3的倒数是()A.﹣B.C.﹣3 D.310.(X•曲靖)﹣2的倒数是()A.﹣B.﹣2 C.D.2 11.(X•广安)的倒数是()A.5 B.﹣5 C.D.﹣12.(X•攀枝花)﹣3的倒数是()A.﹣B.3 C.D.±13.(X•毕节市)﹣的倒数的相反数等于()A.﹣2 B.C.﹣D.2 14.(X•无锡)﹣3的倒数是()A.3 B.±3 C.D.﹣15.(X•眉山)﹣2的倒数是()A.B.2 C.﹣D.﹣216.(X•龙岩)﹣1的倒数是()A.﹣1 B.0 C.1 D.±117.(X•黔东南州)的倒数是()A.B.C.D.18.(X•娄底)X的倒数为()A.﹣X B.X C.﹣D.19.(X•乌鲁木齐)﹣2的倒数是()A.﹣2 B.﹣C.D.2 20.(X•海南)﹣X的倒数是()A.﹣B.C.﹣X D.X21.(X•盐城)的倒数为()A.﹣2 B.﹣C.D.222.(X•贵港)3的倒数是()A.3 B.﹣3 C.D.﹣23.(X•义乌市)计算(﹣1)×3的结果是()A.﹣3 B.﹣2 C.2 D.324.(X•六盘水)下列运算结果正确的是()A.﹣87×(﹣83)=7221 B.﹣2.68﹣7.42=﹣10C.3.77﹣7.11=﹣4.66 D.25.(X•台湾)算式(﹣1)×(﹣3)×之值为何?()A.B.C.D.26.(X•天津)计算(﹣18)÷6的结果等于()A.﹣3 B.3 C.﹣D.二.填空题(共1小题)27.(X•湘潭)的倒数是.人教版七年级数学上册第一章1.4有理数的乘除法X年中考试题汇编含精讲解析参考答案与试题解析一.选择题(共26小题)1.(X•徐州)﹣2的倒数是()A.2 B.﹣2 C.D.﹣考点:倒数.分析:根据倒数的定义,若两个数的乘积是1,我们就称这两个数互为倒数.解答:解:∵﹣2×()=1,∴﹣2的倒数是﹣.故选D.点评:主要考查倒数的概念及性质.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数,属于基础题.2.(X•珠海)的倒数是()A.B.C.2 D.﹣2考点:倒数.分析:根据倒数的定义求解.解答:解:∵×2=1,∴的倒数是2.故选C.点评:倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.3.(X•黄石)﹣5的倒数是()A.5 B.C.﹣5 D.考点:倒数.分析:乘积是1的两数互为倒数,所以﹣5的倒数是﹣.解答:解:﹣5与﹣的乘积是1,所以﹣5的倒数是﹣.故选D.点评:本题主要考查倒数的概念:乘积是1的两数互为倒数.4.(X•佛山)﹣3的倒数为()A.﹣B.C.3 D.﹣3考点:倒数.专题:存在型.分析:根据倒数的定义进行解答即可.解答:解:∵(﹣3)×(﹣)=1,∴﹣3的倒数是﹣.故选A.点评:本题考查的是倒数的定义,即如果两个数的乘积等于1,那么这两个数互为倒数.5.(X•自贡)的倒数是()A.﹣2 B.2 C.D.考点:倒数.专题:常规题型.分析:根据倒数的定义求解.解答:解:﹣的倒数是﹣2.故选:A.点评:本题主要考查了倒数的定义,解题的关键是熟记定义.6.(X•泉州)﹣7的倒数是()A.7 B.﹣7 C.D.﹣考点:倒数.分析:根据乘积是1的两个数互为倒数,可得一个数的倒数.解答:解:﹣7的倒数是﹣,故选:D.点评:本题考查了倒数,分子分母交换位置是求一个数的倒数的关键.7.(X•宿迁)的倒数是()A.﹣2 B.2 C.D.考点:倒数.分析:根据乘积为1的两个数互为倒数,可得答案.解答:解:的倒数是﹣2,故选:A.点评:本题考查了倒数,分子分母交换位置是求一个数的倒数的关键.8.(X•巴中)﹣2的倒数是()A.2 B.C.﹣D.﹣2考点:倒数.分析:根据倒数定义可知,﹣2的倒数是﹣.解答:解:﹣2的倒数是﹣.故选:C.点评:主要考查倒数的定义,要求熟练掌握.需要注意的是倒数的性质:负数的倒数还是负数,正数的倒数是正数,0没有倒数.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.9.(X•成都)﹣3的倒数是()A.﹣B.C.﹣3 D.3考点:倒数.分析:根据倒数的定义,若两个数的乘积是1,我们就称这两个数互为倒数.解答:解:∵﹣3×(﹣)=1,∴﹣3的倒数是﹣.故选:A.点评:主要考查倒数的概念及性质.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数,属于基础题.10.(X•曲靖)﹣2的倒数是()A.﹣B.﹣2 C.D.2考点:倒数.分析:根据乘积是1的两个数互为倒数,可得一个数的倒数.解答:解:有理数﹣2的倒数是﹣.故选:A.点评:本题考查了倒数,分子分母交换位置是求一个数的倒数的关键.11.(X•广安)的倒数是()A.5 B.﹣5 C.D.﹣考点:倒数.分析:根据倒数的意义,乘积是1的两个数互为倒数,求一个数的倒数就是把这个数的分子和分母调换位置.由此解答.解答:解:的倒数是5.故选A.点评:此题主要考查倒数的意义,关键是求一个数的倒数的方法.12.(X•攀枝花)﹣3的倒数是()A.﹣B.3 C.D.±考点:倒数.分析:根据倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.解答:解:﹣3的倒数是﹣.故选:A.点评:本题主要考查了倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.13.(X•毕节市)﹣的倒数的相反数等于()A.﹣2 B.C.﹣D.2考点:倒数;相反数.分析:根据倒数和相反数的定义分别解答即可.解答:解:﹣的倒数为﹣2,所以﹣的倒数的相反数是:2.故选;D.点评:此题主要考查了倒数和相反数的定义,要求熟练掌握.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.相反数的定义:只有符号不同的两个数互为相反数,0的相反数是0.14.(X•无锡)﹣3的倒数是()A.3 B.±3 C.D.﹣考点:倒数.分析:根据倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.解答:解:﹣3的倒数是,故选D点评:本题主要考查了倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.15.(X•眉山)﹣2的倒数是()A.B.2 C.﹣D.﹣2考点:倒数.分析:根据倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.解答:解:﹣2的倒数是,故选C.点评:本题主要考查了倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.16.(X•龙岩)﹣1的倒数是()A.﹣1 B.0 C.1 D.±1考点:倒数.分析:根据乘积为1的两个数互为倒数,可得答案.解答:解:﹣1的倒数是﹣1,故选:A.点评:本题考查了倒数,分子分母交换位置是求一个数的倒数的关键.17.(X•黔东南州)的倒数是()A.B.C.D.考点:倒数.分析:根据倒数的定义,互为倒数的两数乘积为1,﹣×(﹣)=1即可解答.解答:解:根据倒数的定义得:﹣×(﹣)=1,因此倒数是﹣.故选D.点评:本题主要考查了倒数的概念及性质.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.18.(X•娄底)X的倒数为()A.﹣X B.X C.﹣D.考点:倒数.分析:利用倒数的定义求解即可.解答:解:X的倒数为.故选:D.点评:本题主要考查了倒数的定义,解题的关键是熟记倒数的定义.19.(X•乌鲁木齐)﹣2的倒数是()A.﹣2 B.﹣C.D.2考点:倒数.分析:根据倒数的意义,乘积是1的两个数叫做互为倒数,据此解答.解答:解:∵﹣2×=1.∴﹣2的倒数是﹣,故选:B.点评:本题主要考查倒数的意义,解决本题的关键是熟记乘积是1的两个数叫做互为倒数.20.(X•海南)﹣X的倒数是()A.﹣B.C.﹣X D.X考点:倒数.分析:根据倒数的意义,乘积是1的两个数叫做互为倒数,据此解答.解答:解:∵﹣X×(﹣)=1,∴﹣X的倒数是﹣,故选:A.点评:本题主要考查倒数的意义,解决本题的关键是熟记乘积是1的两个数叫做互为倒数.21.(X•盐城)的倒数为()A.﹣2 B.﹣C.D.2考点:倒数.分析:根据倒数的意义,乘积是1的两个数叫做互为倒数,据此解答.解答:解:∵,∴的倒数为2,故选:D.点评:本题主要考查倒数的意义,解决本题的关键是熟记乘积是1的两个数叫做互为倒数.22.(X•贵港)3的倒数是()A.3 B.﹣3 C.D.﹣考点:倒数.分析:根据乘积是1的两个数互为倒数,可得一个数的倒数.解答:解:有理数3的倒数是.故选:C.点评:本题考查了倒数,分子分母交换位置是求一个数的倒数的关键.23.(X•义乌市)计算(﹣1)×3的结果是()A.﹣3 B.﹣2 C.2 D.3考点:有理数的乘法.分析:根据有理数的乘法运算法则进行计算即可得解.解答:解:(﹣1)×3=﹣1×3=﹣3.故选A.点评:本题考查了有理数的乘法,是基础题,计算时要注意符号的处理.24.(X•六盘水)下列运算结果正确的是()A.﹣87×(﹣83)=7221 B.﹣2.68﹣7.42=﹣10C.3.77﹣7.11=﹣4.66 D.考点:有理数的乘法;有理数大小比较;有理数的减法.专题:计算题.分析:原式各项计算得到结果,即可做出判断.解答:解:A、原式=7221,正确;B、原式=﹣10.1,错误;C、原式=﹣3.34,错误;D、﹣>﹣,错误,故选A点评:此题考查了有理数的乘法,有理数的大小比较,以及有理数的减法,熟练掌握运算法则是解本题的关键.25.(X•台湾)算式(﹣1)×(﹣3)×之值为何?()A.B.C.D.考点:有理数的乘法.分析:根据有理数的乘法法则,先确定符号,然后把绝对值相乘即可.解答:解:原式=××=,故选:D.点评:本题考查的是有理数的乘法,掌握乘法法则是解题的关键,计算时,先确定符号,然后把绝对值相乘.26.(X•天津)计算(﹣18)÷6的结果等于()A.﹣3 B.3 C.﹣D.考点:有理数的除法.分析:根据有理数的除法,即可解答.解答:解:(﹣18)÷6=﹣3.故选:A.点评:本题考查了有理数的除法,解决本题的关键是熟记有理数除法的法则.二.填空题(共1小题)27.(X•湘潭)的倒数是 2 .考点:倒数.分析:根据倒数的定义,的倒数是2.解答:解:的倒数是2,故答案为:2.点评:此题主要考查了倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.。
人教版七年级数学上册 有理数的加减乘除混合运算专题训练 (无答案)
有理数的加减乘除混合运算专题训练 小专题(一)有理数的加减运算1.用适当的方法计算:(1)0.36+(-7.4)+0.5+(-0.6)+0.14; (2)(-2.125)+(+315)+(+518)+(-3.2);(3)(-235)+(+314)+(-325)+(+234)+(-112)+(+113).(4)计算:(-112)+(-571320)-(-112)+42720.2.计算:(1)213+635+(-213)+(-525); (2)(-913)-|-456|+|0-516|-23;(3)635+24-18+425-16+18-6.8-3.2. (4)-478-(-512)+(-412)-318;(5)-12-16-112-120-130-142-156-172;(6)1-2-3+4+5-6-7+8+…+97-98-99+100.小专题(二) 有理数的加减运算有理数加减运算的简便方法归纳 方法1 相反数结合法【例1】 计算:(-2)+3+1+(-3)+2+(-4).方法2 同号结合法——把正数和负数分别结合相加 【例2】 计算:(+9)-(+10)+(-2)-(-8)+3.方法3 同分母结合法【例3】 (1)-23-35+78-13-25+18;(2)-479-(-315)-(+229)+(-615).方法4 凑整法——分数相加,把相加得整数的数结合相加 【例4】 计算:|-0.75|+(-3)-(-0.25)+|-18|+78.方法5 分解法——将一个数拆分成两个数的和或差 【例5】 计算:-156+(-523)+2434+312.方法6 裂项相消法【例6】 观察下列各式:12=11×2=1-12,16=12×3=12-13,112=13×4=13-14,…,根据规律完成下列各题.(1)19×10= ; (2)计算12+16+112+120+…+19 900的值为 .易错点 分解带分数时弄错符号 【例7】 计算:634+313-514-312+123.强化训练1.计算(能用简便方法计算的尽量用简便方法):(1)(-7)-(+5)+(-4)-(-10); (2)-9+6-(+11)-(-15);(3)3.5-4.6+3.5-2.4; (4)|-12|-(-2.5)-(-1)-|0-212|;(5)34-72+(-16)-(-23)-1; (6)0.25+112+(-23)-14+(-512);(7)12+(-23)+45+(-12)+(-13); (8)-212+(+56)+(-0.5)+(+116);小专题(三) 有理数的乘除运算有理数混合运算的简便方法归纳 方法1 运用乘法的交换律和结合律 【例1】 计算:531×(-29)×(-3115)×(-92).方法2 正用分配律【例2】 计算:(14-16+124)×(-48).方法3 逆用分配律【例3】 计算:4×(-277)-3×(-277)-6×277.方法4 除法变乘法,再利用分配律 【例4】 计算:(16-27+23)÷(-542).强化训练 计算:(1)54×(-95)+38×(-95)-8×95; (2)(-13)×(-134)×113×⎝⎛⎭⎫-167;(3)⎝⎛⎭⎫29-14+118×(-36); (4)⎝⎛⎭⎫13+16-25÷⎝⎛⎭⎫-130;(5)⎝⎛⎭⎫79-56+318×18+3.95×6-1.45×6.2.运用运算律进行简便运算:(1)(-10)×13×(-110)×6; (2)36×(-34-59+712);(3)(-5)×(+223)+7×(-223)-(+12)×(-223).3.计算:-48×(12-3-58+56-112).4.用简便方法计算:(1)(-8)×(-43)×(-1.25)×54; (2)(-112-136+16)×(-36);(3)0.7×149+234×(-15)+0.7×59+14×(-15); (4)9978×(-4)-(12-13-56)×24.5.(河北中考)请你参照黑板上老师的讲解,用运算律简便计算:(1)999×(-15); (2)999×11845+999×(-15)-999×1835.6.【注重阅读理解】阅读下列材料: 计算:124÷(13-14+112).解法一:原式=124÷13-124÷14+124÷112=124×3-124×4+124×12=1124.解法二:原式=124÷(412-312+112)=124÷212=124×6=14.解法三:原式的倒数=(13-14+112)÷124=(13-14+112)×24=13×24-14×24+112×24=4.所以原式=14.(1)上述得到的结果不同,你认为解法一是错误的; (2)请你选择合适的解法计算:(-142)÷(16-314+23-27).7.计算:(1)2÷15×(-5); (2)(-12)×(-14)÷(-65);(3)(-34)÷54÷(-310); (4)(-23)×(-58)÷14;(5)(-212)÷(-5)×(-313); (6)-313÷213×(-2).8.计算:(1)(-247)×(-156)÷(-1121); (2)|-223|×(-18)÷(-3);(3)-321625÷(-8×4); (4)(-81)÷214×49÷(-16);(5)178÷(-10)×(-313)÷(-334); (6)(-1018)÷94×49÷(-2);(7)317×(317÷713)×722÷1121.9.有两个数-4和+6,它们相反数的和为a ,倒数的和为b ,和的倒数为c ,求a÷b÷c 的值. . 10.计算:(1)-6+4÷(-2); (2)(-3)-(-15)÷(-3);(3)(-3)×4+(-24)÷6; (4)(-42)÷(-7)-(-6)×4;(5)22×(-5)-(-3)÷(-15); (6)(1+13)÷(13-1)×38.11.计算:(1)(-2878+1479)÷7; (2)(梧州中考)-5×2+3÷13-(-1);(3)(-1313)÷5-123÷5+13×15; (4)-|-13|-|-34×23|-|12-13小专题(四) 有理数的混合运算1.计算:(1)-(3-5)×32÷(-1)3; (2)-0.75×(-32)÷(-94);(4)(12-58-14)×(-24); (5)24÷(32-43)-62122×22;(6)(-5)÷(-97)×45×(-94)÷7; (7)0.7×1949+234×(-14)+0.7×59+14×(-14);(8)391314×(-14); (9)1318÷(-7);(10)(-5)-(-5)÷10×110×(-5); (11)(-12)÷(-4)-27÷(-3)×(-13);(13)12.5×6.787 5×18+1.25×678.75×0.125+0.125×533.75×18;(16)(-48)×(-16-116+34)-1.85×6+3.85×6.。
七年级数学上册专题训练(打包9套)(新版)新人教版
专题训练(一) 绝对值的应用类型1 利用绝对值比较大小 1.比较下面各对数的大小:(1)-0.1与-0.2;解:因为|-0.1|=0.1,|-0.2|=0.2, 且0.1<0.2,所以-0.1>-0.2.(2)-45与-56.解:因为|-45|=45=2430,|-56|=56=2530,且2430<2530, 所以-45>-56.2.比较下面各对数的大小:(1)-821与-|-17|;解:-|-17|=-17.因为|-821|=821,|-17|=17=321,且821>17,所以-821<-|-17|.(2)-2 0152 016与-2 0162 017. 解:因为|-2 0152 016|=2 0152 016,|-2 0162 017|=2 0162 017,且2 0152 016<2 0162 017,所以-2 0152 016>-2 0162 017.类型2 巧用绝对值的性质求字母的值3.已知|a|=3,|b|=13,且a <0<b ,则a ,b 的值分别为(B )A .3,13B .-3,13C .-3,-13D .3,-134.已知|a|=2,|b|=3,且b<a ,试求a 、b 的值.解:因为|a|=2,所以a =±2. 因为|b|=3,所以b =±3. 因为b<a ,所以a =2,b =-3或a =-2,b =-3.5.已知|x -3|+|y -5|=0,求x +y 的值.解:由|x -3|+|y -5|=0,得 x -3=0,y -5=0, 即x =3,y =5.所以x +y =3+5=8.6.已知|2-m|+|n -3|=0,试求m +2n 的值.解:因为|2-m|+|n -3|=0,且|2-m|≥0,|n -3|≥0, 所以|2-m|=0,|n -3|=0. 所以2-m =0,n -3=0. 所以m =2,n =3.所以m +2n =2+2×3=8. 7.已知|a -4|+|b -8|=0,求a +bab的值.解:因为|a -4|+|b -8|=0, 所以|a -4|=0,|b -8|=0. 所以a =4,b =8. 所以a +b ab =1232=38.类型3 绝对值在生活中的应用8.某汽车配件厂生产一批零件,从中随机抽取6件进行检验,比标准直径长的毫米数记为正数,比标准直径短的毫米数记为负数,检查记录如下表(单位:毫米):序号 1 2 3 4 5 6 误差/毫米+0.5-0.150.1-0.10.2(1)哪3件零件的质量相对来讲好一些?怎样用学过的绝对值知识来说明这些零件的质量好?(2)若规定与标准直径误差不超过0.1毫米的为优等品,在0.1毫米~0.3毫米(不含0.1毫米和0.3毫米)范围内的为合格品,不小于0.3毫米的为次品,则这6件产品中分别有几件优等品、合格品和次品?解:(1)因为|+0.5|=0.5,|-0.15|=0.15,|0.1|=0.1,|0|=0,|-0.1|=0.1,|0.2|=0.2,又因为0<0.1<0.15<0.2<0.5,所以第3件、第4件、第5件零件的质量相对来讲好一些. (2)由绝对值可得出:有3件优等品,2件合格品和1件次品.9.已知蜗牛从A 点出发,在一条数轴上来回爬行,规定:向正半轴运动记作“+”,向负半轴运动记作“-”,从开始到结束爬行的各段路程(单位:cm )依次为:+7,-5,-10,-8,+9,+12,+4,-6.若蜗牛的爬行速度为每秒12cm ,请问蜗牛一共爬行了多少秒?解:(|+7|+|-5|+|-10|+|-8|+|+9|+|+12|+|+4|+|-6|)÷12=122(秒).答:蜗牛一共爬行了122秒.10.司机小李某天下午的营运全是在南北走向的鼓楼大街进行的.假定向南为正,向北为负,他这天下午行车里程如下(单位:km ):+15,-3,+14,-11,+10,+4,-26.(1)小李在送第几位乘客时行车里程最远?(2)若汽车耗油量为0.1 L /km ,这天下午汽车共耗油多少L? 解:(1)小李在送最后一位乘客时行车里程最远,是26 km .(2)总耗油量为0.1×(|+15|+|-3|+|+14|+|-11|+|+10|+|+4|+|-26|)=8.3(L ).11.在活动课上,有6名学生用橡皮泥做了6个乒乓球,直径可以有0.02毫米的误差,超过规定直径的毫米数记作正数,不足的记作负数,检查结果如下表:做乒乓球 的同学 李明 张兵 王敏 余佳 赵平 蔡伟 检测 结果+0.031-0.017+0.023-0.021+0.022-0.011(1)请你指出哪些同学做的乒乓球是合乎要求的?(2)指出合乎要求的乒乓球中哪个同学做的质量最好,6名同学中,哪个同学做的质量较差?(3)请你对6名同学做的乒乓球质量按照最好到最差排名; (4)用学过的绝对值知识来说明以上问题. 解:(1)张兵、蔡伟.(2)蔡伟做的质量最好,李明做的质量较差. (3)蔡伟、张兵、余佳、赵平、王敏、李明.(4)这是绝对值在实际生活中的应用,对误差来说绝对值越小越好.专题训练(二) 有理数的运算题组1 有理数的加、减、乘、除、乘方运算 1.计算:(1)(-3)+(-9); 解:原式=-12.(2)-4.9+3.7; 解:原式=-1.2.(3)(-13)+34;解:原式=512.(4)0-9;解:原式=-9.(5)(-3)-(-5); 解:原式=2.(6)-712-914;解:原式=-1634.(7)(-12.5)-(-7.5). 解:原式=-5.2.计算:(1)(-3)×5; 解:原式=-15.(2)(-34)×(-89);解:原式=23.(3)(-37)×(-45)×(-712);解:原式=-15.(4)(-4)×(-10)×0.5×0×2 017; 解:原式=0.(5)(-36)÷9; 解:原式=-4.(6)(-1225)÷(-35);解:原式=45.(7)(-12557)÷(-5).解:原式=2517.3.计算:(1)(0.3)2;解:原式=0.09.(2)(-10)3;解:原式=-1 000.(3)-(-2)4; 解:原式=-16.(4)(112)3.解:原式=278.题组2 有理数的混合运算 4.计算:(1)16+(-25)+24-35;解:原式=16+24+[(-25)+(-35)] =40+(-60) =-20.(2)314+(-235)+534-825;解:原式=314+534+[(-235)+(-825)]=9+(-11)=-2.(3)(12-58-14)×(-24);解:原式=12×(-24)-58×(-24)-14×(-24)=9.(4)719×(112-118+314)×(-214);解:原式=649×(-94)×(32-98+134)=-16×(32-98+134)=-16×32+16×98-16×134=-24+18-52=-58.(5)(-9)×(-11)÷3÷(-3); 解:原式=-99÷3÷3 =-11.(6)(-48)÷8-(-5)×(-6); 解:原式=-6-30 =-36.(7)2-(-4)+8÷(-2)+(-3). 解:原式=2+4+(-4)+(-3) =2+(-3) =-1.5.计算:(1)-12-(-12)3÷4;解:原式=-1-(-18)÷4=-1+18×14=-1+132=-3132.(2)(-2)3+(-3)×[(-4)2+2]-(-3)2÷(-2); 解:原式=(-8)+(-3)×(16+2)-9÷(-2) =(-8)+(-3)×18+4.5 =(-8)+(-54)+4.5=-57.5.(3)-32×(-13)2-(-2)3÷(-12)2;解:原式=-9×19-(-8)÷14=-1+32=31.(4)(-2)4÷(-8)-(-12)3×(-22);解:原式=16÷(-8)-(-18)×(-4)=(-2)-12=-212.(5)(-58)×(-4)2-0.25×(-5)×(-4)3;解:原式=(-58)×16-0.25×(-5)×(-64)=-10-80 =-90.(6)-14+(1-0.5)×13×[2-(-3)2].解:原式=-1+0.5×13×(2-9)=-1+0.5×13×(-7)=-1-76=-136.专题训练(三) 整式的加减运算计算:(1)(钦南期末)a 2b +3ab 2-a 2b ;解:原式=3ab 2.(2)2(a -1)-(2a -3)+3; 解:原式=4.(3)2(2a 2+9b)+3(-5a 2-4b);解:原式=-11a 2+6b.(4)3(x 3+2x 2-1)-(3x 3+4x 2-2);解:原式=2x 2-1.(5)(钦南期末)(2x 2-12+3x)-4(x -x 2+12);解:原式=2x 2-12+3x -4x +4x 2-2=6x 2-x -52.(6)3(x 2-x 2y -2x 2y 2)-2(-x 2+2x 2y -3);解:原式=3x 2-3x 2y -6x 2y 2+2x 2-4x 2y +6=5x 2-7x 2y -6x 2y 2+6.(7)-(2x 2+3xy -1)+(3x 2-3xy +x -3);解:原式=-2x 2-3xy +1+3x 2-3xy +x -3=x2-6xy+x-2.(8)(4ab-b2)-2(a2+2ab-b2);解:原式=4ab-b2-2a2-4ab+2b2=-2a2+b2.(9)-3(2x2-xy)+4(x2+xy-6);解:原式=-6x2+3xy+4x2+4xy-24=-2x2+7xy-24.(10)(钦州期中)2a2-[-5ab+(ab-a2)]-2ab.解:原式=2a2+5ab-ab+a2-2ab=3a2+2ab.专题训练(四) 整式的化简求值类型1化简后直接代入求值1.(柳州期中)先化简,再求值:5x2+4-3x2-5x-2x2-5+6x,其中x=-3.解:原式=(5-3-2)x2+(-5+6)x+(4-5)=x-1.当x=-3时,原式=-3-1=-4.2.(北流期中)先化简,再求值:(3a2b-2ab2)-2(ab2-2a2b),其中a=2,b=-1.解:原式=3a2b-2ab2-2ab2+4a2b=7a2b-4ab2.当a=2,b=-1时,原式=-28-8=-36.3.先化简,再求值:2(x +x 2y)-23(3x 2y +32x)-y 2,其中x =1,y =-3.解:原式=2x +2x 2y -2x 2y -x -y 2=x -y 2.当x =1,y =-3时,原式=1-9=-8.4.(钦南期末)先化简,再求值:2x 2y -[2xy 2-2(-x 2y +4xy 2)],其中x =12,y =-2.解:原式=2x 2y -2xy 2-2x 2y +8xy 2=6xy 2.当x =12,y =-2时,原式=6×12×4=12.5.(南宁四十七中月考)先化简,再求值:2(x 2y +xy)-3(x 2y -xy)-4x 2y ,其中x ,y 满足|x +1|+(y -12)2=0.解:原式=2x 2y +2xy -3x 2y +3xy -4x 2y=-5x 2y +5xy.因为|x +1|+(y -12)2=0,所以x =-1,y =12.故原式=-52-52=-5.类型2 整体代入求值6.若a 2+2b 2=5,求多项式(3a 2-2ab +b 2)-(a 2-2ab -3b 2)的值.解:原式=3a 2-2ab +b 2-a 2+2ab +3b 2=2a 2+4b 2.当a 2+2b 2=5时,原式=2(a 2+2b 2)=10.m+n-2+(mn+3)2=0,求2(m+n)-2[mn+(m+n)]-3[2(m+n)-3mn]的值.7.已知||解:由已知条件知m+n=2,mn=-3,所以原式=2(m+n)-2mn-2(m+n)-6(m+n)+9mn=-6(m+n)+7mn=-12-21=-33.专题训练(五) 图形的规律探索——教材P70T10的变式与应用教材母题:(教材P70T10)如图所示,由一些点组成形如三角形的图形,每条“边”(包括两个顶点)有n(n>1)个点,每个图形总的点数S是多少?当n=5,7,11时,S是多少?【思路点拨】观察图形,可得到点的总数S与n之间的关系,用含n的式子表示S,便可分别求出当n=5,7,11时,S的值.【解答】观察图形,当n=2时,有两排点,总的点数为1+2=3(个);当n=3时,有三排点,总的点数为1+2+3=6(个);当n=4时,有四排点,总的点数为1+2+2+4=9(个);当n=5时,有五排点,总的点数为1+2+2+2+5=12(个).根据此规律,可知点的总数S=1+2(n-2)+n=3n-3,当n=7时,S=3×7-3=18;当n=11时,S=3×11-3=30.故当n=5,7,11时,S的值分别是12,18,30.【方法归纳】解决图形规律探索问题,首先从简单的基本图形入手,随着“序号”或“编号”增加时,后一个图形与前一个图形相比,在数量上的变化情况或图形变化情况,找出变化规律,从而推出一般性结论.1.如图是用相同长度的小棒摆成的一组有规律的图案,其中图1需要4根小棒,图2需要10根小棒,…,按此规律摆下去,则第11个图案所需小棒的根数为(C)A.70 B.68 C.64 D.582.(荆州中考)如图,用黑白两种颜色的纸片,按黑色纸片数逐渐增加1的规律拼成下列图案.若第n个图案中有2 017个白色纸片,则n的值为(B)A .671B .672C .673D .6743.(益阳中考)小李用围棋子排成下列一组有规律的图案,其中第1个图案有1枚棋子,第2个图案有3枚棋子,第3个图案有4枚棋子,第4个图案有6枚棋子,…,那么第9个图案的棋子数是13枚.4.如图是用棋子摆成的图案:根据图中棋子的排列规律解决下列问题:(1)第4个图中有22枚棋子,第5个图中有32枚棋子;(2)写出你猜想的第n 个图中棋子的枚数(用含n 的式子表示)是n +2+n 2. 5.下面是用棋子摆成的“小房子”.摆第10个这样的“小房子”需要多少枚棋子?摆第n 个这样的“小房子”呢?你是如何得到的?解:第1个“小房子”,下边正方形棋子4×2-4=4(枚),上边1枚,共4+1=5(枚); 第2个“小房子”,下边正方形棋子4×3-4=8(枚),上边3枚,共8+3=11(枚); 第3个“小房子”,下边正方形棋子4×4-4=12(枚),上边5枚,共12+5=17(枚); 第4个“小房子”,下边正方形棋子4×5-4=16(枚),上边7枚,共16+7=23(枚); …第n 个“小房子”,下边正方形棋子4×(n+1)-4=4n(枚),上边(2n -1)枚,共4n +2n -1=(6n -1)(枚).当n =10时,6n -1=6×10-1=59(枚).专题训练(六) 一元一次方程的解法1.解下列方程:(1)(南宁校级月考)2x +5=5x -7; 解:2x -5x =-7-5, -3x =-12, x =4.(2)12x +x +2x =140; 解:72x =140,x =40.(3)56-8x =11+x ; 解:-8x -x =11-56, -9x =-45, x =5.(4)43x +1=5+13x. 解:43x -13x =5-1,x =4.2.解下列方程:(1)(玉林期末)10(x -1)=5; 解:10x -10=5, 10x =5+10, 10x =15, x =32.(2)4x -3(20-2x)=10; 解:4x -60+6x =10, 4x +6x =60+10, 10x =70, x =7.(3)3(x -2)+1=x -(2x -1); 解:3x -6+1=x -2x +1, 4x =6, x =1.5.(4)4(2x -3)-(5x -1)=7; 解:8x -12-5x +1=7, 8x -5x =7+12-1, 3x =18, x =6.(5)4y -3(20-y)=6y -7(9-y). 解:4y -60+3y =6y -63+7y. 4y +3y -6y -7y =60-63, -6y =-3, y =12.3.解下列方程:(1)2x -13-2x -34=1;解:4(2x -1)-3(2x -3)=12, 8x -4-6x +9=12, 8x -6x =4-9+12, 2x =7, x =72.(2)16(3x -6)=25x -3; 解:5(3x -6)=12x -90, 15x -30=12x -90, 15x -12x =-90+30, 3x =-60, x =-20.(3)2(x +3)5=32x -2(x -7)3;解:12(x +3)=45x -20(x -7),12x +36=45x -20x +140, 12x -45x +20x =-36+140, -13x =104, x =-8.(4)2x -13-10x +16=2x +12-1;解:2(2x -1)-(10x +1)=3(2x +1)-6,4x -10x -6x =3-6+2+1, -12x =0, x =0.(5)x +45-(x -5)=x +33-x -22.解:6(x +4)-30(x -5)=10(x +3)-15(x -2), 6x +24-30x +150=10x +30-15x +30, 6x -30x -10x +15x =30+30-24-150, -19x =-114, x =6.4.解下列方程: (1)x -40.2-2.5=x -30.05;解:原方程整理,得5x -20-2.5=20x -60. 移项,得5x -20x =-60+20+2.5. 合并同类项,得-15x =-37.5. 系数化为1,得x =2.5.(2)0.5x +0.90.5+x -53=0.01+0.02x 0.03.解:原方程整理,得5x +95+x -53=1+2x 3.去分母,得15x +27+5x -25=5+10x.移项、合并同类项,得10x =3. 系数化为1,得x =0.3.5.解方程:3|x|-5=|x|-22+1.5|x|=10, |x|=2, x =2或-2.6.解下列方程:(1)119x +27=29x -57;解:119x -29x =-57-27,x =-1.(2)278(x -3)-463(6-2x)-888(7x -21)=0.解:278(x -3)+463×2(x-3)-888×7(x-3)=0, (278+463×2-888×7)(x-3)=0, x =3.专题训练(七) 一元一次方程的应用1.某人乘船由A 地顺流而下到B 地,然后又逆流而上到C 地,共乘船3 h ,已知船在静水中的速度是8 km /h ,水流速度是2 km /h ,若A 、C 两地距离为2 km (A 、B 、C 三地在一条直线上),则A 、B 两地间的距离是10或252k m .2.兄弟两人由家里去学校,弟每小时走6里,哥每小时走8里,哥晚出发10分钟,结果两人同时到校,学校离家有多远?解:设学校离家有x 里.由题意,得x 6-1060=x8.解得x =4. 答:学校离家有4里.3.用两台水泵从同一池塘中向外抽水,单开甲泵5小时可抽完,单开乙泵2.5小时便能抽完.(1)如果两台水泵同时抽水,多长时间能把水抽完?(2)如果甲泵先抽2小时,剩下的由乙泵来抽,乙泵用多少时间才能把水抽完?解:(1)设两台水泵同时抽水,x 小时能抽完.由题意,得 x 5+x 2.5=1,解得x =53. 答:两台水泵同时抽水,53小时能把水抽完.(2)设乙泵用y 小时才能抽完,由题意,得 15×2+12.5y =1,解得y =1.5. 答:乙泵用1.5小时才能把水抽完.4.一辆卡车在公路上匀速行驶,起初看到的里程碑上是一个两位数,过了1小时,里程碑上的数恰好是原来的个位上的数与十位上的数交换位置后所得到的两位数,又过了1小时,里程碑上的数是一个三位数,这个三位数的百位上的数与个位上的数分别是起初看到的两位数的十位上的数与个位上的数,而十位上的数为0,且起初的两位数个位上的数比十位上的数的5倍多1,求卡车的速度.解:设起初看到的两位数十位上的数是x ,则个位上的数是5x +1.由题意,得 [10(5x +1)+x]-[10x +(5x +1)]=(100x +5x +1)-[10(5x +1)+x]. 解得x =1.则5x +1=6,61-16=45(千米). 答:卡车的速度是45千米/时.5.某会议厅主席台上方有一个长12.8 m 的长条形(长方形)会议横标框,铺红色衬底.开会前将会议名称用白色厚纸或不干胶纸刻出来贴于其上.但会议名称不同,字数一般每次都多少不等,为了制作及贴字时方便美观,会议厅工作人员对有关数据作了如下规定:边空∶字宽∶字距=9∶6∶2,如图所示:根据这个规定,求会议名称的字数为18时,边空、字宽、字距各是多少. 解:设边空、字宽、字距分别为9x cm 、6x cm 、2x cm .由题意,得 9x ×2+6x×18+2x(18-1)=1 280. 解得x =8.则9x =72,6x =48,2x =16.答:边空为72 cm ,字宽为48 cm ,字距为16 cm .6.某次篮球联赛共有十支队伍参赛,部分积分表如下:队名 比赛场次 胜场 负场 积分 A 16 12 4 28 B 16 10 6 26 C 16 8 8 24 D161616其中一队的胜场总积分能否等于负场总积分?请说明理由. 解:由D 队可知,负一场积分为:16÷16=1(分), 则由A 队可知,胜一场积分为:28-4×112=2(分).设其中一队的胜场为x 场,则负场为(16-x)场,则 2x =16-x ,解得x =163.因为场数必须是整数, 所以x =163不符合实际.所以没有一队的胜场总积分能等于负场总积分.7.某商场在元旦期间搞促销活动,一次性购物不超过2 000元不优惠;超过2 000元,但不超过5 000元,按9折优惠;超过5 000元,超过部分按8折优惠,其中的5 000元仍按9折优惠.某人两次购物分别用了1 340元和4 660元.问:(1)此人的两次购物,若物品不打折,需多少元钱? (2)此人两次购物共节省多少元钱?(3)若将两次购物的钱合起来,一次购买相同的商品,是否更节省?请说明理由. 解:(1)因为2 000×90%=1 800(元)>1 340元,所以购1 340元的商品未优惠. 又因为5 000×90%=4 500(元)<4 660元,所以购4 660元的商品有两个等级优惠. 设其售价为x 元,依题意,得5 000×90%+(x -5 000)×80%=4 660, 解得x =5 200.所以如果不打折,那么分别需1 340元和5 200元,共需6 540元. (2)共节省6 540-(1 340+4 660)=540(元).(3)6 540元的商品优惠价为5 000×90%+(6 540-5 000)×80%=5 732(元), 1 340+4 660=6 000(元), 因为5 732<6 000,所以若一次购买相同的商品,更节省.8.一个车队共有n(n 为正整数)辆小轿车,正以每小时36千米的速度在一条笔直的街道上匀速行驶,行驶时车与车的间隔均为5.4米,甲停在路边等人,他发现该车队从第一辆车的车头到最后一辆的车尾经过自己身边共用了20秒的时间,假设每辆车的车长均为4.87米.(1)求n 的值;(2)若乙在街道一侧的人行道上与车队同向而行,速度为v 米/秒,当车队的第一辆车的车头从他身边经过了15秒钟时,为了躲避一只小狗,他突然以3v 米/秒的速度向前跑,这样从第一辆车的车头到最后一辆车的车尾经过他身边共用了35秒,求v 的值.解:(1)36千米/时=10米/秒,则4.87n +5.4(n -1)=20×10,解得n =20.(2)车队总长度:20×4.87+5.4×19=200(米). 由题意,得(10-v)×15+(10-3v)×(35-15)=200, 解得v =2.9.一辆汽车从A 地驶往B 地,前三分之一路段为普通公路,其余路段为高速公路.已知汽车在普通公路上行驶的速度为60 km /h ,在高速公路上行驶的速度为100 km /h ,汽车从A 地到B 地一共行驶了2.2 h .请你根据以上信息,就该汽车行驶的“路程”或“时间”,提出一个用一元一次方程解决的问题,并写出解答过程.解:答案不唯一,例如:①问题:普通公路和高速公路各为多少km? 解:设普通公路长为x km ,根据题意,得x 60+2x100=2.2.解得x =60. 则2x =120.答:普通公路和高速公路各为60 km 和120 km .②问题:汽车在普通公路和高速公路上各行驶了多少h? 解:设汽车在普通公路上行驶了x h ,根据题意,得 60x ×2=100(2.2-x).解得x =1. 则2.2-x =1.2.答:汽车在普通公路上和高速公路上分别行驶了 1 h 和1.2 h .专题训练(八) 线段的计算——教材P128练习T3的变式与应用教材母题:(教材P 128练习T 3)如图,点D 是线段AB 的中点,C 是线段AD 的中点,若AB =4 cm ,求线段CD 的长度.【解答】 因为点D 是线段AB 的中点,AB =4 cm , 所以AD =12AB =12×4=2(cm ).因为C 是线段AD 的中点, 所以CD =12AD =12×2=1(cm ).【方法归纳】 结合图形,将待求线段长转化为已知线段的和、差形式.若题目中出现线段的中点,常利用线段中点的性质,结合线段的和、差、倍、分关系求解.同时应注意题目中若没有图形,或点的位置关系不确定时,常需要分类讨论,确保答案的完整性.1.如图,线段AB =22 cm ,C 是线段AB 上一点,且AC =14 cm ,O 是AB 的中点,求线段OC 的长度.解:因为点O 是线段AB 的中点,AB =22 cm , 所以AO =12AB =11 cm .所以OC =AC -AO =14-11=3(cm ).2.如图,已知C 是AB 的中点,D 是AC 的中点,E 是BC 的中点.(1)若DE =9 cm ,求AB 的长; (2)若CE =5 cm ,求DB 的长.解:(1)因为D 是AC 的中点,E 是BC 的中点, 所以AC =2CD ,BC =2CE.所以AB =AC +BC =2DE =18 cm . (2)因为E 是BC 的中点, 所以BC =2CE =10 cm .因为C 是AB 的中点,D 是AC 的中点, 所以DC =12AC =12BC =5 cm .所以DB =DC +BC =5+10=15(cm ).3.如图,B ,C 两点把线段AD 分成2∶5∶3三部分,M 为AD 的中点,BM =6 cm ,求CM 和AD 的长.解:设AB =2x cm ,BC =5x cm ,CD =3x cm , 所以AD =AB +BC +CD =10x cm . 因为M 是AD 的中点, 所以AM =MD =12AD =5x cm .所以BM =AM -AB =5x -2x =3x(cm ). 因为BM =6 cm , 所以3x =6,x =2.故CM =MD -CD =5x -3x =2x =2×2=4(cm ), AD =10x =10×2=20(cm ).4.如图,线段AB =1 cm ,延长AB 到C ,使得BC =32AB ,反向延长AB 到D ,使得BD =2BC ,在线段CD 上有一点P ,且AP =2 cm .(1)请按题目要求画出线段CD ,并在图中标出点P 的位置; (2)求出线段CP 的长度.解:(1)线段CD 和点P 的位置如图1、2所示.(2)因为AB =1 cm , 所以BC =32AB =32 cm .所以BD =2BC =3 cm .当点P 在点A 的右边时,CP =AB +BC -AP =12cm ;当点P 在点A 的左边时,点P 与点D 重合,CP =BD +BC =92cm .专题训练(九) 角的计算类型1 利用角度的和、差关系找出待求的角与已知角的和、差关系,根据角度和、差来计算. 1.如图,已知∠AOC=∠BOD=75°,∠BOC =30°,求∠AOD 的度数.解:因为∠AOC=75°,∠BOC =30°,所以∠AO B =∠AOC-∠BOC=75°-30°=45°. 又因为∠BOD=75°,所以∠AOD=∠AOB+∠BOD=45°+75°=120°. 2.将一副三角板的两个顶点重叠放在一起.(两个三角板中的锐角分别为45°、45°和30°、60°)(1)如图1所示,在此种情形下,当∠DAC=4∠BAD 时,求∠CA E 的度数; (2)如图2所示,在此种情形下,当∠ACE=3∠BCD 时,求∠ACD 的度数.解:(1)因为∠BAD+∠DAC=90°,∠DAC=4∠B AD,所以5∠BAD=90°,即∠BAD=18°.所以∠DAC=4×18°=72°.因为∠DAE=90°,所以∠CAE=∠DAE-∠DAC=18°.(2)因为∠BCE=∠DCE-∠BCD=60°-∠BCD,∠ACE=3∠BCD,所以∠ACB=∠ACE+∠BCE=3∠BCD+60°-∠BCD=90°.解得∠BCD=15°.所以∠ACD=∠ACB+∠BCD=90°+15°=105°.类型2利用角平分线的性质角的平分线将角分成两个相等的角,利用角平分线的这个性质,再结合角的和、差关系进行计算.3.如图,点A,O,E在同一直线上,∠AOB=40°,∠EOD=28°46′,OD平分∠COE,求∠COB的度数.解:因为∠EOD=28°46′,OD平分∠COE,所以∠COE=2∠EOD=2×28°46′=57°32′.又因为∠AOB=40°,所以∠COB=180°-∠AOB-∠COE=180°-40°-57°32′=82°28′.4.已知∠AOB=40°,OD是∠BOC的平分线.(1)如图1,当∠AOB与∠BOC互补时,求∠COD的度数;(2)如图2,当∠AOB与∠BOC互余时,求∠COD的度数.解:(1)因为∠AOB与∠BOC互补,所以∠AOB+∠BOC =180°. 又因为∠AOB=40°,所以∠BOC=180°-40°=140°. 因为OD 是∠BOC 的平分线, 所以∠COD=12∠BOC=70°.(2)因为∠AOB 与∠BOC 互余, 所以∠AOB+∠BOC=90°. 又因为∠AOB=40°,所以∠BOC=90°-40°=50°. 因为OD 是∠BOC 的平分线, 所以∠COD=12∠BOC=25°.类型3 利用方程思想求解在解决有关余角、补角,角的比例关系或倍分关系问题时,常利用方程思想来求解,即通过设未知数,建立方程,通过解方程使问题得以解决. 5.一个角的余角比它的补角的23还少40°,求这个角的度数.解:设这个角的度数为x °,根据题意,得 90-x =23(180-x)-40.解得x =30.所以这个角的度数是30°. 6.如图,已知∠AOE 是平角,∠DOE =20°,OB 平分∠AO C ,且∠COD∶∠BOC=2∶3,求∠BOC 的度数.解:设∠COD=2x °,则∠BOC=3x °. 因为OB 平分∠AOC, 所以∠AOB=3x °.所以2x +3x +3x +20=180. 解得x =20.所以∠BOC=3×20°=60°.7.如图,已知∠AOB=12∠BOC,∠COD =∠AOD=3∠AOB ,求∠AOB 和∠COD 的度数.解:设∠AOB=x °,则∠COD=∠AOD=3∠AOB=3x °. 因为∠AOB=12∠BOC,所以∠BOC=2x °.所以3x +3x +2x +x =360. 解得x =40.所以∠AOB=40°,∠COD =120°.类型4 利用分类讨论思想求解在角度计算中,如果题目中无图,或补全图形时,常需分类讨论,确保答案的完整性. 8.已知∠AOB=75°,∠AOC =23∠AOB,OD 平分∠AOC,求∠BOD 的大小.解:因为∠AOB=75°,∠AOC =23∠AOB,所以∠AOC=23×75°=50°.因为O D 平分∠AOC,所以∠AOD=∠COD=25°.如图1,∠BOD =75°+25°=100°; 如图2,∠BOD =75°-25°=50°.9.已知:如图,OC 是∠AOB 的平分线.(1)当∠AOB=60°时,求∠AOC 的度数;(2)在(1)的条件下,∠EOC =90°,请在图中补全图形,并求∠AOE 的度数;(3)当∠AOB=α时,∠EOC =90°,直接写出∠AOE 的度数.(用含α的代数式表示)解:(1)因为OC 是∠AOB 的平分线, 所以∠AOC =12∠AOB.因为∠AOB=60°, 所以∠AOC=30°.(2)如图1,∠AOE =∠EOC+∠AOC=90°+30°=120°;如图2,∠AOE =∠EOC-∠AOC=90°-30°=60°. (3)90°+α2 或90°-α2.。
人教版七年级上册数学实际问题与一元一次方程应用题专题训练
人教版七年级上册数学实际问题与一元一次方程应用题专题训练1.某一天,水果经营户花380元从水果批发市场批发了香蕉和哈密瓜共50kg,到市场去卖,已知香蕉和哈密瓜当天的批发价和零售价如下表所示:品名香蕉哈密瓜批发价(元/kg)510零售价(元/kg)815(1) 该水果经营户批发的香蕉和哈密瓜各是多少kg?(2) 他当天卖完这些香蕉和哈密瓜可赚多少元?2.接种疫苗是阻断新冠病毒传播的有效途径,针对疫苗急需问题,某制药厂紧急批量生产,计划每天生产疫苗16万剂,但受某些因素影响,有10名工人不能按时到厂.为了应对疫情,回厂的工人加班生产,由原来每天工作8小时增加到10小时,每人每小时完成的工作量不变,这样每天只能生产疫苗15万剂.(1) 该厂当前参加生产的工人有多少人?(2) 生产4天后,未到的工人同时到岗加入生产,每天生产时间仍为10小时.若上级分配给该厂共760万剂的生产任务,则该厂共需要多少天才能完成任务?3.抗震救灾重建家园,为了修建在地震中受损的一条公路,若由甲工程队单独修建需3个月完成,每月耗资12万元;若由乙工程队单独修建需6个月完成,每月耗资5万元.(1) 请问甲、乙两工程队合修需几个月完成?共耗资多少万元?(2) 若要求最迟4个月完成修建任务,请你设计一种方案,既保证按时完成任务,又最大限度地节省资金.(时间按整月计算)4.某制衣厂接受一批服装订货任务,按计划天数进行生产,如果每天平均生产20套服装,就比订货任务少100套,如果每天生产23套服装,就可超过订货任务20套,问这批服装的订货任务是多少套?原计划几天完成?5.某旅行社组织一批游客外出旅游,原计划租用45座客车若干辆,但有15人没有座位;若租用同样数量的60座客车,则多出一辆车,且其余客车恰好坐满.已知45座客车租金为每辆220元,60座客车租金为每辆300元.(1) 这批旅客的人数是多少?原计划租用多少辆45座客车?(2) 若租用同一种车,要使每位游客都有座位,应该怎样租用才合算?6.某校九年级学生参加社会实践活动,原计划租用30座客车若干辆,但还有15个人无座位.(1) 设原计划租用30座客车x辆,试用含x的代数式表示该校九年级学生的总人数;(2) 现决定租用40座客车,可比原计划租30座客车少1辆,且所租40座客车中有一辆没有坐满,只坐35人,请你求出该校九年级学生的总人数.7.如图,由12块一样大小的长方形木板拼成一个矩形图案,且宽度为40厘米,求这种长方形木块的长和宽.8.在某体育用品商店,购买30根跳绳和60个毽子共用720元,购买10根跳绳和50个毽子共用360元.(1) 跳绳、毽子的单价各是多少元?(2) 该店在青年节期间开展促销活动,所有商品按同样的折数打折销售.节日期间购买100根跳绳和100个毽子只需1800元,该店的商品按原价的几折销售?9.为支援雅安灾区,某学校计划用”义捐义卖”活动中筹集的部分资金用于购买甲、乙两种型号的学习用品共1000件,已知甲型学习用品的单价为20元,乙型学习用品的单价为30元.(1) 若购买这批学习用品用了26000元,则购买甲、乙两种学习用品各多少件?(2) 若购买这批学习用品的钱不超过28000元,则最多购买乙型学习用品多少件?10.某城市居民用水实行阶梯收费,收费价格见价目表:每月用水量价格/(元/吨)用水量不超过26吨 1.9用水量超过26吨部分 2.9(1) 小华家用水15吨,应交水费多少元?(2) 小华家10月份共交水费61元,则用水量是多少吨?11.商场计划用9万元从厂家购进50台电视机,已知该厂家生产三种不同型号的电视机,出厂价分别为甲种每台1500元,乙种每台2100元,丙种每台2500元.(1) 若商场同时购进其中两种不同型号的电视机共50台,用去9万元,请你设计一个商场的进货方案.(2) 若商场销售一台甲种电视机可获利150元,销售一台乙种电视机可获利200元,销售一台丙种电视机可获利250元.在同时购进两种不同型号的电视机的方案中,为使销售时获利最多,该选择哪种进货方案?12.某次义务劳动,有甲、乙两个工地,甲工地有27人在劳动,乙工地有19人在劳动.现在又有20人来参加义务劳动,要使甲工地人数为乙工地人数的2倍.问应分别调往甲、乙两工地各多少人?13.某城市平均每天产生垃圾700吨,由甲、乙两个垃圾处理厂处理.已知甲厂每小时可处理垃圾55吨,每吨需费用10元;乙厂每小时可处理垃圾45吨,每吨需费用11元.(1) 甲、乙两厂同时处理该城市的垃圾,每天需多少时间完成?(2) 如果该城市每天用于处理垃圾的费用为7300元,那么甲厂每天处理垃圾多少吨?14.公园门票价格规定如下表:购票张数1∼50张51∼100张100张以上每张票的价格13元11元9元某校初一(1),(2)两个班共104人去游公园,其中(1)班人数较少,不足50人.经估算,若两个班都以班为单位购票,则一共应付1240元.问:(1) 两班各有多少学生?(2) 如果两班联合起来,作为一个团体购票,可省多少钱?(3) 如果初一(1)班单独组织去游公园,作为组织者的你将如何购票才最省钱?15.如图,足球的表面是由若干黑色五边形和白色六边形皮块围成的,黑、白皮块的数目比为3:5.一个足球的表面一共有32个皮块,黑色皮块和白色皮块各有多少?16.某家电商场为回馈新老顾客,特推出全场8折优惠活动,但凡持有该商场金卡的会员凭卡可以再享受9.5折的折上折,某顾客持金卡买了商品,共节省2400元,问:(1) 这位顾客买了标价为多少的商品?(2) 若商品是按成本价提高60%后标价的,则商场获利多少?17.某旅游景点门票价格规定如下.购票数量1∼45张46∼90张91张以上门票单价90元80元70元某校七年级组织甲、乙两个班共92人去该景点游玩,其中甲班人数多于乙班人数且甲班人数不到90,人如果两个班单独购买门票,一共应付7760元,(1) 如果甲、乙两个班一起购买门票,那么比单独购买门票节省多少钱?(2) 甲、乙两个班各有多少学生?(3) 如果甲班有10名学生因学校有任务不能参加这次旅游,请你为两个班设计购买门票的方案,并选出最省钱的方案.18.下图是一位同学用一个九宫格框出某年某月份的日历表中的一部分.567131415212223(1) 这个图表中的数有无错误?若有错误,请加以改正(写出一种修改方案即可).(2) 在九宫格中,是否存在九个数使它们的和为225?若存在,求出它们;若不存在,说明理由,19.某汽车运输公司为了满足市场需要,推出商务车和轿车对外租赁业务.下面是乐山到成都两种车型的限载人数和单程租赁价格表:车型每车限载人数租金/(元/辆)商务车6300轿车4(1) 如果单程租赁2辆商务车和3辆轿车共需付租金1320元,求一辆轿车的单程租金为多少元?(2) 某公司准备组织34名职工从乐山赴成都参加业务培训,拟单程租用商务车或轿车前往.在不超载的情况下,怎样设计租车方案才能使所付租金最少?20.小林在某店购买A,B商品共三次,只有一次购买时,商品A,B同时打折,其余两次均按标价购买.三次购买商品A,B的数量和费用如下表.购买商品A的数量/个购买商品B的数量/个购买总费用/元第一次购物651140第二次购物371110第三次购物981062(1) 小林以折扣价购买商品A,B是第次购物.(2) 求出商品A,B的标价.(3) 若商品A,B的折扣相同,商店是打几折出售这两种商品的?21.某校利用暑假进行田径场的改造维修,项目承包单位派遣一号施工队进行施工,计划用40天时间完成整个工程,当一号施工队工作5天后,承包单位接到通知,有一大型活动要在该校田径场进行,要求比原计划提前14天完成整个工程,于是承包单位派遣二号施工队与一号施工队共同完成剩余工程,结果按通知要求如期完成整个工程.(1) 若由二号施工队单独施工,完成整个工程需要多少天?(2) 若此项工程由一号、二号施工队同时进场施工,完成整个工程需要多少天?22.为了节能减排,我市某校准备购买某种品牌的节能灯,已知3只A型节能灯和5只B型节能灯共需50元,2只A型节能灯和3只B型节能灯共需31元.(1) 求1只A型节能灯和1只B型节能灯的售价各是多少元?(2) 学校准备购买这两种型号的节能灯共200只,要求A型节能灯的数量不超过B型节能灯的数量的3倍,请设计出最省钱的购买方案,并说明理由.答案1. 【答案】(1) 设水果经营户批发香蕉x千克,哈密瓜(50−x)千克,由题意可知,5x+10(50−x)=380.解得x=24.则50−24=26,答:水果经营户批发香蕉24千克,哈密瓜26千克.(2) 由题意得,24×(8−5)+26×(15−10)=72+130=202(元),答:当天卖完这些香蕉和哈蜜罐可赚202元.2. 【答案】(1) 设该厂当前参加生产的工人有x人.根据题意,得168(x+10)=1510x.解得x=30.经检验,x=30是原方程的解,且符合题意.∴该厂当前参加生产的工人有30人.(2) 每人每小时完成的数为16÷8÷(30+10)=0.05(万剂).设还需要生产y天才能完成任务.根据题意,得4×15+(30+10)×10×0.05y=760.解得y=35.此时35+4=39(天).∴该厂共需要39天才能完成任务.3. 【答案】(1) 设甲、乙两工程队合修需x个月完成,由题意,得(13+16)x=1.解得x=2.(12+5)×2=34(万元).答:甲、乙两工程队合修需要2个月完成,共耗资34万元.(2) 由于要最大限度地节省资金,故尽可能多的由乙工程队完成.设甲、乙合修y个月,剩下的由乙来完成.由题意,得(13+16)y+4−y6=1.解得y=1.故甲、乙合修1个月,剩下的由乙来修3个月即可.4. 【答案】设原计划x天完成,根据题意得:20x+100=23x−20,解得x=40.∴20x+100=900(套).答:这批服装的订货任务是900套,原计划40天完成.5. 【答案】(1) 设原计划租用45座客车x辆.根据题意,得45x+15=60(x−1),解得x=5,此时这批游客的人数是45x+15=240.答:这批游客的人数是240人,原计划租用5辆45座客车.(2) 租45座客车:240÷45≈5.3(辆),∴需租6辆45座客车,租金为220×6=1320(元),租60座客车:240÷60=4(辆),∴ 需租 4 辆 60 座客车,租金为 300×4=1200(元). ∵1200<1320,∴ 租用 4 辆 60 座客车合算. 答:租用 4 辆 60 座客车合算.6. 【答案】(1) 该九年级学生的总人数为 (30x +15) 人.(2) 租用 40 座客车时,该九年级学生的总人数为 40(x −2)+35, ∴30x +15=40(x −2)+35, 解得 x =6,30x +15=195(人).答:该九年级学生的总人数为 195 人.7. 【答案】设长方形的长为 x cm ,则宽为 (40−x )cm .由题可知:长方形上边长度为 3x ,下底长度为 2x +3×(40−x ). 即3x =2x +3×(40−x ),4x=120,x =30.40−30=10(cm ). ∴ 长为 30 cm ,宽为 10 cm .8. 【答案】(1) 设跳绳单价 x 元/根,毽子单价 y 元/个.{30x +60y =720,10x +50y =360,{x =16,y =4.答:跳绳 16 元/根,毽子 4 元/个.(2) 设按原价 m 折销售,(100×16+100×4)×m10=1800,200m =1800,m =9.答:按原价 9 折销售.9. 【答案】(1) 设购买甲型学习用品 x 件,则购买乙型学习用品为 (1000−x ) 件.根据题意,得20x +30(1000−x )=26000.解方程,得x =400,则 1000−x =1000−400=600. 答:购买甲型学习用品 400 件,购买乙型学习用品 600 件.(2) 设最多购买乙型学习用品 m 件,则购买甲型学习用品为 (1000−m ) 件,据题意,得20(1000−m )+30m ≤28000.解不等式,得m ≤800.答:最多购买乙型学习用品 800 件.10. 【答案】(1) 1.9×15=28.5(元). (2) 设用水量是 x 吨.因为 1.9×26=49.4 元 <61 元,所以他家10月份的用水量超过26吨.列方程,得1.9×26+2.9(x−26)=61.解得x=30(吨).答:小华家10月份的用水量是30吨.11. 【答案】(1) ①设购进甲种电视机x台,则购进乙种电视机(50−x)台.依题意,得1500x+2100(50−x)=90000.解方程,得x=25(台).则50−x=25(台).故第一种进货方案是购甲、乙两种型号的电视机各25台.②设购进甲种电视机y台,则购进丙种电视机(50−y)台.依题意,得1500y+2500(50−y)=90000.解方程,得y=35(台).则50−y=15(台).所以第二种进货方案是购进甲种电视机35台,丙种电视机15台.③设购进乙种电视机z台,则购进丙种电视机(50−z)台,依题意,得2100z+2500(50−z)=90000.解方程,得z=87.5.(不合题意)所以此种方案不可行.答:进货方案有两种:第一种进货方案是购甲、乙两种型号的电视机各25台;第二种进货方案是购进甲种电视机35台,丙种电视机15台.(2) 上述的第一种方案可获利:150×25+200×25=8750(元),第二种方案可获利:150×35+250×15=9000(元),因为8750<9000,所以应选择第二种进货方案.答:应选择第二种进货方案.12. 【答案】设应调往甲工地x人,则调往乙工地(20−x)人,根锯题意,得27+x=2[19+(20−x)],去括号,得27+x=38+40−2x,解得x=17.答:应调往甲工地17人,调往乙工地3人.13. 【答案】(1) 设每天需x小时完成,则(55+45)x=700.解得x=7.(2) 设甲厂每天处理垃圾x吨,则10x+11(700−x)=7300.解得x=400.14. 【答案】(1) 设初一(1)班的人数为x人,则初一(2)班的人数为(104−x)人.依题意,得13x+11(104−x)=1240,解得x=48.104−x=104−48=56(人).答:初一(1)班的人数为48分,初一(2)班的人数为56人.(2) 由表格及题意,得两班联合购票的钱为104×9=936(元),1024−936=304(元).答:作为一个团体购票可省304元.(3) 由(1)得初一(1)班的人数为48人.当以48人去购票时,需花费48×13=624(元);当以51人去购票时,则需花费51×11=561(元).答:购买51张门票时最省钱.15. 【答案】设黑色皮块有3x个,则白色皮块有5x个.根据题意,得3x+5x=32.解得x=4.黑色皮块有12个,白色皮块有20个.16. 【答案】(1) 设商品的标价为x元.0.8×0.95x+2400=x,解得x=10000.答:这位顾客买了标价10000元的商品.(2) 设商场获利x元.x+10000÷1.6=0.8×0.95×10000.解得x=1350.答:获利1350元.17. 【答案】(1) 如果甲、乙两班一起购买门票需70×92=6440元,比单独购买门票共可以节省7760−6440=1320元.(2) 设甲班有学生x人(依题意知46<x<90).则乙班有学生(92−x)人,依题意,得80x+90×(92−x)=7760,解得x=52,则92−52=40(人)故甲班有52人,乙班有40人.(3) 方案一:各自购买门票需42×90+40×90=7380(元);方案二:一起购买门票需(42+40)×80=6560(元);方案三:一起购买91张门票需91×70=6370(元).因为7380>6560>6370,所以甲、乙两班一起购买91张门票最省钱.18. 【答案】(1) 有误,其中一种修改方案为:567121314 192021(2) 若存在,则九宫格中九个数可设为:x−8x−7x−6x−1x x+1x+6x+7x+8由题意,有9x=225,x=25.所以排列为171819242526313233因每月不超过31天,故不存在.19. 【答案】(1) 设租用一辆轿车的单程租金为x元.由题意,得:300×2+3x=1320.解得x=240.答:租用一辆轿车的单程租金为240元.(2) ①若只租用商务车,∵346=523∴只租用商务车应租6辆,所付租金为300×6=1800(元);②若只租用轿车,∵344=8.5∴只租用轿车应租9辆,所付租金为240×9=2160(元);③若混合租用两种车,设租用商务车m辆,租用轿车n辆,租金为w元.由题意,得 {6m +4n =34,w =300m +240n,由 6m +4n =34,得 4n =−6m +34,∴w =300m +60(−6m +34)=−60m +2040,∵−6m +34=4n ≥0,∴m ≤173,∴1≤m ≤5,且 m 为整数.∵w 随 m 的增大而减小,∴ 当 m =5 时,w 有最小值 1740,此时 n =1.综上,租用商务车 5 辆和轿车 1 辆时,所付租金最少,为 1740 元.20. 【答案】(1) 三(2) 商品 A 的标价为 90 元,商品 B 的标价为 120 元.(3) 设商店是打 a 折出售这两种商品,由题意得(9×90+8×120)×a 10=1062.解得a =6.故商店是打六折出售这两种商品的.【解析】(1) ∵ 第三次购物较多,但是价格较便宜,∴ 小林以折扣价购买商品 A ,B 是第三次购物.21. 【答案】(1) 设由二号施工队单独施工,完成整个工程需要 x 天,由题意,得140×5+(140+1x )(40−14−5)=1.解得x =60.经检验,x =60 是所列方程的根,且符合题意.答:若由二号施工队单独施工,完成整个工程需要 60 天.(2) 设此项工程由一号,二号施工队同时进场施工,完成整个工程需要 y 天,由题意,得(140+160)y =1.解得y =24.答:若此项工程由一号、二号施工队同时进场施工,完成整个工程需要 24 天.22. 【答案】(1) 1 只 A 型节能灯的售价是 5 元,1 只 B 型节能灯的售价是 7 元.(2) 设购买 A 型节能灯 a 只,购买 B 型节能灯 (200−a ) 只,费用为 w 元,则w =5a +7(200−a )=−2a +1400,∵a ≤3(200−a ),∴a ≤150.∴ 当 a =150 时,w 取得最小值,此时 w =1100,200−a =50.答:当购买 A 型节能灯 150 只,B 型节能灯 50 只时最省钱.。
人教版七年级数学上册作业课件 第三章 一元一次方程 专题训练(七) 列一元一次方程解决实际问题
(3)t 秒后点 A 表示的数为 6t-4,点 B 表示的数为 2t+2. ①当点 A 在点 B 的左侧时,有(2t+2)-(6t-4)=3,解得 t=34 ,此时 6t-4=21 ; ②当点 A 在点 B 的右侧时,有(6t-4)-(2t+2)=3,解得 t=94 ,此时 6t-4=129 . 综上所述,当 A,B 两点相距 3 个单位长度时,点 A 表示的数为21 或129
答:甲现在的年龄是 42 岁,乙现在的年龄是 56 岁
类型四 数字问题 5.一个两位数,十位上的数字比个位上的数字小4,如果把十位上的数字与个 位上的数字对调后,那么所得的两位数比原来的两位数的2倍小12,求原来的两位 数. 解:设原来十位上的数字为x,则个位上的数字为x+4.依题意,得10(x+4)+x =2(10x+x+4)-12,解得x=4,则x+4=8. 答:原来的两位数是48
解:设玻璃杯中水的高度下降 x mm,根据题意,得π(920 )2·x=125×125×81, 解得 x=6π25 ≈199.
答:玻璃杯中的水的高度下降约 199 mm
类型二 古代数学问题 2.(湘潭中考)“鸡兔同笼”是我国古代著名的数学趣题之一.大约在1500年前 成书的《孙子算经》中,就有关于“鸡兔同笼”的记载:“今有雉兔同笼,上有 三十五头,下有九十四足,问雉兔各几何?”这四句话的意思是:有若干只鸡兔 关在一个笼子里,从上面数,有35个头;从下面数,有94条腿.问笼中各有几只 鸡和兔? 解:设鸡有x只,则兔有(35-x)只,根据题意得2x+4(35-x)=94,解得x=23, 所以35-x=12.答:有鸡23只,兔12只
人教版七年级上册数学一元一次方程应用题(数字问题)专题训练
人教版七年级上册数学一元一次方程应用题(数字问题)专题训练1.一个两位数的数字之和是11,若原数加上45,则得到的数正好是原数的十位数字与个位数字交换位置后所得的数,求这个两位数.2.有一个三位数的个位数字为1,如果把这个1移到最前面的位置上,那么所得的新三位数的2倍比原数多15,求原来的三位数.3.现有一些分别标有-1,2,-4,8,-16,32,…的卡片,这些卡片上的数字是按一定规律排列的,小明拿到了相邻的三张卡片,且卡片上的数字之和为96,则小明拿到的三张卡片上分别标有什么数字?4.一个两位数,十位上的数字比个位上的数字小4,如果把十位上的数与个位上的数对调后,那么所得的两位数比原来的两位数的2倍小12,求原来的两位数.5.有一些分别标有7,14,21,28,…的卡片,后一张卡片上的数比前一张卡片上的数大7,小明拿了相邻的三张卡片.(1)若小明拿到的三张卡片上的数之和为273,则三张卡片上的数分别是多少?(2)小明能否拿到相邻的三张卡片,使得这三张卡片上的数之和等于171?如果能拿到,请求出这三张卡片上的数各是多少?如果不能拿到,请说明理由.6.一个三位数的三个数字和是24,十位数字比百位数字少2,若这个三位数减去两个数字都与百位数字相同的一个两位数所得的数也是三位数,而这个三位数的三个字母的顺序和原来三位数的数字的顺序恰好颠倒,求原来的三位数.7.有人问一个男孩:“你们家兄弟有几个,姊妹有几个?”他回答:“我有几个兄弟就有几个姊妹.”这人又问男孩的姐姐,她回答说:“我的兄弟数就是我的姊妹数的2倍.”请问他们家兄弟、姊妹各有几个?.8.有一列按一定规律排成的数:1,3,7,11,(1)这列数中的第100个数是多少?(2)2019,2021是否为这列数中的数?若是,是第几个数;若不是,请说明理由.9.一个三位数,十位数字是0,个位数字是百位数字的2倍,如果将这个三位数的个位数字与百位数字调换位置得到一个新的三位数,则这个新的三位数比原三位数的2倍少9,设原三位数的百位数字是x:(1)原三位数可表示为______,新三位数可表示为______;(2)列方程求解原三位数.10.已知有理数-3,1,m.(1)计算-3,1这两个数的平均数;(2)如果这三个数的平均数是2,求m的值.11.把100分成两个数的和,使第一个数加3,与第二个数减3的结果相等.这两个数分别是多少?12.如图是输入一个x的值,计算函数y的值的程序框图:(1)当输入x的值为100时,输出的y的值为多少?x时,输出的y的值为-500,则输入的0x的值是多少?(2)当输入一个整数13.将连续的奇数1,3,5,7,9,…排成如图所示的数表.(1)探索任意一个十字形框中的五个数之和与中间的数的关系是.(2)若十字框中的五数之和是2015,请求出此时框中的五个数分别是什么?14.一个两位数,把它的个位数字与十位数字交换位置得到新两位数,原两位数的个位数字比原两位数的十位数字大2,且新两位数与原两位数的和为154,求原两位数是多少?15.已知一个由50个偶数排成的数阵,请你观察框内的四个数之间的关系并解答下列问题:在数阵中任意作一个类似图中的框.(1)设框内左上角的数为x,那么其他三个数分别是:,,.(2)如果框内四个数的和是172,这四个数分别是什么?16.有一些分别标有7,13,19,25…的卡片,后一张卡片上的数比前一张卡片上的数大6,小彬拿了相邻的3张卡片,且这些卡片上的数之和为345.(1)猜猜小彬拿的3张卡片上的数各是多少?(2)小彬能否拿到相邻的3张卡片,使得3张卡片上的数字之和等于150?如果能拿到,请求出这3张卡片上的数各是多少,如果拿不到,请说明理由.17.幻方是一个古老的数学问题,我国古代的《洛书》中记载了最早的三阶幻方——九宫图.如图所示的幻方中,每一横行、每一竖列以及两条对角线上的数字之和都相等.(1)请求出中间行三个数字的和;(2)九宫图中m,n的值分别是多少?18.将连续的偶数2,4,6,8,…排成如下表,并用一个十字形框架框住其中的五个数,请你仔细观察十字形框架中的数字的规律,并回答下列问题:(1)十字框中的五个数的和等于.(2)若将十字框上下左右移动,可框住另外的五个数,设中间的数为x,用代数式表示十字框中的五个数的和是.(3)在移动十字框的过程中,若框住的五个数的和等于2020,这五个数从小到大依次,,,,.(4)框住的五个数的和能等于2019吗?参考答案:1.382.2313.三张卡片上分别标有32,-64,1284.485.(1)三张卡片上的数分别是84、91、98.(2)不能拿到,理由见解析.6.原来的三位数为978.7.他们家兄弟有4个、姊妹有3个.8.(1)395;(2)2019是这列数中的数,是第506个数;2021不是这列数中的数. 9.(1)102x,201x(2)30610.(1)-1;(2)811.47;53.12.(1)-1500;(2)300或140或172.13.(1)五个数之和为中间数的5倍;(2)五个数分别为393,401,403,405,413.14.原两位数是6815.(1)x+2,x+12,x+14;(2)36,38,48,50.16.(1)小彬拿到的三张卡片上的数各是109,115,121;(2)小彬不能拿到相邻的3张卡片,使得这三张卡片上的数之和等于150,n=17.(1)3;(2)1m=-,318.(1)80;(2)5x;(3)这五个数分别为:394,402,404,406,414;(4)不能。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版七年级数学上册计算专题训练
有理数混合运算、整式的化简求值、解一元一次方程
1.计算题
(1)12-(-18)+(-7)-10; (2)1111(241)(1)4288
--÷--;
(3)-14-(0.5-2
3
)×[-2-(-3)3].
2.计算: (1)3780.754⎛⎫-+-+ ⎪⎝⎭ (2)310.1252873⎛⎫⎛⎫
-⨯⨯-⨯ ⎪ ⎪⎝⎭⎝⎭
(3)()()10
3
1224-⨯+-÷ (4)()157242412⎛⎫
-+⨯- ⎪⎝⎭
3.计算下列各题. (1)37124812⎛⎫-+⨯ ⎪⎝⎭ (2)()20203870.12517⎛⎫
-⨯⨯⨯-+- ⎪⎝⎭
4.阅读计算过程:
221132()(30.75)532⎡⎤-÷--+⨯⎢⎥⎣⎦
解:原式2
1
133235344⎡⎤
=-÷-+⨯⎢⎥⎣⎦①
[]1
34253=+÷-⨯②
12335
=+③
回答下列问题:(注:(1)(2)(3)问回答时用文字说明) (1)步骤①错在______________________________; (2)步骤①到步骤②错在______________________________; (3)步骤②到步骤③错在______________________________; (4)写出正确的计算过程. 5.计算 (1)921( 2.75)1452---+- (2)2211
(5)2(23)(1)34
-⨯÷-⨯--
(3)52
2
2
21[3()2]()3
3-⨯-⨯--÷- (4)22
1631
()(25)(7)()5
71449
-⨯---⨯-+
6.化简:
(1)()()22a a b a b ++-+ (2)()()
2
2
2432314x x x x -+--+
7.化简下列各式
(1)2225435256x x x x x +----+
(2)()521232a a ⎛⎫
--- ⎪⎝⎭
(3)()
2222
3222a b ab a b ab ⎡⎤---⎣⎦
8.先化简,再求值:()224x xy xy x xy ⎡⎤-+--++⎣⎦,其中1
2
x =,1y =-.
9.(1)先化简,再求值:5xy 2-2x 2y +[3xy 2- (4xy 2- 2x 2y )],其中 x = -2 , y = -1;
(2)已知a -b =2,ab =-1,求(4a -5b -ab)-(2a -3b +5ab)的值.
10.先化简,再求值:22253(24)2()x x y x y -++-,其中1
3,.7
x y =-=
11.已知A=2x 2+3ax-2x-1,B=-x 2+ax-1 (1)求3A-2B
(2)若3A-2B 的值不含x 项,求a 的值.
12.已知22324,2A x x y xy B x x y xy =-+-=--+. (1)求3A B -的值; (2)当5
,16
x y xy +==-,求A-3B 的值
13.(1)先化简,再求值22
(52)2()3+--+x x x x ,其中2x =-.
(2)解方程:357x x -=
(3)解方程:1
(1)(1)2
x x --=-+
14.解方程:
(1)310415x x +=+ (2)2175
1364
x x x +-+=-
15.解方程:
(1)()()371323x x x --=-+ (2)21252
x x x +--=-.
16.解方程:
(1)446x x -=- (2)()()35221x x x --=- (3)142123x x ---= (4)0.20.40.050.2
0.50.03
x x x ---=。