位置矢量和位移
位置矢量运动方程轨迹方程位移-新乡学院精品课程
3、角加速度 为了描述角速度变化的快慢,引进角 加速度概念。 (1)平均角加速度: 设在 t 内,质点角速度增量为 定义: (2-12) t 称为时间间隔内质点的平均角加速度 瞬时角加速度: d d 定义: lim lim t dt dt (2-13) 称为 t 时刻质点的瞬时角加速度,简称 角加速度。 d d (2-14) dt dt
y B , t t
O
A, t
x
图 1-11
2、角速度 平均角速度: 定义: (2-9) t 称为平均角速度。平均角速度粗略地描述 了物体的运动。为了描述运动细节,需要引 进瞬时角速度。 d lim lim t dt 定义: ( 2-10 ) d (2-11) dt 结论:角速度等于角坐标对时间的一阶导 数 说明:角速度是矢量,方向与角位移 方向一致。
此时0?nar????????????000000dvdvdvdtdvat匀速曲线运动减速曲线运动加速曲线运动?????????????????????斜抛平抛竖直下抛抛体运动匀速圆周运动减速圆周运动加速圆周运动圆周运动曲线运动特例1角坐标如图111t时刻质点在a处tt时刻质点在b处是oa与x轴正向夹角是ob与x轴正向夹角称为t时刻质点角坐标为t时间间隔内角坐标增量称为在时间间隔内的角位移
加速圆周运动 圆周运动 减速圆周运动 匀速圆周运动 曲线运动特例 竖直下抛 抛体运动 平抛 斜抛
⑷
三、圆周运动的角量描述
1、角坐标 如图1-11,t时刻质点在A处,t+Δt 时刻质点在B处,θ是OA与x轴正向 夹角, θ+ Δ θ是OB与x轴正向夹角, 称θ为t时刻质点角坐标, Δ θ为Δt时 间间隔内角坐标增量,称为在时间 间隔内的角位移。
位置矢量位移速度加速度
洛伦兹力和安培力是电磁学中的基本力,它们分别描述磁场对运动电荷和电流的作用。这两种力的计算需要用到位置 矢量、位移、速度和加速度等概念。
电磁波的传播
电磁波是电磁场的一种传播形式,其传播速度与介质中的光速相同。电磁波的传播可以用位置矢量、位 移、速度和加速度等概念来描述和分析。
在光学中的应用
数值模拟
利用计算机模拟技术,对物体运动过程进行数值模拟和分 析,探究位置矢量位移速度加速度等概念的变化规律。
02 位置矢量与位移
位置矢量的定义和性质
位置矢量
描述物体在空间中位置的物理量 ,用从坐标原点到物体所在点的 矢量表示。
性质
位置矢量具有大小和方向,大小 表示物体距离坐标原点的远近, 方向表示物体相对于坐标原点的 方位。
加速度
曲线运动中物体的加速度是指物体在运动过程中速度随时间 的变化率。加速度也是矢量,既有大小又有方向。在求解曲 线运动中的加速度时,需要用到微分运算和矢量运算的法则 。
曲线运动中的位置矢量、位移、速度和加速度的综合应用
01
运动轨迹的描述
通过位置矢量和位移可以描述物体在曲线运动中的轨迹。结合速度和加
03 速度与加速度
速度的定义和计算
速度是描述物体运动快慢的物理量,定 义为位移与发生这个位移所用时间的比 值。在国际单位制中,速度的单位是米
每秒(m/s)。
瞬时速度是指物体在某一时刻或经过某 一位置时的速度,它反映了物体在运动 过程中某一时刻或某一位置的运动快慢
程度。
平均速度是指物体在某段时间内位移与 时间的比值,它反映了物体在这段时间
在现代科学和工程领域,对于物体运动状态的精确描述和控制是许多研究和应用的 基础。
深入研究位置矢量位移速度加速度等概念,有助于更好地理解物体运动的本质和规 律,为相关领域的研究和应用提供理论支持。
位置矢量和位移的关系
位置矢量和位移的关系位置矢量和位移的关系其实很有意思,咱们平时说到的位置,像是指着某个地方,或者是在地图上找个点,都是在用位置矢量。
这就像你说“我在家”一样,简单明了。
位置矢量呢,通常是个数学概念,就像给你一个坐标,你能清楚知道自己在哪儿。
可是说到位移,那就是另一码事了。
你想想,一条线把你从一个地方拉到另一个地方,位移就是这条线的长度和方向。
听起来是不是有点像科学课的术语?不过别担心,咱们可以轻松点来聊。
想象一下你在操场上跑步。
起点在左边,终点在右边,整个过程你跑了几圈,位置不断变化。
最开始,你在那儿静止不动,等你一冲出去,那种感觉就像是开了挂,真是风驰电掣。
你跑着跑着,突然停下,回头看看起点,发现自己竟然跑了十圈,结果却只离开起点不远,这就是位移的奥妙。
位置矢量从起点指向终点,就像箭头一样直白,你的起点和终点之间的直线距离就是你的位移。
是不是感觉到位移的“实力”了?还有个趣事,想象一下你跟朋友一起去游乐园。
你们从正门进,兴奋地跑向过山车,但最后却因为排队太长,折返回去了。
虽然你们在游乐园里转了好几个小时,但其实位移几乎是零,因为你们又回到了起点。
这让人想起一句话:“跑得再快,不如回头看。
”这个道理在位置矢量和位移里也同样适用,走了那么多路,结果还是在原地。
位置矢量和位移也可以用在生活中的很多场景。
比如,想象你在厨房里做饭,菜切得乱七八糟,走来走去的,最后却发现所有的调料都还在原地。
你虽然在厨房里跑来跑去,但实际上你的位移可能就是那瓶盐。
这个道理一旦想明白,就能在生活中省不少力气,真是个妙招!说到这里,位置矢量也能让我们思考人生。
有时候我们也像位移一样,努力追求目标,却常常因为种种原因停滞不前,感觉自己在原地踏步。
人生的“位移”可不只是单纯的距离,有时候是方向。
就像车子偏离了航道,想回到正确的轨道上,得好好调整一下方向。
目标明确了,位移自然就会随之而来。
位置矢量和位移就像一对好朋友,时刻提醒着我们,不仅仅要看着眼前的旅途,也要清楚自己的出发点和目的地。
力学(漆安慎)课件 2-1,2描述质点运动的物理量
v v r = r (t) —— 运动函数(运动方程 )。 运动函数(
v v v v r (t) = x(t)i + y(t) j + z(t)k
x = x(t)
y = y(t) z = z(t)
或
由各个时刻的矢径端点连接而描 由各个时刻的矢径端点连接而描 矢径端点 画出的曲线就是质点运动的轨迹 质点运动的轨迹。 画出的曲线就是质点运动的轨迹。
x
位矢长度的变化
x22 + y22 + z22 − x12 + y12 + z12
第二章 质点运动学
讨论 位移与路程 位移与路程:
(A)P1P2 两点间的路程 ) 不唯一的, 是不唯一的 可以是∆s 或 ∆s ' v 是唯一的 而位移 ∆r 是唯一的. (B) 一般情况 位移 ) 一般情况, 大小不等于路程. 大小不等于路程
只要在研究问题中,物体的体积和形状是无关紧要的, 只要在研究问题中,物体的体积和形状是无关紧要的, 我们就可以看作质点。 我们就可以看作质点。 对于同一物体,由于研究的不同,有时可看作质点, 对于同一物体,由于研究的不同,有时可看作质点,有 时不行。 时不行。
第二章 质点运动学
·
物体可以作为质点处理的条件: 物体可以作为质点处理的条件:大小和形状对运 动没有影响或影响可以忽略。 动没有影响或影响可以忽略。 例:研究地球公转
v r (t + ∆t)
∆s v ∆r
A
质点的平均速度
第二章 质点运动学 一、 位置矢量(position vector)
由参考系上的坐标原点引 向质点所在位置的矢量称为质 点的位置矢量 简称位矢 位置矢量, 位矢。 点的位置矢量,简称位矢。
关于质点运动的矢量及其分量描述的一般讨论
关于质点运动的矢量及其分量描述的一般讨论质点运动是物理学研究的重要内容之一。
在研究质点运动时,需要对其运动状态进行描述。
常用的描述方式是采用矢量及其分量进行描述。
矢量是具有大小和方向的物理量,可以用箭头表示。
在描述质点运动时,常用的矢量有位移矢量、速度矢量和加速度矢量。
位移矢量表示质点从初始位置到末位置的位移,可表示为:$vec{s}=vec{r_f}-vec{r_i}$其中,$vec{r_f}$和$vec{r_i}$分别表示末位置和初始位置的位置矢量。
位移矢量的大小为位移的距离,方向为位移的方向。
速度矢量表示质点在某一时刻的速度,可表示为:$vec{v}=frac{Deltavec{r}}{Delta t}$其中,$Deltavec{r}$表示时间间隔内的位移矢量,$Delta t$表示时间间隔。
速度矢量的大小为速度的大小,方向为速度的方向。
加速度矢量表示质点在某一时刻的加速度,可表示为:$vec{a}=frac{Deltavec{v}}{Delta t}$其中,$Deltavec{v}$表示时间间隔内的速度变化量,$Delta t$表示时间间隔。
加速度矢量的大小为加速度的大小,方向为加速度的方向。
矢量分量是将一个矢量沿着不同方向分解为多个分量,常用的矢量分量有$x$分量、$y$分量和$z$分量。
对于位移矢量$vec{s}$,可以将其沿着$x$轴、$y$轴和$z$轴分解为三个分量,分别表示为$s_x$、$s_y$和$s_z$:$s_x=left|vec{s}ight|cdotcostheta_x$$s_y=left|vec{s}ight|cdotcostheta_y$$s_z=left|vec{s}ight|cdotcostheta_z$其中,$theta_x$、$theta_y$和$theta_z$分别表示位移矢量与$x$轴、$y$轴和$z$轴的夹角。
对于速度矢量$vec{v}$和加速度矢量$vec{a}$,同样可以将其沿着$x$轴、$y$轴和$z$轴分解为三个分量,分别表示为$v_x$、$v_y$、$v_z$和$a_x$、$a_y$、$a_z$。
第一章_质点运动学
dv − 1 ) t dt , ( − 1 .0 s − 1 ) t = (−1.0s ∫0 v = v0e ∫v0 v
dy ( −1.0 s −1 ) t v= = v0 e dt
dv a= = ( − 1.0s −1 ) v dt
o
v0
∫0 d y = v 0 ∫0 e
y t
(-1.0s ) t
(2) 运动方程 )
x ( t ) = (1m ⋅ s ) t + 2m
y (t ) = ( 1 m ⋅ s −2 )t 2 + 2 m 4
1 -1 2 y = ( m ) x − x + 3m 4
y/m
6
−1
由运动方程消去参数 t 可得轨迹方程为
轨迹图
t = − 4s
t = 4s
t = − 2s 4
位移的物理意义 A) 确切反映物体在空间位置的变化 与路径无关, 确切反映物体在空间位置的变化, 与路径无关, 只决定于质点的始末位置. 只决定于质点的始末位置 B)反映了运动的矢量性和叠加性 )反映了运动的矢量性和叠加性. 了运动的矢量性和叠加性
第一章
质点运动学
∆ r = ∆ xi + ∆ yj + ∆ zk
z
2
r
r= r = x +y +z
第一章
质点运动学
位矢
r 的方向余弦
cos α = x r cos β = y r cos γ = z r
y
β
P
r
P
α , β , γ 分别是
r
o
和Ox轴, Ox轴
z
γ
α
x
Oy轴和Oz轴之间的夹角。 Oy轴和Oz轴之间的夹角。 轴和Oz轴之间的夹角
大学物理教程1.2 质点的位矢、位移和速度
1.2 质点的位矢、位移和速度 11-1 电荷
说明 运动方程之所以可以在具体坐标系写成分量形 式,实际上是建立在运动的可叠加性基础上的。 例如:平抛物体时,物体的运动可以分解为在 水平方向上的匀速直线运动和竖直方向上的匀加速 直线运动。
第11章 静电场 第1章 质点运动学
位置矢量在直角坐标系中可用单位矢量表示为:
r xi yj zk
大小 r
方向 可由 三个 方向 余弦 表示
z
k
x2 y2 z2
r
P(x,y,z)
x cos r y cos r z cos r
j
y
O i
x
方向余 cos2 cos2 cos2 1 弦满足
1.2 质点的位矢、位移和速度 11-1 电荷
注意 速度为矢量! (1) 方向
t 0 时,
B A , r
沿A点处轨道的切线方向
第11章 静电场 第1章 质点运动学
1.2 质点的位矢、位移和速度 11-1 电荷
(2) 大小
dr v v dt
s
lim
t 0
r t
同信息。
也就是说,平均速率和瞬时速率有不同的物理
意义,它们强调质点运动过程中关于运动快慢的不同 方面。 (1)平均速率更强调在一有限时间段内的总体 运动效果;
(2)瞬时速率更强调运动过程中的细节。
第11章 静电场 第1章 质点运动学
1.2 质点的位矢、位移和速度 11-1 电荷
某些典型速度大小的量级 单位:(m·-1) s 光 已知类星体最快的退行 电子绕核的运动 太阳绕银河中心的运动 地球绕太阳的运动 第二宇宙速度 第一宇宙速度 子弹出口速度 地球的自转(赤道) 空气分子热运动的平均速度(室温) 3.0×108 2.7×108 2.2×108 2.0×105 3.0×104 1.1×104 7.8×103 ~7×102 4.6×102 4.5×102
大学物理:机械运动的描述
t时刻位于A点,位矢 rA
t+t时刻位于B点,位矢 rB
x 在t时间内,位矢的变化量(即 A到B的有向线段)称为位移。
o
rA r B
y
r
B
r rB rA AB
在直角坐标系中的表示
r rB rA
xB x A i yB y A j z B z A k
3、速率
在t时间内,质点所经过路程s对时间的变化率
s 平均速率: v t
瞬时速率:
m s
1
s A
s ds v lim dt t 0 t
r
B
一般情况:
r s 因此
v v
当t0时: r dr ds 则 v v
r xi yj zk
r x 2 y 2 z 2
位移和路程有什 么联系和区别?
三、速度矢量(Velocity )
速度是反映质点运动的快慢和方向的物理量 z 定义: 单位时间内质点所发生的位移 A 1、平均速度
在t时间内发生位移
Байду номын сангаас
r
rA
自然坐标系(Nature system of coordinate)
在质点的运动轨迹上,任 取一点o作为坐标的原点。从 原点o到轨迹曲线上任意一点P 的弧长定义为P点的坐标 s 。 坐标轴的方向分别取轨道 的切线和法线两正交方向。 P
例:
2 r 2ti 5t j SI
dr v 2i 10t j dt
v t 1 2i 10 j m/s
四、加速度矢量(Acceleration ) z v1 加速度是反映速度变化的物理量
位矢
(1)质点运动的二维坐标表示
r
r(t )
x(t)i
y(t) j
Δ r r2-r1 i yj
v
dr
dx
i
dy
j
dt dt dt
a
dv dt
d
2
r
dt 2
d2x dt 2
i
d2 y dt 2
j
(2)质点运动的自然坐标表示
刻的速度和加速度。求解这类问题的基本方法是微分
法。 第二类问题:已知质点的加速度(或速度)随时间的
变化规律和初始条件,求质点在任意时刻的速度和运
动方程,求解这类问题的基本方法是积分法。
5 .牛顿运动定律
第一定律可认为是惯性参考系的定义,掌握要点: 惯性、运动状态改变的原因--力。 第二定律是在惯性参考系中力的瞬时作用规律,掌握 要点:质量是F惯 m性a定 d量P表述,力P是产m生v 加速度的原因。
F=F0+k x 的作用,其中F0、k均为常量,且B在x=0处的速度为v0, 求B的速度与坐标间的关系。
思路: 加速度是位置的函数a=a(x):
即a=(F0 / m) +(k/m)x,
a dv dv dx v dv , dt dx dt dx
0x
adx
v
v0
vdv
(3)力是速度的函数F=F(v):一质量为m的轮船C在停靠码头之
an at , t 1s
(2)
s
0tvdt
1
0
3tdt
1.5
m
课后练习题
1 .一电子在电场中运动,其运动方程为:
矢量的概念与运算法则
矢量的概念与运算法则矢量是物理学中一个重要的概念,它不仅在物理学中有着广泛的应用,也在其他学科中扮演着重要的角色。
矢量是指既有大小又有方向的物理量,它可以用箭头来表示,箭头的长度表示矢量的大小,箭头的方向表示矢量的方向。
在本文中,我们将介绍矢量的概念以及它的运算法则。
首先,让我们来了解一下矢量的概念。
矢量可以分为位移矢量、速度矢量、加速度矢量等等。
位移矢量表示物体从一个位置到另一个位置的位移,速度矢量表示物体在单位时间内所走过的位移,加速度矢量表示物体在单位时间内速度的变化。
矢量的大小可以通过数值来表示,比如位移矢量的大小可以用米来表示,速度矢量的大小可以用米每秒来表示。
矢量的方向可以用角度或者方向余弦来表示,比如位移矢量的方向可以用角度来表示,速度矢量的方向可以用方向余弦来表示。
接下来,我们将介绍矢量的运算法则。
矢量的运算包括矢量的加法、减法、乘法和除法。
矢量的加法是指将两个矢量相加得到一个新的矢量。
矢量的减法是指将一个矢量减去另一个矢量得到一个新的矢量。
矢量的乘法是指将一个矢量与一个标量相乘得到一个新的矢量。
矢量的除法是指将一个矢量除以一个标量得到一个新的矢量。
在进行矢量的加法和减法时,我们需要考虑矢量的大小和方向。
如果两个矢量的方向相同,那么它们的大小相加或相减即可得到新的矢量的大小。
如果两个矢量的方向相反,那么它们的大小相加或相减后再取相反数即可得到新的矢量的大小。
如果两个矢量的方向不同,那么我们可以将它们分解为水平和垂直方向上的分量,然后分别进行相加或相减,最后再合成为一个新的矢量。
矢量的乘法可以分为数量积和矢量积两种。
数量积是指将两个矢量相乘得到一个标量。
数量积的结果是两个矢量的大小相乘再乘以它们的夹角的余弦值。
矢量积是指将两个矢量相乘得到一个新的矢量。
矢量积的结果是两个矢量的大小相乘再乘以它们的夹角的正弦值,并且新的矢量垂直于原来的两个矢量所在的平面。
最后,让我们来看一个具体的例子来理解矢量的概念和运算法则。
1-3 位置矢量和运动方程
)
B.椭圆;
C.圆;
x 2t 1 2 y gt 2
D和路程
1、位移 (反映物体位置的变化)
r rB rA
r r ( xB x A ) ( y B y A ) ( z B z A )
例:匀速率圆周运动 消去 t ,得到:
{
x = R cos ω t y = R sin ω t
为轨迹方程。
x2 +y2 = R2
轨迹?
圆
轨迹:质点在运动时所描绘出的空间径迹。
【习题 1-1】 一质点在平面内运动,其参数方
1 2 程为: x 2t , y gt (g为重力加速 2
度)。则此质点的运动轨迹为(
2、 质点作圆周运动位置矢量大小一定不变。
【习题1-3】一个点的运动方程是 r R cos ti R sin tj
,R 、ω是正常数,当t=T/4到t = 3T/4时间内,质点通 2 过的路程是( )。其中 。 y T A.2R
B.πR
C.0 D.πRω
x
【习题1-4】 一个点的运动方程是 r R cos ti R sin tj
,R 、ω是正常数,从t =T/4到t =3T/4时间内该质点的位 2 y 移是( )。其中 。 T A. -2R i
B. 2R i C.-2R j
D.0
x
【补充例题1】 一质点在 xoy 平面内按x = t 2 ,y = t3/16的规律沿曲线运动,其中 x、y 以m为单位,t 以s 为单位。试求:质点2s末到4s末的位移。 解:
运动方程 (分量式)
运动方程举例: x = x0 + υ0 cos θ t 斜抛运动: y = y0 + υ0 sinθ t
大学物理 位置矢量 位移
•
6、意志坚强的人能把世界放在手中像 泥块一 样任意 揉捏。 2020年 12月12 日星期 六下午 1时18 分5秒13 :18:052 0.12.12
•
7、最具挑战性的挑战莫过于提升自我 。。20 20年12 月下午 1时18 分20.12. 1213:1 8December 12, 2020
•
dt
0
两端积分得到运动方程
x
x0
d
x
0t(v0
at) d t
x x v t 1 at 2
0
02
消去时间,得到
v2 v2 2a(x x )
0
0
•
1、有时候读书是一种巧妙地避开思考 的方法 。20.1 2.1220. 12.12Sa turday, December 12, 2020
•
2、阅读一切好书如同和过去最杰出的 人谈话 。13:1 8:0513: 18:0513 :1812/ 12/2020 1:18:05 PM
2020 1:18:05 PM13:18:052020/12/12
• 11、自己要先看得起自己,别人才会看得起你。12/12/
运动方程
2. 运动方程
坐标系中,质点的位置随时间按一定规律变化,
位置用坐标表示为时间的函数,叫做运动方程。
x x(t) y y(t) z z(t)
f (x, y, z) 0
z
将运动方程中的时间消去,得到质点运动轨迹方程。
f (x, y, z) 0
例: x x0 v0t
y
y0
1 2
gt 2
8、业余生活要有意义,不要越轨。20 20年12 月12日 星期六 1时18 分5秒13 :18:051 2 December 2020
位矢与位移
x
直角坐标系
直角坐标系 极坐标系 球坐标系 自然坐标系
…
➢ 质点 particle
质点
没有大小和形状,只具有物体全部质 量的一个几何点。
理想化的 物理模型
具有质量和占有空间位置
把物体当作质点是有条件的、相对的:当物体的 大小和形状对运动没有影响或影响可以忽略。
一、位置矢量 position vector
r r (t)
运动方程
直角坐标系中 r (t) x(t)i y(t) j z(t)k
x x(t)
分量式为
y
y(t)
z z(t)
参数方程
➢ 轨迹方程 trajectory equation
参数方程消去 t:
F(x, y, z) 0
轨迹方程
二、位移 displacement
zA
B
描述质点位置改变的物理量
r
点A到点B的位移:
rA rB
O
r rB rA
x
y
r (xB xA)i (yB yA)j (zB zA)k xi yj zk
位移大小: r x2 y2 z2 位移方向:A B,由始点指向末点
➢ 路程:质点实际运动路径的长度,用s 表示
位移与路程的区别与联系
Δr 是矢量
结论:一般不相等
第一章 质点运动学
Chapter 1 Particle Kinematics
➢ 参考系 reference system
为了描述一个物体的运动,被选为参考的另外 的物体称为参考系。
➢ 坐标系 coordinates system 用以标定物体的空间位置而设置的坐标系统。
z • P(x,y,z)
o
1.2 位置矢量 运动方程 位移
位置矢量运动方程位移r* Px yz xzyo kz j y i x r++=(2)位矢 的值为 r (1)确定质点P 某一时刻在坐标系里的位置的物理量称位置矢量, 简称位矢 . r式中 、 、 分别为x 、y 、z方向的单位矢量.i j k ikjrr=222zy x ++==αcos =γcos =βcos (3)位矢 的方向余弦rPrαβγxzyor x ry rz二、运动方程 xzyokt z j t y i t x t r)()()()(++=)(t x x =)(t y y =)(t z z =分量式 从中消去参数 得轨迹方程),,(=z y x f t )(t r )(t x )(t y )(t z三、位移xy oBBr Ar A r∆Ar BBr Ar∆xyor r r A B ∆+=AB r r r-=∆∴(1)经过时间间隔 后, 质点位置矢量发生变化, 由始点 A 指向终点 B的有向线段 AB 称为点 A 到 B 的位移矢量 . 位移矢量也简称位移.t ∆r ∆222zy x r ∆+∆+∆=∆ 位移的大小为=A r =B r jy y i x x r A B A B)()(-+-=∆AB r r r -=∆所以位移 若质点在三维空间中运动,kz z j y y i x x r A B A B A B)()()(-+-+-=∆又 j y i x A A +j y i x B B +Ar B Br Ar∆xyoBx Ax B y Ay AB yy -AB x x -(2)路程( ): 质点实际运动轨迹的长度.s ∆222zy x r ∆+∆+∆=∆ 位移的物理意义 ① 确切反映物体在空间位置的变化, 与路径无关,只决定于质点的始末位置.② 反映了运动的矢量性和叠加性.kz j y i x r∆+∆+∆=∆讨 论(3)位移与路程的区别② 一般情况, 位移大小不等于路程.r s∆≠∆④ 位移是矢量, 路程是标量.s∆)(1t r1p )(2t r 2p r∆xyOz's ∆③ 什么情况? s r ∆=∆不改变方向的直线运动; 当时 . 0→∆t s r ∆=∆① P 1P 2 两点间的路程是不唯一的, 可以是 或而位移 是唯一的. r∆s ∆'s ∆s ∆Thanks!。
位置矢量与位移的关系
位置矢量与位移的关系
位置矢量与位移是物理学中的两个重要概念,它们之间存在着密切的关系。
位置矢量是指一个物体在空间中的位置所对应的向量,通常用符号r表示。
而位移则是指物体在一段时间内的位置变化所对应的向量,通常用符号Δr表示。
根据定义,位移可以表示为Δr=r2-r1,其中r1和r2分别表示物体在时间t1和t2时的位置矢量。
由此可见,位移的大小和方向都取决于物体在空间中的位置变化。
另一方面,位置矢量可以用来表示物体在空间中的位置,包括其大小和方向。
因此,如果我们知道了物体在某一时刻的位置矢量r1,并且知道了它在一段时间内的位移Δr,那么我们就可以通过简单的矢量加法得到物体在另一时刻的位置矢量r2,即r2=r1+Δr。
这种位置矢量与位移之间的关系在物理学中非常常见,尤其是在研究物体在空间中的运动时。
通过对位置矢量和位移的分析,我们可以更加深入地理解物体的运动规律,为物理学的研究提供更加有力的工具。
- 1 -。
质点运动学——精选推荐
第1章质点运动学基本要求1.掌握描述质点运动的基本物理量 位置矢量㊁位移㊁速度和加速度等概念及其主要性质(矢量性㊁瞬时性和相对性)㊂2.理解运动方程和轨道方程的意义,能应用直线运动方程和运动叠加原理求解简单的质点运动学问题㊂(1)已知质点运动方程,求质点的位移㊁速度和加速度等物理量;(2)已知速度或加速度及初始条件,求质点的运动方程;(3)熟练掌握匀变速直线运动㊁抛体运动的规律㊂3.掌握圆周运动中角速度㊁角加速度㊁切向加速度和法向加速度等概念㊂基本概念和基本规律1.质点在所研究的问题中,物体的大小和形状可忽略不计时,我们把它看作只具有质量而无大小㊁形状的理想物体,称为质点㊂质点是物理学中物体的理想模型㊂2.位置矢量(或矢径)r在直角坐标系中点P的位置矢量(如图1.2.1所示)表示为r=x i+y j+z k位置矢量的大小为r=|r|=x2+y2+z2位置矢量的方向用方向余弦表示为c o sα=x r,c o sβ=y r,c o sγ=z r在二维运动中(如图1.2.2所示)r=x i+y jr=|r|=x2+y2θ=a r c t a n y x式中θ是r与x轴正向间夹角㊂Ң2大学物理学习指导图 1.2.1图 1.2.23.位移位移是描述质点在t ~t +Δt 时间内位置矢量变化的物理量(如图1.2.3所示)㊂质点在Δt 内由P 1到P 2的位移等于同一时间内位置矢量的增量Δr:图 1.2.3Δr =r 2-r 1=(x 2-x 1)i +(y 2-y 1)j +(z 2-z 1)k 位移的大小|Δr |=(x 2-x 1)2+(y2-y 1)2+(z 2-z 1)2位移的方向:c o s α=Δx |Δr |, c o s β=Δy |Δr |, c o s γ=Δz |Δr | 注意:①位移Δr 与位置矢量r 的物理意义不同,r 与时刻t 对应,Δr 与Δt 对应;②|Δr |ʂΔr =r 2-r 1,Δr =x 22+y 22+z 22-x 21+y21+z 21;③位移与参照系的选择有关,具有相对性;④直线运动中的位移Δx =x 2-x 1,Δx 的正负表示位移的方向沿x 轴的正向或负向㊂4.速度速度是描述质点的位置随时间变化快慢和方向的物理量㊂(1)平均速度췍-=Δr Δt =Δx Δt i +Δy Δt j +Δz Δtk =v -x i +v -y j +v -z k 췍-称为质点在t ~t +Δt 这段时间内的平均速度㊂(2)瞬时速度췍=d r d t =d x d t i +d y d t j +dz d tk =v x i +v yj +v z k 췍称为质点在时刻t 的瞬时速度,简称速度㊂注意:①v =|췍|=v 2x +v 2y +v 2z =d x d æèçöø÷t 2+d y d æèçöø÷t 2+d z d æèçöø÷t 2ʂd r d t;②直线运动中v =d x d t,v 的正负表示速度的方向沿x轴正向㊁负向㊂(3)平均速率v -=Δs Δt式中Δs 是质点在t ~t +Δt 时间内走过的路程,v -称质点在t ~t +Δt 时间内的平均速率㊂第1章 质点运动学Ң3(4)瞬时速率v =d s d tv 称为质点在t 时刻的瞬时速率,简称速率㊂同一瞬间的瞬时速率和瞬时速度的大小是相同的㊂5.加速度加速度是描述质点运动速度变化的物理量㊂(1)平均加速度a -=Δ췍Δt =Δv x Δt i +Δv y Δt j +Δv zΔtk a -称为质点在t ~t +Δt 这段时间内的平均加速度㊂(2)瞬时加速度a =d 췍d t =d v x d t i +d v y d t j +d v z d t k =d 2x d t 2i +d 2y d t 2j +d 2z d t2k =a x i +a yj +a z k a 称为质点在t 时刻的瞬时加速度,简称加速度㊂(3)质点作平面曲线运动时的加速度,亦可用自然坐标系中的法向加速度和切向加速度表示:法向加速度a n =v 2ρ,方向指向该处的曲率中心;切向加速度a τ=d v d t,正㊁负表示切向加速度的方向与该处速度方向 同 ㊁ 反 ㊂总加速度a =a n +a τ式中,v 为质点所在处的速率;ρ为质点所在处曲率半径㊂注意:①a 的方向是速度变化的方向,即Δ췍的极限方向,一般不代表质点的运动方向㊂②区分췍和a 概念:췍=0,a 不一定为零;췍大,a 不一定大㊂③曲线运动中a n ʂ0;直线运动中a n =0,a τ=d v d t;直线运动a 的正㊁负表示加速度的方向沿选定轴的正向㊁负向㊂6.圆周运动的角量描述设质点作圆周运动,t 时刻质点在A 点,t +Δt 时刻质点运动到B 点,如图1.2.4所示㊂则质点的运动亦可用下述角量描述㊂图 1.2.4θ为半径O A 与x 轴间夹角,θA 是质点在A 点的角位置,则Δθ=θB -θAΔθ称为质点在t ~t +Δt 内对O 点的角位移㊂ω=l i mΔt ң0ΔθΔt =d θd tω称为质点在t 时刻对O 点的瞬时角速度(简称角速度)㊂α=l i mΔt ң0ΔωΔt =d ωd tα称为质点在t 时刻对O 点的瞬时角加速度(简称角加速度)㊂Ң4大学物理学习指导角量与线量间的关系:v =R ωa n =v 2R , a τ=d v d t=R α7.运动方程r (t)质点的位置矢量r (t)(或角位置θ)随时间的变化规律称为质点的运动方程,可表示为r (t )=x (t )i +y (t )j +z (t )k 或θ=θ(t)质点的运动方程在直角坐标系中亦可用分量式表示为x =x (t )y =y (t )z =z (tìîíïïï) 运动方程反映了质点的空间位置随时间的变化过程㊂从运动方程的分量式中消去t,得到x ㊁y ㊁z 间的关系式,称为质点的轨道方程㊂8.运动叠加原理一个运动可看成几个各自独立进行的运动叠加而成,这称为运动叠加原理或运动独立性原理㊂例如,抛体运动可看成水平方向的匀速直线运动和竖直方向的匀变速直线运动的叠加㊂9.几种简单的运动规律(1)直线运动的规律(假设运动发生在x 轴上)匀速直线运动方程:x =x 0+v t 匀变速直线运动方程:x =x 0+v 0t +12a t 2变速直线运动方程:x =x 0+ʏt 0v d t v =v 0+ʏt 0a dt式中x 0㊁v 0分别是t=0时质点的初始位置㊁初始速度㊂(2)圆周运动的角量描述规律匀速圆周运动:θ=θ0+ωt a n =R ω2, a τ=0 匀变速圆周运动:θ=θ0+ω0t +12αt 2a n =R ω2, a τ=d vd t=Rα第1章 质点运动学Ң5 式中θ0㊁ω0分别是t=0时质点的角位置㊁初角速度㊂(3)抛体运动规律图 1.2.5抛体运动(如图1.2.5所示)方程为x =v 0c o s θ0t y =h +v0s i n θ0t -12g t 2讨论:θ0=0时为平抛运动;θ0=π2时为竖直上抛运动;θ0=-π2且v 0=0,则为自由落体运动㊂10.运动的相对性由于位置矢量㊁速度和加速度的大小和方向都与参照系的选择有关,具有相对性,因此同一质点的运动对不同参照系的描述是不同的㊂设坐标系O x ᶄy ᶄz ᶄ相对于坐标系O x yz 的平动速度为u ,则位移Δr =Δr ᶄ+u Δt 速度췍=췍ᶄ+u或表示为췍A 对C =췍A 对B +췍B 对C上式称速度变换原理或速度合成定理㊂加速度a A 对C =a A 对B +a B 对C上式称加速度交换原理或加速度合成定理㊂解题指导本章的重点是深刻理解位置矢量㊁位移㊁速度和加速度等概念,注意其矢量性与相对性㊂本章习题一般分两大类:第一类是已知质点的运动方程,利用微分法求各物理量(速度㊁加速度等);第二类是已知速度或加速度及初始条件,利用积分法求运动方程㊂第二类问题和学会用速度合成定理处理运动的矢量性和相对性问题是本章的难点㊂在直线运动中,位移㊁速度和加速度的方向均在一直线上,建立坐标后,这些矢量可作为标量来处理㊂位移Δx ㊁速度v 和加速度a 的正负,表示其方向与选定坐标轴的正向一致或相反㊂应特别注意的是,中学阶段定量研究的是匀变速直线运动,加速度是常量㊂但大学物理中讨论的是具有普遍意义的运动,加速度不一定是常量,必须用高等数学中的微积分解题㊂由中学的 常量 到大学的 变量 ,这是学习的一个飞跃㊂质点运动学问题的一般解题程序为:(1)审清题意,确定研究对象,分析研究对象的运动情况㊂(2)选择适当的参照系,建立坐标系㊂(3)根据所求物理量的定义,列式并求解㊂或根据运动的特点和题设条件,列方程求解㊂Ң6大学物理学习指导(4)必要时进行分析讨论㊂ʌ例题1.1ɔ有一物体作直线运动,其运动方程为x=6t2-2t3,式中x的单位为m,t 的单位为s㊂求:(1)速度和加速度的表达式;(2)t=0,1,2,3,4s时物体的位置x㊁速度v和加速度a;(3)第2s内的平均速度;(4)最初4s内物体的位移㊁路程㊁平均速度和平均速率;(5)讨论物体的运动情况㊂ʌ解ɔ(1)物体的运动方程x=6t2-2t3速度v=d x d t=12t-6t2(m/s)加速度a=d v d t=12-12t(m/s2)(2)将t的各值代入上述三式,可得各时刻的x㊁v和a,见表1.3.1:表1.3.1t/s01234x/m0480-32v/(m/s)060-18-48a/(m/s2)120-12-24-36(3)第2s内平均速度v-1 2=x2-x1t2-t1=8-42-1=4(m/s)但这不能用下式来计算:v-1 2=v1+v22为什么不行?请读者自己思考㊂(4)位移Δx=x4-x0=-32-0=-32(m)式中负号表示位移的方向沿x轴负向㊂路程Δs是否等于位移Δx通常ΔsʂΔx,只有在直线运动中速度不改变方向的那段时间内,路程才与位移的大小相等㊂今由d x d t=12t-6t2=0得t=2s时开始速度改变方向,所以路程为Δs=Δs1+Δs2=|x2-x0|+|x4-x2|=|8-0|+|-32-8|=48(m)平均速度为v-0 4=x4-x0t4-t0=-324=-8(m/s)式中负号表示平均速度的方向沿x轴负向㊂第1章质点运动学Ң7平均速率为v-0 4=ΔsΔt=484=12(m/s)(5)由v=12t-6t2,可见t<2s,v>0;t=2s,v=0;t>2s,v<0㊂而由a=12-12t得t<1s,a>0;t=1s,a=0;t>1s,a<0㊂因此:t在0~1s内,v>0,a>0,物体作加速运动;t在1~2s内,v>0,a<0,物体作减速运动;t>2s,v<0,a<0,物体沿x轴负向作加速运动㊂应注意:a>0,并不表示物体作加速运动;a<0也不一定是减速运动㊂如何判断物体作加速还是减速运动呢?这应从a和v的方向是否一致来判断㊂a与v同号(即同方向),则为加速运动;a与v异号(即反向),则为减速运动㊂ʌ例题1.2ɔ已知质点的运动方程为x=3t,y=t2+t式中x㊁y以m计,t以s计㊂试求:(1)t=1s和2s时质点的位置矢量,并计算这1s内质点的位移和平均速度;(2)2s末质点的速度和加速度;(3)质点的轨道方程㊂ʌ解ɔ(1)质点的位置矢量为r=3t i+(t2+t)jt=1s时,r1=3i+(1+1)j=3i+2j(m)t=2s时,r2=6i+6j(m)根据位移的定义,这1s内的位移为Δr=r2-r1=(6-3)i+(6-2)j=3i+4j(m)或用位移的大小和方向表示为|Δr|=(Δx)2+(Δy)2=(6-3)2+(6-2)2=5(m)θ=a r c t a nΔyΔx=a r c t a n6-26-3=53ʎ式中θ是位移与x轴正向间夹角㊂根据平均速度的定义,这1s内的平均速度为췍-=ΔrΔt=3i+4j2-1=3i+4j(m/s)(2)根据速度的定义,可得速度的两个分量v x和v y:v x=d x d t=3(m/s)v y=d y d t=(2t+1)|t=2=2ˑ2+1=5(m/s)所以质点在2s末的速度为췍2=3i+5j(m/s)或用췍2的大小和췍2与x轴正向间夹角来表示为v2=v2x+v2y=32+52=5.83(m/s)Ң8大学物理学习指导θ=a r c t a n v y v x =a r c t a n 53=59ʎ式中θ是速度췍2与x 轴正向间夹角㊂根据加速度的定义,它的两个分量a x ㊁a y 分别为a x =d v xd t=0a y =d v y d t =2(m /s 2)所以a =a x i +a yj =2j (m /s 2)即加速度的大小为a =2m /s2,方向沿y 轴正向㊂由于加速度不随时间变化,所以本题中质点作匀加速运动㊂(3)从质点的运动方程中消去t ,即得轨道方程y =x æèçöø÷32+x 3即x 2+3x -9y =0ʌ例题1.3ɔ 一质点沿x 轴运动㊂已知加速度a =4t (S I ),t =0时,初速度v 0=0,初始位置x 0=10m ㊂试求质点的运动方程㊂ʌ解ɔ 根据加速度的定义a =d v d t,得a d t =4t d t =d v 对上式两边积分,得速度v 随时间t 的变化规律ʏt 04t d t =ʏv 0d v积分后代入上下限得v =2t2又根据速度的定义v =d xd t得d x =v d t =2t 2d t对上式两边积分后得质点的运动方程ʏxx 0d x =ʏt 02t 2d tx =x 0+23t 3将x 0=10m 代入上式得x =10+23t 2(m)本题属已知加速度及初始条件(即t =0时的x 0㊁v 0)求运动方程的问题,主要根据加速度和速度的定义,通过积分解决㊂需注意初始条件的运用和定积分的计算方法㊂ʌ例题1.4ɔ 一物体沿x 轴运动,开始时物体位于坐标原点,初速度v 0=3m /s ㊂若加第1章 质点运动学Ң9速度a =4x (S I),求:(1)物体经过x =2m 时的速度;(2)物体的运动方程㊂ʌ解ɔ (1)本题中加速度随x 而变化,所以物体作变速直线运动㊂根据加速度和速度的定义v =d x d t ,a =d v d t,得v d t =d xa d t =d v =ad xv所以v d v =a d x =4x d x两边积分:ʏvv 0v d v =ʏxx 04x dxv 2-v 20=4(x 2-x 20)将x 0=0,v 0=3m /s 及x =2m 代入上式得v =v 20+4x 2=32+4ˑ22=5(m /s ) (2)再根据速度的定义得d x =v d t =v 20+4x 2d t 所以ʏx 0d xv 20+4x 2=ʏt 0d t由积分公式ʏd x a 2+x2=l n (x +a 2+x 2),将上式积分,则有12l n (2x +v 20+4x 2)|x0=t2x +v 20+4x2v 0=e2t化简后得运动方程x =v 04(e 2t -e -2t )=34(e 2t -e -2t )(m )图 1.3.1需注意:通常解题时应先用文字式运算,求得结果的文字表达式后,再代入数据进行计算,得出最后的结果㊂ʌ例题1.5ɔ 如图1.3.1所示,在离水面高度h 的岸边上,有人用绳子拉船靠岸㊂船位于离岸的水平距离s 处㊂当人以v 0的匀速率收绳时,试求船的速度和加速度㊂ʌ解ɔ 本题要求췍和a ,但船的运动方程未知,因此须先根据已知条件,建立坐标后写出船的运动方程,然后根据定义求췍和a ㊂以人的收绳点为坐标原点,建立坐标系如图1.3.1所Ң10大学物理学习指导示,则船的位置矢量即运动方程为r =x i -h j式中h 是常量,x 随时间而变㊂根据速度和加速度的定义得췍=d r d t =d xd ti a =d 2r d t 2=d 2xd t2i 根据题意,人的收绳速率为v 0=-d r d t =-d d t x 2+h 2=-x x 2+h 2d x dt 这里因r =|r |随时间减小,所以d r d t<0,而v 0>0㊂由上式得v x =d x d t =-v 0x 2+h 2x所以船的速度为췍=-v 0s 2+h 2si 而a x =d v x d t =d d t -v 0x 2+h 2æèçöø÷x =d d x -v 0x 2+h 2æèçöø÷xd x dt =-h 2v 20x 3所以船的加速度为a =-h 2v 20x3i当船在x =s 处的速度和加速度为췍=-v 0s 2+h 2si a =-h 2v 20s3i讨论:(1)췍和a 的方向均沿x 轴负向,所以船向岸边作加速运动㊂(2)由a 的表达式,h 和v 0不变,s 随时间减小,|a |随时间增大,所以船作变加速运动㊂(3)船的速率v >v 0(人的收绳速率),这是严格按速度的定义求得的㊂显然v 不等于v 0在水平方向的分量㊂图 1.3.2ʌ例题1.6ɔ 一石子从倾角为α=30ʎ的斜面上的O 点抛出㊂已知初速度v 0=9.8m /s ,췍0与水平面的夹角θ=30ʎ,如图1.3.2所示㊂若忽略空气阻力,试求:(1)石子落到斜面上的B 点离O 点的距离l ;(2)石子所到达的最大高度;(3)t =1.5s 时石子的速度㊁切向加速度和法向加速度㊂ʌ解ɔ (1)石子的运动可看作水平方向的匀速直线运动和竖直方向的加速度为g 的匀变速直线运动的叠加㊂今以O 点为原点,建立坐标如图,则石子的加速度分量为。
【大学物理】第一章 质点运动学【河海大学】
r2
r
x
Δr x22 y22 z22 x12 y12 z12
二.速度
1.定义 速度是反映质点运动的快慢和方向的物理量
平均速度:
v r r(t t) r(t)
t
t
平均速率:
v s s(t t) s(t)
t
t
zA
r
t0
例 1 已知r 某 [质(2点t 2 的 1运)i动 方(2程 t为3 ):j ](m)(t 0)
求: (1)轨道方程; (2)t=0(s)至 t=2(s)内的平均速度; (3)t=0(s)和 t=2(s)时的瞬时速度; (4)t=0(s)至 t=2(s)内的平均加速度; (5)t=0(s)和 t=2(s)时的瞬时加速度。
角速度: d rad s1
dt
角加速度 :
d
dt
d 2
dt 2
rad s2
3.自然坐标系下的速度和加速度
a.自然坐标系:把坐标建立在运动轨迹上的坐标系统
P
s
et
en
s
以质点所o在位置en为原点Q,切线为一et条坐标轴, 取条坐标单坐轴位 标方矢 轴向,量取随e单t 位,位置e矢t变叫量化切en向e,t单e、n位en叫不矢法是量向恒。单量法位线矢为量另。一
dv y dt
j
dvz dt
k axi ay j azk
大小
:a
ax2
a
2 y
az2
方向:cos
ax
, cos
ay
, cos
az
1.1 位置矢量和位移
O
质点在一段时间内位置矢量的增量叫做它在这 段时间内的位移。
位移 r与路程 s不同
a.位移为矢量, 路程为标量
b.s r
s
A
B
r
r (t) r (t t)
但是:
当t
0时 ,s
r
记为: ds dr
O
ds B
A
r (t) r (t t)
O
r
第一篇 力学
第1章 质点运动学
1.1 位置矢量和位移
1.1.1 参考系
任何物体的位置总是相对于其他物体或物体系来确定的, 这个其他物体或物体系就叫做确定物体位置时用的参考物。
确定了参考物之后,为了定量地说明一个质点相对于此参 考物的空间位置,就在此参考物上建立固定的坐标系。
一个固定在参考物上的坐标系和相应的一套同步的时钟 组成一个参考系(或参照系)。
s
A
B
r r
r (t)
r (t t)
O
r r(t t) r(t) r r
dr dr
例
已知一质点运动方程
r
2t
i
(2
t2) j
求: (1) t =1s 到 t =2s 质点的位移;
(2) 轨道方程。
解
(1)由运动方程得
r r2 r1 (4
cos
t
i
r
sint
j
运动函数的矢量形式 消去时间参量:
x 2 y 2 r 2 ——轨道方程
一、位移
设在t 时间内质点从 A 运动到B,则质点在 t 时间内的位移定义为:
r r( t t ) r( t )
《大学物理》上册复习资料
胤熙说明:本资料纯属个人总结,只是提供给大家一些复习方面,题目均来自课件如有不足望谅解。
(若要打印,打印时请删去此行)第一章质点运动学1.描述运动的主要物理量位置矢量:位移矢量:速度矢量:加速度矢量:速度的大小:加速度的大小:2.平面曲线运动的描述切向加速度:法相加速度:(圆周运动半径为R,则a n= )3.圆周运动的角量描述角位置:角速度:角加速度:圆周运动的运动方程:4.匀角加速运动角量间的关系ω= θ=5.角量与线量间的关系ΔS= V= a t= a n=6.运动的相对性速度相加原理: 加速度相加关系:7. 以初速度v0由地面竖直向上抛出一个质量为m 的小球,若上抛小球受到与其瞬时速率成正比的空气阻力,求小球能升达的最大高度是多大?8.一飞轮以n=1500r/min的转速转动,受到制动而均匀地减速,经t=50s后静止。
(1)求角加速度β和从制动开始到静止时飞轮的转数N为多少?(2)求制动开始t=25s时飞轮的角速度ω(3)设飞轮的半径R=1m时,求t=25s时,飞轮边缘上一点的速度、切向加速度和法向加速度9.一带蓬卡车高h=2m,它停在马路上时雨点可落在车内到达蓬后沿前方d=1m处,当它以15 km/h 速率沿平直马路行驶时,雨滴恰好不能落入车内,求雨滴相对地面的速度及雨滴相对车的速度。
x x 'yy 'z z 'O O 'S S 'u∙P ),,(),,(z y x z y x '''第二章 牛顿运动定律 1.经典力学的时空观(1) (2) (3) 2.伽利略变换 (Galilean transformation ) (1)伽利略坐标变换X ’= Y ’= Z ’= t ’=(2)伽利略速度变换V ’= (3)加速度变换关系 a ’=3.光滑桌面上放置一固定圆环,半径为R ,一物体贴着环带内侧运动,如图所示。
物体与环带间的滑动摩擦系数为μ。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
l(t) = l0 −v t
x(t) = (l0 −v t)2 − h2
1.1.3位移 位移
z
P
r r (t)
r r r PQ = r (t + ∆t) − r (t) = ∆r
位移矢量反映了物体运动中位置 位移矢量反映了物体运动中位置 ( 距离与方位 ) 的变化。 的变化。 探究问题: 探究问题: (1) 位置矢量 位移\路程三者之间的区别? 位置矢量\位移 路程三者之间的区别? 位移\
r ∆r
∆s
Q
O x
r r (t + ∆t)
y
r ∆r
∆r
O
O
一质点作匀速圆周运动,半径为r 例 一质点作匀速圆周运动,半径为 ,角速度为ω 。 求 用直角坐标、位矢、自然坐标表示的质点运动学方程。 直角坐标、位矢、自然坐标表示的质点运动学方程。 解 以圆心 为原点。建立直角坐标系 以圆心O 为原点。 Oxy ,O ′点为起始时刻,设t 时刻 点为起始时刻, 质点位于P( 质点位于 (x , y),用直角坐标 ) 表示的质点运动学方程为 表示的质点运动学方程为
s = s(t)
参考物
O
•
s+ s •
1.1.3 运动学方程 位置矢量 直角坐标 自然坐标
P
r r r r r r = r (t) = x(t)i + y(t) j + z(t)k
x = x(t)
s = s(t)
y = y(t)
z = z(t)
意义 已知运动学方程,可求质点运动轨迹、速度和加速度。 已知运动学方程,可求质点运动轨迹、速度和加速度。
y
ω
x = r cosω t, y = r sinω t
位矢表示为
y r • P(x, y) r s • ωt • x O' O x
r r r r r r = xi + yj = r cosωti + r sinωtj
自然坐标表示为 s = rωt
如图所示, 例 如图所示,以速 度v 用绳跨一定 滑轮拉湖面上的 船,已知绳初长 l 0,岸高 h 求 船的运动方程
z
y
x
x
r 位置矢量的大小: 位置矢量的大小: r = x2 + y2 + z2
x 位置矢量的方向 方向: 位置矢量的方向: cosα = r r y cos β = r r z cosγ = r r
3. 自然坐标法 自然坐标法 已知质点相对参考系的运动轨迹时,常用自然法。 已知质点相对参考系的运动轨迹时,常用自然法。
r v
l0
h O
l(t ) x(t )
x
解 取坐标系如图 依题意有 运动方程为 探究问题: 探究问题 (1)质点运动学的基本问题之一是确定质点运动学方程。如 质点运动学的基本问题之一是确定质点运动学方程。 质点运动学的基本问题之一是确定质点运动学方程 何正确写出质点运动学方程? 何正确写出质点运动学方程
1.1 位置矢量和位移
1.1.1 质点运动学的基本概念 质点运动学的基本概念 基本 质 点: 可忽略形状和大小的物体 质点系: 若干质点的集合。 质点系 若干质点的集合。 参考系: 参照物 + 坐标系 参考系 探究问题: 探究问题 (1) 如何理解“静止是相对的 运 如何理解“静止是相对的,运 动是绝对的 ? (2) 描述相同的运动 如何选用最佳 描述相同的运动,如何选用最佳 的坐标系? 的坐标系 (3) 四种常用坐标系之间的关系 球坐标系( 直角坐标系( 直角坐标系( x , y , z ) 球坐标系( r,θ, ϕ ) 柱坐标系( 柱坐标系(ρ , ϕ , z ) 自然坐标系 ( s ) z P
有质量而无形状和大小。 有质量而无形状和大小。
O
参照物
y
x
1.1.2 确定质点位置的方法 1. 直角坐标法 P(x, y, z) 2. 位置矢量矢法 质点某时刻位置P 质点某时刻位置
参考物
z
γ
O
r 表示。 由位置矢量 r 表示。 r r r r r = xi + yj + zk
α
β
y
r rΒιβλιοθήκη P(x, y, z)