一次函数图像与性质测试题.doc
最新人教版初中数学八年级数学下册第四单元《一次函数》测试题(答案解析)
一、选择题1.一次函数y=-3x-2的图象和性质,表述正确的是( )A .y 随x 的增大而增大B .函数图象不经过第一象限C .在y 轴上的截距为2D .与x 轴交于点(-2,0)2.已知函数(0)y kx k =≠中y 随x 的增大而减小,则一次函数23y kx k =+的图象大致是( )A .B .C .D .3.下列图象中,不表示y 是x 的函数的是( )A .B .C .D .4.如图1,将正方形ABCD 置于平面直角坐标系中,其中AD 边在x 轴上,其余各边均与坐标轴平行,直线l :y =x -3沿x 轴的负方向以每秒1个单位的速度平移,在平移的过程中,该直线被正方形ABCD 的边所截得的线段长为m ,平移的时间为t (秒),m 与t 的函数图象如图2所示,则图2中b 的值为( )A .52B .42C .32D .55.如图,已知直线1:2l y x =,过点()0,1A 作y 轴的垂线交直线l 于点B ,过点B 作直线l 的垂线交y 轴于点C ,过点C 作y 轴的垂线交直线l 于点D ,则点D 的坐标为( )A .()10,5B .()0,10C .()0,5D .()5,10 6.如图1,四边形ABCD 是轴对称图形,对角线AC ,BD 所在直线都是其对称轴,且AC ,BD 相交于点E .动点P 从四边形ABCD 的某个顶点出发,沿图1中的线段匀速运动.设点P 运动的时间为x ,线段EP 的长为y ,图2是y 与x 的函数关系的大致图象,则点P 的运动路径可能是( )A .CB A E →→→B .CDE A →→→ C .A E C B →→→ D .A E D C →→→7.甲乙两地相距3600m ,小王从甲地匀速步行到乙地,同时,小张从乙地沿同一路线匀速步行前往甲地,两人之间的路程(m)y 与小王步行的时间(min)x 之间的函数关系如图中的折线段AB BC CD --所示,已知小张先走完全程.结合图象,得到以下四个结论:①小张的步行速度是100m/min ;②小王走完全程需要36分钟;③图中B 点的横坐标为22.5;④图中点C 的纵坐标为2880.其中错误..的个数是( ) A .1 B .2 C .3 D .48.如图,在平面直角坐标系中,点()2,A m 在第一象限,若点A 关于x 轴的对称点B 在直线1y x =-+上,则m 的值为( )A .-1B .1C .2D .3 9.如图,直线443y x =+与x 轴,y 轴分别交于A ,B 两点,点C 在OB 上,若将ABC 沿AC 折叠,使点B 恰好落在x 轴上的点D 处,则点C 的坐标是( )A .(0,1)B .20,3⎛⎫ ⎪⎝⎭ C .30,2⎛⎫ ⎪⎝⎭ D .(0,2)10.直线y kx b =+经过一、三、四象限,则直线y bx k =-的图象只能是图中的( )A .B .C .D . 11.一个一次函数的图象与直线112y x =-平行,与x 轴、y 轴的交点分别为A ,B ,并且过点(1,5)--,则在线段AB 上(包括端点A ,B )横、纵坐标都是整数的点有( ) A .4个 B .5个C .6个D .7个 12.对于实数a 、b ,我们定义max {a ,b }表示a 、b 两数中较大的数,如max {2,5}=5, max {3,3}=3.则以x 为自变量的函数y =max {-x +3,2x -1}的最小值为( ). A .-1 B .3 C .43 D .53二、填空题13.已知点)(,A m n 在一次函数53y x =+的图像上,则53n m -+的值是______. 14.下列函数:①3x y =,②2y x =,③1y x =,④23y x =-,⑤()2221y x x x =--+其中是一次函数的有_____.(填序号)15.已知:一次函数()21y a x =-+的图象不经过第三象限,化简224496a a a a -+-+=_________.16.已知y 是关于x 的正比例函数,当1x =-时,2y =,则y 关于x 的函数表达式为____.17.如表,y 是x 的一次函数,则m 的值为_____________. x 1-0 1 y3 m0 18.已知直线22y x =-与x 轴交于A ,与y 轴交于B ,若点C 是坐标轴上的一点,且AC AB =,则点C 的坐标为________.19.如图,函数20y x =和40y ax =-的图象相交于点P ,点P 的纵坐标为40,则关于x ,y 的方程组20040x y ax y -=⎧⎨-=⎩的解是______.20.如图,在ABC 中90ACB ∠=︒,AC BC =,BC 与y 轴交于D 点,点C 的坐标为()2,0-,点A 的坐标为()6,3-,则D 点的坐标是__________.三、解答题21.如图,直线22y x =-+与x 轴、y 轴分别交于点A 、B .(1)求A 、B 两点的坐标;(2)在x 轴上有一点P ,使得PAB △的面积为5,求P 点的坐标.22.设一次函数y 1=kx ﹣2k (k 是常数,且k≠0).(1)若函数y 1的图象经过点(﹣1,5),求函数y 1的表达式.(2)已知点P(x 1,m )和Q(﹣3,n )在函数y 1的图象上,若m >n ,求x 1的取值范围. (3)若一次函数y 2=ax+b (a≠0)的图象与y 1的图象始终经过同一定点,探究实数a ,b 满足的关系式.23.上个周末,姚家中学的李老师开车带着家人从学校出发,沿着图①中的线路去绿博园、中牟黄河滩区游玩、然后去官渡中学探望朋友.李老师一家早上7:30开着电动汽车从学校出发行走一段时间到绿博园,在绿博园游玩了一段时间;又开车去雁鸣湖镇辖区的黄河滩,他们在滩区游玩了1.5h ;然后在中午12:30赶到官渡中学(电动汽车的行驶速度是40km/h ).图②中的图象表示李老师一家所行驶的路程()km y 与时间()h x 的函数关系.请结合图中信息解答下列问题:(1)点A 的坐标是______,他们在绿博园游玩了_____h ,线段OA 的函数表达式是______;(2)线段OA ,BC ,DE 平行吗?请简单说明理由.(3)请求出线段BC 的函数表达式;(4)如果李辉在11:30骑电动车从官渡中学出发,以20km/h 的速度沿图①中的线路前往黄河滩区游玩,那么李辉在几点钟会和李老师相遇?24.一辆客车从甲地开往乙地,一辆出租车从乙地开往甲地,两车同时出发,设客车离甲地的距离为1y 千米,出租车离甲地的距离为2y 千米,两车行驶的时间为x 小时,12,y y 关于x 的图象如图所示:(1)客车的速度是 千米/小时,出租车的速度是 千米小时:(2)根据图象,分别直接写出12,y y 关于x 的关系式;(3)求两车相遇的时间;(4)x 为何值时,两车相距100千米.25.如果3个数位相同的自然数m ,n ,k 满足:m n k +=,且k 各数位上的数字全部相同,则称数m 和数n 是一对“黄金搭档数”.例如:因为123,765,888都是三位数,123765888+=,所以123和765是一对“黄金搭档数”.再如:因为26,29,55都是两位数,262955+=,所以26和29是一对“黄金搭档数”.(1)若326与一个个位上的数字是3的数a 是一对“黄金搭档数”,389与一个个位上的数字是8的数b 是一对“黄金搭档数”,直接写出a 和b 的值;(2)若10(19,09)s x y x y =+≤≤≤≤,10(19,09)t x z x z =+≤≤≤≤,且y z <,s 和t 是一对“黄金搭档数”,求这样的“黄金搭档数”一共有多少对?26.一次函数23y x =-+的图像经过点P (1,n ).(1)求n 的值;(2)若一次函数1y mx =-的图像经过点P (2n -1,n ),求m 的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】根据一次函数y=kx+b (k≠0)的性质:k >0,y 随x 的增大而增大,函数从左到右上升;k <0,y 随x 的增大而减小,即可判断A 项,解析式特点找到函数通过的象限即可判断B 项;使y=0时,对应的横坐标即可判断C ;使x=0时,对应的纵坐标即可判断D .【详解】A. 因为k=-3,所以y 随x 的增大而减小,故此项不正确;B. 根据函数解析式y=-3x-2特点,函数图象经过第二、三、四象限,故此项正确;C. y=-3x-2与y 轴的交点坐标(0,-2),那么在y 轴上的截距为-2,故此项不正确;D. y=-3x-2与x 轴交于点(23-,0),故此项不正确; 故选B【点睛】本题考查了一次函数图象上点的坐标特征,一次函数的图象,一次函数的性质,正确掌握一次函数图象的增减性和一次函数的性质是解题的关键. 2.A解析:A【分析】根据正比例函数的增减性,确定k 的正负,再依据一次函数图象与系数的关系判断即可.【详解】解:∵函数(0)y kx k =≠中y 随x 的增大而减小,∴k<0,∴3k<0,k 2>0,一次函数23y kx k =+的图象经过第二、一、四象限,故选:A .【点睛】本题考查了正比例函数图象和一次函数图象的性质,解题关键是判断一次函数的系数的符号,并根据系数的正负判断图象所经过的象限.3.A解析:A【分析】依据函数的定义,x 取一个值,y 有唯一值对应,可直接得出答案.【详解】解:A 、根据图象知给自变量一个值,可能有2个函数值与其对应,故A 选项不是函数, B 、根据图象知给自变量一个值,有且只有1个函数值与其对应,故B 选项是函数, C 、根据图象知给自变量一个值,有且只有1个函数值与其对应,故C 选项是函数, D 、根据图象知给自变量一个值,有且只有1个函数值与其对应,故D 选项是函数, 故选:A .【点睛】此题主要考查了函数概念,任意画一条与x 轴垂直的直线,始终与函数图象有一个交点,那么y 是x 的函数.4.A解析:A【分析】从图2中,判定从有截长到截长消失,用12-2=10秒,根据正方形的对称性,截长从0到最大用5秒,从而判断正方形的边长为5,对角线长即可确定.【详解】解:从图2中,判定从有截长到截长消失,用12-2=10秒,根据正方形的对称性, 截长从0到最大用5秒,所以正方形的边长为5,所以对角线长为故选A .【点睛】本题考查了坐标系中的平移问题,熟练掌握平移的规律,正方形的对称性,灵活运用数形结合的思想是解题的关键.5.A解析:A【分析】求出B 点的坐标,再求出直线BC 的解析式,从而可得CO 的长度,进一步得出CD 的长度,即可求解.【详解】解:∵A(1,0)∴OA=1当y=1时,112x=,即x=2,∴B(2,1)∵BC⊥l∴设直线BC的解析式为y=-2x+b,把B(2,1)代入得,b=5,∴CO=5,当y=5时,152x=,解得,x=10,∴点D的坐标为(10,5)故选:A【点睛】本题主要考查了如何根据一次函数的解析式和点的坐标求线段的长度,解题时要注意相关知识的综合应用.6.D解析:D【分析】根据图像,以及点的运动变化情况,前两段是y关于x的一次函数图像,判断y随x的增减变化趋势,第一段的最高值与第二段的最高值不相等,即可排除A,B,C选项.【详解】根据图像,前端段是y关于x的一次函数图像,∴应在AC,BD两段活动,故A,B错误,第一段y随x的增大而减小,第二段y随x增大而增大,第一段的最高值与第二段的最高值不相等,∵AE=EC∴C错误故选:D【点睛】本题考查函数的图像,比较抽象,解题的关键是根据图像判断函数值随自变量的值的增减变化情况,以及理解分段函数的最值是解题的关键.7.B解析:B【分析】根据小张先走完全程可知,各个节点的意义,A代表刚开始时两人的距离,B代表两人相遇,C代表小张到达终点,D代表小王到达终点,根据这些节点的意义进行分析即可判断结论的正确与否.【详解】解:由图可知,点C 表示小张到达终点,用时36min ,点D 表示小王到达终点,用时45min ,故②错误;∴小张的步行速度为:360036100(/min)m ÷=,故①正确;小王的步行速度为:36004580(/min)m ÷=,点B 表示两人相遇,∴3600(10080)20(min)÷+=,∴两人20min 相遇,(20,0)B ,故③错误;∵362016(min)-=,∴从两人相遇到小张到终点过了16min ,∴16(10080)2880()m ⨯+=,∴小张到达终点时,两人相距2880m ,∴点C 的纵坐标为2880,故④正确,∴错误的是②③,故选:B .【点睛】本题考查一次函数的应用.解答本题的关键是明确题意,利用数形结合的思想解答. 8.B解析:B【分析】根据关于x 轴的对称点的坐标特点可得B (2,−m ),然后再把B 点坐标代入y =−x +1可得m 的值.【详解】点A 关于x 轴的对称点B 的坐标为:(2,﹣m ),将点B 的坐标代入直线y =﹣x+1得:﹣m =﹣2+1,解得:m =1,故选:B .【点睛】此题主要考查了关于x 轴对称点的坐标,以及一次函数图象上点的坐标特点,关键是掌握凡是函数图象经过的点必能使解析式左右相等.9.C解析:C【分析】先求得点A 、B 的坐标分别为:(﹣3,0)、(0,4),由此可求得AB =5,再根据折叠可得AD =AB =5,故OD =AD ﹣AO =2,设点C (0,m ),则OC =m ,CD =BC =4﹣m ,根据222CO OD CD +=列出方程求解即可.【详解】解:∵直线y =43x +4与x 轴、y 轴分别交于A 、B 两点, ∴当x =0时,y =4;当y =0时,x =﹣3,则点A 、B 的坐标分别为:A (﹣3,0)、B (0,4),∴AO =3,BO =4, ∴在Rt ABC 中,AB =5, ∵折叠,∴AD =AB =5,CD =BC ,∴OD =AD ﹣AO =2,设点C (0,m ),则OC =m ,BC =4﹣m ,∴CD =BC =4﹣m ,在Rt COD 中,222CO OD CD +=,即2222(4)m m +=-,解得:m =32, 故点C (0,32), 故选:C .【点睛】本题考查的是一次函数图象上点的坐标特征,题目将图象的折叠和勾股定理综合考查,难度适中.10.D解析:D【分析】先根据直线y kx b =+经过一、三、四象限判断出k 和b 的正负,从而得到直线y bx k =-的图象经过的象限.【详解】解:∵直线y kx b =+经过第一、三、四象限,∴0k >,0b <,∴0k -<,∴直线y bx k =-经过第二、三、四象限.故选:D .【点睛】本题考查一次函数的图象和性质,解题的关键是掌握根据系数的正负判断函数图象经过的象限的方法.11.B解析:B【分析】首先根据一次函数的图象与直线112y x =-平行,图象经过点(-1,-5),用待定系数法求出函数关系式,然后求出A 、B 两点的坐标,最后根据所求点满足在线段AB 上(包括端点A 、B ),且横、纵坐标都是整数,得出结果;【详解】 一次函数的图象与直线112y x =-平行,设此直线为12y x b =+, 过点(-1,-5), ∴把此点代入,得152b -=-+, 解得92b , ∴此直线为1922y x =-. 当0x =时,92y =-; 0y =时,19022x =-,解得x=9, 故A(9,0),B(0,92-). 由直线的解析式可知,只要x 是奇数时,y 即为整数,而从9到0共有5个奇数,即1,3,5,7,9,故在线段AB 上(包括端点A ,B )横、纵坐标都是整数的点有5个.故选:B .【点睛】本题考查了一次函数平行的特点,列出方程,求出未知数,再根据题意求解;12.D解析:D【分析】分x≤43和x>43两种情况进行讨论计算. 【详解】解:当-x+3≥2x -1, ∴x≤43, 即-x≥-43时,y=-x+3, ∴当-x=-43时,y 的最小值=53, 当-x+3<2x-1,∴x>43, 即:x>43时,y=2x-1, ∵x>43, ∴2x >83, ∴2x-1>53, ∴y >53, ∴y 的最小值=53, 故选:D .【点睛】此题是分段函数题,以及一次函数的性质,主要考查了新定义,解本题的关键是分段.二、填空题13.6【分析】将点代入一次函数中得n-5m=3即可代入求值【详解】∵点在一次函数的图像上∴5m+3=n ∴n-5m=3∴=3+3=6故答案为:6【点睛】此题考查一次函数图象上点坐标特点已知式子的值求代数式解析:6【分析】将点)(,A m n 代入一次函数53y x =+中得n-5m=3,即可代入求值.【详解】∵点)(,A m n 在一次函数53y x =+的图像上,∴5m+3=n ,∴n-5m=3,∴53n m -+=3+3=6,故答案为:6.【点睛】此题考查一次函数图象上点坐标特点,已知式子的值求代数式的值,掌握函数图象上点坐标特点是解题的关键. 14.①②④⑤【分析】根据一次函数的定义进行一一判断【详解】①是一次函数;②是一次函数③不是一次函数④是一次函数⑤是一次函数故答案为:①②④⑤【点睛】考查了一次函数的定义解题关键是熟记:一般地形如y=kx解析:①②④⑤【分析】根据一次函数的定义进行一一判断.【详解】①3x y =是一次函数;②y =是一次函数,③1y x =不是一次函数,④23y x =-是一次函数,⑤()222121y x x x x =--+=+是一次函数.故答案为:①②④⑤.【点睛】考查了一次函数的定义,解题关键是熟记:一般地,形如y=kx+b (k≠0,k 、b 是常数)的函数,叫做一次函数. 15.【分析】首先根据一次函数y=(a-2)x+1的图象不经过第三象限可得a-2<0进而得到a <2再根据二次根式的性质进行计算即可【详解】解:∵一次函数的图象不经过第三象限∴解得:故答案为:【点睛】本题考解析:52a -【分析】首先根据一次函数y=(a-2)x+1的图象不经过第三象限,可得a-2<0,进而得到a <2,再根据二次根式的性质进行计算即可.【详解】解:∵一次函数()21y a x =-+的图象不经过第三象限,∴20a -<,解得:2a <,=23a a =-+-23a a =-+-52a =-,故答案为:52a -.【点睛】本题考查了一次函数图象与系数的关系,以及二次根式的化简,关键是掌握:①k >0,b>0⇔y=kx+b 的图象在一、二、三象限;②k >0,b <0⇔y=kx+b 的图象在一、三、四象限;③k <0,b >0⇔y=kx+b 的图象在一、二、四象限;④k <0,b <0⇔y=kx+b 的图象在二、三、四象限.16.y=-2x 【分析】由题意可设y=kx (k≠0)把xy 的值代入该函数解析式通过方程来求k 的值【详解】解:由题意可设y=kx (k≠0)则2=-k 解得k=-2所以y 关于x的函数解析式是y=-2x故答案为:解析:y=-2x【分析】由题意可设y=kx(k≠0).把x、y的值代入该函数解析式,通过方程来求k的值.【详解】解:由题意可设y=kx(k≠0).则2=-k,解得,k=-2,所以y关于x的函数解析式是y=-2x,故答案为:y=-2x.【点睛】本题考查了待定系数法求正比例函数解析式,利用待定系数法求得解析式是关键.17.【分析】首先利用待定系数法求得一次函数的解析式然后把x=0代入解析式即可解决问题【详解】解:设一次函数的解析式为y=kx+b则有解得∴一次函数的解析式为当x=0时m=故答案为:【点睛】本题考查了一次解析:3 2【分析】首先利用待定系数法求得一次函数的解析式,然后把x=0代入解析式即可解决问题.【详解】解:设一次函数的解析式为y=kx+b,则有3k bk b-++⎧⎨⎩==,解得3232kb⎧=-⎪⎪⎨⎪=⎪⎩,∴一次函数的解析式为3322y x=-+,当x=0时,m=32.故答案为:32.【点睛】本题考查了一次函数图象上点的坐标特征和用待定系数法求一次函数的解析式,能求出一次函数的解析式是解此题的关键.18.【分析】利用待定系数法求出两点坐标利用勾股定理求出根据确定点坐标即可【详解】解:令得到令得到以为圆心长为半径作圆交坐标轴即为点或故答案为:【点睛】本题考查一次函数的应用等腰三角形的判定和性质等知识熟 解析:()15,0+()15,0-()0,2 【分析】利用待定系数法求出A 、B 两点坐标,利用勾股定理求出AB ,根据AC AB =,确定点C 坐标即可.【详解】解:令0x =,得到2y =-,(0,2)B ,令0y =,得到1x =,(1,0)A ∴,1OA ∴=,2OB =,22125AB ,以A 为圆心,AB 长为半径作圆,交坐标轴即为C 点,5ACAB , (15C ,0),(15,0)或(0,2), 故答案为:()15,0+、()15,0-、()0,2. .【点睛】本题考查一次函数的应用,等腰三角形的判定和性质等知识,熟练掌握待定系数法确定交点坐标是解题的关键.19.【分析】由点P 的纵坐标为40代入求得点P 的坐标再利用两图象的交点坐标满足方程组方程组的解就是交点坐标据此求解即可【详解】∵点P 的纵坐标为40∴解得:∴点P 的坐标为()∴方程组即的解为故答案为:【点睛解析:240x y =⎧⎨=⎩【分析】由点P 的纵坐标为40,代入20y x =求得点P 的坐标,再利用两图象的交点坐标满足方程组,方程组的解就是交点坐标,据此求解即可.【详解】∵点P 的纵坐标为40,∴4020x =,解得:2x =,∴点P 的坐标为(2,40),∴方程组2040y x y ax =⎧⎨=-⎩即20040x y ax y -=⎧⎨-=⎩的解为, 故答案为:240x y =⎧⎨=⎩. 【点睛】本题主要考查了一次函数与二元一次方程(组)的关系,函数图象交点坐标为两函数解析式组成的方程组的解,利用了数形结合思想.20.(0)【分析】过A 和B 分别作AF ⊥OC 于FBE ⊥OC 于E 利用已知条件可证明△AFC ≌△CEB 再有全等三角形的性质和已知数据即可求出B 点的坐标然后求出直线BC 的解析式即可得到结论【详解】解:过A 和B 分解析:(0,83) 【分析】过A 和B 分别作AF ⊥OC 于F ,BE ⊥OC 于E ,利用已知条件可证明△AFC ≌△CEB ,再有全等三角形的性质和已知数据即可求出B 点的坐标,然后求出直线BC 的解析式,即可得到结论.【详解】解:过A 和B 分别作AF ⊥OC 于F ,BE ⊥OC 于E ,∵∠ACB =90°,∴∠ACF +∠CAF =90°∠ACF +∠BCE =90°,∴∠CAF =∠BCE , 在△AFC 和△CEB 中,90AFC CBE CAF BCE AC AC ︒⎧∠=∠=⎪∠∠⎨⎪=⎩= , ∴△AFC ≌△CEB (AAS ),∴FC =BE ,AF =CE ,∵点C 的坐标为(﹣2,0),点A 的坐标为(﹣6,3),∴OC =2,AF =CE =3,OF =6,∴CF =OF ﹣OC =4,OE =CE ﹣OC =2﹣1=1,∴BE =4,∴则B 点的坐标是(1,4),设直线BC的解析式为:y=kx+b,则420k bk b+=⎧⎨-+=⎩,∴4383 kb⎧=⎪⎪⎨⎪=⎪⎩,∴直线BC的解析式为:y=43x+83,当x=0时,y=83,∴D(0,83).故答案为:(0,83).【点睛】本题考查了全等三角形的判定和性质,坐标与图形的性质,等腰直角三角形的性质,熟练掌握全等三角形的判定和性质是解题的关键.三、解答题21.(1)(1,0)A,(0,2)B;(2)(6,0)P或(4,0)-.【分析】(1)分别令0y=和0x=即可;(2)设P的坐标(,0)a,根据题目条件列出等量关系即可求出a;【详解】解:(1)把0y=代入,220x-+=,1x=,(1,0)A∴,把0x=代入,2y=,(0,2)B∴;(2)设P的坐标(,0)a,152PA OB⨯=,5PA =,|1|5a -=,6a =或者4-,(6,0)P ∴或者(4,0)-;【点睛】本题主要考查了一次函数的图像性质,准确分析计算是解题的关键.22.(1)151033y x =-+;(2)当k <0时,x 1<﹣3;当k >0时,x 1>﹣3;(3)2a +b =0.【分析】(1)将点(﹣1,5)代入y 1=kx ﹣2k ,求得k 值,即可得出函数解析式;(2)根据一次函数的性质,由k 值判断函数自变量的大小,即可得出结论; (3)根据一次函数y 1=kx ﹣2k 得y 1=k (x ﹣2),可得函数图象经过的定点为(2,0),再将定点坐标代入y 2=ax+b 即可求出实数a ,b 满足的关系式.【详解】解:(1)∵函数y 1的图象经过点(﹣1,5),∴5=﹣k ﹣2k ,解得k =53-, 函数y 1的表达式151033y x =-+; (2)当k <0时,若m >n ,则x 1<﹣3;当k >0时,若m >n ,则x 1>﹣3;(3)∵y 1=kx ﹣2k =k (x ﹣2),∴函数y 1的图象经过定点(2,0),当y 2=ax +b 经过(2,0)时,0=2a +b ,即2a +b =0.【点睛】本题考查了一次函数图象与性质,掌握一次函数的图象与性质并能准确理解题意进行解答是解题的关键.23.(1)点1,202A ⎛⎫ ⎪⎝⎭,1.5h ,40y x =;(2)线段,,OA BC DE 平行;理由见解析;(3)线段BC 的函数表达式4060y x =-,(4)李辉在12点10分会和李老师相遇.【分析】(1)用路程除以速度求出A 点的时间,用B 点的时间减去A 点的时间在绿博园游玩时间,OA 的表达式y 用时间x 乘以电动汽车的速度40即可,(2)利用电动汽车速度确定三段函数的k 值,k 相同则线段,,OA BC DE 位置关系即可判断,(3)先求出B 点坐标,设出BC 的解析式,由k 为电动汽车的速度,代入求b 即可,(4)先求李老师从黄河区出发的时间,再列出两者相遇的方程,求出相遇时间,加上李辉出发时的时间即可【详解】(1)20÷40=12,点1,202A ⎛⎫ ⎪⎝⎭,2-12=1.5h ,线段OA 表达式:40y x =; (2)线段,,OA BC DE 平行,因为电动汽车的行驶速度都是40/km h ,三条线段的函数表达式系数k 都是电动汽车的行驶速度,由一次函数的性质,k 相同,直线是平行的;(3)设BC 的函数表达式y kx b =+,由(1)(2)得40k =,又由图象可知,点B 的坐标是()2,20,所以,20402b =⨯+,解得60b =-,所以,线段BC 的函数表达式4060y x =-;(4)设李辉出发a 小时后,两车相遇,李老师所用时间7时30分出发到在黄河区游玩结束11时45分,比李辉晚出发14小时, 根据题意,得12040304a a ⎛⎫+-= ⎪⎝⎭, 解得23a =, 11时30分出发到相遇用260=403⨯分,即11时70分=12时10分, 所以,他们在12点10分相遇.【点睛】本题考查点的坐标,线段的表达式,线段的位置关系,相遇行程问题,掌握点的坐标求法,线段表达式的求法,会列行程问题应用题,会用数形结合的思想解一次函数中行程问题是解题关键.24.(1)60,100;(2)y 1=60x (0≤x≤10),y 2=-100x+600(0≤x≤6);(3)两车相遇的时间为154小时;(4)258小时或358小时. 【分析】 (1)根据速度=路程÷时间,列式进行计算即可得解;(2)根据两函数图象经过的点的坐标,利用待定系数法求一次函数解析式解答即可; (3)由12y y =列出方程,求出即可;(4)由两车相距100千米,可得|y 1-y 2|=100,即可求解.【详解】解:(1)由图可知,甲乙两地间的距离为600km ,所以,客车速度=600÷10=60(km/h ),出租车速度=600÷6=100(km/h ),故答案为:60,100;(2)设客车的函数关系式为y 1=k 1x ,则10k 1=600,解得k 1=60,所以,y 1=60x (0≤x≤10),设出租车的函数关系式为y 2=k 2x+b ,则206600k b b +⎧⎨=⎩=, 解得2100600k b =-⎧⎨=⎩, 所以,y 2=-100x+600(0≤x≤6),故答案为:y 1=60x (0≤x≤10),y 2=-100x+600(0≤x≤6);(3)当出租车与客车相遇时,60x=-100x+600,解得x=154. 所以两车相遇的时间为154小时;(4)由题意可得:|-100x+600-60x|=100,∴x=258或358, 答:x 为258小时或358小时,两车相距100千米. 【点睛】 本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.25.(1)673,388a b ==;(2)10对.【分析】(1)由黄金搭档数的定义可得:326+999,a =389+=777b ,解方程从而可得答案; (2)由10,10,s x y t x z =+=+可得,s t 的十位上的数字是相同的,再结合19,09,09,x y z ≤≤≤≤≤≤ y <,z 可得:,s t 都是两位数,s <t ,由20,s t x y z +=++可得0<4,x ≤ 结合x 为正整数,再分类讨论可得答案.【详解】解:(1) 326与一个个位上的数字是3的数a 是一对“黄金搭档数”,326∴与a 的和的个位数是9,且它们的和也是三位数,一对黄金搭档数的和各位数上的数字全部相同,326+999,a ∴=673,a ∴=同理可得:389+=777b ,388,b ∴=综上:673,388.a b ==(2)10,10,s x y t x z =+=+,s t ∴的十位上的数字是相同的,19,09,09,x y z ≤≤≤≤≤≤ y <,z1099,1099,s t ∴≤≤≤≤ 且,s t 都是两位数,s <t ,s 和t 是一对“黄金搭档数”,s ∴与t 的和也是一个两位数,且各位数上的数字全部相同,101020,s t x y x z x y z +=+++=++0∴<4,x ≤ x 为正整数, x 的可能的值为1,2,3,4.综上可得:满足条件的数有10对,分别是:当1x =时,10,12,s t ==当2x =时,20,24,s t == 或21,23,s t ==当3x =时,30,36,s t == 或31,35,s t == 或32,34,s t ==当4x =时,40,48,s t == 或41,47,s t == 或42,46,s t == 或43,45.s t == 综上:这样的“黄金搭档数”一共有10对.【点睛】本题考查的是新定义:黄金搭档数的定义的理解,利用定义借助方程,不等式,对变量的范围的理解进行分类讨论,解题的关键是弄懂题意,作出合适的分类.26.(1)1;(2)m =2【分析】(1)把点P (1, n )代入一次函数 y=−2x+3 即可求出n 的值;(2)由(1)可得P (1,1),由一次函数 y=mx−1 的图像经过点P (1,1),可得m 的值.【详解】(1)一次函数23y x =-+的图像经过点P (1,n ),n =-2+3=1;(2)由n =1,P (2n -1,n ),可得P (1,1),一次函数1y mx =-的图像经过点P (1,1),11m =-,解得m=2.【点睛】本题考查一次函数图象上点的坐标特征,解答本题的关键是明确题意,利用一次函数的性质解答.。
人教版初中八年级数学下册第十九章《一次函数》经典测试题(含答案解析)(2)
一、选择题1.点()1,A a y 、()22,B a y 都在一次函数0)(2y ax a a =-+≠的图象上,则1y 、2y 的大小关系是( )A .12y y >B .12y y =C .12y y <D .不确定A解析:A【分析】根据题意,分别表示出1y ,2y ,再判断12y y -的正负性,即可得到答案.【详解】∵点()1,A a y 、()22,B a y 都在一次函数0)(2y ax a a =-+≠的图象上,∴212y a a =-+,224y a a =-+,∴22212(2)(4)2y y a a a a a -=-+--+=>0, ∴12y y >,故选A .【点睛】本题主要考查一次函数图像上点的坐标特征,掌握作差法比较大小,是解题的关键. 2.下列图形中,表示一次函数y =mx +n 与正比例函数y =mnx (m ,n 为常数,且mn≠0)的图象的是( )A .B .C .D .A解析:A【分析】根据“两数相乘,同号得正,异号得负”分两种情况讨论mn 的符号,然后根据m 、n 同正时,同负时,一正一负或一负一正时,利用一次函数的性质进行判断.【详解】解:①当mn >0,m ,n 同号,同正时y =mx +n 过1,3,2象限,同负时过2,4,3象限;②当mn <0时,m ,n 异号,则y =mx +n 过1,3,4象限或2,4,1象限.【点睛】此题主要考查一次函数与正比例函数的图象判断,解题的关键是熟知一次函数的图象与性质.3.甲、乙两汽车从A 城出发前往B 城,在整个行程中,汽车离开A 城的距离y 与时间t 的对应关系如图所示.下列结论错误的是( ).A .A ,B 两城相距300kmB .行程中甲、乙两车的速度比为3∶5C .乙车于7:20追上甲车D .9:00时,甲、乙两车相距60km C解析:C【分析】 根据题意得A ,B 两城相距300km ,结合图表甲、乙两车消耗的总时间,可计算得甲、乙两车的速度,从而得到乙车追上甲车和在9:00时甲、乙两车的距离,从而得到答案.【详解】根据题意得:A ,B 两城相距300km ,故选项A 结论正确;根据题意得:甲车从A 城出发前往B 城共消耗5小时,乙车从A 城出发前往B 城共消耗3小时; 甲车的速度300==60km/h 5 乙车的速度300==100km/h 3∴行程中甲、乙两车的速度比为603=1005,故答案B 结论正确; 设乙车出发x 小时后,乙车追上甲车 得:()601100x x += ∴32x = ∵乙车于6:00出发∴乙车于7:30追上甲车,故选项C 结论错误;∵9:00时,甲车还有一个小时的到B 城∴9:00时,甲、乙两车相距60160km ⨯=,故选项D 结论正确;【点睛】本题考查了函数图像和一元一次方程的知识;解题的关键是熟练掌握函数图像的性质,从而完成求解.4.已知56a =-,56b =+,则一次函数y =(a +b )x +ab 的图象大致为( ) A . B . C . D .C 解析:C【分析】计算a +b 和ab 的值 ,根据一次函数的性质,可以得到该函数图象经过哪几个象限,本题得以解决.【详解】解:∵a +b=56-+56+=250>,ab=()()5656-+=10-<, ∴该函数的图象经过第一、三、四象限,故选:C .【点睛】本题考查一次函数的图象,二次根式的混合运算,解答本题的关键是明确题意,利用一次函数的性质解答.5.某游泳馆新推出了甲、乙两种消费卡,设游泳次数为x 时两种消费卡所需费用分别为y 甲,y 乙元,y 甲,y 乙与x 的函数图象如图所示,当游泳次数为30次时选择哪种消费卡更合算( )A .甲种更合算B .乙种更合算C .两种一样合算D .无法确定B解析:B【分析】 根据一次函数的图象,哪个函数图象在上面,哪个就大,直接得出答案即可.【详解】解:利用图象,当游泳次数大于10次时,y 甲在y 乙上面,即y 甲>y 乙,∴当游泳次数为30次时,选择乙种方式省钱.【点睛】此题主要考查了一次函数的应用以及利用函数图象比较函数大小,利用数形结合得出是解题关键.6.已知一次函数(6)1y a x =-+经过第一、二、三象限,且关于x 的不等式组1()0232113a x x x ⎧-->⎪⎪⎨+⎪+≥⎪⎩恰有 4 个整数解,则所有满足条件的整数a 的值的和为( ) A .9B .11C .15D .18A解析:A【分析】 根据关于x 的不等式组10232113a x x x ⎧⎛⎫--> ⎪⎪⎪⎝⎭⎨+⎪+≥⎪⎩恰有4个整数解以及一次函数(6)1y a x =-+经过第一、二、三象限,可以得到a 的取值范围,然后即可得到满足条件的a 的整数值,从而可以计算出满足条件的所有整数a 的和,本题得以解决.【详解】 解:由不等式组10232113a x x x ⎧⎛⎫--> ⎪⎪⎪⎝⎭⎨+⎪+≥⎪⎩,解得23a x -≤<, ∵不等式组恰有4个整数解, ∴123a <≤, ∴36a <≤,∵一次函数(6)1y a x =-+的图象经过第一、二、三象限, ∴60a ->,∴6a <,∴36a <<,又∵a 为整数,∴a=4或5,∴满足条件的所有整数a 的和为4+5=9,故选:A .【点睛】本题考查一次函数的性质、一元一次不等式组的整数解,解答本题的关键是明确题意,利用一次函数的性质和不等式的性质解答.7.一艘轮船在航行中遇到暗礁,船身有一处出现进水现象,等到发现时,船内已有一定积水,船员立即开始自救,一边排水一边修船,假设轮船触礁后的时间为x分钟,船舱内积水量为y吨,修船过程中进水和排水速度不变,修船完工后排水速度加快,图中的折线表示y与x的函数关系,下列说法中:①修船共用了38分钟时间;②修船过程中进水速度是排水速度的3倍;③修船完工后的排水速度是抢修过程中排水速度的4倍;④最初的仅进水速度和最后的仅排水速度相同,其中正确的信息判断是()A.①②B.②③C.②④D.③④D解析:D【分析】当0≤x≤10时,可求出修船时的进水速度,当10≤x≤26时,可求出修船时的出水速度从而判断①②,当x≥26时,可求出修船后的出水速度,即可判断③,进而可判断④.【详解】有图像可知:第10分钟时,进水速度减小,即第10分钟开始修船,第26分钟时不再进水,即第26分钟停止修船,所以修船共用了16分钟时间,故①错误;当0≤x≤10时,进水速度=40÷10=4(吨/分),当10≤x≤26时,应进水:4×16=64(吨),实际进水:88-40=48(吨),则排水速度=(64-48)÷16=1(吨/分),所以修船过程中进水速度是排水速度的4倍,故②错误;当x≥26时,排水速度=88÷(48-26)=4(吨/分),所以修船完工后的排水速度是抢修过程中排水速度的4倍,故③正确;由当0≤x≤10时,进水速度=40÷10=4(吨/分),x≥26时,排水速度=88÷(48-26)=4(吨/分),可知:最初的仅进水速度和最后的仅排水速度相同,故④正确.故选D【点睛】本题主要考查函数图像,掌握函数图像上点的坐标的实际意义,是解题的关键.8.如图,直线y=kx(k≠0)与y=23x+2在第二象限交于A,y=23x+2交x轴,y轴分别于B、C两点.3S△ABO=S△BOC,则方程组236kx yx y-=⎧⎨-=-⎩的解为()A.143xy=-⎧⎪⎨=⎪⎩B.321xy⎧=-⎪⎨⎪=⎩C.223xy=-⎧⎪⎨=⎪⎩D.3432xy⎧=-⎪⎪⎨⎪=⎪⎩C解析:C 【分析】先根据223y x=+可得B、C的坐标,进而确定OB、OC的长,然后根据3S△ABO=S△BOC结合点A在第二象限确定A点的纵坐标,然后再根据点A在y=23x+2上,可确定点A的横坐标即可解答.【详解】解:由223y x=+可得B(﹣3,0),C(0,2),∴BO=3,OC=2,∵3S△ABO=S△BOC,∴3×12×3×|yA|=12×3×2,解得y A=±23,又∵点A在第二象限,∴y A=23,当y=23时,23=23x+2,解得x=﹣2,∴方程组236kx yx y-=⎧⎨-=-⎩的解为223xy=-⎧⎪⎨=⎪⎩.故答案为C.【点睛】本题主要考查了一次函数与二元一次方程组,理解方程组的解就是两个相应的一次函数图象的交点坐标成为解答本题的关键.9.对函数22y x =-+的描述错误是( )A .y 随x 的增大而减小B .图象经过第一、三、四象限C .图象与x 轴的交点坐标为(1,0)D .图象与坐标轴交点的连线段长度等于5B 解析:B【分析】根据一次函数的图象与性质即可判断A 、B 两项,求出直线与x 轴的交点即可判断C 项,求出直线与y 轴的交点,再根据勾股定理即可求出图象与坐标轴交点的连线段长度,进而可判断D 项,于是可得答案.【详解】解:A 、因为﹣2<0,所以y 随x 的增大而减小,故本选项说法正确,不符合题意; B 、函数22y x =-+的图象经过第一、二、四象限,故本选项说法错误,符合题意; C 、当y=0时,220x -+=,所以x=1,所以图象与x 轴的交点坐标为(1,0),故本选项说法正确,不符合题意;D 、图象与x 轴的交点坐标为(1,0),与y 轴的交点坐标为(0,2),所以图象与坐标轴交点的连线段长度等于22125+=,故本选项说法正确,不符合题意;故选:B .【点睛】本题考查了一次函数的图象与性质、一次函数与坐标轴的交点以及勾股定理等知识,属于基础题目,熟练掌握一次函数的基本知识是解题的关键.10.直线y mx b =+与y kx =在同一平面直角坐标系中的图象如图所示,则关于x 的不等式mx b kx +<的解集为( )A .3x >-B .3x <-C .1x >-D .1x <-C解析:C【分析】 根据图象可得,直线y =mx +b 与y =kx 的交点坐标为(−1,3),所以当x >−1时,直线y =mx +b ,落在直线y =kx 的下方,可得关于x 的不等式mx +b <kx .即可得结论.【详解】根据图象可知:直线y mx b =+与y kx =的交点坐标为:(1,3)-,则关于x 的不等式mx b kx +<的解集为1x >-.故选:C .【点睛】本题考查了一次函数与一元一次不等式、一次函数的图象,解决本题的关键是掌握一次函数与一元一次不等式的关系.二、填空题11.已知点)(,A m n 在一次函数53y x =+的图像上,则53n m -+的值是______.6【分析】将点代入一次函数中得n-5m=3即可代入求值【详解】∵点在一次函数的图像上∴5m+3=n ∴n-5m=3∴=3+3=6故答案为:6【点睛】此题考查一次函数图象上点坐标特点已知式子的值求代数式解析:6【分析】将点)(,A m n 代入一次函数53y x =+中得n-5m=3,即可代入求值.【详解】∵点)(,A m n 在一次函数53y x =+的图像上,∴5m+3=n ,∴n-5m=3,∴53n m -+=3+3=6,故答案为:6.【点睛】此题考查一次函数图象上点坐标特点,已知式子的值求代数式的值,掌握函数图象上点坐标特点是解题的关键.12.如图,直线l 是一次函数y kx b =+的图象,若点()4,A m 在直线l 上,则m 的值是____. 3【分析】观察函数图象找出点的坐标利用待定系数法可求出直线的函数关系式再利用一次函数图象上点的坐标特征即可求出的值【详解】解:将代入得:解得:直线的函数关系式为当时故答案为:3【点睛】本题考查了一次解析:3【分析】观察函数图象找出点的坐标,利用待定系数法可求出直线l 的函数关系式,再利用一次函数图象上点的坐标特征即可求出m 的值.【详解】解:将(2,0)-,(0,1)代入y kx b =+,得:201k b b -+=⎧⎨=⎩, 解得:121k b ⎧=⎪⎨⎪=⎩,∴直线l 的函数关系式为112y x =+. 当4x =时,14132m =⨯+=. 故答案为:3.【点睛】本题考查了一次函数图象上点的坐标特征、函数图象以及待定系数法求一次函数解析式,根据点的坐标,利用待定系数法求出一次函数的解析式是解题的关键.13.如图,直线y ax b =+与x 轴交于A 点(4,0),与直线y mx =交于B 点(2,)n ,则关于x 的一元一次方程ax b mx -=的解为___________.参考答案【分析】首先根据两直线交于点B 可联立方程组求出x 的值在通过求得x 即可得解;【详解】∵∴解得:∵直线与直线交于点∴由得:∴∴关于x 的一元一次方程的解为:故答案是:【点睛】本题主要考查了一次函数的图像性 解析:2x =-【分析】首先根据两直线交于点B ,可联立方程组求出x 的值,在通过ax b mx -=求得x ,即可得解;【详解】∵y ax b y mx=+⎧⎨=⎩, ∴ax b mx +=,解得:b x m a=-, ∵直线y ax b =+与直线y mx =交于B 点(2,)n ,∴2bm a =-,由ax b mx -=,得:b x m a=--, ∴2bx m a =-=--,∴关于x 的一元一次方程ax b mx -=的解为:2x =-.故答案是:2x =-.【点睛】 本题主要考查了一次函数的图像性质,准确分析计算是解题的关键.14.已知直线22y x =-与x 轴交于A ,与y 轴交于B ,若点C 是坐标轴上的一点,且AC AB =,则点C 的坐标为________.【分析】利用待定系数法求出两点坐标利用勾股定理求出根据确定点坐标即可【详解】解:令得到令得到以为圆心长为半径作圆交坐标轴即为点或故答案为:【点睛】本题考查一次函数的应用等腰三角形的判定和性质等知识熟解析:()1+()1()0,2 【分析】利用待定系数法求出A 、B 两点坐标,利用勾股定理求出AB ,根据AC AB =,确定点C 坐标即可.【详解】解:令0x =,得到2y =-,(0,2)B ,令0y =,得到1x =,(1,0)A ∴,1OA ∴=,2OB =, 22125AB ,以A 为圆心,AB 长为半径作圆,交坐标轴即为C 点,5ACAB , (15C ,0),(15,0)或(0,2),故答案为:()1+、()1-、()0,2..【点睛】本题考查一次函数的应用,等腰三角形的判定和性质等知识,熟练掌握待定系数法确定交点坐标是解题的关键.15.已知一次函数5y x m =+的图象与正比例函数y kx =的图象交于点(2,4)(,k m -是常数),则关于x 的方程5x kx m =-的解是________.【分析】由题意可知当x=-2时一次函数与正比例函的函数值相同从而可得到方程的解【详解】解:一次函数图象与正比例函数图象交于点所以则则所以方程的解是故答案为:【点睛】本题考查一次函数与一次方程组的关系解析:2x =-【分析】由题意可知当x=-2时,一次函数5y x m =+与正比例函y kx =的函数值相同,从而可得到方程的解.【详解】解:一次函数5y x m =+图象与正比例函数y kx =图象交于点(2,4)-,所以5y x m y kx =+⎧⎨=⎩,则5x m kx +=,则5x kx m =-, 所以,方程5x kx m =-的解是2x =-,故答案为:2x =-.【点睛】本题考查一次函数与一次方程组的关系,一次函数的交点坐标就是它们的解析式组成的方程组的解.16.如图,函数(0)y kx k =≠和4(0)y ax a =+≠的图象相交于点(1,1)A -,则不等式4kx ax <+的解集为__________.【分析】由图象可以知道当x=-1时两个函数的函数值是相等的再根据函数的增减性可以判断出不等式的解集【详解】解:两条直线的交点坐标为(-11)当x <-1时直线y=ax+4在直线y=kx 的下方当x >-1 解析:1x >-【分析】由图象可以知道,当x=-1时,两个函数的函数值是相等的,再根据函数的增减性可以判断出不等式4kx ax <+的解集.【详解】解:两条直线的交点坐标为(-1,1),当x <-1时,直线y=ax+4在直线y=kx 的下方,当x >-1时,直线y=ax+4在直线y=kx 的上方,故不等式kx <ax+4的解集为x>-1.故答案为:x>-1.【点睛】本题考查了一次函数和一元一次不等式的知识点,本题是借助一次函数的图象解一元一次不等式,两个图象的“交点”是两个函数值大小关系的“分界点”,在“分界点”处函数值的大小发生了改变.17.如图,在平面直角坐标系xOy 中,一次函数12y x b =--与正比例函数32y x =的图象交于点()2,A m ,与x 轴交于点B (5,0),则△OAB 的面积是________.【分析】先求出A 点坐标再过点A 作AC ⊥OB 垂足为C 用三角形面积公式即可求出面积【详解】解:把点代入得解得∴A 点坐标为(23)过点A 作AC ⊥OB 垂足为C ∵点B 坐标为(50)∴S △OAB=故答案为:【点 解析:152 【分析】 先求出A 点坐标,再过点A 作AC ⊥OB ,垂足为C ,用三角形面积公式即可求出面积.【详解】解:把点()2,A m 代入32m x =,得 322m =⨯, 解得,3m =,∴A 点坐标为(2,3),过点A 作AC ⊥OB ,垂足为C ,∵点B 坐标为(5,0),∴S △OAB =111553222OB AC ⨯⨯=⨯⨯=, 故答案为:152.【点睛】本题考查了求正比例函数图象上点的坐标和利用坐标求三角形面积,解题关键是求出A 点坐标.18.如图,平面直角坐标系xOy 中,()0,2A ,()2,0B ,C 为AB 的中点,P 是OB 上的一个动点,ACP ∆周长最小时,点P 的横坐标是______.【分析】根据中点坐标公式求得C 点坐标作点A关于x 轴的对称点A′连接A′C 交x 轴于点P 此时△ACP 周长最小求直线A′C 的解析式然后求其与x 轴的交点坐标从而求解【详解】解:∵为的中点∴C 点坐标为(11) 解析:23【分析】根据中点坐标公式求得C 点坐标,作点A 关于x 轴的对称点A′,连接A′C ,交x 轴于点P ,此时△ACP 周长最小,求直线A′C 的解析式,然后求其与x 轴的交点坐标,从而求解.【详解】解:∵()0,2A ,()2,0B ,C 为AB 的中点,∴C 点坐标为(1,1)作点A 关于x 轴的对称点A′,连接A′C ,交x 轴于点P ,此时△ACP 周长最小, 由对称的性质可得A′点坐标为(0,-2)设直线A′C 的解析式为y=kx+b ,将(0,-2),(1,1)代入解析式可得21b k b =-⎧⎨+=⎩,解得:2=3b k =-⎧⎨⎩∴直线A′C 的解析式为y=3x-2,当y=0时,3x-2=0,解得23x =∴点P 的坐标为(23,0) 故答案为:23.【点睛】本题考查一次函数与几何图形,掌握一次函数的性质,利用数形结合思想解题是关键.19.已知一次函数y=2x+b的图象经过点A(2,y1)和B(﹣1,y2),则y1_____y2(填“>”、“<”或“=”).>【分析】由k=2>0利用一次函数的性质可得出y随x的增大而增大结合2>﹣1即可得出y1>y2【详解】解:∵k=2>0∴y随x的增大而增大又∵2>﹣1∴y1>y2故答案为:>【点睛】本题考查一次函数解析:>【分析】由k=2>0,利用一次函数的性质可得出y随x的增大而增大,结合2>﹣1即可得出y1>y2.【详解】解:∵k=2>0,∴y随x的增大而增大,又∵2>﹣1,∴y1>y2.故答案为:>.【点睛】本题考查一次函数的增减性,根据比例系数k的正负,判断y随x的变化规律是解题关键.,且y随x的增大而减小,则这个一次函数的解20.已知一个一次函数的图象过点(1,2)析式为__________.(只要写出一个)y=-x+1(答案不唯一)【分析】设一次函数的解析式为y=kx+b根据一次函数的性质得k<0取k=-1然后把(-12)代入y=-x+b 可求出b【详解】解:设一次函数的解析式为y=kx+b∵y随x的增解析:y=-x+1.(答案不唯一)【分析】设一次函数的解析式为y=kx+b,根据一次函数的性质得k<0,取k=-1,然后把(-1,2)代入y=-x+b可求出b.【详解】解:设一次函数的解析式为y=kx+b ,∵y 随x 的增大而减小,∴k 可取-1,把(-1,2)代入y=-x+b 得1+b=2,解得b=1,∴满足条件的解析式可为y=-x+1.故答案为y=-x+1.(答案不唯一)【点睛】本题考查了一次函数y=kx+b 的性质:k >0,y 随x 的增大而增大,函数从左到右上升;k <0,y 随x 的增大而减小,函数从左到右下降.三、解答题21.如图,在平面直角坐标系中,已知(,0)A a ,(,0)B b ,其中a ,b 满足|1|30a b ++-=.(1)填空:a =______,b =______.(2)如果在第三象限内有一点(2,)M m -,请用含m 的式子表示ABM 的面积.(3)在(2)条件下,当52m =-时,在y 轴上有一点P ,使得BMP 的面积与ABM 的面积相等,请求出点P 的坐标. 解析:(1)1-;3;(2)△ABM 的面积为2m -;(3)点P 的坐标为10,2⎛⎫ ⎪⎝⎭或70,2⎛⎫- ⎪⎝⎭. 【分析】(1)根据非负数性质可得a 、b 的值;(2)根据三角形面积公式列式整理即可;(3)先根据(2)计算S △ABM ,再分两种情况:当点P 在y 轴正半轴上时、当点P 在y 轴负半轴上时,利用割补法表示出S △BMP ,根据S △BMP =S △ABM 列方程求解可得. 【详解】解:(1)∵|1|30a b +-=,∴10a +=,30b -=,∴1a =-,3b =;(2)如图1所示,过M 作ME x ⊥轴于E ,∵(1,0)A -,(3,0)B ,∴1OA =,3OB =,∴4AB =,∵在第三象限内有一点(2,)M m -,∴||ME m m ==-, ∴114()222ABM S AB ME m m =⨯=⨯⨯-=-. (3)设(0,)P n ,BM 交y 轴于点C ,连接MP ,BP 如下图:设直线BM 的解析式为y kx b =+, 把(3,0)B ,52,2M ⎛⎫-- ⎪⎝⎭代入得 30522k b k b +=⎧⎪⎨-+=-⎪⎩, 解之得:1232k b ⎧=⎪⎪⎨⎪=-⎪⎩, 即1322y x =-,∴30,2C ⎛⎫-⎪⎝⎭, 当52m =-时,11545222ABM m S AB y =⋅=⨯⨯=. ∵BMP ABM SS =, ∴()1||52x x B M PC -=, 即13(32)522n ⨯++=, 解之得:12n =或72n =-, 综上,点P 的坐标为10,2⎛⎫ ⎪⎝⎭或70,2⎛⎫-⎪⎝⎭. 【点睛】 本题主要考查了非负数的性质,坐标与图形的性质,利用待定系数法求一次函数解析式,利用割补法表示出△BMP 的面积等知识,根据题意建立方程是解题的关键.22.已知y 与1x -成正比例,当3x =时,4y =,求y 与x 之间的函数关系式. 解析:22y x =-【分析】首先根据题意设出关系式:y=k (x-1),再利用待定系数法把x=3,y=4代入,可得到k 的值,再把k 的值代入所设的关系式中,可得到答案;【详解】解:因为y 与1x -成正比例,所以设()1y k x =-(0k ≠)∵当3x =时,4y =,∴()431k =-解得2k =所以, y 与x 之间的函数关系式为:22y x =-【点睛】此题主要考查了对正比例的理解,关键是设出关系式,代入x ,y 的值求k .23.天府七中科创小组进行了机器人行走性能试验,在试验场地有A 、B 、C 三点顺次在同一笔直的赛道上,甲、乙两机器人分别从A 、B 两点同时同向出发,经过7min 同时到达C 点,乙机器人始终以60m/min 的速度行走,如图是甲、乙两机器人之间的距离y (m )与他们的行走时间x (min )之间的图象,请结合图象,回答下列问题.(1)A 、B 两点之间的距离是________m ,甲机器人前2min 的速度为________m/min . (2)若前3min 甲机器人的速度不变,求出前3min ,甲、乙两机器人之间的距离y (m )与他们的行走时间x (min )之间的关系式.(3)若前3min 甲机器人的速度依然不变,当两机器人相距不超过28m 时,求出时间a 的取值范围.解析:(1)70,95;(2)3570y x =-;(3)1.2 2.8t ≤≤或4.67t ≤≤.【分析】(1)根据图象结合题意,即可得出A 、B 两点之间的距离是70m .设甲机器人前2min 的速度为xm/min ,根据2分钟甲追上乙列出方程,即可求解;(2)先求出F 点的坐标,再设线段EF 所在直线的函数解析式为y =kx +b ,将()2,0E 、()3,35F 两点的坐标代入,利用待定系数法即可求解;(3)设()0,70D ,()2,0E ,根据图象可知两机器人相距28m 时有三个时刻(0~2,2~3,4~7)分别求出DE 所在直线的解析式、GH 所在直线的解析式,再令28y =,列出方程求解即可.【详解】(1)由题意可知,A 、B 两点之间的距离是70m ,设甲机器人前2min 的速度为m /min x ,根据题意得2(60)70x -=,解得95x =.(2)若前3min 甲机器人的速度不变,由(1)可知,前3min 甲机器人的速度95m/min , 则点F 纵坐标为:(32)(9560)35-⨯-=,即()3,35F ,设线段EF 所在直线的函数解析为:y kx b =+,将()2,0E ,()3,35F 代入,得20335k b k b +=⎧⎨+=⎩,解得3570k b '=⎧⎨=-⎩, 则线段EF 所在直线的函数解析式为:3570y x =-.(3)如图:设()0,70D ,()7,0H ,∵()0,70D ,()2,0E ,∴线段DE 所在直线的函数解析式为:3570y x =-+,()4,35G ,()7,0H ,∴线段GH 所在直线的函数解析式为:3524533y x =-+, 设两机器人出发min t 时相距28m ,由题意得:357028t -+=或357028t -=,或352452833t -+=, 解得: 1.2t =或28t =.或 4.6t =, 1.2 2.8t ∴≤≤或4.67t ≤≤时,两机器人相距不超过28m .【分析】本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用一次函数的性质和数形结合的思想解答.24.如图,已知直线113y x =-+与x 轴、y 轴分别交于A 、B 两点,以线段AB 为直角边在第一象限内作等腰Rt ABC △,90BAC ∠=︒.(1)A 点坐标为________,B 点坐标为________;(2)求直线BC 的解析式;(3)点P 为直线BC 上一个动点,当S 3S AOP AOB =时,求点P 坐标.解析:(1)(3,0);(0,1).(2)直线BC 的解析式为y=12x+1.(3)点P 的坐标为(4,3)或(-8,-3).【分析】 (1)分别代入y=0,x=0,求出与之对应的x ,y 的值,进而可得出点A ,B 的坐标; (2)过点C 作CE ⊥x 轴于点E ,易证△ABO ≌△CAE ,利用全等三角形的性质可得出点C 的坐标,根据点B ,C 的坐标,利用待定系数法即可求出直线BC 的解析式; (3)利用三角形的面积公式结合S △AOP =3S △AOB ,即可求出点P 的纵坐标,再利用一次函数图象上点的坐标特征即可求出点P 坐标.【详解】解:(1)当y=0时,-13x+1=0, 解得:x=3,∴点A 的坐标为(3,0);3∴点B 的坐标为(0,1).故答案为:(3,0);(0,1).(2)过点C 作CE ⊥x 轴于点E ,如图所示.∵△ABC 为等腰直角三角形,∴AB=AC ,∠BAC=90°.∵∠OBA+∠OAB=90°,∠OAB+∠BAC+∠EAC=180°,∴∠OBA=∠EAC .在△ABO 和△CAE 中,90AOB CEA OBA EACAB CA ∠∠︒⎧⎪∠∠⎨⎪⎩====, ∴△ABO ≌△CAE (AAS ),∴AE=BO=1,CE=AO=3,∴OE=OA+AE=4,∴点C 的坐标为(4,3).设直线BC 的解析式为y=kx+b (k≠0),将B (0,1),C (4,3)代入y=kx+b ,得:143b k b ⎧⎨+⎩==, 解得:121k b ⎧⎪⎨⎪⎩==,∴直线BC 的解析式为y=12x+1. (3)∵S △AOP =3S △AOB ,即12OA•|y P |=3×12OA•OB , ∴12×3|y P |=3×12×3×1, ∴y P =±3.2解得:x=4,∴点P 坐标为(4,3);当y=-3时,12x+1=-3, 解得:x=-8,∴点P 的坐标为(-8,-3). ∴当S △AOP =3S △AOB 时,点P 的坐标为(4,3)或(-8,-3). 【点睛】本题考查了一次函数图象上点的坐标特征、全等三角形的判定与性质、待定系数法求一次函数解析式以及三角形的面积,解题的关键是:(1)利用一次函数图象上点的坐标特征,求出点A ,B 的坐标;(2)利用全等三角形的性质,求出点C 的坐标;(3)利用三角形的面积结合S △AOP =3S △AOB ,求出点P 的纵坐标.25.如图1,在平面直角坐标系中,直线3:32AB y x =+与x 轴交于点A ,且经过点(2,)B m ,已知点(3,0)C . (1)求点,A B 的坐标和直线BC 的函数表达式.(2)在直线BC 上找一点D ,使ABO 与ABD △的面积相等,求点D 的坐标. (3)如图2,E 为线段AC 上一点,连结BE ,一动点F 从点B 出发,沿线段BE 以每秒1个单位运动到点E 再沿线段EA 以每秒2个单位运动到A 后停止,设点F 在整个运动过程中所用时间为t ,当t 取最小值时,求点E 的坐标.解析:(1)(2,0),(2,6),618A B y x -=-+;(2)1218,55⎛⎫ ⎪⎝⎭或842,55⎛⎫ ⎪⎝⎭;(3)(223,0)-.【分析】(1)令直线332y x =+中的0y =,得出点A 的坐标,再把x=2代入得出点B 的坐标,然后用待定系数法即可求解; (2)过点O 作直线m ,在点H 上方作直线n ,使直线m 、n 和直线AB 等距离,则直线m (n )和BC 的交点即为所求点,进而求解;(3)过点B 作BM ⊥x 轴于点M ,过点A 作直线AH 使∠CAH=30°,过点B 作BH ⊥AH 于点H ,交x 轴于点E ,则点E 为所求点,进而求解.【详解】(1)令直线332y x =+中的0y =,则3302x +=, 解得:2x =-,∴由题意得:(2,0)A -,将(2,)B m 代入直线332y x =+中得3232m ⨯+=, 6m =,(2,6)B ∴,设直线BC 为:y kx b =+,∴代入(2,6),(3,0)B C 可得,2630k b k b +=⎧⎨+=⎩, 解得:618k b =-⎧⎨=⎩, ∴直线BC 的函数表达式为:618y x =-+.(2)设直线AB 交y 轴于点H ,则点H (0,3),过点O 作直线m ,在点H 上方作直线n ,使直线m 、n 和直线AB 等距离,由AB 的表达式知,直线m 的表达式为32y x =直线n 的表达式为362y x =+ ∴32618y x y x ⎧=⎪⎨⎪=-+⎩,解得125,185x y ⎧=⎪⎪⎨⎪=⎪⎩故点D 的坐标为1218(,)553+62618y x y x ⎧=⎪⎨⎪=-+⎩,解得85,425x y ⎧=⎪⎪⎨⎪=⎪⎩点D′的坐标为842,55⎛⎫ ⎪⎝⎭ 故点D 的坐标为为1218,55⎛⎫ ⎪⎝⎭或842,55⎛⎫ ⎪⎝⎭(3)过点B 作BM ⊥x 轴于点M ,过点A 作直线AH 使∠CAH=30°,过点B 作BH ⊥AH 于点H ,交x 轴于点E ,则点E 为所求点,理由:∵∠CAH=30°,∴12EH AE =∴12=+=+=BE EA t BE EH BH 为最小, ∴∠EBM=∠BME-∠BEM=90°-∠BEM=90°-∠AEH=∠EAH=30°,设EM=x ,则BE=2x ,BM=6,∴BE 2=EM 2+BM 2,即(2x )2=x 2+36,解得23x =∴223,=-=-OE OM EM∴点E 的坐标为(223,0)-.【点睛】本题考查的是一次函数综合运用,涉及到一次函数的性质、勾股定理的运用、最小距离问题等,有一定的综合性.26.“龟兔赛跑”的故事同学们都非常熟悉,图中的线段OD 和折线OABC 表示“龟兔赛跑”时路程与时间的关系,请你根据图中给出的信息,解决下列问题.(1)填空:折线OABC 表示赛跑过程中_____________的路程与时间的关系,线段OD 表示赛跑过程中_______________的路程与时间的关系.赛跑的全程是_______________米. (2)乌龟用了多少分钟追上了正在睡觉的兔子?(3)兔子醒来,以48千米/时的速度跑向终点,结果还是比乌龟晚到了0.5分钟,请你算算兔子中间停下睡觉用了多少分钟?解析:(1)兔子;乌龟;1500;(2)14分钟;(3)28.5分钟【分析】(1)利用乌龟始终运动,中间没有停留,进而得出折线 OABC 和线段OD 的意义和全程的距离;(2)根据乌龟的速度及兔子睡觉时的路程即可得;(4)用乌龟跑完全程的时间+兔子晚到的时间−兔子在路上奔跑的两端所用时间可得.【详解】()1龟兔赛跑中,兔子在途中睡了一觉,通过图像发现AB 段S 没有发生变化,∴折线OABC 表示赛跑过程中兔子的路程与时间的关系,线段OO 则表示赛跑过程中乌龟的路程与时间的关系,赛跑的全程是1500米.()150025030V ==龟米/分钟, 50700,t ⨯=14t =.答:乌龟用了14分钟追上了正在睡觉的兔子.()83,48t v =千米/时800=米/分钟, 150********t -==分钟, 300.5129.5+-=分钟,29.5128.5-=分钟,答:兔子中间停下睡觉用了28.5分钟.【点睛】本题考查了函数图象,理解两个函数图象的交点表示的意义,从函数图象准确获取信息是解题的关键.27.在一次实验中,小明把一根弹簧的上端固定,在其下端悬挂物体,下表是测得的弹簧的长度y 与所挂物体的质量x 的几组对应值.是 ,因变量是 .(2)当所悬挂重物为6kg 时,弹簧的长度为 cm ;不挂重物时,弹簧的长度为 cm .(3)请直接写出弹簧长度y (cm )与所挂物体质量x (kg )的关系式,并计算若弹簧的长度为46cm 时,所挂重物的质量是多少kg ?(在弹簧的允许范围内)解析:(1)x ,y ;(2)40,28;(3)y=2x+28,9kg【分析】(1)根据自变量与因变量的定义解答即可;(2)由表格可知:不挂重物时,弹簧的长度为28cm ,重物每增加1kg ,弹簧长度增加2cm ,据此可求当所悬挂重物为6kg 时弹簧的长度;(3)根据(2)中分析可写出函数关系式,把y=46代入中求得的函数关系式,求出x 的值即可;【详解】解:(1)上述表格反映了弹簧的长度ycm 与所挂物体的质量xkg 这两个变量之间的关系.其中所挂物体的质量x 是自变量,弹簧的长度y 是因变量.(2)由表格可知不挂重物时,弹簧的长度为28cm ,∵重物每增加1kg ,弹簧长度增加2cm ,∴当所悬挂重物为6kg 时,弹簧的长度为38+2=40cm ;(3)∵重物每增加1kg ,弹簧长度增加2cm ,∴y=2x+28,把y=46代入y=2x+28,得出:46=2x+28,∴x=9,所以,弹簧的长度为46cm 时,此时所挂重物的质量是9kg .【点睛】本题主要考查了函数关系式和常量与变量的知识,解答本题的关键在于熟读题意并求出弹簧的长度与所挂物体的质量之间的函数关系式.28.画出函数2y x =+的图象,利用图象:(1)求方程20x +=的解;。
一次函数测试题(最新人教版)
《一次函数》测试题一、选择题1.若正比例函数的图象经过点(—1,2),则这个图象必经过点…………………【 】 A. (1,2) B. (—1,—2) C. (2,—1) D. (1,—2)2.一次函数2y x =+的图象不经过………………………………………………【 】 A. 第一象限 B. 第二象限C. 第三象限 D. 第四象限3.如果关于x 的一次函数1y kx k =+-的图角经过第一、三、四象限,则K 的取值范围【 】 A. k >0 B. k <0 C. 0 <k <1 D.k >14.将直线y=2x 向上平移2个单位后所得的直线的解析式………【 】 A. 22y x =+ B. 22y x =- C. 2(2)y x =+ D. 2(2)y x =-5.下列图象中分别给出了变量x 与y 之间的对应关系,其中表示y 是x 的函数的是【 】6.函数y ax b y bx a =+=+与的图象在同一坐标系内的大致位置是……………………【 】7.过点A 的一次函数的图象与正比例函数y=2x 的图象相交于点B。
该一次函数的解析式是【 】A. 23y x =+B. 3y x =-C.1322y x =-D. 3y x =-+ 8.函数y=2x 和y=ax+4的图象相交于点A (m ,3A . x >32B .x <3C .x <32D .x >3二、填空题9.已知函数3y mx m =+-是正比例函数,则m=________; 10.将直线162y x =-向左平移2个单位,得到直线是___________ x xyxy O33211.若关于x 的函数44y mx m =+-的图象经过点(1,3),则m=__________; 12.若直线L 平行于直线34y x =+,且过点(1,—2),则直线L 的解析式是____________ 13.若一次函数(4)21y m x m =++-的图象与y 轴的交点在x 轴的下方,则m 的取值范围是______ 14.如图,一个正比例函数图象与一次函数y=-x+1的图象相交于点P ,则这个正比例函数的表达式是 ______________15.已知关于x 的一次函数3y kx =+的图象如图所示,则不等式30kx +<的解集是________ 16.已知,函数y=3x 的图象经过点A (-1,y 1),点B (-2,y 2),则y 1 y 2 17.如图,已知一条直线经过点A (0,2)、点B (1,0),将这条直线向左平移与x 轴、y 轴分别交与点C 、点D .若DB=DC ,则直线CD 的函数解析式为 . 18.甲乙两地相距50千米.星期天上午8:00小聪同学在父亲陪同下骑山地车从甲地前往乙地.2小时后,小明的父亲骑摩托车沿同一路线也从甲地前往乙地,他们行驶的路程y (千米)与小聪行驶的时间x (小时)之间的函数关系如图所示,小明父亲出发 小时时,行进中的两车相距8千米. 三、解答题1.已知一次函数的图象经过M (1,3)和N (—2,12)两点。
初中数学一轮复习-一次函数的图像与性质
3月17号 一次函数的图象与性质(本试题满分120分,建议测试时间60分钟)一.选择题(共10小题,每题3分,满分30分)1.(2015·上海)下列y 关于x 的函数中,是正比例函数的为( ) A .y =x 2 B .y =2x C .y =2x D .y =12x + 2.(2018·玉林市)等腰三角形底角与顶角之间的函数关系是( )A .正比例函数B .一次函数C .反比例函数D .二次函数 3.(2016·黔南州)是关于x 的一次函数,则一元二次方程的根的情况为( ) A .没有实数根B .有一个实数根C .有两个不相等的实数根D .有两个相等的实数根 4.(2019·辽阳市)若0ab <且a b >,则函数y ax b =+的图象可能是( ) A . B .C .D .5.函数2y x =-的图象不经过( )A .第一象限B .第二象限C .第三象限D .第四象限 6.一次函数满足,且随的增大而减小,则此函数的图象不经过( ) A .第一象限 B .第二象限C .第三象限D .第四象限 7.若点(m ,n )在函数y=2x+1的图象上,则2m ﹣n 的值是( )A .2B .﹣2C .1D .﹣1 8.若点M(-7,m)、N(-8,n)都是函数y =-(k 2+2k +4)x +1(k 为常数)的图象上,则m 和n 的大小关系是( )A .m >nB .m <nC .m =nD .不能确定9.若点A (2,4)在函数y =kx ﹣2的图象上,则下列各点在此函数图象上的是( ) A .(1,1) B .(﹣1,1) C .(﹣2,﹣2) D .(2,﹣2) 10.(2019鄂州市中考)如图,在平面直角坐标系中,点1A 、2A 、3A …n A 在x 轴上,1B 、2B 、3B …n B 在直线3y x =上,若()11,0A ,且112A B A ∆、223A B A ∆…1n n n A B A +∆都是等边三角形,从左到右的小三角形(阴影部分)的面积分别记为1S 、2S 、3S …n S .则n S 可表示为( )A .223B .223n -C .223n -D .223n -二.填空题(共10小题,每题3分,满分30分)11.若()(),,0,42,7,10()A B C a -三点在同一直线上,则a = ___________.12.在平面直角坐标系中,把直线y=-2x+3沿y 轴向上平移两个单位后,得到的直线的函数关系式为_____.13.已知正比例函数y 2x =-与反比例函数k y x=的图象的一个交点坐标为(-1,2),则另一个交点的坐标为 .14.已知一次函数y=kx+b (k 、b 为常数且k≠0)的图象经过点A (0,﹣2)和点B (1,0),则k= ,b= .15.已知点P (a ,b )在一次函数y=4x+3的图象上,则代数式4a ﹣b ﹣2的值等于 . 16.已知关于x 的方程mx+3=4的解为x=1,则直线y=(m ﹣2)x ﹣3一定不经过第___象限.17.将直线y =x +b 沿y 轴向下平移3个单位长度,点A(-1,2)关于y 轴的对称点落在平移后的直线上,则b 的值为____.18.如图,一次函数y=kx+b 的图象与正比例函数y=2x 的图象平行,且经过点A (1,﹣2),则kb=__.19.点,是直线上的两点,则 0(填“>”或“<”). 20.正方形A 1B 1C 1O ,A 2B 2C 2C 1,A 3B 3C 3C 2…按如图所示放置,点A 1、A 2、A 3…在直线y=x+1上,点C 1、C 2、C 3…在x 轴上,则An 的坐标是________________.三.解答题(共6小题,满分60分)21.已知:一次函数(0)y kx b k =+≠的图象经过(0,2),(1,3)M N 两点.求该一次函数表达式.22.在边长为1个单位长度的正方形网格中建立如图所示的平面直角坐标系,△ABC 的顶点都在格点上,请解答下列问题:(1)①作出△ABC 向左平移4个单位长度后得到的△A 1B 1C 1, 并写出点C 1的坐标;②作出△ABC关于原点O对称的△A2B2C2,并写出点C2的坐标;(2)已知△ABC关于直线l对称的△A3B3C3的顶点A3的坐标为(-4,-2),请直接写出直线l的函数解析式.23.(2016·江西)如图,过点A(2,0)的两条直线1l,2l分别交y轴于B,C,其中点B 在原点上方,点C在原点下方,已知AB=13.(1)求点B的坐标;(2)若△ABC的面积为4,求2l的解析式.24.某商场购进一种每件价格为100元的新商品,在商场试销发现:销售单价x(元/件)与每天销售量y(件)之间满足如图所示的关系:(1)求出y与x之间的函数关系式;(2)写出每天的利润W与销售单价x之间的函数关系式;若你是商场负责人,会将售价定为多少,来保证每天获得的利润最大,最大利润是多少?25.(2019·上海)在平面直角坐标系xoy中(如图),已知一次函数的图像平行于直线12y x ,且经过点A(2,3),与x轴交于点B。
中考数学 三轮冲刺专题:一次函数的图象与性质
2021中考数学 三轮冲刺专题:一次函数的图象与性质一、选择题1. 一次函数y =-2x +3的图象不经过的象限是( ) A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限2. 在直角坐标系中,点M ,N 在同一个正比例函数图象上的是( ) A. M (2,-3),N (-4,6) B. M (-2,3),N (4,6) C. M (-2,-3),N (4,-6) D. M (2,3),N (-4,6)3. 直线y=3x+1向下平移2个单位,所得直线的解析式是 ( ) A .y=3x+3 B .y=3x -2 C .y=3x+2D .y=3x -14. (2019•辽阳)若0ab <且a b >,则函数y ax b =+的图象可能是A .B .C .D .5. 已知函数y =kx +b 的图象如图,则y =2kx +b 的图象可能是( )6. (2019•柳州)已知,A B 两地相距3千米,小黄从A 地到B 地,平均速度为4千米/小时,若用x 表示行走的时间(小时),y 表示余下的路程(千米),则y 关于x 的函数解析式是A .4(0)y x x =≥B .343()4y x x =-≥C .34(0)y x x =-≥D .334(0)4y x x =-≤≤7. (2019•枣庄)如图,一直线与两坐标轴的正半轴分别交于A ,B 两点,P 是线段AB 上任意一点(不包括端点),过点P 分别作两坐标轴的垂线与两坐标轴围成的矩形的周长为8,则该直线的函数表达式是A .4y x =-+B .4y x =+C .8y x =+D .8y x =-+8. 如图,在Rt △ABO 中,∠OBA=90°,A (4,4),点C 在边AB 上,且=,点D 为OB 的中点,点P 为边OA 上的动点,当点P 在OA 上移动时,使四边形PDBC 周长最小的点P 的坐标为 ( )A .(2,2)B .C .D .(3,3)二、填空题9. 已知关于x 的方程mx +3=4的解为x =1,则直线y =(m -2)x -3一定不经过第________象限.10. 如图,已知直线y=kx+b 过A (-1,2),B (-2,0)两点,则0≤kx+b ≤-2x 的解集为 .11. 若函数y=(m-1)x|m|是正比例函数,则该函数的图象经过第________象限.12. 将直线y=2x+1向下平移3个单位长度后所得直线的解析式是____________.13. 在平面直角坐标系中,点P(x0,y0)到直线Ax+By+C=0的距离公式为:d=,则点P(3,-3)到直线y=-x+的距离为.14. (2019•上海)在登山过程中,海拔每升高1千米,气温下降6 °C,已知某登山大本营所在的位置的气温是2 °C,登山队员从大本营出发登山,当海拔升高x 千米时,所在位置的气温是y °C,那么y关于x的函数解析式是__________.15. 为增强学生体质,某中学在体育课中加强了学生的长跑训练.在一次女子800米耐力测试中,小静和小茜在校园内200米的环形跑道上同时起跑,同时到达终点;所跑的路程S(米)与所用的时间t(秒)之间的函数图象如图所示,则她们第一次相遇的时间是起跑后的第________秒.16. 已知点A(1,5),B(3,-1),点M在x轴上,当AM-BM最大时,点M的坐标为____________.三、解答题17. 在平面直角坐标系中,一次函数y=kx+b(k,b都是常数,且k≠0)的图象经过点(1,0)和(0,2).(1)当-2<x≤3时,求y的取值范围;(2)已知点P(m,n)在该函数的图象上,且m-n=4,求点P的坐标.18. 如图所示,已知正比例函数y x =和3y x =,过点()20A ,作x 轴的垂线,与这两个正比例函数的图象分别交与B C ,两点,求三角形OBC 的面积(其中O 为坐标原点)。
一次函数的图象- 2022-2023学年八年级上册数学同步培优题库(浙教版)(解析卷)
专题 5.4 一次函数的图象 模块一:知识清单 知识点1-4 一次(正比例)函数的图象与性质1)一次函数图象是一条直线;2)已知两点可以作图,也可求出解析式;3)交y 轴于点(0,b ),交x 轴于点(b k -,0); 4)过象限、增减性 0b >(过一、二象限) 0b <(过三、四象限) 0b =(过原点)0k >(过一、三象限) y 随x 的增大而增大经过第一、二、三象限 经过第一、三、四象限经过第一、三象限 0k <(过二、四象限) y 随x 的增大而减小经过第一、二、四象限 经过第二、三、四象限经过第二、四象限 5)函数图象大小比较:函数图象上的点是由适合函数解析式的一对x 、y 的值组成的(x 、y ),x 的值是点的横坐标,纵坐标就是与这个x 的值相对应的y 的值,因此,观察x 或y 的值就是看函数图象上点的横、纵坐标的值,比较函数值的大小就是比较同一个x 的对应点的纵坐标的大小,也就是函数图象上的点的位置的高低。
6) 一次函数的平移与位置关系1)一次函数11y k x b =+与22y k x b =+的位置关系:两直线平行⇔12=k k 且12b b ≠ 两直线垂直⇔12=1k k ⋅-2)、一次函数的平移法则:左加右减,上加下减。
模块二:同步培优题库全卷共24题 测试时间:80分钟 试卷满分:100分一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2022·河南·洛阳市第二外国语学校八年级期中)当0x >时,y 与x 之间的函数解析式为2y x =,当0x ≤时,y 与x 之间的函数解析式为2y x =-,则在同一直角坐标系中y 与x 之间的函数关系图象大致为图中的( )A .B .C .D . 【答案】C【分析】根据正比例函数的图象和性质判断即可;【详解】解:∵当0x >时,2y x =,∴此时函数在第一象限,∵当0x ≤时,2y x =-,∴此时函数过原点及第二象限,故选: C .【点睛】本题考查了正比例函数的性质:在y =kx (k ≠0)中,当k >0时,y 随x 的增大而增大,直线经过原点及第一、三象限, 当k <0时,y 随x 的增大而减小,直线经过原点及第二、四象限. 2.(2022·辽宁大连·八年级阶段练习)下列函数中,y 随x 的增大而减小的是( )A .42y x =-B .23y x =-C .13y x =D .1y x =- 【答案】A【分析】根据一次函数的增减性进行判断即可.【详解】解:A. 42y x =-,∵k =-2<0,∴y 随x 的增大而减小,故该选项符合题意;B. 23y x =-,∵k =2>0,∴y 随x 的增大而增大,故该选项不符合题意;C. 13y x =,∵k =13>0,∴y 随x 的增大而增大,故该选项不符合题意;D. 1y x =-,∵k =1>0,∴y 随x 的增大而增大,故该选项不符合题意.故选:A .【点睛】本题考查一次函数的增减性,熟记当k >0时,y 随x 的增大而增大;当k <0时,y 随x 的增大而减小是解题关键.3.(2022•陇县一模)若正比例函数y =4x 的图象经过点A (2,3﹣m ),则m 的值为( )A .6B .﹣6C .5D .﹣5【思路点拨】根据正比例函数y =4x 的图象经过点A (2,3﹣m ),可以得到3﹣m =4×2,从而可以求得m 的值.【答案】解:∵正比例函数y =4x 的图象经过点A (2,3﹣m ),∴3﹣m =4×2,解得m =﹣5,故选:D .【点睛】本题考查一次函数图象上点的坐标特征,解答本题的关键是明确题意,利用一次函数的性质解答.4.(2022·广东梅州·八年级期末)若点A (1x ,-1),B (2x ,-3),C (3x ,4)在一次函数y =-2x +m (m 是常数)的图象上,则1x ,2x ,3x 的大小关系是( )A .1x >2x >3xB .2x >1x >3xC .1x >3x >2xD .3x >2x >1x【答案】B【分析】利用一次函数的增减性判定即可.【详解】解:由y =-2x +m 知,函数值y 随x 的增大而减小,∵4>-1>-3,A (x 1,-1),B (x 2,-3),C (x 3,4),∴x 2>x 1>x 3.故选:B .【点睛】本题考查了一次函数的增减性,解题的关键是通过a =-2<0得知函数值y 随x 的增大而减小,反之x 随y 的增大也减小.5.(2022·河北清河·八年级期末)若0kb <,0b k ->,则一次函数y kx b =+与y bx k =+在同一坐标系中的大致图象为( )A .B .C .D .【答案】D【分析】由于k b 、的符号不能确定,只能对每个选项逐次分析.【详解】由0kb <可得:k b 、异号,由0b k ->得:0b >,从而:0k <.A.下面的直线:k b 、同号,故错误;B.上面的直线:k b 、同号,故错误;C.两条直线,一条直线直线k b 、同号、一条直线k b 、异号,故错误;D.两条直线k b 、都异号,故正确;故选:D .【点睛】本题考查一次函数图像与系数的关系,重点是掌握根据k b 、的取值,确定图像. 6.(2022·湖南常德·八年级期末)关于一次函数21y x =-+的图象和性质,下列结论不正确的是( ) A .图象与直线2y x =-平行B .图象与y 轴的交点坐标是(01),C .图象经过第一、二、四象限D .y 随自变量x 的增大而增大【答案】D【分析】根据一次函数的图象和性质,斜率相同,直线平行;当0x =时,1y =,得图象与y 轴的坐标;0k <,0b >,图像经过第一、二、四象限;0k <,y 随自变量x 的增大而减小,即可.【详解】∵两直线比例系数相同,直线平行又∵21y x =-+,2k =-,直线2y x =-,2k =-∴一次函数21y x =-+的图象与直线2y x =-平行∴A 正确;∵0x =时,1y =∴图像与y 轴的交点坐标是0,1∴B 正确;∵21y x =-+中20k =-<,10b =>∴图象经过第一、二、四象限∴C 正确;∵0k <,y 随自变量x 的增大而减小∴21y x =-+中20k =-<∴一次函数21y x =-+中,y 随自变量x 的增大而减小∴D 是错误的.故选:D .【点睛】本题考查一次函数的图象和性质,解题的关键是熟练掌握一次函数的性质.7.(2022•雁塔区模拟)若直线y =kx +b (k ≠0)的图象经过点A (﹣1,1).且与y 轴的交点在x 轴的下方.则k 的取值范围是( )A .k <﹣1B .k >﹣1C .k <1D .k >1【思路点拨】由直线y =kx +b (k ≠0)的图象与y 轴的交点在x 轴的下方,可得出b <0,由直线y =kx +b (k ≠0)的图象经过点A (﹣1,1),可得出1=﹣k +b ,结合b <0,即可求出k 的取值范围.【答案】解:∵直线y =kx +b (k ≠0)的图象与y 轴的交点在x 轴的下方,∴b <0,∵直线y =kx +b (k ≠0)的图象经过点A (﹣1,1),∴1=﹣k +b ,∴b =1+k <0∴k <﹣1.故选:A .【点睛】本题考查了一次函数图象上点的坐标特征,牢记直线上任意一点的坐标都满足函数关系式y =kx +b 是解题的关键.8.(2022•台江区校级期中)若点(x 1,y 1)、(x 2,y 2)是一次函数y =ax +2图象上不同的两点,记m =(x 1﹣x 2)(y 1﹣y 2),当m <0时,a 的取值范围是( )A .a >0B .a <0C .a <1D .a >1【思路点拨】由已知条件可判断出y 随x 的增大而减小,根据一次函数图象增减性与一次项系数的关系,可得a <0.【答案】解:∵点(x 1,y 1)、(x 2,y 2)是一次函数y =ax +2图象上不同的两点,m =(x 1﹣x 2)(y 1﹣y 2)<0,∴x 1﹣x 2与y 1﹣y 2异号,∴该图象是y 随x 的增大而减小,∴a <0.故选:B .【点睛】此题考查了一次函数图象上点的坐标特征,解决本题的关键是要根据函数的增减性进行推理.9.(2022•鼓楼区校级期中)如果M (x 1,y 1),N (x 2,y 2)是一次函数y =kx ﹣2的图象的两点,且x 1﹣x 2=﹣1,y 1﹣y 2=3,那么k 的值为( )A .1B .2C .﹣3D .【思路点拨】将M (x 1,y 1),N (x 2,y 2)代入一次函数y =kx ﹣2的解析式,结合x 1﹣x 2=﹣1,y 1﹣y 2=3,即可求解.【答案】解:∵M (x 1,y 1),N (x 2,y 2)是一次函数y =kx ﹣2的图象的两点,∴y 1=kx 1﹣2,y 2=kx 2﹣2,∴y 1﹣y 2=kx 1﹣2﹣(kx 2﹣2)=k (x 1﹣x 2 ),∵y 1﹣y 2=3,∴k (x 1﹣x 2 )=3,∵x 1﹣x 2=﹣1,∴﹣k =3,解得k =﹣3.故选:C .【点睛】本题考查了一次函数图象上点的坐标特征,代数式整体思想,解决本题关键是代入后的变形.10.(2022•郑州期中)已知关于x 的一次函数为y =ax +2a ﹣2,下列说法中正确的个数为( ) ①若函数图象经过原点,则a =1; ②若a =,则函数图象经过第一、三、四象限;③函数图象与y 轴交于点(0,﹣2);④无论a 取任何实数,函数的图象总经过点(﹣2,﹣2).A .1个B .2个C .3个D .4个 【思路点拨】把(0,0)代入即可判断①;根据二次函数的性质即可判断②;令x =0,即可求得函数图象与y 轴交于点(0,2a ﹣2),即可判断③;把x =﹣2代入解析式求得y =﹣2,即可判断④.【答案】解:①∵函数图象经过原点,∴2a ﹣2=0,∴a =1,故正确;②∵a =>0,∴2a ﹣2=﹣1<0,∴函数图象经过第一、三、四象限,故正确;③当x =0时,y =2a ﹣2,∴函数图象与y 轴交于点(0,2a ﹣2),故错误;④∵y =ax +2a ﹣2=a (x +2)﹣2,∴x =﹣2时,y =﹣2,∴函数的图象总经过(﹣2,﹣2),故正确.故选:C .【点睛】本题考查一次函数的图象及性质,一次函数图象上点的坐标特征;熟练掌握一次函数的性质是解题的关键.二、填空题(本大题共8小题,每小题3分,共24分.不需写出解答过程,请把答案直接填写在横线上)11.(2022·河南·八年级期末)甲,乙两名同学观察完某个一次函数的图象,各叙述如下:甲:函数的图象经过点()0,2-;乙:y 随x 的增大而减小;根据他们的叙述,写出满足上述性质的一个一次函数的表达式为______.【答案】2y x =--【分析】设一次函数解析式为y =kx +b ,根据函数的性质得出2b =-,k < 0,从而确定一次函数解析式,本题答案不唯一.【详解】解:设一次函数解析式为y =kx +b ,∵函数的图象经过点(0,-2),∴2b =- ,∵y 随x 的增大而减小,∴k <0, 当取k =−1时,一次函数表达式为:2y x =--,∴满足上述性质的一个函数表达式为:2y x =--(答案不唯一).故答案为:2y x =--.【点睛】本题主要考查一次函数的性质,数形结合是解题的关键,属于开放型的题型.12.(2022•海陵区一模)将一次函数y =3x +2的图象向下平移3个单位,则平移后一次函数的图象与y 轴的交点坐标是 .【思路点拨】先求出该函数图象向下平移3个单位后的直线解析式,再令x =0,求出y 的值即可.【答案】解:由“上加下减”的原则可知:将一次函数y =3x +2的图象向下平移3个单位,则平移后一次函数的解析式为:y =3x +2﹣3,即y =3x ﹣1,∴当x =0时,y =﹣1,∴平移后与y 轴的交点坐标为(0,﹣1),故答案为(0,﹣1).【点睛】本题考查的是一次函数的图象与几何变换,熟知“上加下减”的原则是解答此题的关键.13.(2022•鼓楼区校级期中)若一次函数y =(2m ﹣1)x +3﹣m 的图象经过一、二、四象限,则m 的取值范围是 .【思路点拨】根据一次函数的性质可知(2m ﹣1)<0,3﹣m >0,即可求出m 的取值范围.【答案】解:∵y =(2m ﹣1)x +3﹣m 的图象经过 一、二、四象限∴,解得m <∴m 的取值范围是m <.故答案为:m <.【点睛】本题主要考查一次函数的图象与系数的关系,关键是熟练掌握一次函数的性质. 14.(2022·辽宁大连·八年级期末)已知一次函数11y kx k =-,当46x -≤≤时,39y ≤≤,则k 的值为_______.【答案】35##-0.6 【分析】由x 与y 的范围,确定出点坐标,代入一次函数解析式求出k 的值即可.【详解】解:当k >0时,y 随x 的增大而增大,∴x =−4,y =3,∴−4k −11k =3,解得:15k =-(不合题意,舍去), 当k <0时,y 随x 的增大而减小,∴x =−4时,y =9;x =6时,y =3,∴−4k −11k =9,∴35k =-.故答案为:35. 【点睛】本题主要考查了一次函数的性质,待定系数法求一次函数解析式,熟练掌握待定系数法是解本题的关键.15.(2022•海安市模拟)一次函数y =(2a ﹣3)x +a +2(a 为常数)的图象,在﹣1≤x ≤1的一段都在x轴上方,则a的取值范围是.【思路点拨】根据一次函数y=(2a﹣3)x+a+2的图象在﹣1≤x≤1的一段都在x轴的上方,由一次函数的性质,则有2a﹣3≠0,再分2a﹣3>0和2a﹣3<0来讨论,解得即可.【答案】解:因为y=(2a﹣3)x+a+2是一次函数,所以2a﹣3≠0,a≠,当2a﹣3>0时,y随x的增大而增大,由x=﹣1得:y=﹣2a+3+a+2,根据函数的图象在x轴的上方,则有﹣2a+3+a+2>0,解得:<a<5.当2a﹣3<0时,y随x的增大而减小,由x=1得:y=2a﹣3+a+2,根据函数的图象在x轴的上方,则有:2a﹣3+a+2>0,解得:<a<,故答案为:<a<5或<a<.【点睛】本题考查了一次函数图象和系数的关系,属于基础题,转化为解不等式的问题是解决本题的关键.16.(2022·黑龙江绥化·八年级期末)下列对于一次函数y=﹣3x+6的说法,正确的有________(填写序号).①图象经过一、二、四象限;②图象与两坐标轴围成的面积是6;③y随x的增大而增大;④当x>2时,﹣3x+6>0;⑤对于直线y=﹣3x+6上两点A(x1,y1),B(x2,y2),当x1<x2时,y1>y2.【答案】①②⑤【分析】根据一次函数图象的性质进行逐一分析解答即可.【详解】解:①∵﹣3<0,6>0,∴一次函数y=﹣3x+6的图象在一、二、四象限,故①正确,符合题意;②当y=0时,0=﹣3x+6,解得x=2,当x=0时,y=6,∴一次函数y=﹣3x+6的图象与x轴交于点(2,0),与y轴的交点为(0,6),∴图象与两坐标轴围成的面积是1262⨯⨯=6,故②正确,符合题意;③∵﹣3<0,∴一次函数y=﹣3x+6的图象y随x的增大而减小,故③错误,不符合题意;④当x>2时,﹣3x+6<0,故④错误,不符合题意;⑤∵﹣3<0,∴一次函数y=﹣3x+6的图象y随x的增大而减小,∴对于直线y=﹣3x+6上两点A(x1,y1),B(x2,y2),当x1<x2时,y1>y2.故⑤正确,符合题意.故答案为:①②⑤.【点睛】本题考查了一次函数图象上点的坐标特征,一次函数的图象与性质,一次函数图象与系数的关系,都是基础知识,需熟练掌握.17.(2022·福建·莆田哲理中学九年级期末)已知直线y=(m-1)x+3﹣2m(m为常数,且m≠1).当m变化时,下列结论正确的有_________.①当m=2,图象经过一、三、四象限;②当m>0时,y随x的增大而减小;③直线必过定点(2,1);④坐标原点到直线的最大距离是5.【答案】①③④【分析】根据一次函数的性质逐项分析即可.【详解】解:当m=2时,y=(2-1)x+3﹣2×2=x-1,此时一次函数y=x-1,经过一、三、四象限,故①正确;对于直线y=(m-1)x+3﹣2m(m为常数,且m≠1)来说,当m-1>0时,即m>1时,y随x的增大而减小;故②错误;当x=2时,y=(m-1)x+3﹣2m=2(m-1)+3-2m=2m-2+3-2m=1,∴直线必过定点(2,1);故③正确;设原点到直线的距离为d,∵由③知直线y=(m-1)x+3﹣2m必过定点(2,1),设点P(2,1),∴d≤|OP|=22,1+25∴坐标原点到直线的最大距离是5.故④正确.故答案为:①③④【点睛】此题主要考查了一次函数的性质、勾股定理等知识,熟练掌握一次函数的性质是解题的关键.18.(2022•莲都区期末)如图,在平面直角坐标系中,直线y=kx+4经过点A(3,0),与y轴交于点B.(1)k的值为;(2)y轴上有点M(0,),线段AB上存在两点P,Q,使得以O,P,Q为顶点的三角形与△OMP全等,则符合条件的点P的坐标为.【思路点拨】(1)根据点的坐标求出k;(2)分两种情况分别讨论,①过点O作OQ⊥AB于Q,过点M作MP⊥OB于M,用面积法求出OQ,证明△OPM≌△OPQ,从而得P点纵坐标,代入一次函数解析式求出横坐标;当OB=BP,OM=PQ,如图②,过点P作PF⊥OB于F,过点O作OE⊥AB于E,证明△MOP≌△QPO推这两个三角形面积相等,推出PF=OE=,从而得P点横坐标,代入一次函数解析式求出纵坐标.【答案】解:(1)把(3,0)横纵坐标代入y=kx+4,得k=﹣,y=﹣x+4,故答案为:﹣;(2)①过点O作OQ⊥AB于Q,过点M作MP⊥OB于M,如图①,∴∠PMO=∠OQP=90°,令x=0,y=4,y=0,x=3,∴OA=3,OB=4,∴AB==5,∵×AB•OQ=×OA•OB,∴OQ=,∴OQ=OM,在Rt△OPM和Rt△OPQ中,,∴△OPM≌△OPQ(HL),∴P点纵坐标是,∵点P在y=﹣x+4,∴x=,∴P(,),②当OB=BP,OM=PQ,如图②,过点P作PF⊥OB于F,过点O作OE⊥AB于E,∵OB=BP,∴∠BOP=∠BPO在△MOP和△QPO中,,∴△MOP≌△QPO(SAS),∴S△MOP=S△OPQ,∵OM=PQ.∴PF=OE=,∵点P在y=﹣x+4,∴把x=代入y=﹣x+4,解得y=,∴P(,),综上所述:P(,)或P(,).故答案为:P(,)或P(,).【点睛】本题考查了过定点的直线、一次函数的性质、全等三角形判定,掌握一次函数图象上点的坐标特点,性质、判定的熟练应用,分情况讨论和辅助线的做法是解题关键.三、解答题(本大题共6小题,共46分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.(2022•金安区校级月考)已知一次函数的图象经过点(3,5)和(﹣4,﹣9).(1)求此一次函数的表达式.(2)若点(a,2)在函数图象上,求a的值.【思路点拨】(1)利用待定系数法即可求得函数的解析式;(2)把点(a,﹣2)代入一次函数的解析式,求出a的值即可.【答案】解:(1)设一次数解析式为y=kx+b,把点(3,5),(﹣4,﹣9)分别代入解析式得,解得,∴一次函数解析式为y=2x﹣1;(2)把A(a,﹣2)在该函数的图象上,可得:2a﹣1=﹣2,解得:a=﹣0.5.【点睛】本题主要考查了待定系数法求一次函数解析式,一次函数图象上点的坐标特征,熟练掌握待定系数法是解题的关键.20.(2022春•潮阳区期末)已知y﹣2与x成正比例,且当x=﹣2时,y=4.(1)求y与x的函数表达式;(2)在坐标系中画出(1)中的函数图象.【思路点拨】(1)根据正比例的定义设y﹣2=kx(k≠0),然后把已知数据代入进行计算求出k值,即可得解;(2)利用描点法法作出函数图象即可;【答案】解:(1)∵y﹣2与x成正比例.∴设y﹣2=kx.∵当x=﹣2时,y=4.∴4﹣2=﹣2k.∴k=﹣1.∴y与x的函数关系式为:y=﹣x+2;(2)由两点法取点(0.2),(2,0)通过描点,连线,函数图象如图:.【点睛】本题考查了待定系数法求一次函数解析式,一次函数图象的作法,根据正比例的定义设出函数表达式是解题的关键.21.(2022•淮北月考)已知一次函数y=ax﹣(a﹣2).(1)若图象经过点(0,3),则a的值是多少?.(2)若图象经过第一、二、四象限,则a的取值范围是多少?(3)若直线不经过第四象限,则a的取值范围是多少?【思路点拨】(1)根据一次函数y=ax﹣(a﹣2)的图象过点(0,3),即可求得a的值;(2)根据一次函数y=ax﹣(a﹣2)的图象经过一、二、四象限,可以得到,从而可以求得a的取值范围;(3)根据一次函数y=ax﹣(a﹣2)的图象不经过第四象限,可以得到,即可得到a 的取值范围.【答案】解:(1)∵一次函数y=ax﹣(a﹣2)的图象过点(0,3),∴3=﹣(a﹣2),解得a=﹣1;(2)∵一次函数y=ax﹣(a﹣2)的图象经过一、二、四象限,∴,解得a<0,即a的取值范围是a<0;(3)∵一次函数y=ax﹣(a﹣2)的图象不经过第四象限,∴,解得0<a≤2,即a的取值范围是0<a≤2.【点睛】本题考查一次函数的性质、一次函数的图象,解答本题的关键是明确题意,利用一次函数的性质解答.22.(2022•沂水县期末)已知,如图,一次函数的图象经过了点P(3,2)和B(0,﹣2),与x 轴交于点A.(1)求一次函数的解析式;(2)点M在y轴上,且△ABM的面积为,求点M的坐标.【思路点拨】(1)把P点和B点坐标代入y=kx+b得到关于k、b的方程组,然后解方程组求出k、b即可得到一次函数解析式;(2)利用x轴上点的坐标特征求出A点坐标,根据三角形面积公式列等式求解.【答案】解:(1)设一次函数的解析式为y=kx+b,把点P(3,2)和B(0,﹣2)代入y=kx+b得,解得,所以一次函数解析式为y=x﹣2;(2)当y=0时,x﹣2=0,解得x=,则A(,0),∵点M在y轴上,且△ABM的面积为,∴S△ABM=BM•x A=,即BM×=,∴BM=5,∵B(0,﹣2),∴M(0,3)或(0,﹣7).【点睛】本题考查待定系数法求一次函数解析式、三角形的面积,熟练掌握待定系数法是解题的关键.23.(2022•西湖区校级二模)一次函数y=ax﹣a+1(a为常数,且a<0).(1)若点(2,﹣3)在一次函数y=ax﹣a+1的图象上,求a的值;(2)当﹣1≤x≤2时,函数有最大值2,求a的值.【思路点拨】(1)根据一次函数图象上点的坐标特征把(2,﹣3)代入y=ax﹣a+1中可求出a的值;(2)a<0时,y随x的增大而减小,所以当x=﹣1时,y有最大值2,然后把x=﹣1代入函数关系式可计算对应a的值.【答案】解:(1)把(2,﹣3)代入y=ax﹣a+1得2a﹣a+1=﹣3,解得a=﹣4;(2)∵a<0时,y随x的增大而减小,则当x=﹣1时,y有最大值2,把x=﹣1代入函数关系式得2=﹣a﹣a+1,解得a=﹣,所以a=﹣.【点睛】本题考查了一次函数的性质:k>0,y随x的增大而增大,函数从左到右上升;k<0,y随x 的增大而减小,函数从左到右下降.由于y=kx+b与y轴交于(0,b),当b>0时,(0,b)在y 轴的正半轴上,直线与y轴交于正半轴;当b<0时,(0,b)在y轴的负半轴,直线与y轴交于负半轴.24.(2021春•陇县期末)如图,直线l1:y=﹣x+2与x轴,y轴分别交于A,B两点,点P(m,3)为直线AB上一点,另一直线l2:y=kx+4经过点P.(1)求点A、B坐标;(2)求点P坐标和k的值;(3)若点C是直线l2与x轴的交点,点Q是x 轴上一点,当△CPQ的面积等于3时,求出点Q的坐标.【思路点拨】(1)令x=0,则y=2,令y=0,则x=2,即可求得点A、B的坐标分别为:(2,0)、(0,2);(2)点P(m,3)在直线AB上,则﹣m+2=3,解得:m=﹣1,故点P(﹣1,3);将点P的坐标代入y=kx+4,即可求得k的值;(3)求得C的坐标,然后根据三角形面积求得CQ,结合C的坐标即可求得点Q的坐标.【答案】解:(1)y=﹣x+2与x轴,y轴分别交于A,B两点,令x=0,则y=2,令y=0,则x=2,故点A、B的坐标分别为:(2,0)、(0,2);(2)点P(m,3)为直线AB上一点,则﹣m+2=3,解得:m=﹣1,故点P(﹣1,3);将点P的坐标代入y=kx+4得:3=﹣k+4,解得k=1;故点P的坐标为(﹣1,3),k=1;(3)∵直线y=x+4与x轴的交点为C,∴C(﹣4,0),∵P(﹣1,3),△CPQ的面积等于3,∴CQ•y P=3,即CQ×3=3,∴CQ=2,∴Q点的坐标为(﹣6,0)或(﹣2,0).【点睛】本题考查的是一次函数图象上点的坐标特征,一次函数的性质、面积的计算等,求得交点坐标是解题的关键。
一次函数图像练习题及答案
一次函数图像练习题及答案【篇一:一次函数习题集锦(含答案)】txt>一、试试你的身手(每小题3分,共24分)1.正比例函数y?? 21x中,y值随x的增大而 22.已知y=(k-1)x+k-1是正比例函数,则k=.3.若y+3与x成正比例,且x=2时,y=5,则x=5时,y= . 4.直线y=7x+5,过点(,0),(0,).5.已知直线y=ax-2经过点(-3,-8)和?,b?两点,那么a= ,b= . 6.写出经过点(1,2)的一次函数的解析式为(写出一个即可). 7.在同一坐标系内函数y?12111x?1,y?x?1,y?x的图象有什么特222点.8.下表中,y是x二、相信你的选择(每小题3分,共24分)1.下列函数中是正比例函数的是() a.y?8xb.y?82c.y?2(x?1) d.y?1)x32.下列说法中的两个变量成正比例的是() a.少年儿童的身高与年龄 b.圆柱体的体积与它的高c.长方形的面积一定时,它的长与宽 d.圆的周长c与它的半径r 3.下列说法中错误的是() a.一次函数是正比例函数 b.正比例函数是一次函数c.函数y=|x|+3不是一次函数d.在y=kx+b(k、b都是不为零的常数)中, y-b与x成正比例4.一次函数y=-x-1的图象不经过()a.第一象限 b.第二象限 c.第三象限 d.第四象限 5.函数y=kx-2中,y随x的增大而减小,则它的图象可以是()6.如图1,一次函数的图象经过a、b两点,则这个一次函数的解析式为() a.y?3x?2 2b.y?1x?2 2c.y?1x?2 2d.y?3x?2 27.若函数y=kx+b(k、b都是不为零的常数)的图象如图2所示,那么当y>0时,x的取值范围为()a.x>1 b.x>2 c.x<1 d.x<28.已知一次函数y=kx-k,若y随x的增大而减小,则该函数的图象经过() a.第一、二、三象限b.第一、二、四象限 c.第二、三、四象限d.第一、三、四象限三、挑战你的技能(共30分)1.(10分)某函数具有下列两条性质:(1) 它的图象是经过原点(0,0)的一条直线; (2) y的值随x的值增大而减小.请你写出一个满足上述两个条件的函数解析式.2.(10分)已知一次函数y=kx+b的图象经过a(2,4)、b(0,2)两点,且与x轴相交于c点.(1)求直线的解析式.(2)求△aoc的面积.3.(10分)已知一个正比例函数和一个一次函数的图象交于点p (-2,2),且一次函数的图象与y轴相交于点q(0,4).(1)求这两个函数的解析式.(2)在同一坐标系内,分别画出这两个函数的图象.(3)求出△poq的面积.四、拓广探索(共22分)1.(11分)如图3,在边长为2的正方形abcd的一边bc上的点p从b点运动到c点,设pb=x,梯形apcd的面积为s.(1)写出s与x的函数关系式;(2)求自变量x的取值范围;(3)画出函数图象.2.(11分)小明在暑期社会实践活动中,以每千克0.8元的价格从批发市场购进若干千克西瓜到市场上去销售,在销售了40千克西瓜之后,余下的每千克降价0.4元,全部售完.销售金额与售出西瓜的千克数之间的关系如图4所示.请你根据图象提供的信息完成以下问题:(1)求降价前销售金额y(元)与售出西瓜x(千克)之间的函数关系式. (2)小明从批发市场共购进多少千克西瓜? (3)小明这次卖瓜赚了多少钱?参考答案一、1.减小2.?13.174.?5,5 75.2,?16.略(答案不惟一) 7.三条直线互相平行8.y?2x?2,表格从左到右依次填?2,0,4 二、1.d 2.d 3.a 4.a 三、1.y??x(答案不惟一) 2.(1)y?x?2 (2)43.(1)正比例函数的解析式为y??x.一次函数的解析式为y?x?4 (2)图略;(3)4四、1.(1)s?4?x;(2)0?x?2;(3)图略 2.(1)y?5.d6.a7.d8.b8x(0≤x≤40); 5(2)50千克;(3)36元一次函数测试题一、填空1、已知一个正比例函数的图象经过点(-2,4),则这个正比例函数的表达式是。
2019—2020年最新浙教版数学八年级上册5.4《一次函数的图象和性质》练习题【精心整理测试卷】.doc
5.4一次函数的图象和性质一、选择题1.已知一次函数y kx k=-,若y随着x的增大而减小,则该函数图象经过:(A)第一,二,三象限(B)第一,二,四象限(C)第二,三,四象限(D)第一,三,四象限2.某市的出租车的收费标准如下:3千米以内的收费6元;3千米到10千米部分每千米加收1.3元;10千米以上的部分每千米加收1.9元。
那么出租车收费y(元)与行驶的路程x(千米)之间的函数关系用图象表示为3.阻值为1R和2R的两个电阻,其两端电压U关于电流强度I的函数图象如图,则阻值(A)1R>2R(B)1R<2R(C)1R=2R(D)以上均有可能4.若函数bkxy+=(b k,为常数)>y时,x 的取值范围是A 、1>xB 、2>xC 、1<xD 、2<x 5.下列函数中,一次函数是(). (A)(B )(C )(D )6.一次函数y=x+1的图象在().(A )第一、二、三象限(B )第一、三、四象限 (C )第一、二、四象限(D )第二、三、四象限 7.将直线y=2x 向上平移两个单位,所得的直线是A .y=2x+2B .y=2x-2C .y=2(x-2)D .y=2(x+2) 8.如图,已知点A 的坐标为(1,0),点B 在直线y x =-上运动,当线段AB 最短时,点B 的坐标为 A.(0,0)B.11(,)22-C.22-D.11(,)22- 9.如图,把直线l沿x 轴正方向向右平移2个单位得到直线l′,则直线l /的解析式为A.y=2x+4B.y=-2x+2C.y=2x-4D.y=-2x-2 10.直线y=kx+1一定经过点()A .(1,0)B .(1,k)C .(0,k)D .(0,1)11.如图,在△ABC 中,点D 在AB 上,点E 在AC 上,若∠ADE=∠C ,yxE DCA且AB=5,AC=4,AD=x,AE=y,则y与x的关系式是()A.y=5xB.y=45xC.y=54xD.y=920x12.下列函数中,是正比例函数的为A.y=12x B.y=4xC.y=5x-3D.y=6x2-2x-1二、填空题1.若正比例函数y=mx(m≠0)和反比例函数y=nx(n≠0)的图象都经过点(2,3),则m=______,n=_________.2.如果函数()1f x x=+,那么()1f=3.点A(2,4)在正比例函数的图象上,这个正比例函数的解析式是4.若函数的图象经过点(1,2),则函数的表达式可能是(写出一个即可).5.如图,表示甲骑电动自行车和乙驾驶汽车均行驶90km的过程中,行使的路程y与经过的时间x之间的函数关系.请根据图象填空:____出发的早,早了____小时,先到达,先到_____小时,电动自行车的速度为____km/h,汽车的速度为____km/h.h )第16题图6.某电信公司推出手机两种收费方式:A 种方式是月租20元,B 种方式是月租0元.一个月的本地网内打出电话时间t(分钟)与打出电话费s(元)的函数关系如图3,当打出电话150分钟时,这两种方式电话费相差 元.7.若一次函数y=ax+1―a 中,y 随x 的增大而增大,且它的图像与y 轴交于正半轴,则|a ―= 。
一次函数(二)初中数学试卷(14)
一次函数的图像和性质测试题一.选择题(共16小题)1.下列函数:①y=x;②y=;③y=;④y=2x+1,其中一次函数的个数是()A.1 B.2 C.3 D.42.一次函数y=x+2的图象大致是()A.B.C.D.3.正比例函数y=kx(k≠0)的函数值y随x的增大而增大,则一次函数y=x+k的图象大致是()A.B.C.D.4.直线y=x﹣1的图象经过的象限是()A.第一、二、三象限 B.第一、二、四象限 C.第二、三、四象限 D.第一、三、四象限5.下列函数中,其图象同时满足两个条件①y随着x的增大而增大②y与x轴的正半轴相交.则它的解析式为()A.y=﹣2x﹣1 B.у=﹣2x+1 C.у=2x﹣1 D.у=2x+16.已知一次函数y=kx﹣k,若y随x的增大而减小,则该函数的图象经过()A.第一,二,三象限 B.第一,二,四象限 C.第二,三,四象限 D.第一,三,四象限7.一次函数y=(k﹣2)x+3的图象如图所示,则k的取值范围是()A.k>2 B.k<2 C.k>3 D.k<38.已知一次函数y=﹣x+b的图象经过第一、二、四象限,则b的值可以是()A.﹣2 B.﹣1 C.0 D.29.下列四个点,在正比例函数的图象上的点是()A.(2,5)B.(5,2)C.(2,﹣5)D.(5,﹣210.直线y=kx﹣1一定经过点()A.(1,0)B.(1,k)C.(0,k)D.(0,﹣1)11.如图,直线y1=k1x+a与y2=k2x+b的交点坐标为(1,2),则使y1<y2的x的取值范围为()A.x>1 B.x>2 C.x<1 D.x<212.如图,直线y=kx+b交坐标轴于A(﹣3,0)、B(0,5)两点,则不等式﹣kx﹣b<0的解集为()A.x>﹣3 B.x<﹣3 C.x>3 D.x<313.两条直线y=k1x+b1和y=k2x+b2相交于点A(﹣2,3),则方程组的解是()A. B.C.D.14.用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象(如图所示),则所解的二元一次方程组是()A.B.C.D.15.两直线l1:y=2x﹣1,l2:y=x+1的交点坐标为()A.(﹣2,3)B.(2,﹣3)C.(﹣2,﹣3)D.(2,3)16.已知一次函数的图象与直线y=﹣x+1平行,且过点(8,2),那么此一次函数的解析式为()A.y=﹣x﹣2 B.y=﹣x﹣6 C.y=﹣x+10 D.y=﹣x﹣1二.填空题(共2小题)17.直线y=2x+b与x轴的交点坐标是(2,0),则关于x的方程是2x+b=0的解是x=_________.18.一元一次方程3x﹣1=5的解就是一次函数_________与x轴的交点横坐标.三.解答题(共6小题)19.已知:一次函数y=kx+b的图象经过M(0,2),(1,3)两点.(1)求k,b的值;(2)若一次函数y=kx+b的图象与x轴交点为A(a,0),求a的值.20.在直角坐标系xOy中,直线l过(1,3)和(3,1)两点,且与x轴,y轴分别交于A,B两点.(1)求直线l的函数关系式;(2)求△AOB的面积.21.如图,直线l是一次函数y=kx+b的图象,点A、B在直线l上.根据图象回答下列问题:(1)写出方程kx+b=0的解;(2)写出不等式kx+b>1的解集;(3)若直线l上的点P(a,b)在线段AB上移动,则a、b应如何取值.22.某汽车加油站储油45000升,每天给汽车加油1500升,那么储油量y(升)与加油x(天)之间的关系式是什么?并指出自变量的取值范围.23.用解析式表示下列函数关系.(1)某种苹果的单价是1.6元/kg,当购买x(kg)苹果时,花费y(元),y(元)与x(kg)之间的函数关系._________;(2)汽车的速度为20km/h,汽车所走的路程s(km)和时间t(h)之间的关系._________.24.甲、乙两地相距520km,一辆汽车以80km/h的速度从甲地开往乙地,行驶t(h)后停车在途中加水.(1)写出汽车距乙地路程s(km)与行驶时间t(h)之间的函数关系式_________;(2)请写出自变量t的取值范围_________.答案与评分标准一.选择题(共16小题)1.(2006•武汉)下列函数:①y=x;②y=;③y=;④y=2x+1,其中一次函数的个数是()A.1 B.2 C.3 D.4考点:一次函数的定义。
新-41.一次函数定义、图象与性质
一、 一次函数的定义 二、 一次函数的图象 三、 一次函数的性质
1.经过象限 2.一次函数单调性 3.一次函数性质综合
四、 一次函数与点的坐标
一、 一次函数的定义
1.判断
1. 【易】(初一数学下期末复习)下列一次函数的个数是( )
① y = 5 − x ② y = x + 1 ③ y = 1 ④ y = − 1 x ⑤ y = π (x + 1)
【答案】B
6. 【易】(理工附 2011 学年度期末考试)在函数 y = − x + 2 , y = x2 + 2 , y = x + 1 , 3
y = x + 8 中,一次函数有( )
A.1 个
B.2 个
C.3 个
D.4 个
【答案】B
( ) 7. 【易】下列函数① y = 2x2 + x + 1② y = 2π r ③ y = 1 ④ y = 2 −1 x ⑤ y = − (a + x)( a 是 x
y
y
y
y
O
x
A.
O
x
O
x
B.
C.
6 / 41
O
x
D.
PDF pdfFactory Pro
【答案】C
38. 【中】(2011 深圳外国语分校初二上期末)一次函数 y = ax − a (a ≠ 0) 的大致图像是( )
y
y
y
y
O
x
O
x
O
x
O
x
A.
B.
C.
D.
【答案】B
二、 一次函数的图象
一次函数的图像与性质
课后巩固 拓展升华
1、如图,将矩形ABCD置于平面直角坐标系中,其中AD边在x轴上, AB=2,直线MN:y=x−4沿x轴的负方向以每秒1个单位的长度平移,设在平 移过程中该直线被矩形ABCD的边截得的线段长度为m,平移时间为t,m 与t的函数图象如图2所示。 (1)请解释图中E、F、G、H分别表示直线MN运动到矩形ABCD的哪一 个顶点处? (2)点A的坐标为___,矩形ABCD的面积为___; (3)求a,b的值; (4)在平移过程中,求直线MN 扫过矩形ABCD的面积S与t的函数 关系式,并写出自变量t的取值范围。(本小题选做)
课后巩固 拓展升华
2、从甲地到乙地,先是一段平路,然后是一段上坡路,小明骑车从甲地出 发,到达乙地后立即原路返回甲地,途中休息了一段时间,假设小明骑车 在平路、上坡、下坡时分别保持匀速前进。已知小明骑车上坡的速度比在 平路上的速度每小时少5km,下坡的速度比在平路上的速度每小时多5km.设 小明出发xh后,到达离甲地ykm的地方,图中的折线OABCDE表示y与x之间 的函数关系。 (1)小明骑车在平路上的速度为___km/h; 他途中休息了___h; (2)求线段AB、BC所表示的y与x之间的函 数关系式; (3)如果小明两次经过途中某一地点的时间 间隔为0.15h,那么该地点离甲地多远?
2017中考数学专题复习
——从一次函数图象中获取信息
例题展示
例1 (1)小明为准备体育测试, 每天早晨坚持锻炼,某天他慢跑 到河边,休息一会儿后快跑回家, 如图,能大致反映小明行驶的路 程y与时间x的函数关系图象是 ()
例1 (2)小明为准备体育测试,每天早晨坚持锻炼,某天 他慢跑到河边,休息一会儿后快跑回家,如图,能大致反 映小明离家的距离y与时间x的函数关系图象是( )
北师大版《一次函数》测试题
1.已知一个正比例函数的图象经过点(-2,4),则这个正比例函数的表达式是。
2.若函数y= -2x m+2是正比例函数,则m的值是。
3.已知一次函数y=kx+5的图象经过点(-1,2),则k= 。
4.已知y与x成正比例,且当x=1时,y=2,则当x=3时,y=____ 。
5.点P(a,b)在第二象限,则直线y=ax+b不经过第象限。
6.已知一次函数y=kx-k+4的图象与y轴的交点坐标是(0,-2),那么这个一次函数的表达式是________。
7.已知点A(-1,a), B(2,b)在函数y=-3x+4的象上,则a与b的大小关系是____ 。
二.解答题8.已知一个正比例函数和一个一次函数的图象相交于点A(1,4),且一次函数的图象与x轴交于点B(3,0)(1)求这两个函数的解析式;(2)画出它们的图象;9.已知y-2与x成正比,且当x=1时,y= -6(1)求y与x之间的函数关系式。
(2)若点(a,2)在这个函数图象上,求a的值10.已知一次函数y=kx+b的图象经过点(-1, -5),且与正比例函数y= 12x的图象相交于点(2,a),求(1)a的值,(2)k,b的值, (3)这两个函数图象与x轴所围成的三角形的面积。
1.地面气温20℃,如果每升高1000m,气温下降6℃,则气温t (℃)与高度h (m )的函数关系式是______2.一次函数y=kx+b 与y=2x+1平行,且经过点(-3,4),则表达式为: 。
3.写出同时具备下列两个条件的一次函数表达式(写出一个即可) 。
(1)y 随着x 的增大而减小, (2)图象经过点(1,-3)。
4.把直线y =23x +1向上平移3个单位所得到的解析式为______________。
5.已知y 与x 成正比例,且当x =1时,y =2,那么当x =3时,y =_______。
二.解答题6. 某市自来水公司为限制单位用水,每月只给某单位计划内用水3000吨,计划内用水每吨收费1.8元,超计划部分每吨按2.0元收费。
一次函数经典测试题及解析
30x+15x=30-10
x= ,
当两人相遇后,相距10km时,
30x+15x=30+10,
解得x=
15x-(30x-30)=10
得x=
∴④错误.
选C.
【点睛】
本题为一次函数应用问题,考查学生对于图象分析能力,解答时要注意根据两人运动状态分析图象得到相应的数据,从而解答问题.
【详解】
过点D作DE⊥BC于点E
.
由图象可知,点F由点A到点D用时为as,△FBC的面积为acm2..
∴AD=a.
∴ DE•AD=a.
∴DE=2.
当点F从D到B时,用 s.
∴BD= .
Rt△DBE中,
BE= ,
∵四边形ABCD是菱形,
∴EC=a-1,DC=a,
Rt△DEC中,
a2=22+(a-1)2.
本题考查了一函数图象上点的坐标特征:一次函数y=kx+b,(k≠0,且k,b为常数)的图象是一条直线.它与x轴的交点坐标是( ,0);与y轴的交点坐标是(0,b).直线上任意一点的坐标都满足函数关系式y=kx+b.
5.正比例函数y=kx与一次函数y=x﹣k在同一坐标系中的图象大致应为( )
A. B. C. D.
2.如图1,点F从菱形ABCD的顶点A出发,沿A→D→B以1cm/s的速度匀速运动到点B,图2是点F运动时,△FBC的面积y(cm2)随时间x(s)变化的关系图象,则a的值为( )
A. B.2C. D.2
【答案】C
【解析】
【分析】
通过分析图象,点F从点A到D用as,此时,△FBC的面积为a,依此可求菱形的高DE,再由图象可知,BD= ,应用两次勾股定理分别求BE和a.
《一次函数》测试题(C)(含答案)
《一次函数》测试题(C )一、填一填,要相信自己的能力!(每小题3分,共30分).1.一次函数y=-3x-1的图像经过点(0, )和( ,-7).2.函数2-=x y 中自变量x 的取值范围是 .3.若点P (3,2)在函数y=3x-b 的图像上,则b= .4.若一次函数y=(m-3)x+(m-1)的图像经过原点,则m= ,此时y 随x 的增 大而 .5.某市出租车的收费标准是:3千米以内(包括3千米)收费5元,超过3千米。
每增加1千米加收1.2元,则路程x (x≥3)时,车费y (元)与路程x (千米)之间的关系式 为: . 6.若函数1)2(--=m xm y 是一次函数,则m 的值是 .7.直线y=-2x-6与两坐标轴围成的三角形的面积为 .8.甲和乙同时加工一种产品,如图1所示,图⑴、图⑵分别表示甲和乙的工作量与工作时间的关系,如果甲已经 加工了75kg ,则乙加工了 kg.图(2)图(1)802工作量(kg)时间(分钟)O506O时间(分钟)工作量(kg)图19.已知一次函数y=kx+b (k 、b 是常数,且k≠0)中,x 与y 的部分对应值如下表所示,那10.m= .二、选一选,看完四个选项后再做决定呀!(每小题3分,共30分)1.下列函数中,是一次函数的有( )个. ①y=x; ②xy 3=;③65+=x y ;④11-=x y ;⑤23x y =.A.1B.2C.3D.42.下列哪个点在一次函数43-=x y 上( ).A.(2,3)B.(-1,-1)C.(0,-4)D.(-4,0)3.一次函数y=-2x+3的图像所经过的象限是( ).A.一、二、三B.二、三、四C.一、三、四D.一、二、四 4.如图2所示,表示直线y=-x-2的是( ).2-2-22-2-222DCBAyxOyxO yxO O xy图25.点P 1(x 1,y 1),点P 2(x 2,y 2)是一次函数y =-4x + 3 图象上的两个点,且 x 1<x 2,则y 1与y 2的大小关系是( ).A .y 1>y 2B .y 1>y 2 >0C .y 1<y 2D .y 1=y 26.一次函数y=kx+b 的图像经过第一、三、三、四象限,则( ). A.k >0,b >0 B.k >0,b <0 C.k <0,b <0 D.k <0,b >07.已知正比例函数y=kx 的图像经过第一、三象限,则一次函数y=kx-k 的图像可能是图3中的( ).DC B A yxOyxOyxOOxy图38.一根蜡烛长30cm ,点燃后每小时燃烧5cm ,燃烧时蜡烛剩余的长度h (cm )和燃烧时间t(小时)之间的函数关系用图像可以表示为图4中的( ).DBA图49.一次函数y=kx+b 的图像经过点(12+m ,1)和(-1,12+m )(m≠0),则k 、b 应满足的条件是( ).A.k >0,b >0B.k >0,b <0C.k <0,b <0D.k <0,b >010.小红骑自行车到离家为2千米书店买书,行驶了5分钟后,遇到一个同学因说话停留10分钟,继续骑了5分钟到书店.图5中的哪一个图象能大致描述她去书店过程中离书店的....距离..s (千米)与所用时间t (分)之间的关系( ).图5三、做一做,要注意认真审题呀!(每小题10分,共60分)1.等腰三角形的周长为30cm.(1)若底边长为xcm ,腰长为ycm ,写出y 与x 的关系式,并注明自变量的取值范围. (2)若腰长为xcm ,底边长为ycm ,写出y 与x 的关系式. 并注明自变量的取值范围 2. 已知一次函数的图象经过(2,3)和(-1,-3)两点. (1)在平面直角坐标系中画出这个函数的图象; (2)求这个一次函数的关系式. 3.某旅游团上午8时从旅馆出发,乘汽车到距离180千米的某著名旅游景点游玩,该汽车离旅馆的距离S(千米)与时间t (时)的关系可以用图6的折线表示.根据图象提供的有关信息,解答下列问题: ⑴求该团去景点时的平均速度是多少?⑵该团在旅游景点游玩了多少小时? ⑶求出返程途中S(千米)与时间t (时)的函数关系式,并求出自变量t 的取值范围.图6·→↑··601201808101415S(千米)t(时)4.为了调动员工的积极性,某家电商场的经理制定了新的工资分配方案;员工工资包括基本工资和奖励工资.若设员工每月的销售额为x 元,该月可得工资为y 元,则y (元)和x (元)之间的函数图像如图7所示:x图7 ⑴根据图像请计算出当某员工的销售额为15000元时,他的工资应是多少元? ⑵员工小张五月份共领工资1200元,请计算他这个月的销售额是多少万元.5. 某电信公司开设了甲、乙两种市内移动通信业务。
一次函数的图像和性质及答案
一次函数的图像和性质 进门测1.一次函数的图象不经过(B ) A .第一象限 B .第二象限C .第三象限D .第四象限2.下表给出的是关于一次函数y =kx +b 的自变量x 及其对应的函数值y 的若干信息:则根据表格中的相关数据可以计算得到m 的值是( C ) A .0 B .1 C .2D .33. 对于函数x y 21-=,下列说法不正确的是( D ) A .其图象经过点(0,0) B. 其图象经过点(-1,21)C. 其图象经过第二、四象限D. y 随x 的增大而增大 4.已知点A (x l ,y 1)、B (x 2,y 2)在直线y =-2x +3上,当x 1<x 2则y 1与y 2的大小关系是( A )A. y 1>y 2 B .y 1<y 2 C .y l = y 2 D .y 1与y 2的大小关系不定5. 一次函数的图象如图所示,则不等式50<+≤b kx 的解集为 20≤<x .例题解析学习目标:熟练掌握k 、b 与象限判断 教学过程:例1.已知:一次函数y =(a -1)x +b 的图象如图所示,那么a 的取值范围是( A )A .a >1B .a <1C .a >0D .a <0学习目标:熟练掌握一次函数的增减性判断 教学过程:例2.若点A (-3,y 1),B (2,y 2),C (4,y 3)是函数2(0)y kx k =+<图像上的点,则( B )34y x =-b kx y +=A .321y y y <<B .321y y y >>C .231y y y <<D .132y y y >>学习目标:熟练掌握直线的平移与平行 教学过程:例3.函数y =kx +b (k ≠0)的图象平行于直线y =2x +3,且交y 轴于点(0,-1),则其函数表达式是______12-=x y ________.学习目标:熟练掌握一次函数与不等式综合 教学过程:例4.一次函数的图像经过点(1,-2).(1)判断:点(2,-1)是否在此函数的图像上?说明理由; 在 (2)当为何值时,≤0? 3≤x学习目标:熟练掌握一次函数与等腰三角形综合 教学过程:例5.在直角坐标平面内,O 为原点,点A 的坐标为(1,0),点C 的坐标为(0,4),直线CM ∥x 轴(如图所示),点B 与点A 关于原点对称,直线y =x +b (b 为常数)经过点B ,且与直线CM 相交点D ,连接OD ,设P 在x 轴的正半轴上,若△POD 为等腰三角形,则点P 的坐标为:____()()⎪⎭⎫⎝⎛06250,60,5,或或____.同步练习1.一次函数y =kx +b ,y 随x 的增大而减小,且kb >0,则在直角坐标系内它的大致图象是( C )A .B .C .D .2.如图,函数2y x =-和y kx b =+的图像相交于点(,3)A m ,则关于x 的不等式20kx b x -+>的解集为____23>x _______.3-=kx y x y3.如图,有一种动画程序,屏幕上正方形区域ABCD 表示黑色物体甲.已知A (2,2),B (4,2),C (4,4),D (2,4),用信号枪沿直线2y x b =-+发射信号,当信号遇到区域甲(正方形ABCD )时,甲由黑变白.则b 的取值范围为 126≤≤b 时,甲能由黑变白.4. 已知:y +2与3x 成正比例,且当x =1时,y 的值为4. (1)求y 与x 之间的函数关系式; 26-=x y(2)若点(-1,a )、点(2,b )是该函数图象上的两点,试比较a 、b 的大小,并说明理由. b a <拓展延伸1.八个边长为1的正方形如图摆放在平面直角坐标系中,经过原点的一条直线l 将这八个正方形分成面积相等的两部分,则该直线l 的解析式为( D ) A . x y -= B .x y 43-= C .x y 53-= D .x y 109-=2. 如图,∠AOB =45°,在OA 上截取OA 1=1,OA 2=3,OA 3=5,OA 4=7,OA 5=9,…,过点A 1、A 2、A 3、A 4、A 5分别作OA 的垂线与OB 相交,得到并标出一组阴影部分,它们的面积分别为S 1,S 2,S 3,….观察图中的规律,第n 个阴影部分的面积Sn 为( A )A .8n -4B .4nC .8n+4D .3n+23. 已知一次函数28y mx m =++与x 轴、y 轴交于点A 、B ,若图象经过点C (2,4).过点C 作x 轴的平行线,交y 轴于点D ,在∠OAB 的直角边上找一点E ,使得∠DCE 构成等腰三角形,则点E 的坐标为()()()()()()242224225,10,12,06,0-++-,或,或或或或 .4. 如图,在平面直角坐标系中,直线AB 交x 轴于点A (-4,0),交y 轴于点B (0,2),P 为线段OA 上一个动点,Q PQ =P A ,OQ =OB . (1)求直线AB 的函数关系式; 221+=x y (2)若 ∠OPQ Q 是否在直线AB 上.(2)①当︒=∠90Q 时,⎪⎭⎫ ⎝⎛-0,25P ,⎪⎭⎫⎝⎛-56,58Q 在直线AB 上;②当︒=∠90P 时,不符合题意,舍出门测试1. 如图,把Rt ∠ABC 放在直角坐标系内,其中∠CAB =90°,BC =5,点A 、B 的坐标分别为(1,0)、 (4,0).将∠ABC 沿x 轴向右平移,当点C 落在直线y =2x -6上时,线段BC 扫过的面积为( C )A .4B .8C .16D .822. 如图,已知函数y 1=2x -1和y 2=x -3的图像交于点P (-2,-5),则根据图像可得不等式y 1>y 2的解集是_______2->x _______ .3. 已知一次函数y =(3m -7)x +m -1 (1)当m 为何值时,函数图象经过原点? 1=m (2)若图象不经过三象限,求m 的取值范围. 371<≤m (3)图象与y 轴交点在x 轴的上方,且y 随x 的增大而减小,求整数m 的值. 2=m4. 如图,一次函数y = 12x +2的图象分别与x 轴、y 轴交于点A 、B ,以线段AB 为边在第二象限内作等腰直角∠ABC ,∠BAC = 90º(1)求点A 、B 的坐标; ()0,4-A ,()2,0B(2)求点C 的坐标; ()4,6-C(3)你能否在x 轴上找一点M ,使∠MCB 的周长最小?如果能,请求出点M 的坐标;如果不能,说明理由. 能,()0,2-M课后练习11.点A (a ,y 1)、B (a +1,y 2)都在一次函数y =−2x +3的图象上,则y 1、y 2的大小关系是( C )A .y 1>y 2B .y 1=y 2C .y 1 <y 2D .不能确定 2. 正比例函数y kx =(0k ≠)的函数值y 随x 的增大而减小,则一次函数k kx y +-=的图象大致是( B )3.正方形11122213332,,A B C O A B C C A B C C ,按如图所示的方式放置,点.....,,321A A A 在直线(0)y kx b k =+>,点.....,,321C C C 在x 轴上,已知点1(1,1)B ,2(3,2)B ,则5B 的坐标是( D ) A .(33,32) B .(31,32) C .(33,16) D .(31,16)4. 已知正比例函数y 1=k 1x 的图像与一次函数y 2=k 2x -9的图像交于点P (3,-6). (1)求k 1、k 2的值; 1,221=-=k k(2)在同一直角坐标系中画出y 1。
(常考题)人教版初中数学八年级数学下册第四单元《一次函数》测试题(答案解析)(4)
一、选择题1.一次函数y=-3x-2的图象和性质,表述正确的是( )A .y 随x 的增大而增大B .函数图象不经过第一象限C .在y 轴上的截距为2D .与x 轴交于点(-2,0)2.下列图象中,不表示y 是x 的函数的是( )A .B .C .D .3.如图,直线5y x =+和直线y ax b =+相交于点P ,根据图象可知,方程组5y x y ax b =+⎧⎨=+⎩的解是( )A .510x y =⎧⎨=⎩B .1520x y =⎧⎨=⎩C .2025x y =⎧⎨=⎩D .2530x y =⎧⎨=⎩ 4.若直线y =kx+b 经过第一、二、四象限,则函数y =bx -k 的大致图像是( )A .B .C .D . 5.已知一次函数2y kx =+的图象经过点A ,且y 随x 的增大而减小,则点A 的坐标可以是( )A .()2,4-B .()2,4--C .()2,4D .()0,46.关于x 的正比例函数y kx =与一次函数y kx x k =+-的大致图像不可能是( ) A . B .C .D .7.如图,在平面直角坐标系中点A 的坐标为()0,6,点B 的坐标为3,52⎛⎫- ⎪⎝⎭,将AOB 沿x 轴向左平移得到A O B ''',若点B '的坐标为19,52⎛⎫- ⎪⎝⎭,点A '落在直线y kx =上,则k 的值为( )A .43-B .34-C .34D .611- 8.如图,直线y kx b =+与x 轴交于点()1,0-,与y 轴交于点()0,2-,则关于x 的不等式0kx b +<的解集为( )A .1x >-B .2x >-C .1x <-D .2x <- 9.在直角坐标系中,点()2,3A -、()4,3B 、()5,C a 在同一条直线上,则a 的值是( ) A .-6 B .6 C .6或3 D .6或-6 10.下列图象中,不可能是关于x 的一次函数y =px ﹣(p ﹣3)的图象的是( ) A . B . C . D . 11.在某大国的技术封锁下,华为公司凭借自身强大的创造力和凝聚力,华为概念指数从年初至今涨幅连连翻倍,比如硕贝德股票涨幅接近200%(如图AB 段),小丽在图片中建立了坐标系,将AB 段看作一次函数y kx b =+图象的一部分,则k ,b 的取值范围是()A .0k >,0b <B .0k >,0b >C .0k <,0b <D .0k <,0b > 12.直线y mx b =+与y kx =在同一平面直角坐标系中的图象如图所示,则关于x 的不等式mx b kx +<的解集为( )A .3x >-B .3x <-C .1x >-D .1x <-二、填空题13.在同一平面直角坐标系中的图像如图所示,则关于x 的不等式21k x k x b <+的解为____________.14.已知y 是x 的一次函数,下表中列出了部分对应值,则m 的值是________. x -10 m y1 -2 -5 15.甲,乙两人都要从A 仓库运送货物到B 仓库.甲从A 仓库出发匀速行驶,1小时后乙也从A 仓库出发沿同一线路匀速行驶,当乙先到达B 仓库送完货物后(不考虑货物交接的时间)立刻以原速一半的速度返回并在途中与甲第二次相遇.设甲行驶的时间为()h x ,甲和乙之间的距离为()km y 与甲出发的时间x 的函数关系式如图所示.则甲与乙第二次相遇时到A 仓库的距离为______km .16.若函数y =kx+b(k≠0)的图像平行于直线y =3x+2,且与直线y =-x -1交x 轴于同一点,则其函数表达式是_____.17.如图,一次函数483y x =-+的图象与,x y 轴交于点,A B ,点B 关于x 轴的对称点为C ,动点,P Q 分别在线段,BC AB 上(P 不与,B C 重合),且APQ ABO ∠=∠,当APQ 是以AQ 为底边的等腰三角形时,点P 的坐标是________.18.对于函数21y x =-,有下列性质:①它的图像过点()1,0,②y 随x 的增大而减小,③与y 轴交点为()0,1-,④它的图像不经过第二象限,其中正确的序号是______(请填序号).19.正方形A 1B 1C 1A 2,A 2B 2C 2A 3,A 3B 3C 3A 4,…,按如图所示的方式放置,点A 1A 2A 3,…和点B 1B 2B 3,…分别在直线y =x +1和x 轴上.则点C 2020的纵坐标是____.20.某一列动车从A 地匀速开往B 地,一列普通列车从B 地匀速开往A 地,两车同时出发,设普通列车行驶的时间为x (小时),两车之间的距离为y (千米),如图中的折线表示y 与x 之间的函数关系.根据图像进行探究,图中t 的值是__.三、解答题21.每年“双11"天猫商城都会推出各种优惠活动进行促销,今年,王阿姨的“双11“到来之前准备在两家天期店铺中选择一家购买原价均为1000元/条的被子2条和原价均为600元/个的颈椎枕若干个,已如网家店铺在活动明间分别给子以下优惠:A 店铺:"双11"当天购实所有商品可以享受8折优惠:B 店铺:买2条被子,赠送1个预椎枕、同时“双11"当天下单,还可立减160元;设购买颈椎枕x (个),若王阿姨在“双11"当天下单,A ,B 两个店铺优惠后所付金额分别为y A (元)、y B (元).(1)试分别表示y A 、y B 与x 的函数关系式;(2)王阿姨准备在”双11"当天购买4个颈椎枕,通过计算说明在哪家店铺购买更省钱? 22.如图,已知直线AB 与x 轴交于点A (1,0),与y 轴交于点B (0,﹣2). (1)求直线AB 的函数表达式.(2)已知直线AB 上一点C 在第一象限,且点C 的坐标为(a ,2),求a 的值及△BOC 的面积.23.如图,在平面直角坐标系中,过点()0,6C 的直线AC 与直线OA 相交于点()4,2A .(1)求直线AC 和OA 的函数解析式; (2)动点M 在直线AO 上运动,是否存在点M ,使OMC 的面积是OAC 的面积的14?若存在,求出此时点M 的坐标;若不存在,请说明理由.24.小东从A 地出发以某一速度向B 地走去,同时小明从B 地出发以另一速度向A 地走去,1y ,2y 分别表示小东、小明离B 地的距离()y km 与所用时间()x h 的关系,如图所示,根据图象提供的信息,回答下列问题:(1)试用文字说明交点P 所表示的实际意义;(2)求1y 与x 的函数关系式;(3)求小明到达A 地所需的时间.25.某商品经销店欲购进A 、B 两种纪念品,用160元购进的A 种纪念品与用240元购进的B 种纪念品的数量相同,每件B 种纪念品的进价比A 种纪念品的进价贵10元. (1)求A 、B 两种纪念品每件的进价分别为多少元?(2)若这两种纪念品共购进1000件,由于A 种纪念品销量较好,进购时A 不少于B 种纪念品的数量,且不超过B 种纪念品的1.5倍,问共有多少种进购方案?(3)该商店A 种纪念品每件售价24元,B 种纪念品每件售价35元,在(2)的条件下求出哪种方案获利最多,并求出最大利润.26.如图,直线1l :1y x =+与直线2l :2y x n =-+相交于点()1,P b .(1)求点P 的坐标;(2)若120y y >>,求x 的取值范围;(3)点(),0D m 为x 轴上的一个动点,过点D 作x 轴的垂线分别交1l 和2l 于点E ,F ,当3EF =时,求m 的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】根据一次函数y=kx+b (k≠0)的性质:k >0,y 随x 的增大而增大,函数从左到右上升;k <0,y 随x 的增大而减小,即可判断A 项,解析式特点找到函数通过的象限即可判断B 项;使y=0时,对应的横坐标即可判断C ;使x=0时,对应的纵坐标即可判断D .【详解】A. 因为k=-3,所以y 随x 的增大而减小,故此项不正确;B. 根据函数解析式y=-3x-2特点,函数图象经过第二、三、四象限,故此项正确;C. y=-3x-2与y 轴的交点坐标(0,-2),那么在y 轴上的截距为-2,故此项不正确;D. y=-3x-2与x 轴交于点(23-,0),故此项不正确; 故选B【点睛】本题考查了一次函数图象上点的坐标特征,一次函数的图象,一次函数的性质,正确掌握一次函数图象的增减性和一次函数的性质是解题的关键. 2.A解析:A【分析】依据函数的定义,x 取一个值,y 有唯一值对应,可直接得出答案.【详解】解:A 、根据图象知给自变量一个值,可能有2个函数值与其对应,故A 选项不是函数, B 、根据图象知给自变量一个值,有且只有1个函数值与其对应,故B 选项是函数, C 、根据图象知给自变量一个值,有且只有1个函数值与其对应,故C 选项是函数, D 、根据图象知给自变量一个值,有且只有1个函数值与其对应,故D 选项是函数, 故选:A .【点睛】此题主要考查了函数概念,任意画一条与x 轴垂直的直线,始终与函数图象有一个交点,那么y 是x 的函数.3.C解析:C【分析】根据图像可知,x=20,y=25即满足函数y=x+5,也满足函数y=ax+b ,即2025x y =⎧⎨=⎩是二元一次方程y=x+5的解,也是二元一次方程y=ax+b 的解,恰好满足了方程组的解.【详解】∵一次函数图像的交点为(20,25),∴方程组5y x y ax b =+⎧⎨=+⎩的解是2025x y =⎧⎨=⎩, 故选C.【点睛】本题考查了一次函数图像交点与二元一次方程组解的关系,熟练驾驭数形结合思想,准确理解交点的意义是解题的关键. 4.B解析:B【分析】根据一次函数y=kx+b 的图象经过第一、二、四象限,可以得到k 和b 的正负,然后根据一次函数的性质,即可得到一次函数y=bx-k 中b ,-k 的正负,从而得到图象经过哪几个象限,从而可以解答本题.【详解】解:∵一次函数y=kx+b 的图象经过第一、二、四象限,∴k <0,b >0,∴b >0,-k >0,∴一次函数y=bx-k 图象第一、二、三象限,故选:B .【点睛】本题考查一次函数的性质,解答本题的关键是明确题意,利用一次函数解析式判断其经过的象限解答.5.A解析:A【分析】根据函数解析式知函数图象过点(0,2),由一次函数y 随x 的增大而减小,得到函数图象经过第一、二、四象限,且第一、四象限内点的纵坐标小于2,第二象限内点的纵坐标大于2,即可得到答案.【详解】∵一次函数2y kx =+,当x=0时y=2,∴函数图象过点(0,2),∵一次函数y 随x 的增大而减小,∴函数图象经过第一、二、四象限,且第一、四象限内点的纵坐标小于2,第二象限内点的纵坐标大于2,故选:A .【点睛】此题考查一次函数的性质,熟记一次函数的性质并熟练解决问题是解题的关键. 6.D解析:D【分析】分k >0、k <0两种情况找出函数y=kx 及函数y=kx+x-k 的图象经过的象限,以及图象的变化趋势对照四个选项即可得出结论.【详解】解:设过原点的直线为l 1:y=kx ,另一条为l 2:y=kx+x-k ,当k <0时,-k >0,|k|>|k+1|,l 1的图象比l 2的图象陡,当k <0,k+1>0时,l 1:y kx =的图象经过二、四象限,l 2:y=kx+x-k 的图象经过一、二、三象限,故选项A 正确,不符合题意;当k <0,k+1<0时,l 1:y kx =的图象经过二、四象限,l 2:y=kx+x-k 的图象经过一、二、四象限,故选项B 正确,不符合题意;当k >0,k+1>0,-k <0时,l 1:y kx =的图象经过一、三象限,l 2:y=kx+x-k 的图象经过一、三、四象限,l 1的图象比l 2的图象缓,故选项C 正确,不符合题意;而选项D 中,,l 1的图象比l 2的图象陡,故选项D 错误,符合题意;故选:D【点睛】本题考查了正比例函数的图象及一次函数的图象,分k >0、k <0两种情况找出两函数图象经过的象限以及|k|的大小与函数图象的缓陡的关系是解答此题的关键.7.B解析:B【分析】 确定向左平移的距离为319()822---=,确定点A '的坐标为(-8,6),将其代入y=kx 中,得k=6(8)-=34-. 【详解】∵点B 的坐标为3,52⎛⎫- ⎪⎝⎭,将AOB 沿x 轴向左平移得到A O B ''',且点B '的坐标为19,52⎛⎫- ⎪⎝⎭,∴向左平移的距离为319()822---=, ∵点A 的坐标为()0,6,∴点A '的坐标为(-8,6), ∵点A '落在直线y kx =,∴6= -8k ,解得k=34-, 故选:B. .【点睛】本题考查了平移的基本规律,正比例函数解析式的确定,熟记平移的规律是解题的关键. 8.A解析:A【分析】根据一次函数的性质得出 y 随 x 的增大而减小,当 x >-1时,y <0,即可求出答案.【详解】直线 y kx b =+ 与 x 轴交于点(-1,0),与y 轴交于点()0,2-∴ 根据图形可得 k <0,∴y 随 x 的增大而减小,当 x >-1时,y <0,即0kx b +<.故答案为: A【点睛】本题主要考查对一次函数与一元一次不等式,一次函数的性质等知识点的理解和掌握,能熟练地运用性质进行说理是解此题的关键.9.B解析:B【分析】先用待定系数法求出直线AB 的解析式,然后将点C 的坐标代入即可确定a 的值.【详解】解:设点()2,3A -、()4,3B 所在的直线解析式为y=kx+b则3234k bk b-=+⎧⎨=+⎩,解得39kb=⎧⎨=-⎩则直线y=3x-9将点C的坐标代入得:a=3×5-9=6.故选:B.【点睛】本题主要考查了一次函数的应用,确定直线AB的解析式是解答本题的关键.10.D解析:D【分析】先根据一次函数的增减性、与y轴的交点可得一个关于p的一元一次不等式组,再找出无解的不等式组即可得.【详解】A、由图象知,(3)0pp>⎧⎨-->⎩,解得03p<<,即它可能是关于x的一次函数(3)y px p=--的图象,此项不符题意;B、由图象知,(3)0pp>⎧⎨--=⎩,解得3p=,即它可能是关于x的一次函数(3)y px p=--的图象,此项不符题意;C、由图象知,(3)0pp<⎧⎨-->⎩,解得0p<,即它可能是关于x的一次函数(3)y px p=--的图象,此项不符题意;D、由图象知,(3)0pp<⎧⎨--<⎩,不等式组无解,即它不可能是关于x的一次函数(3)y px p=--的图象,此项符合题意;故选:D.【点睛】本题考查了一次函数的图象与性质、一元一次不等式组,熟练掌握一次函数的图象与性质是解题关键.11.A解析:A【分析】根据题意和题目中函数图象,可以延长,得到该函数图象经过的象限,从而可以得到k、b 的正负情况,本题得以解决.【详解】解:由图象可得,该函数经过第一、三、四象限,0k ∴>,0b <,故选:A .【点睛】本题考查了一次函数的应用,一次函数的图象与系数的关系,解答本题的关键是明确题意,利用数形结合思想解答.12.C解析:C【分析】根据图象可得,直线y =mx +b 与y =kx 的交点坐标为(−1,3),所以当x >−1时,直线y =mx +b ,落在直线y =kx 的下方,可得关于x 的不等式mx +b <kx .即可得结论.【详解】根据图象可知:直线y mx b =+与y kx =的交点坐标为:(1,3)-,则关于x 的不等式mx b kx +<的解集为1x >-.故选:C .【点睛】本题考查了一次函数与一元一次不等式、一次函数的图象,解决本题的关键是掌握一次函数与一元一次不等式的关系.二、填空题13.x <-1【分析】根据不等式得到直线在直线的下方即可确定不等式的解集【详解】解:由不等式得直线在直线的下方∴自变量的取值范围为x <-1故答案为:x <-1【点睛】本题考查了一次函数与不等式的关系理解函数 解析:x <-1【分析】根据不等式得到直线2y k x = 在直线1y k x b =+的下方,即可确定不等式的解集.【详解】解:由不等式21k x k x b <+得直线2y k x = 在直线1y k x b =+的下方,∴自变量的取值范围为x <-1.故答案为:x <-1【点睛】本题考查了一次函数与不等式的关系,理解函数与不等式的关系是解题关键.14.1【分析】根据给定点的坐标利用待定系数法可求出一次函数解析式再代入(m-5)求出m 的值即可【详解】解:设一次函数的解析式为y=kx+b (k≠0)将(-11)(0-2)代入y=kx+b 得:解得:∴一次解析:1【分析】根据给定点的坐标,利用待定系数法可求出一次函数解析式,再代入(m ,-5)求出m 的值即可.【详解】解:设一次函数的解析式为y=kx+b (k≠0),将(-1,1),(0,-2)代入y=kx+b ,得:12k b b -+⎧⎨-⎩==, 解得:32k b -⎧⎨-⎩==, ∴一次函数的解析式为y=-3x-2.当x=m 时,y=-3×m-2=-5,∴m=1.故答案为:1.【点睛】本题考查了待定系数法求一次函数解析式以及一次函数图象上点的坐标特征,根据给定点的坐标,利用待定系数法求出一次函数解析式是解题的关键.15.72【分析】根据题意和函数图象中的数据可以求得甲乙的速度然后即可求得甲乙第二次相遇的时刻进而求得乙第二次与甲相遇时距离A 地多少千米【详解】解:从图象可以看出A 点表示乙从A 仓库出发B 点表示甲乙第一次相 解析:72【分析】根据题意和函数图象中的数据可以求得甲乙的速度,然后即可求得甲乙第二次相遇的时刻,进而求得乙第二次与甲相遇时,距离A 地多少千米.【详解】解:从图象可以看出,A 点表示乙从A 仓库出发,B 点表示甲乙第一次相遇,C 点表示乙到达B 码头,D 点表示甲乙第二次相遇.设甲的速度为akm/h ,乙的速度为bkm/h ,()()1.5 1.517 1.5403a b b a ⎧-⎪⎨⎛⎫-⨯- ⎪⎪⎝⎭⎩== 解得,2472a b ⎧⎨⎩==设甲乙第二次相遇的时间为t 小时,()74024363t ⎛⎫=+⨯- ⎪⎝⎭, 解得,t=3,则乙第二次与甲相遇时,甲距离A 仓库:24×3=72(km ),故答案为:72.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.16.y=3x+3【分析】根据平行直线的解析式求出k 值再把点的坐标代入解析式求出b 值即可【详解】y=-x-1当y=0时x=-1∴线y =-x -1交x 轴于点(-10)∵y=kx+b 的图象平行于直线y=3x+2解析:y=3x+3【分析】根据平行直线的解析式求出k 值,再把点的坐标代入解析式求出b 值即可.【详解】y=-x-1,当y=0时,x=-1,∴线y =-x -1交x 轴于点(-1,0),∵y=kx+b 的图象平行于直线y=3x+2,∴k=3,又∵函数y =kx+b(k≠0)的与直线y =-x -1交x 轴于同一点,∴函数y =kx+b(k≠0)经过点(-1,0),∴-3+b=0,∴b=3,∴函数的表达式是y=3x+3,故答案为:y=3x+3.【点睛】本题考查了求一次函数解析式,涉及了两直线平行的问题,熟知两直线平行时,k 值相等是解题的关键.17.【分析】由一次函数的图象与轴交于点可得A (60)B (08)由勾股定理AB=由点B 与点C 关于x 轴对称可求C (0-8)AB=AC=10可证△BPQ ≌△CAP(AAS)由性质可得PB=CA=10由线段和差解析:(0,2)-【分析】 由一次函数483y x =-+的图象与,x y 轴交于点,A B ,可得A (6,0),B (0,8),由勾股定理,由点B 与点C 关于x 轴对称,可求C (0,-8),AB=AC=10,可证△BPQ ≌△CAP(AAS),由性质可得PB=CA=10,由线段和差OP=BP-OB=2即可.【详解】解:∵一次函数483y x =-+的图象与,x y 轴交于点,A B , ∴x=0,y=8;y=0,48=03x -+,解得x=6, ∴A (6,0),B (0,8),∴AB=2222OA +OB =6+8=10,∵点B 与点C 关于x 轴对称,∴C (0,-8),AB=AC=10,∵∠QPA=∠ABC=∠ACB ,∴∠BPQ+∠APC=108°-∠QPA ,∵∠PAC+∠APC=180°-∠BCA=180°-∠QPA ,∴∠BPQ=∠CAP ,∵PQ=PA ,∴△BPQ ≌△CAP(AAS),∴PB=CA=10,∴OP=BP-OB=10-8=2,P(0,-2),故答案为:(0,-2).【点睛】本题考查一次函数的性质,勾股定理的应用,轴对称性质,等腰三角形的性质,三角形全等的判定与性质,掌握一次函数的性质,勾股定理的应用,轴对称性质,等腰三角形的性质,三角形全等的判定与性质,解题关键发现并会利用一线三等角构造全等.18.③④【分析】根据一次函数的性质进行计算即可【详解】解:把x =1代入解析式得到y =1即函数图象经过(11)不经过点(10)故①错误;函数y =2x−1中k =2>0则该函数图象y 值随着x 值增大而增大故②错解析:③④【分析】根据一次函数的性质进行计算即可.【详解】解:把x =1代入解析式得到y =1,即函数图象经过(1,1),不经过点(1,0),故①错误;函数y =2x−1中,k =2>0,则该函数图象y 值随着x 值增大而增大,故②错误; 把x =0代入解析式得到y =-1,即函数图象经过(0,-1),故③正确;函数y =2x−1中,k =2>0,b =−1<0,则该函数图象经过第一、三、四象限,不经过第二象限,故④正确;故答案为:③④.【点睛】本题考查了一次函数的性质,掌握一次函数的性质是解题的关键.19.22019【分析】利用一次函数图象上点的坐标特征及正方形的性质可得出点A1A2A3的坐标即可根据正方形的性质得出C1C2C3的纵坐标根据点的坐标的变化可找出变化规律:点Cn 的纵坐标为2n-1再代入n解析:22019【分析】利用一次函数图象上点的坐标特征及正方形的性质可得出点A 1,A 2,A 3的坐标,即可根据正方形的性质得出C 1,C 2,C 3的纵坐标,根据点的坐标的变化可找出变化规律:点C n 的纵坐标为2n-1,再代入n=2020即可得出结论.【详解】解:作1C D ⊥x 轴于D ,当x=0时,y=x+1=1,当y=0时,x=-1,∴点A 1的坐标为(0,1),点A 的坐标为(-1,0),∵四边形A 1B 1C 1A 2为正方形,∴∠111A AO A B A ∠==∠1145C B D =︒,∴11111A A A B C B ==,∴Rt △1A AO ≅Rt △11C B D ,∴11A O C D =,∴点C 1的纵坐标与点A 1的纵坐标相同,都为1,当x=1时,y=x+1=2,∴点A 2的坐标为(1,2).同理,点C 2的纵坐标为2.同理,可知:点A 3的坐标为(3,4),点C 3的纵坐标为4.……,∴点C n 的纵坐标为2n-1,∴点C 2020的纵坐标为22019.故答案为:22019.【点睛】本题考查了一次函数图象上点的坐标特征、正方形的性质以及规律型:点的坐标,根据点的坐标的变化找出变化规律:点C n 的纵坐标为2n-1是解题的关键.20.4【分析】根据题意和函数图象中的数据:AB 两地相距900千米两车出发后3小时相遇普通列车全程用12小时即可求得普通列车的速度和两车的速度和进而求得动车的速度解答即可【详解】由图象可得:AB 两地相距9解析:4【分析】根据题意和函数图象中的数据:AB 两地相距900千米,两车出发后3小时相遇,普通列车全程用12小时,即可求得普通列车的速度和两车的速度和,进而求得动车的速度,解答即可.【详解】由图象可得:AB 两地相距900千米,两车出发后3小时相遇, 普通列车的速度是:90012=75千米/小时, 动车从A 地到达B 地的时间是:900÷(9003-75)=4(小时), 故填:4.【点睛】 本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.三、解答题21.(1)y A =480x +1600,y B =600x +1240;(2)在A 店铺购买更省钱.【分析】(1)根据两个店铺的优惠方案即可得到结果;(2)把4x =代入到(1)的式子中,即可得解;【详解】(1)解:由题意得:.y A =1000×2×0.8+0.8×600x =480x +1600;y B =1000×2+600(x -1)-160=600x +1240;(2)解:当x =4时,y a =480×4+1600=3520;y B =600×4+1240=3640;∵3520<3640,∴在A 店铺购买更省钱.【点睛】本题主要考查了一次函数的应用,准确理解题意列式计算是解题的关键.22.(1)y =2x ﹣2;(2)a =2,S △BOC =2.【分析】(1)设函数的关系式,把点A 、B 的坐标代入,即可求出待定系数,确定函数关系式, (2)把C (a ,2)代入y=2x-2,即可求得a 的值,然后根据三角形面积公式△BOC 的面积.【详解】解:(1)设一次函数的关系式为y=kx+b ,把A (1,0),B (0,-2)代入得, 02kx b b +=⎧⎨=-⎩,解得,22k b =⎧⎨=-⎩∴直线AB 的表达式为y=2x-2;;(2)∵点C (a ,2)在直线y =2x ﹣2上,∴2=2a ﹣2,∴a =2,∴C (2,2),∴S △BOC =1222⨯⨯=2. 【点睛】 本题考查待定系数法求一次函数的关系式,一次函数图象上点的坐标特征以及三角形的面积,熟练掌握待定系数法是解题的关键.23.(1)16,2y x y x =-+=;(2)存在,11,2⎛⎫ ⎪⎝⎭或11,2⎛⎫-- ⎪⎝⎭ 【分析】(1)利用待定系数法即可求出直线AC 和OA 的函数解析式;(2)根据(1)求出OAC 的面积,然后将OMC 的面积用含有M 坐标的式子表示出来,即可求出M 坐标.【详解】(1)设直线AB 的解析式是y kx b =+,根据题意得:426k b b +=⎧⎨=⎩解得:16k b =-⎧⎨=⎩则直线的解析式是:6y x =-+,设OA 的解析式是y mx =,则42m =, 解得:12m =, 则直线的解析式是:12y x =; (2)∵当OMC ∆的面积是OAC ∆的面积的14时, ∴14OMC S OAC ∆=∆, 即111242M C OC x OC x ⨯⨯=⨯⨯⨯, ∴1414M x =⨯=, 当1M x =时,12M y =, 当1M x =-时,12M y =-时, ∴M 的坐标为11,2⎛⎫ ⎪⎝⎭或11,2⎛⎫-- ⎪⎝⎭. 【点睛】本题重点在于利用待定系数法求函数解析式,以及利用未知数表示三角形面积,依次求出点坐标.24.(1)交点P 表示小东和小明出发2.5小时在距离B 地7.5km 处相遇;(2)1520y x =-+;(3)263h 【分析】(1)根据相遇问题的等量关系结合函数图象的表示的量,可知点P 横纵坐标表示两人相遇时的时间和两人离B 地的距离;(2)代入两个已知点坐标列出方程组,用待定系数法求出解析式即可;(3)根据时间等于路程除以速度,用小明走的路程除以小明走的速度即可得到结果.【详解】解:(1)交点P 表示小东和小明出发2.5小时在距离B 地7.5km 处相遇.(2)设1y 与x 的函数关系式为1y kx b =+(k ,b 为常数,且0k ≠),因为函数图象经过点()020,,()40,,所以20b =,①40k b +=,②解得5k =- 所以1y 与x 的函数关系式为1520y x =-+.(3)小明的速度为()7.5 2.53/km h ÷=,小明到达A 地所需的时间为()220363h ÷=. 【点睛】 本题考查一次函数的应用、待定系数法求解析式和读懂函数图象的能力,熟练运用相遇问题的数量关系解决相关问题是解题的关键.25.(1)A 、B 两种纪念品每件进价分别为20元、30元;(2)101种;(3)A 种500件,B 种中500件时,最大利润为4500元【分析】(1) 设A 种纪念品每件进价a 元,则B 种纪念品每件进价(10)x +元,根据题意列方程求解即可;(2)设A 种纪念品购进y 件,则B 种纪念品购进(1000)y -件,依据题意列不等式组,求出y 的整数取值范围,即可得出进购方案;(3)根据题意得出利润的关系式,再结合第二问y 的取值范围求出最大利润.【详解】解:(1)设A 种纪念品每件进价a 元,则B 种纪念品每件进价(10)x +元. 根据题意得16024010x x =+,去分母, 得:160(10)240x x +=,解得:20x , 经检验,20x 是原方程的解,1030x +=(元),∴A 种纪念品每件进价20元,B 种纪念品每件进价30元.(2)设A 种纪念品购进y 件,则B 种纪念品购进(1000)y -件,根据题意得:10001.5(1000)y y y y ≥-⎧⎨≤-⎩,解得:500600y ≤≤. 又y 只能取整数,500y ∴=,501, (600)则共有101种购进方案.(3)由题意得,最大利润为:(2420)(3530)(1000)5000W y y y =-+--=-+,在500600y ≤≤时,当500y =时,max 4500W =(元),∴当A 种购进500件,B 种购进500件时,利润最大为4500元.【点睛】本题考查分式方程、一元一次不等式组及一次函数的综合应用,解题关键在于充分理解题意,根据题意列出相关关系式进行求解.26.(1)()1,2P ;(2)12x <<;(3)2m =或0m =.【分析】(1)把()1,P b 代入1l 的解析式可求解;(2)由(1)可先求解2l 的解析式,然后根据图像可进行求解;(3)把x m =分别代入12l l 、解析式可得点E 、F 的坐标,然后根据两点距离公式可分当1m 时和当1m <时,最后求解即可.【详解】解:(1)把()1,P b 代入1l 解析式得: 112b =+=,∴()1,2P .(2)把()1,2代入2l 解析式得: 22n =-+,∴4n =,∴2l :24y x =-+,当0y =时,2x =,∴当120y y >>时x 的取值范围为12x <<. (3)把x m =分别代入12l l 、解析式得: 1y m =+和24y m =-+, ∴点()(),1,,24E m m F m m +-+, ∴当1m 时,()1243m m +--+=, ∴2m =,当1m <时,2413m m -+--=, ∴0m =.【点睛】本题主要考查一次函数的综合,熟练掌握一次函数的性质是解题的关键.。
专题01 一次函数的概念与图像(真题测试)(解析版)
专题01 一次函数的概念与图像【真题测试】 一、选择题1.(松江2018期中13)下列函数中,是一次函数的是( ) A.11y x=+; B.2y x =-; C.()y kx b k b =+、是常数; D.22y x =+. 【答案】B ;【解析】A 、右边是分式,故A 不是一次函数;B 、根据一次函数定义可知:B 为一次函数;C 、当k=0时,y kx b =+就不是一次函数,故C 错误;D 、是二次函数;故此题答案案选B.2.(奉贤2018期末1)下列函数中,一次函数是( )A.B.C.11y x=+ D.22y x =-【答案】A ;【解析】解:A 、y=x 属于一次函数,故此选项正确;B 、y=kx (k≠0),故此选项错误;C 、11y x=+,不符合一次函数的定义,故此选项错误;D 、22y x =-,不符合一次函数的定义,故此选项错误;故选:A . 3.(浦东四署2018期中1)下列函数中,是一次函数的是( ) (A )21+=xy ; (B )2+=x y ; (C )22y x =+; (D )y kx b =+ 【答案】B ; 【解析】A 、因为12x+是分式,故A 不是一次函数;B 、2y x =+是一次函数,故B 正确;C 、22y x =+是二次函数,故C 错误;D 、当0k =时,y kx b =+是常数函数,故D 错误;因此答案选B. 4.(长宁2018期末1)函数y =(k -2)x +3是一次函数,则k 的取值范围是( )A. B. C. D.【答案】D ;【解析】解:由题意得:k-2≠0, 解得:k≠2, 故选:D .5.(松江2018期中14)如图,一次函数y kx b =+的图像经过(1,3),(2,0)两点,那么当3y >时,x 的取值范围是( )A.0x <;B.2x <;C.1x >;D.1x <.2yxOP (1,3)【答案】D ;【解析】数形结合法;当3y >时,对应的图像是点P 以上的部分,故1x <,答案选D. 6. (长宁2018期末2)函数y =2x -1的图象经过( )A. 一、二、三象限;B. 二、三、四象限;C. 一、三、四象限;D. 一、二、四象限;【答案】C ;【解析】解:∵2>0, ∴一次函数y=-x+2的图象一定经过第一、三象限; 又∵-1<0, ∴一次函数y=2x-1的图象与y 轴交于负半轴, ∴一次函数y=2x-1的图象经过第一、三、四象限; 故选:C . 7. (松江2019期中2)一次函数y=﹣2x+1的图象不经过下列哪个象限( ) A. 第一象限 B. 第二象限C. 第三象限D. 第四象限【答案】C【解析】解:∵20,10k b =>=>,根据一次函数的图像即可判断函数所经过一、二、三象限,不经过第四象限,故选D .8.(闵行2018期末1)一次函数y =3x ﹣2的图象不经过( ) A .第一象限 B .第二象限C .第三象限D .第四象限【答案】B ;【解析】解:∵一次函数y =3x ﹣2中,k =3>0,b =﹣2<0,∴此函数的图象经过一三四象限,不经过第二象限.故选:B .9.(嘉定2019期末1)直线23y x =-的截距是( ) A. – 3; B. – 2; C. 2; D. 3. 【答案】A ;【解析】令0x =,得3y =-,故直线23y x =-的截距是-3. 故选A. 10. (松江2019期中5)一次函数的图像大致是( )A. B. C. D.【答案】B【解析】解:∵k <0,∴﹣k >0,则一次函数的图象为,y 随自变量x 的增大而减小,图象与y 轴的正半轴相交.故选B.11.(松江2018期中17)一次函数12y ax b y bx a =+=+与在同一坐标系中的图像可能是( )CDOx y yxO Ox y yx O BA【答案】C ;【解析】A 、若经过一、二、三象限的直线为1y ax b =+,则0,0a b >>,所以2y bx a =+经过一、二、三象限,矛盾,故A 错误;B 、若经过一、二、四象限的直线为1y ax b =+,则0,0a b <>,所以2y bx a =+经过一、三、四象限,矛盾,故B 错误;C 、若经过一、二、四象限的直线为1y ax b =+,则0,0a b <>,所以2y bx a =+经过一、三、四象限,故C 正确;D 、若经过一、二、四象限的直线为1y ax b =+,则0,0a b <>,所以2y bx a =+经过一、三、四象限,矛盾,故D 错误;因此答案选C.12.(浦东四署2018期中6)如图,直线443y x =-+与x 轴、y 轴分别交于A 、B 两点,把AOB △绕点A 顺时针旋转90°后得到AO B ''△,则点B '的坐标是 ( ) (A )(3,4) (B )(4,5) (C )(7,4) (D )(7,3)【解析】依题可知:A (3,0)、B (0,4),故OA=3,OB=4;将AOB △绕点A 顺时针旋转90°后得到AO B ''△,OA='O A =3,''4OB O B ==,且'O A x ⊥轴,''O B //x 轴,故'B 点的横坐标为3+4=7,纵坐标为3,即'(7,3)B ,因此答案选D.二、填空题13. (长宁2018期末7)已知函数f (x )=+1,则f ()=______.【答案】3; 【解析】解:f (x )=+1,则f ()=×+1=2+1=3,故答案为:3.14.(长宁2019期末6)已知函数224(5)1m y m x m -=-++,若它是一次函数,则m = .【答案】﹣5;【解析】解:由224(5)1my m x m -=-++是一次函数,得m 2﹣24=1且m ﹣5≠0,解得m =﹣5.15.(普陀2018期中7)函数y =-2x +3在y 轴上的截距为______. 【答案】3;【解析】∵函数y=-2x+3,则b=3,∴根据截距的定义,得在y 轴上的截距为3,故答案为3. 16.(崇明2018期中6)一次函数26y x =-在y 轴上的截距是 . 【答案】- 6;【解析】一次函数26y x =-在y 轴上的截距是 – 6. 17.(松江2019期中8)一次函数的图像在y 轴上的截距是_____________.【答案】-2【解析】解:令x=0,得y=﹣2,则一次函数图象在y 轴上的截距是﹣2.故答案为:﹣2.18.(闵行2018期末7)已知一次函数y =2(x ﹣2)+b 的图象在y 轴上的截距为5,那么b = . 【答案】9;【解析】解:∵y =2(x ﹣2)+b =2x +b ﹣4,且一次函数y =2(x ﹣2)+b 的图象在y 轴上的截距为5, ∴b ﹣4=5,解得:b =9.故答案为:9.19.(黄浦2018期中15)如果一次函数y =-3x +m -1的图象不经过第一象限,那么m 的取值范围是______ 【答案】m≤1;【解析】解:∵一次函数y=-3x+m-1的图象不经过第一象限, ∴m-1≤0, 解得 m≤1. 故答案是:m≤1. 20. (奉贤2018期末9)一次函数y =kx +3的图象不经过第3象限,那么k 的取值范围是______【解析】解:∵一次函数y=kx+3的图象不经过第3象限, 一次函数y=kx+3的图象即经过第一、二、四象限, ∴k <0. 故答案为:k <0,21.(金山2018期中9)将直线21y x =--向上平移4个单位,所得直线的表达式是 . 【答案】23y x =-+【解析】将直线21y x =--向上平移4个单位,则得21423y x y x =--+=-+即.22.(浦东四署2019期中11)将直线31y x =--沿y 轴向下平移3个单位,所得直线的表达式为 . 【答案】34y x =--【解析】 将直线31y x =--沿y 轴向下平移3个单位,所得直线的表达式为313y x =---,即34y x =--. 23.(普陀2018期末10)将直线y =﹣2x ﹣2向上平移5个单位后,得到的直线为 . 【答案】y =﹣2x +3;【解析】解:将直线y =﹣2x ﹣2向上平移5个单位,得到直线y =﹣2x ﹣2+5,即y =﹣2x +3;24.(青浦2018期末8)把函数y =2x 的图象向右平移1个单位长度,得到的函数图象解析式为 . 【答案】y =2(x ﹣1);【解析】解:把函数y =2x 的图象向右平移1个单位长度,得到的函数图象解析式为y =2(x ﹣1). 25.(浦东四署2019期末11)如果将直线112y x =+平移,使其经过点(0,2),那么平移后所得直线的表达式是 . 【答案】122y x =+; 【解析】设平移后所得的直线表达式是12y x b =+,点(0,2)代入得2b =,故表达式为122y x =+.26. (杨浦2019期中3)直线b kx y +=与15+-=x y 平行,且经过点(2,1),则k= b= . 【答案】-5、11; 【解析】依题,得521k k b =-⎧⎨+=⎩,解得511k b =-⎧⎨=⎩.27. (普陀2018期中10)已知直线y =kx +b 如图所示,当y <0时,x 的取值范围是______.【答案】x <2【解析】解: ∵A 点横坐标为2,∴当y <0时,x <2,故答案为:x <2.28. (杨浦2019期中4)已知,一次函数b kx y +=的图像经过点A (2,1)(如下图所示),当1y ≥时,x 的取值范围是 .21OA (2,1)XY【答案】2x ≤;【解析】由“数形结合”法可知,当1y ≥时,是指直线上点A 左边的部分射线,所以它对应的x 的取值范围是2x ≤.29.(嘉定2019期末8)已知函数37y x =-+,当2x >时,函数值y 的取值范围是 . 【答案】1y <;【解析】由37y x =-+可得73y x -=-,因为2x >,故723y ->-,解得1y <. 30.(杨浦2019期中1)一次函数72--=x y 与x 轴的交点是 . 【答案】7,02⎛⎫-⎪⎝⎭; 【解析】令0y =,得027x =--,72x =-,所以与x 轴交点坐标为7,02⎛⎫- ⎪⎝⎭. 31.(崇明2018期中10)直线334y x =-与x 轴和y 轴的交点分别为A 、B ,那么线段AB 的长为 . 【答案】5; 【解析】因为直线334y x =-与x 轴和y 轴的交点分别为A 、B ,所以A (4,0)、B (0,-3),故OA=4,OB=3,所以AB=5.32.(浦东四署2018期中9一次函数的图像经过点(0,2)、(–2,0),这个一次函数的解析式是 . 【答案】y kx b =+;【解析】设一次函数解析式为y kx b =+,点(0,2)、(–2,0)代入得220b k b =⎧⎨-+=⎩,解得12k b =⎧⎨=⎩,故一次函数解析式为:2y x =+.33. (松江2019期中16)函数y kx b =+(k 、b 为常数)的图象如图所示,则关于x 的不等式0kx b +>的解集是_________.【答案】x<2.【解析】函数y kx b =+(k 、b 为常数)的图象经过(2,0),并且函数值y 随x 的增大而减小,所以x<2时,函数值小于0,即关于x 的不等式0kx b +>>0的解集是x<2.34. (长宁2018期末10)如图,一次函数y =kx +b (k ≠0)的图象经过点(2,0),则关于x 的不等式kx +b >0的解集是______.【答案】x <2;【解析】解:由图象可得:当x <2时,kx+b >0, 所以关于x 的不等式kx+b >0的解集是x <2.35. (普陀2018期中17)如图,在直角坐标系xOy 中,点A 的坐标是(2,0)、点B 的坐标是(0,2)、点C 的坐标是(0,3),若直线CD 的解析式为y =-x +3,则S △ABD 为______.【答案】1【解析】解:∵点A 的坐标是(2,0)、点B 的坐标是(0,2),∠AOB=90°,∴OA=2,OB=2,∴AB=22,∠ABO=45°,设过点A 和点B 的直线解析式为y=kx+b ,202k b b +=⎧⎨=⎩,得12k b =-⎧⎨=⎩,∴过点A 和点B 的直线解析式为y=-x+2,∵点C 的坐标是(0,3),直线CD 的解析式为y=-x+3,∴BC=1,AB ∥CD ,∴∠OCD=∠OBA=45°,∴点B到直线CD 的距离是:BC•sin45°=21⨯=2,∴点D 到AB 的距离是:2,∴S △ABD=22222⨯=1.三、解答题36.(闵行2018期末22)已知直线y =kx +b 经过点A (﹣20,5)、B (10,20)两点. (1)求直线y =kx +b 的表达式; (2)当x 取何值时,y >5. 【答案】(1)y =12x +15;(2)x >﹣20; 【解析】解:(1)根据题意得2051020k b k b -+=⎧⎨+=⎩,解得1215k b ⎧=⎪⎨⎪=⎩,所以直线解析式为y =12x +15; (2)解不等式12x +15>5得x >﹣20,即x >﹣20时,y >5. 37. (松江2019期中23)已知一次函数y=kx+b (k 、b 是常数)的图像平行于直线3y x =-,且经过点(2,-3).(1)求这个一次函数的解析式;(2)求这个一次函数与两坐标轴所围成的图形面积. 【答案】(1) y=-3x+3;(2)32. 【解析】解:(1)∵y=kx+b 平行于直线3y x =-,∴k=-3,∵一次函数经过点(2,-3),∴代入得b=3, ∴y=-3x+3;(2)一次函数与x 轴交于点(1,0),与y 轴交于点(0,3),∴面积133122S ∆=⨯⨯=. 38. (浦东2018期末21)已知直线y =kx +b 与直线13y x k =-+都经过点A (6,-1),求这两条直线与x 轴所围成的三角形面积.【答案】2;【解析】解:∵直线y =kx +b 与直线y =-x +k 都经过点A (6,-1),∴,解得,∴两条直线的解析式分别为y =x -7和y =-x +1,∴直线y =x -7与x 轴交于点B (7,0),直线y =-x +1与x 轴交于点C (3,0),∴S △ABC =×4×1=2,即这两条直线与x 轴所围成的三角形面积为2.39.(金山2018期中23)已知一次函数的图像经过点A (-3,2),且平行于直线41y x =+. (1)求这个函数解析式;(2)求该一次函数的图像与坐标轴围成的图形面积. 【答案】(1)414y x =+;(2)492; 【解析】解:(1)因为一次函数图像与直线41y x =+平行,所以设一次函数4y x b =+,把(3,2)A -代入得122b -+=,得14b =,所以414y x =+;(2)设直线414y x =+与x 轴交于A ,与y 轴交于B ,当x=0时,y=14,故B (0,14);当y=0时,x=72-,故7(,0)2A -, 所以7,142OA OB ==,所以11749142222AOBS OA OB ∆=⨯⨯=⨯⨯=. 40.(崇明2018期中28)已知:如图,在直角坐标平面中,点A 在x轴的负半轴上,直线y kx =+点A ,与y 轴相交于点M ,点B 是点A 关于原点的对称点,过点B 的直线BC x ⊥轴,交直线y kx =+于点C ,如果60MAO ∠=︒. (1)求直线AC 的表达式;(2)如果点D 在直线AC 上,且ABD ∆是等腰三角形,请求出点D 的坐标.【答案】(1)y =(2)(2,D -或;【解析】解:(1)由题意,得点M的坐标为,即OM =,60CAB ∠=︒Q ,所以AO =1,即点A 的坐标为(-1,0);因为直线y kx =+经过点A,0k ∴=-+k =所以这条直线的表达式为y =+ (2)由题意,得点B (1,0).设直线AC 上的点D的坐标为(m +,因为ABD ∆是等腰三角形,所以:当AB=AD 时,点D坐标为(2,D -或;当AB=BD 时,点D坐标为D 、(-1,0)(与点A 重合,舍去);当BD=AD 时,点D 的坐标为(0,3).综上所述,点D的坐标为(0,3)(2,3)D --或.41.(松江2018期中27)如图,直线343y x =-+与x 轴相交于点A ,与直线3y x =相交于点P. (1)求点P 的坐标;(2)请判断OPA ∆的形状并说明理由;(3)动点E 从原点O 出发,以每秒1个单位的速度沿着O P A →→的路线向点A 匀速运动(E 不与点O 、A 重合),过点E 分别作EF x ⊥轴于F ,EB y ⊥轴于B ,设运动t 秒时,矩形EBOF 与OPA ∆重叠部分的面积为S ,求S 与t 之间的函数关系式.【答案】(1)(2,3);(2)OPA ∆是等边三角形;(3)223(02)334383(24)t S t t ⎧<≤⎪=⎨⎪+-<<⎪⎩【解析】解:(1)由3433y x y x ⎧=-+⎪⎨=⎪⎩得223x y =⎧⎪⎨=⎪⎩P 的坐标为(2,23);(2)OPA ∆是等边三角形. 证明:当y=0时,x=4,所以A (4,0);222(23)4OP +=Q ,22(24)(230)4PA =-+-=,所以OA=OP=PA ,所以OPA ∆是等边三角形.(3)当02t <≤时,21133222t t S OF EF ==⨯=g ;当24t <<时,21334344383222t t S t t ⎛⎫⎫=⨯-+-=+- ⎪⎪⎝⎭⎭故223(02)334383(24)t S t t ⎧<≤⎪=⎨⎪+-<<⎪⎩.42.(浦东四署2018期中26)将直角坐标系中一次函数的图像与坐标轴围成的三角形,叫做此一次函数的坐标三角形(也称为直线的坐标三角形).如图,一次函数y =kx -7的图像与x 、y 轴分别交于点A 、B ,那么△ABO 为此一次函数的坐标三角形(也称为直线AB 的坐标三角形).(1)如果点C 在x 轴上,将△ABC 沿着直线AB 翻折,使点C 落在点D (0,18)上, 求直线BC 的坐标三角形的面积;(2)如果一次函数y =kx -7的坐标三角形的周长是21,求k 值;(3)在(1)(2)条件下,如果点E 的坐标是(0,8),直线AB 上有一点P ,使得△PDE 周长最小,且点P 正好落在某一个反比例函数的图像上,求这个反比例函数的解析式.【答案】(1)84;(2)43k =-;(3)45y x=-; 【解析】解:(1)∵翻折,∴BC =BD .∵点B (0,-7)、D (0,18),∴BC =25,OB =7, ∵OC 2+OB 2=BC 2,∴OC 2+72=252,∴OC =24, ∴直线BC 的坐标三角形的面积=12×7×24=84. (2)设点A 的坐标为(m ,0),(m <0).∵点B (0,-7),∴OA =-m ,OB =7,AB =227m +.∵△ABO的周长为21∴-m +7227m +21227m +m +14,平方,得28m =-147,∴m =214-,∴点A (214-,0).将点A (214-,0)的坐标代入y =kx -7,得43k =-; (3)联结CE 交AB 于点P ,联结DP .∵PC =PD ,点P 与C 、E 在一条直线上,∴PE +PD =PE +PC =CE ,∵CE 为定长,∴△PDE 的周长最小. ∵点C (-24,0)、E (0,8),∴直线CE 的解析式为y =13x +8. ∵直线AB的解析式为y=4 3 -x-7,∴联立183473y xy x⎧⎪⎪⎨⎪=--⎪⎩=+,解得95xy=⎧⎨=⎩∴点P的坐标为(-9,5 ),∴反比例函数的解析式为45yx=-.。
热点10.一次函数的图像和性质
热点10 一次函数的图像与性质一、选择题1.(2001黄冈)若一元二次方程x2-2x-m=0无实数根,则一次函数y=(m+1)x+m-1 的图像不经过().A.第一象限B.第二象限C.第三象限D.第四象限2.(2001黄冈)某工厂去年积压产品a件(a>0),今年预计每月销售产品2b件(b>0),同时每月可生产出产品b件,如果产品积压量y(件)是今年开工时间t(月)的函数,则其图像只有是().3.(2015黄冈)货车和小汽车同时从甲地出发,以各自的速度匀速向乙地行驶,小汽车到达乙地后,立即以相同的速度沿原路返回甲地.已知甲、乙两地相距180 千米,货车的速度为60 千米/小时,小汽车的速度为90 千米/小时,则下图中能分别反映出货车、小汽车离乙地的距离y(千米)与各自行驶时间t(小时)之间的函数图象是( )4.(2013黄冈) .一列快车从甲地驶往乙地,一列特快车从乙地驶往甲地,快车的速度为100千米/小时,特快车的速度为150千米/小时,甲乙两地之间的距离为1000千米,两车同时出发,则图中折线大致表示两车之间的距离y(千米)与快车行驶时间t(小时)之间的函数图象是()5.(2012黄冈)某物流公司的快递车和货车同时从甲地出发,以各自的速度匀速向乙地行驶,快递车到达乙地后卸完物品再另装货物共用45 分钟,立即按原路以另一速度匀速返回,直至与货车相遇.已知货车的速度为60 千米/ 时,两车之间的距离y(千米)与货车行驶时间x(小时)之间的函数图象如图所示,现有以下4 个结论:①快递车从甲地到乙地的速度为100 千米/时;②甲、乙两地之间的距离为120 千米; ③图中点B 的坐标为(3,75);④快递车从乙地返回时的速度为90 千米/时. 以上4 个结论中正确的是____________(填序号)6.(2011黄冈)如图,把Rt △ABC 放在直角坐标系内,其中∠CAB =90°,BC =5,点A 、B的坐标分别为(1,0)、(4,0),将△ABC 沿x 轴向右平移,当点C 落在直线y =2x -6上时,线段BC 扫过的面积为( )A .4B .8C .16 D.7.(2010黄冈)已知四条直线y =kx -3,y =-1,y =3和x =1所围成的四边形的面积是12,则k 的值为( )A .1或-2B .2或-1C .3D .4 8.(2009黄冈)小高从家门口骑车去单位上班,先走平路到达点A ,再走上坡路到达点B ,最后走下坡路到达工作单位,所用的时间与路程的关系如图所示.下班后,如果他沿原路返回,且走平路、上坡路、下坡路的速度分别保持和去上班时一致,那么他从单位到家门口需要的时间是()A .12分钟B .15分钟C .25分钟D .27分钟B 9.(2002黄冈)无论m 为何实数,直线m x y 2+=与4+-=x y 的交点不可能在( )(A ) 第一象限(B )第二象限(C )第三象限(D )第四象限10.(2003黄冈)某公司员工分别住在A ,B ,C 三个住宅区,A 区有30人,B 区有15人,C 区有10人.三个区在同一条直线上,位置如图所示.该公司的接送车打算在此间只设一个停靠点,为使所有员工步行到停靠点的路程之和最小,那么停靠点的位置应设在( ).A .A 区B .B 区C .C 区D .A 、B 两区之间11.(2004•黄冈)某班同学在探究弹簧的长度跟外力的变化关系时,实验记录得到的相应数据如下表,则y 关于x 的函数图象是( )A 、B 、C 、D 、12.(2006黄冈)如图,在光明中学学生耐力测试比赛中,甲、乙两学生测试的路程S(米)与时间t(秒)之间的函数关系图像分别为折线OABC 和线段OD ,下列说法正确的是( )A 、乙比甲先到达终点B 、乙测试的速度随时间增加而增大C 、比赛进行到29.4秒时,两人出发后第一次相遇D 、比赛全程甲的测试速度始终比乙的测试速度快。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一次函数的图像和性质测试题
一、选择题(每小题 3 分,共 30 分)
1. 下列各有序实数对表示的点不在函数图象上的是()
A. (0,1)
B. (1,- 1)
C.
D. (- 1,3)
2. 已知一次函数,当增加 3时,减少 2,则的值是()
A. 2
B. 3
C. 2
D.
3
3 2 3 2
3. 已知一次函数随着的增大而减小,且,则在直角坐标系内它的大致图象是()
y y y y
O x O x
O x
O x
A B C D
4. 已知正比例函数的图象过点(, 5),则的值为()
A. 5
B.
7
C.
5
D.
2 9
3 3 3
5. 若一次函数的图象交轴于正半轴,且的值随值的增大而减小,则()
A. B. C. D.
6. 若函数是一次函数,则应满足的条件是()
A. 且
B. 且
C. 且
D. 且
7.一次函数的图象交轴于( 2, 0),交轴于( 0,3),当函数值大于 0 时,的取值范围是()
A. B. C. D.
8. 已知正比例函数 的图象上两点
,当
时,
有
,那么 的取值范围是(
)
A.
1
B. 1
C.
D.
2 2
9. 若函数 和
有相等的函数值,则 的值为(
)
A.
1
B. 5
C.1
D.
5
2
2
2
10. 某一次函数的图象经过点(,2),且函数 的值随自变量 的增大而减小,
则下列函数符合条件的是(
) A. B.
C.
D.
二、填空题(每小题 3 分,共 24 分)
11. 如图,直线 为一次函数
的图象,则 , .
12. 一次函数
的图象与 轴的交点坐标是 ,与 轴的交点坐标
是.
13. 已知 地在 地正南方 3 千米处,甲乙两人同时分别从 、
两地向正北方向匀速直行,他们与地的距离 (千米)与所
C
S
D
4
B
行的时间 (时)之间的函数图象如图所示,当行走
3 时后,
t
千米 .
A O
2
他们之间的距离为
14. 若一次函数
与一次函数
的图象的交点坐标为(
, 8),则
_________.
15. 已知点
都在一次函数 为常数)的图象上,
则与的大小关系是 ________; 若,则___________.
16. 已知点(, 4)在连接点( 0,8)和点(, 0)的线段上,则______.
17. 已知一次函数与的图象交于轴上原点外的一点,则
a ________.
a b
18.已知一次函数与两个坐标轴围成的三角形面积为4,则
________.
三、解答题
19. 已知一次函数的图象经过点(,),且与正比例函数的图象相交于点( 4,),
求:( 1)的值;(2)、的值;
( 3)求出这两个函数的图象与轴相交得到的三角形的面积.
20、若一次函数的图象与轴交点的纵坐标为-2,且与两坐标轴围成的直角三角形面积为1,试确定此一次函数的表达式.
21、为保护学生视力,课桌椅的高度都是按一定的关系配套设计的,研究表明:
假设课桌的高度为 cm,椅子的高度为 cm,则应是的一次函数,下表列出两套
符合条件的课桌椅的高度:
(1)请确定与的函数关系式.
(2)现有一把高 39 cm 的椅子和一张高 78.2 cm 的课桌,它们是否配套?为什
么?
第一套第二套
椅子高度(cm)40 37
课桌高度(cm)75 70
22、某车间有甲、乙两条生产线.在甲生产线已生产了200 吨成品后,乙生产
线开始投入生产,甲、乙两条生产线每天分别生产20 吨和 30 吨成品.
( 1)分别求出甲、乙两条生产线各自总产量(吨)与从乙开始投产以来所用
时间(天)之间的函数关系式.
(2)作出上述两个函数在如图所示的直角坐标系中的图象,观察图象,分别
指出第 10 天和第 30 天结束时,哪条生产线的总产量高?。