极点配置法设计状态反馈控制器——自动控制原理
状态反馈极点配置基本理论与方法
状态反馈极点配置基本理论与方法IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】第2章 状态反馈极点配置设计基本理论引言大多数的控制系统的基本结构是由被控对象和反馈控制器构成的闭环系统。
反馈的基本类型包括状态反馈和输出反馈。
其中状态反馈能够提供更加丰富的状态信息。
状态反馈是将系统的每一个状态变量乘相应的反馈系数,然后反馈到输入端与参考输入相加形成的控制规律,作为被控系统的控制输入。
图是一个多输入多输出线性时不变系统状态反馈的基本结构:图 多输入-多输出系统的状态反馈结构图其中受控系统的状态空间表达式为:x Ax Buy Cx=+=由图可知,加入状态反馈后,受控系统的输入为:u Fx v =+其中v 为参考输入,F 为状态反馈增益阵,因此可以得到状态反馈闭环系统的状态空间表达式:()x A BF x Bv y Cx=++=闭环系统的传递函数矩阵:()()1s W s C sI A BF B -=-+⎡⎤⎣⎦由此可见,引入状态反馈后,通过F 的选择,可以改变闭环系统的特征值,是系统获得所要求的性能。
极点配置方法的选择对于一个线性时不变系统进行状态反馈极点配置,一般有四种方法: (1) 传统方法—将系统转化为一个或多个单输入单输出系统。
(2) 直接法—使用稳定的酉矩阵,将这种系统转化为标准型。
(3)矩阵方程法—对矩阵F ,直接解方程AX X BG -Λ=FX G =(4)特征向量法—先找到特征向量x j (等式中矩阵X 的列向量),然后利用等式求解F 。
方法(1)一般难以应用或者数值不稳定。
方法(3)需要解方程,并且对于系统矩阵A 的特征值不能再分配。
最有效并且数值稳定的方法是方法(2)和方法(4)。
其中方法(4)通过使用一系列的迭代算法找到最优解,所以比较复杂。
对于方法(2),当系统的输入多于一个信号输入时,不能确定系统的鲁棒性。
本文结合以上方法提出了一种新的设计方法:首先通过酉变换将状态方程化为一种控制规范形,然后利用最小二乘法解方程的得到最佳的状态反馈矩阵。
控制系统的极点配置设计法
控制系统的极点配置设计法一、极点配置原理1.性能指标要求n s t ζω4=;当Δ=0.02时,。
ns t ζω3= 当Δ=0.05时,2.极点选择区域主导极点:2111cos tan ξβξξ---==3.其它极点配置原则系统传递函数极点在s 平面上的分布如图(a )所示。
极点s 3距虚轴距离不小于共轭复数极点s 1、s 2距虚轴距离的5倍,即(此处,对应于极点s 1、s 2);同时,极点n s s ξω5Re 5Re 13=≥ξn ωs 1、s 2的附近不存在系统的零点。
由以上条件可算出与极点s 3所对应的过渡过程分量的调整时间为1351451s n s t t =⨯≤ξω式中是极点s 1、s 2所对应过渡过程的调整时间。
1s tn x o (t)(a )(b系统极点的位置与阶跃响应的关系图(b )表示图(a )所示的单位阶跃响应函数的分量。
由图可知,由共轭复数极点s 1、s 2确定的分量在该系统的单位阶跃响应函数中起主导作用,即主导极点。
因为它衰减得最慢。
其它远离虚轴的极点s 3、s 4、s 5所对应的单位阶跃响应衰减较快,它们仅在极短时间内产生一定的影响。
因此,对系统过渡过程进行近似分析时。
可以忽略这些分量对系统过渡过程的影响。
二、极点配置实例磁悬浮轴承控制系统设计1.1磁悬浮轴承系统工作原理图1是一个主动控制的磁悬浮轴承系统原理图。
主要由被悬浮转子、传感器、控制器和执行器(包括电磁铁和功率放大器)四大部分组成。
设电磁铁绕组上的电流为I0,它对转子产生的吸力F和转子的重力mg相平衡,转子处于悬浮的平衡位置,这个位置称为参考位置。
(a)(b)图1 磁悬浮轴承系统的工作原理Fig.1 The magnetic suspension bearing system principledrawing假设在参考位置上,转子受到一个向下的扰动,转子就会偏离其参考位置向下运动,此时传感器检测出转子偏离其参考位置的位移,控制器将这一位移信号变换成控制信号,功率放大器又将该控制信号变换成控制电流I0+i,控制电流由I0增加到I0+i,因此,电磁铁的吸力变大了,从而驱动转子返回到原来的平衡位置。
7.4 状态反馈和极点配置
可配置条件_极点配置定理
考虑线性定常系统
x Ax Bu
假设控制输入u的幅值是无约束的。如果选取控制规律为
u r Kx
式中K为线性状态反馈矩阵。
定理 (极点配置定理) 线性定常系统可通过线性状态反馈任意地 配置其全部极点的充要条件是,此被控系统状态完全可控。
该定理对多变量系统也成立。
证明 (对单输入单输出系统) 1、充分性 2、必要性
kn 1 ]
由于 u r Kx r KPx ,此时该系统的状态方程为 x ( Ac Bc K ) x Bcr
相应的特征方程为 sI Ac BcK 0
因为非奇异线性变换不改变系统的特征值,当利用 u=r-Kx作为控制输 入时,相应的特征方程与上式相同,均有如下结果。
s
1
0
0
s
0
sI Ac BcK
◆确定将系统状态方程变换为可控标准形的变换矩阵P。若给定的状态方程已是 可控标准形,则P = I。此时无需再写出系统的可控标准形状态方程。非奇异线 性变换矩阵P=QW。
◆利用给定的期望闭环极点,可写出期望的特征多项式为
(s 1() s 2 ) (s n ) sn an1sn1 a1s a0
从而确定出a1* , a2 *,… an *的值。
◆最后得到状态反馈增益矩阵K为
K [ a0 a0 a1 a1
a n1
an1
]
P 1
10
极点配置 例1
【例】 考虑如下线性定常系统
0
1
0
0
x Ax Bu A 0
0
1 , B 0
1 5 6
1
利用状态反馈控制,希望该系统的闭环极点为s = -2±j4和s = -10。试确定状
利用matlab实现极点配置、设计状态观测器(现代控制)
实 验 报 告实验名称 利用MATLAB 实现极点配置、设计状态观测器系 专业 自动化 班 姓名 学号 授课老师 预定时间实验时间实验台号一、目的要求1、掌握状态反馈和输出反馈的概念及性质。
2、掌握利用状态反馈进行极点配置的方法。
学会用MATLAB 求解状态反馈矩阵。
3、掌握状态观测器的设计方法。
学会用MATLAB 设计状态观测器。
4、熟悉分离定理,学会设计带有状态观测器的状态反馈系统。
二、原理简述1、状态反馈和输出反馈设线性定常系统的状态空间表达式为Cxy Bu Ax x =+=如果采用状态反馈控制规律u= r-Kx ,其中 r 是参考输入,则状态反馈闭环系统的传递函数为:B BK A sIC G k 1)]([---=2、极点配置如果 SISO 线性定常系统完全能控,则可通过适当的状态反馈, 将闭环系统极点配置到任意期望的位置。
MATLAB 提供的函数acker( )是用Ackermann 公式求解状态反馈阵K 。
该函数的调用格 式为K=acker(A,B,P)其中A 和B 分别为系统矩阵和输入矩阵。
P 是期望极点构成的向量。
MATLAB 提供的函数place( )也可求出状态反馈阵K 。
该函数的调用格式为 K=place(A,B,P)函数place( )还适用于多变量系统极点配置,但不适用含有多重期望极点的问题。
函数acker( )不适用于多变量系统极点配置问题,但适用于含有多重期望极点问题。
三、仪器设备PC 计算机,MATLAB 软件⎣[y1=lsim(G,u,t); plot(t,y1,':',t,y2,'-')蓝色为配置前,绿色为配置后题5-3 某系统状态空间描述如下[]010100134326100x x u y x⎡⎤⎡⎤⎢⎥⎢⎥=+⎢⎥⎢⎥⎢⎥⎢⎥----⎣⎦⎣⎦= 设计全维状态观测器,要求状态观测器的极点为[]123---。
程序>> A=[0 1 0;0 0 1;-4 -3 -2];B=[1;3;-6]'; C=[1 0 0]; D=0;p=[-1 -2 -3]; L=(acker(A',C',p))' 结果:L = 40 -10。
反馈控制与极点配置
例 考察下述能控能观的系统
它在输出反馈下u=-hy下的闭环系统为 其闭环特征多项式为s2+h。
上例说明,输出反馈对能控能观系统可以改变极点位置,但不能 进行任意的极点配置。
2. 系统的开环特征多项式f(s)和由期望的闭环极点所确定的闭 环特征多项式f*(s)分别为
f(s)=s3+3s2+2s f*(s)=s3+4s2+6s+4 则相应的反馈矩阵K为 K=[a3*-a3 a2*-a2 a1*-a1]
因此,在反馈律u=-Kx+v下,闭环系统状态方程为
在例3中,由给定的传递函数通过状态反馈进行极点配置时需 先求系统实现,即需选择状态变量和建立状态空间模型。 ➢ 这里就存在一个所选择的状态变量是否可以直接测量、 可以直接作反馈量的问题。
证明过程的思路为:
•对状态不 完全能控开 环系统进行 能控分解
•对能控分 解后的系 统进行状 态反馈
•其完全不 能控子系统 不能进行极
点配置
•与假设 矛盾,必
要性得 证
➢ 被控系统(A,B,C)状态不完全能控,则一定存在线性变换 x=Pc ,对其可进行能控分解,得到如下状态空间模型:
其中状态变量 是完全能控的;状态变量 是完全不能控
➢ 由于状态反馈闭环系统保持其开环系统的状态完全能控 特性,故该闭环系统只能是状态不完全能观的。
➢ 这说明了状态反馈可能改变系统的状态能观性。
➢ 从以上说明亦可得知,若SISO系统没有零点,则状态反馈不 改变系统的状置方法
极点配置算法1(维数较大) 1. 对于SISO线性定常连续系统的极点配置问题,若其状态 空间模型为能控规范I形,则相应反馈矩阵为 K=[k1 … kn]=[an*-an … a1*-a1] 其中ai和ai*(i=1,2,…,n)分别为开环系统特征多项式和所期 望的闭环系统特征多项式的系数。
自控原理实验极点配置
实验3 控制系统极点的任意配置一、实验目的1. 掌握用全状态反馈的设计方法实现控制系统极点的任意配置2. 用电路模拟的方法,研究参数的变化对系统性能的影响二、实验设备1.THSSC-4型信号与系统·控制理论·计算机控制技术实验箱2.PC机一台(含上位机软件)、USB数据采集卡、37针通信线1根、16芯数据排线、USB接口线三、实验内容1. 用全状态反馈实现二阶系统极点的任意配置,并用电路模拟的方法予以实现2. 用全状态反馈实现三阶系统极点的任意配置,并通过电路模拟的方法予以实现四、实验原理由于控制系统的动态性能主要取决于它的闭环极点在S平面上的位置,因而人们常把对系统动态性能的要求转化为一组希望的闭环极点。
一个单输入单输出的N阶系统,如果仅靠系统的输出量进行反馈,显然不能使系统的n个极点位于所希望的位置。
基于一个N阶系统有N个状态变量,如果把它们作为系统的反馈信号,则在满足一定的条件下就能实现对系统极点任意配置,这个条件就是系统能控。
理论证明,通过状态反馈的系统,其动态性能一定会优于只有输出反馈的系统。
设系统受控系统的动态方程为=Axbux+y=cx图3-1为其状态变量图。
图3-1 状态变量图令Kx r u -=,其中]...[21n k k k K =,r 为系统的给定量,x 为1⨯n 系统状态变量,u 为1×1控制量。
则引入状态反馈后系统的状态方程变为bu x bK A x+-=)( 相应的特征多项式为)](det[bK A SI --,调节状态反馈阵K 的元素]...[21n k k k ,就能实现闭环系统极点的任意配置。
图3-2为引入状态反馈后系统的方框图。
图3-2 引入状态变量后系统的方框图1. 典型二阶系统全状态反馈的极点配置二阶系统方框图如3-3所示。
图3-3 二阶系统的方框图1.1 由图得)15.0(10)(+=S S S G ,然后求得:223.0=ξ,%48≈p δ同时由框图可得:2115.01)(X S X R =+- ,2110X X = 所以:R X X X 222212+--= R X X ⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡--=2022100[]X X y 011==1.2 系统能控性[]242200=⎥⎦⎤⎢⎣⎡-=rank Ab b rank 所以系统完全能控,即能实现极点任意配置。
线性系统的状态反馈及极点配置
线性系统的状态反馈及极点配置1.前言随着现代控制理论的不断发展和成熟,线性系统的状态反馈控制在控制理论中得到了广泛的应用,并成为了控制领域中重要的一种控制方法。
状态反馈控制能够将系统的状态进行反馈,并利用反馈得到的信息对系统进行控制,从而达到使系统达到预期控制目标的目的。
本文将从状态反馈控制的原理和实现方法两方面介绍线性系统的状态反馈及极点配置。
2.状态反馈控制的原理状态反馈控制是建立在现代控制理论的基础上的一种高级控制方法。
状态反馈控制的基本思想是在系统中引入反馈环节,设计一个反馈控制器,将系统的状态量反馈给控制器,控制器再根据反馈信号输出控制量,以期望控制系统按照预期的运动轨迹运行。
因此,状态反馈控制要实现以下两个步骤:- 系统状态量的测量:首先要在系统中安装测量传感器,实时地测量系统状态量,使得状态量可以被反馈到控制器中。
- 反馈控制器的设计:设计一个反馈控制器,将系统的状态量反馈给控制器,控制器再根据反馈信号输出控制量,实现对系统的精确控制。
因此,状态反馈控制的基本原理就是将系统状态量反馈到控制器中,以期望控制系统按照预期的运动轨迹运行。
2.2 状态空间模型与状态反馈控制状态空间模型是状态反馈控制的基础。
状态空间模型是一种方便描述线性系统动态行为和控制器的模型。
对于线性时不变系统,我们可以用如下的状态变量描述:x(t) = [x1(t),x2(t),...,xn(t)]T其中,x(t) 是系统在时刻 t 的状态量,n 是状态量的数量,x1(t),x2(t),...,xn(t) 分别是系统的每个状态量。
状态空间模型可以用一组线性常微分方程描述:dx/dt = Ax + Bu其中,A 是系统的状态方程矩阵,B 是输入矩阵,C 是输出矩阵,D 是直接耦合矩阵。
系统的状态反馈控制可以表示为:u(t) = -Kx(t)其中,K 是状态反馈矩阵。
将状态反馈控制引入到状态空间模型中,可以得到控制器的状态空间模型为:y = Cx上述控制器的状态空间模型就是一个闭环系统,通过反馈控制器将系统状态返回到系统,形成了一个反馈环。
7.4 状态反馈及极点配置
x(t ) ( A BK ) x(t ) Br
由此可见,系统的响应特性将由闭环系统矩阵A-BK的特征 值决定。如果矩阵K选取适当,则可使矩阵A-BK构成一个渐 近稳定矩阵。矩阵A-BK的特征值即为闭环系统的极点。
这种使闭环系统的极点任意配置到所期望位置的问题,称为 极点配置问题。
3
可配置条件_极点配置定理
线性定常系统的状态反馈和极点配置
状态反馈与极点配置
问题的提法 可配置条件(极点配置定理) 极点配置的算法
输出反馈与极点配置
1
问题的提法
给定单输入单输出线性定常被控系统
x Ax Bu
选取线性反馈控制律为
x(t ) R n , u(t ) R1 , A R nn , B R n1
an1 1 0 0 1 0 0 0
式中ai为特征多项式的系数:
sI A s n an 1s n 1
a1s a0
5
极点配置定理_充分性
定义一个新பைடு நூலகம்状态向量 x Px 如果可控性矩阵Q的秩为n(即系统是状态完全可控的),则矩 阵Q的逆存在,并且可将原线性系统 x Ax Bu 改写为
这是具有线性状态反馈的闭环系统的特征方程,它一定与期望特征方程相等。 通过使s的同次幂系数相等,可得
7
极点配置定理_充分性
a0 k0 a0
a1 k1 a1
an 1 kn 1 an 1 求解上述方程组,得到 ki
的值,则
K KP 1 [k 0 k1
[ a0 a0 a1 a1
0 0 1 Ac P AP 0 a0
x Ac x Bcu
现代控制理论状态反馈控制器设计
例 已知被控系统的传递函数是
G(s) =
10
s(s + 1)(s + 2)
设计一个状态反馈控制器,使得闭环极点是-2,−1 ± j 解 确定能控标准型实现
⎡0 1 0⎤ ⎡0⎤ x& = ⎢⎢0 0 1⎥⎥ x + ⎢⎢0⎥⎥u
实现极点配置的条件:
3 + k3 = 4 2 + k2 = 6
k1 = 4
⇒ k1 = 4, k2 = 4,
极点配置状态反馈控制器是 u = −[4 4 1]x
k3 =1
分析:ห้องสมุดไป่ตู้点:能控标准型使得计算简单;
缺点:能控标准型中的状态往往难以直接测量;
解决方法:考虑新的实现。串连分解
u
1
x3
s+2
1 x2 s +1
确定参数 a0 , a1 , L, an−1 3。确定转化为能控标准型的变换矩阵 T = Γc[A~, B~](Γc[A, B])−1 4。确定期望特征多项式系数
(λ − λ1() λ − λ2 )L(λ − λn ) = λn + bn−1λn−1 + L + b1λ + b0
5。确定极点配置反馈增益矩阵
状态反馈控制律:
u = −[k0 k1 k2 ]x
得到的闭环系统: 特征多项式:
⎡0
x&
=
⎢ ⎢
0
⎢⎣− a0 − k0
1 0 − a1 − k1
0⎤
1
⎥ ⎥
x
=
Ac
x
北航_自控实验报告_状态反馈和状态观测器
实验六 状态反馈和状态观测器一、 实验目的:1.掌握用状态反馈进行极点配置的方法。
2. 了解带有状态观测器的状态反馈系统。
二、 实验原理:1. 闭环系统的动态性能与系统的特征根密切相关,在状态空间的分析中可利用状态反馈来配置系统的闭环极点。
这种校正手段能提供更多的校正信息,在形成最优控制率、抑制或消除扰动影响、实现系统解耦等方面获得广泛应用。
2. 为了实现状态反馈,需要状态变量的测量值,而在工程中,并不是状态变量都能测量到,而一般只有输出可测,因此希望利用系统的输入输出量构成对系统状态变量的估计。
解决的方法是用计算机构成一个与实际系统具有同样动态方程的模拟系统,用模拟系统的状态向量 作为系统状态向量 的估值。
状态观测器的状态和原系统的状态之间存在着误差,而引起误差的原因之一是无法使状态观测器的初态等于原系统的初态。
引进输出误差 的反馈是为了使状态估计误差尽可能快地衰减到零。
3.若系统是可控可观的,则可按极点配置的需要选择反馈增益阵k ,然后按观测器的动态要求选择H ,H 的选择并不影响配置好的闭环传递函数的极点。
因此系统的极点配置和观测器的设计可分开进行,这个原理称为分离定理。
三、 实验内容:1. 设控制系统如6.1图所示,要求设计状态反馈阵K ,使动态性能指标满足超调量%5%≤σ,峰值时间s t p 5.0≤。
仪器科学与光电工程学院2. 被控对象传递函数为写成状态方程形式为式中⎥⎦⎤⎢⎣⎡--=945.357.10310A , ⎥⎦⎤⎢⎣⎡=10B ;[]0100=C ;模拟电路图Figure 1 计算机实现带有状态观测器的状态反馈系统图图6.3中虚线内表示连续域转换成离散域在计算机中的实现方法:其中21⨯---K 维状态反馈系数矩阵,由计算机算出。
12⨯---L 维观测器的反馈矩阵,由计算机算出。
---Kr 为使)(t y 跟踪)(t r 所乘的比例系数。
四、 实验数据处理:1.无观测器时系统仿真: Figure 2 无观测器时系统仿真 2.有观测器时实测: Figure 3 有观测器时实测 3.任意配置观测器极点仿真:S1、S2=-10;Z1、Z2=0.67 Figure 4 任意配置观测器极点仿真:S1、S2=-10;Z1、Z2=0.67 4.任意配置观测器极点实测:S1、S2=-10;Z1、Z2=0.67 Figure 5 任意配置观测器极点实测:S1、S2=-10;Z1、Z2=0.675.任意配置观测器极点仿真:S1、S2=-10+/-j10;Z1、Z2=0.617+/-j*0.261 Figure 6 任意配置观测器极点仿真:S1、S2=-10+/-j10;Z1、Z2=0.617+/-j*0.261 6.任意配置观测器极点实测:S1、S2=-10+/-j10;Z1、Z2=0.617+/-j*0.261 Figure 7 任意配置观测器极点实测:S1、S2=-10+/-j10;Z1、Z2=0.617+/-j*0.2617.利用设计的控制反馈满足性能指标实测 Figure 8 利用设计的控制反馈满足性能指标实测*实测曲线中出现的毛刺主要由于导线间的接触和连接不良造成,但并未影响最终测试结果 *对系统存在一定静差(最终稳定值与实测值间差值),可以通过在输出端(反馈回路之外),串联一个放大器提供一定增益补偿,进而满足0差要求,上述实验图中,只观察观测器配置情况的影响,未对静差进行准确补偿。
极点配置状态反馈控制器的设计
极点配置状态反馈控制器的设计王俊伟于新海(河套学院机电工程系)摘要围绕双级倒立摆案例,对极点配置状态反馈控制器的设计方法展开讨论,对最终的计算结果进行仿真,并通过仿真结果分析了系统的稳定性、动态性能和稳态误差情况。
倒立摆的开环系统状态空间模型状态不稳定且动态性能较差,通过引进极点配置状态反馈控制器,倒立摆的闭环系统状态达到稳定,而且动态性能得到改善。
关键词状态反馈控制器双级倒立摆极点配置能控标准型爱克曼公式动态特性稳态误差中图分类号TH865文献标识码B文章编号1000-3932(2021)01-0015-05极点配置状态反馈控制器设计得好坏直接决定了控制系统动态性能的优劣!配置极点的目的不仅是使系统稳定还要使系统的动态性能满足控制要求[1]!在配置状态反馈控制器时,根据被控制对象的要求,可以采用3种方法实现:极点配置状态反馈控制器的直接法、极点配置状态反馈控制器的变换法和爱克曼公式[2]'这3种方法仅适用于单输入系统,优点是只要系统能控,就可以实现极点配置的状态反馈,缺点是不能用于多输入系统的极点配置状态反馈控制器。
对于单输入系统,如果系统能控可以实现极点的任意配置,改善动态性能,但有可能使闭环控制系统的稳态误差变大[3]!1极点配置状态反馈控制器的直接法线性时不变系统如下:x=Ax+Bu(])'=Cx其中,X是系统的*维状态向量;*是状态向量对时间的导数;u是状态反馈控制律;#、B和C是适当维数的已知常数矩阵;'是系统的输出。
采用的状态反馈控制律是:u=-kx+v(2)其中,-是一维外部输入;k是反馈增益矩阵。
将式(2)代入式(1)得到闭环系统状态方程:*二(.-Bk)x+B-(3)极点配置状态反馈控制器的直接法分5步实现⑷。
第1步,检验系统(1)的能控性,如果系统能控,进行第2步。
第2步,计算闭环系统特征多项式:)et[!0—(#—Bk)]二!*+(3*_]+k*_14!*i1--------(3]+k])!+30+,0(4)其中,!是闭环极点。
第五章状态反馈控制器设计ppt课件
检验:eig(A-B*K)
极点配置的优点:
可以改善系统的稳定性、动态性能
5.4 跟踪控制器设计
极点配置的优点:改善系统的稳定性、动态性能
那么,对稳态性能、静态误差等的影响?
例 已知被控对象的状态空间模型为
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
如何从能控标准型模型的解导出一般模型的极
点配置控制器。
系统模型
假定该状态空间模型是能控的,则存在线性变换
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
其中
对能控标准型和给定的极点
可得极点配置状态反馈增益矩阵
矩阵P是对称的,
若选取
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
控制器设计转化为以下矩阵方程的求解问题:
(黎卡提矩阵方程)
优点:若对给定的常数,以上矩阵方程有解,
则对任意的
都是系统的稳
例 考虑系统在状态反馈
下的闭环系统
能控能观性。
结论:能控,不能观。
状态反馈使得闭环系统产生了零极点的对消。
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
定理5.1.2输出反馈不改变系统的能控能观性。
状态反馈极点配置基本理论与方法
第2章 状态反馈极点配置设计基本理论2.1引言大多数的控制系统的基本结构是由被控对象和反馈控制器构成的闭环系统。
反馈的基本类型包括状态反馈和输出反馈。
其中状态反馈能够提供更加丰富的状态信息。
状态反馈是将系统的每一个状态变量乘相应的反馈系数,然后反馈到输入端与参考输入相加形成的控制规律,作为被控系统的控制输入。
图2.1是一个多输入多输出线性时不变系统状态反馈的基本结构:图2.1 多输入-多输出系统的状态反馈结构图其中受控系统的状态空间表达式为:x Ax Buy Cx=+= (2.1)由图2.1可知,加入状态反馈后,受控系统的输入为:u Fx v =+ (2.2)其中v 为参考输入,F 为状态反馈增益阵,因此可以得到状态反馈闭环系统的状态空间表达式:()x A BF x Bv y Cx=++= (2.3)闭环系统的传递函数矩阵:()()1s W s C sI A BF B -=-+⎡⎤⎣⎦ (2.4)由此可见,引入状态反馈后,通过F 的选择,可以改变闭环系统的特征值,是系统获得所要求的性能。
2.2极点配置方法的选择对于一个线性时不变系统进行状态反馈极点配置,一般有四种方法: (1) 传统方法—将系统转化为一个或多个单输入单输出系统。
(2) 直接法—使用稳定的酉矩阵,将这种系统转化为标准型。
(3) 矩阵方程法—对矩阵F ,直接解方程AX X BG -Λ= (2.5a) FX G = (2.5b)(4) 特征向量法—先找到特征向量x j (等式(2.5)中矩阵X 的列向量),然后利用等式(2.5b)求解F 。
方法(1)一般难以应用或者数值不稳定。
方法(3)需要解(2.5a)方程,并且对于系统矩阵A 的特征值不能再分配。
最有效并且数值稳定的方法是方法(2)和方法(4)。
其中方法(4)通过使用一系列的迭代算法找到最优解,所以比较复杂。
对于方法(2),当系统的输入多于一个信号输入时,不能确定系统的鲁棒性。
实验6_状态反馈与状态观测器.doc
实验6_状态反馈与状态观测器自动控制原理实验报告自动控制原理实验报告院系名称:仪器科学与光电工程学院班级:141715班姓名:武洋学号:14171073实验六状态反馈与状态观测器一、实验目的1. 掌握用状态反馈进行极点配置的方法。
2. 了解带有状态观测器的状态反馈系统。
3. 理解系统极点、观测器极点与系统性能、状态估计误差之间的关系。
二、实验内容1. 系统G(s)=10.05s2+s+1如图2.6.1所示,要求设计状态反馈阵K,使动态性能指标满足超调量,峰值时间。
图2.6.1二阶系统结构图2.被控对象传递函数为写成状态方程形式为式中; ;为其配置系统极点为S1,2=-仪器科学与光电工程学院班级:141715班姓名:武洋学号:14171073实验六状态反馈与状态观测器一、实验目的1. 掌握用状态反馈进行极点配置的方法。
2. 了解带有状态观测器的状态反馈系统。
3. 理解系统极点、观测器极点与系统性能、状态估计误差之间的关系。
二、实验内容1. 系统G(s)=10.05s2+s+1如图2.6.1所示,要求设计状态反馈阵K,使动态性能指标满足超调量,峰值时间。
图2.6.1二阶系统结构图2.被控对象传递函数为写成状态方程形式为式中; ;为其配置系统极点为S1,2=:其中维状态反馈系数矩阵,由计算机算出。
维观测器的反馈矩阵,由计算机算出。
为使跟踪所乘的比例系数。
三、实验原理1. 闭环系统的动态性能与系统的特征根密切相关,在状态空间的分析中可利用状态反馈来配置系统的闭环极点。
这种校正手段能提供更多的校正信息,在形成最优控制率、抑制或消除扰动影响、实现系统解耦等方面获得广泛应用。
在改善与提高系统性能时不增加系统零、极点,所以不改变系统阶数,实现方便。
2. 已知线形定常系统的状态方程为为了实现状态反馈,需要状态变量的测量值,而在工程中,并不是状态变量都能测量到,而一般只有输出可测,因此希望利用系统的输入输出量构成对系统状态变量的估计。
自动控制理论实验课程6.3.1 极点配置仿真实验
极点配置(一)实验原理给定一个连续时间系统的状态空间模型:Bu Ax x += (1)其中:x 是系统的n 维状态向量,u 是m 维控制输入,A 和B 分别是适当维数的已知常数矩阵。
在状态反馈Kx -=u (2)作用下,闭环系统的状态方程是x BK A x )(-= (3)由线性时不变系统的稳定性分析可知,闭环系统(3)的稳定性由闭环系统矩阵A-BK 的特征值决定,即闭环系统(3)渐近稳定的充分必要条件是矩阵A-BK 的所有特征值都具有负实部。
而由经典控制理论知道,矩阵A-BK 的特征值也将影响诸如衰减速度、振荡、超调等过渡过程特性。
因此,若能找到一个适当的矩阵K ,使得矩阵A-BK 的特征值位于复平面上预先给定的特定位置,则以矩阵K 为增益矩阵的状态反馈控制器(2)就能保证闭环系统(3)是渐近稳定的,且具有所期望的动态响应特性。
这种通过寻找适当的状态反馈增益矩阵K ,使得闭环系统极点(即矩阵A-BK 的特征值)位于预先给定位置的状态反馈控制器设计问题称为是状态反馈极点配置问题,简称为极点配置问题。
对给定的线性定常系统(1)和一组给定的期望闭环极点},,{n 2,1λλλ =Ω,按以下步骤可以设计出使得闭环系统(3)具有给定极点},,{n 2,1λλλ =Ω的状态反馈控制器(2)。
第1步:检验系统的能控性。
如果系统是能控的,则继续第2步。
第2步:利用系统矩A 阵的特征多项式0111)det(a a a A I n n n +++=---λλλλ (4)确定的110,,,-n a a a 值。
第3步:确定将系统状态方程变换为能控标准形的变换矩阵T 。
若给定的状态方程已是能控标准形,那么T=I 。
非奇异线性变换矩阵T 可按如下方式确定:可控性矩阵:],b ,[1b A A b U n -= (5)计算1-U ,并记最后一行为h给出变换阵:112],,,h [--=n hA hA hA T (6)第4步:利用给定的期望闭环极点,可得期望的闭环特征多项式为011121)())((b b b n n n n +++=-----λλλλλλλλλ (7)并确定110,,,b -n b b 的值第5步:确定极点配置状态反馈增益矩阵K :T a b a b a b a b K n n n n ],,,[11221100--------= (8)也可以通过待定系数的方法来确定极点配置状态反馈增益矩阵K 。
控制系统的极点配置设计法
控制系统的极点配置设计法一、极点配置原理1.性能指标要求2.极点选择区域主导极点:nstζω4=;当Δ=0.02时,。
nstζω3=当Δ=0.05时,3.其它极点配置原则系统传递函数极点在s 平面上的分布如图(a )所示。
极点s 3距虚轴距离不小于共轭复数极点s 1、s 2距虚轴距离的5倍,即n s s ξω5Re 5Re 13=≥(此处ξ,n ω对应于极点s 1、s 2);同时,极点s 1、s 2的附近不存在系统的零点。
由以上条件可算出与极点s 3所对应的过渡过程分量的调整时间为1351451s n s t t =⨯≤ξω式中1s t 是极点s 1、s 2所对应过渡过程的调整时间。
图(b )表示图(a )所示的单位阶跃响应函数的分量。
由图可知,由共轭复数极点s 1、s 2确定的分量在该系统的单位阶跃响应函数中起主导作用,即主导极点。
因为它衰减得最慢。
其它远离虚轴的极点s 3、s 4、s 5 所对应的单位阶跃响应衰减较快,它们仅在极短时间内产生一定的影响。
因此,对系统过渡过程进行近似分析时。
可以忽略这些分量对系统过渡过程的影响。
n x o (t)(a )(b )系统极点的位置与阶跃响应的关系二、极点配置实例磁悬浮轴承控制系统设计1.1磁悬浮轴承系统工作原理图1是一个主动控制的磁悬浮轴承系统原理图。
主要由被悬浮转子、传感器、控制器和执行器(包括电磁铁和功率放大器)四大部分组成。
设电磁铁绕组上的电流为I0,它对转子产生的吸力F和转子的重力mg相平衡,转子处于悬浮的平衡位置,这个位置称为参考位置。
(a)(b)图1 磁悬浮轴承系统的工作原理Fig.1 The magnetic suspension bearing system principledrawing假设在参考位置上,转子受到一个向下的扰动,转子就会偏离其参考位置向下运动,此时传感器检测出转子偏离其参考位置的位移,控制器将这一位移信号变换成控制信号,功率放大器又将该控制信号变换成控制电流I0+i,控制电流由I0增加到I0+i,因此,电磁铁的吸力变大了,从而驱动转子返回到原来的平衡位置。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
这两个多项式的系数相等,可得出:
0 0
1
1
n n1
i中含F阵系数fij
当F阵为1 n时
n个方程可解n个系数 fi
(i 1,2,...,n)
设计算法--适用于用能控标准形表示的SI系统的算法
设系统期望的闭环极点为s1、s2、sn ,则其
闭环特征式为s s1 s s2 s s3 s sn
SI系统,所以设 F f1 f2 fn
ห้องสมุดไป่ตู้
设计算法--适用于用能控标准形表示的SI系统的算法
s
1
0
0
0
0
s
1
0
0
0
0
0
s
1
a0 f1 a1 f2 a2 f3 an2 fn1 an1 fn s
sn (an1 fn )sn1 a1 f2 s a0 f1
设计算法--适用于用能控标准形表示的SI系统的算法
解:
系统能控。
举例----求解过程
期望闭环系统特征多项式为:
设: F f1 f2
F 7 1
w
u+
x2 ∫
--
++ -5
x2 x1
∫ x1
-
F 7 1
1
+
2
+
y
-6 1
7
a0 f1 0 a1 f 2 1
an1 f n n1
f1 0 a0 f2 1 a1
fn n1 an1
举例
例8-21 设系统的状态空间描述为
试求:(1)求状态反馈矩阵F使闭环系统有期望 极点s1,2=-3±2j; (2)绘制带有状态反馈控制器的状态变量图
举例----求解过程
由度考虑其它要求。 ➢ 在SISO系统中,F的设计不改变系统零点,但在MIMO系统中则不
一定,则使配置复杂化.
设计算法-----原理性算法
设计后系统的特征式: sI A BF
sn n1sn1 1s 0
假设系统期望的闭环极点为s1、s2、sn , 则其闭环特征式为
s s1s s2 s s3 s sn
用极点配置法设计状态反馈控制器
❖ 极点配置定理 ❖ 设计算法
原理性算法 适用于用能控标准形表示的SI系统的算法
极点配置定理
对于状态反馈控制系统,只要(A,B, C)状态能控,则闭环极点可通过F任意 注 配置。
➢ 此定理适用于单变量也适用于多变量系统。 ➢ 在SISO系统中,有唯一解。在MIMO系统中,解不唯一,有自
系统矩阵为A BF
系统的特征根为sI A BF 0
未加控制器时原系统的特征根:sI A 0
主要内容
❖ 状态反馈控制系统 ❖ 状态反馈控制器设计条件 ❖ 用极点配置法设计状态反馈控制器 ❖ 举例
设计条件
系统xy
Ax Cx
Bu状态能控
主要内容
❖ 状态反馈控制系统 ❖ 状态反馈控制器设计条件 ❖ 用极点配置法设计状态反馈控制器 ❖ 举例
主要内容
❖ 状态反馈控制系统 ❖ 状态反馈控制器设计条件 ❖ 用极点配置法设计状态反馈控制器 ❖ 举例
主要内容
❖ 状态反馈控制系统 ❖ 状态反馈控制器设计条件 ❖ 用极点配置法设计状态反馈控制器 ❖ 举例
状态反馈控制系统
D
wE
uB
x x C
y
A F
x Ax Bu
y
Cx
u Ew Fx
状态反馈控制系统