最新《现代控制理论基础》考试题a卷及答案
现代控制技术基础习题集和答案解析
《现代控制技术基础》一、单选题1. 自动控制系统按输入量变化与否来分类,可分为( A )A 、随动系统与自动调整系统B 、线性系统与非线性系统C 、连续系统与离散系统D 、单输入-单输出系统与多输入-多输出系统2. 自动控制系统按系统中信号的特点来分类,可分为( C )A 、随动系统与自动调整系统B 、线性系统与非线性系统C 、连续系统与离散系统D 、单输入-单输出系统与多输入-多输出系统3. 普通机床的自动加工过程是( C )A 、闭环控制B 、伺服控制C 、开环控制D 、离散控制4. 形成反馈的测量元器件的精度对闭环控制系统的精度影响( B)A 、等于零B 、很大C 、很小D 、可以忽略5. 自动控制系统需要分析的问题主要有( A )A 、稳定性、稳态响应、暂态响应B 、很大C 、很小D 、可以忽略6. 对积分环节进行比例负反馈,则变为( D )A 、比例环节B 、微分环节C 、比例积分环节D 、惯性环节7. 惯性环节的传递函数是( A )A 、1)(+=Ts Ks G B 、K s G =)(C 、Ts s G 1)(= D 、Ts s G =)(8. 比例环节的传递函数是( B )A 、1)(+=Ts Ks G B 、K s G =)(C 、Ts s G 1)(= D 、Ts s G =)(9. 微分环节的传递函数是( D )A 、1)(+=Ts Ks G B 、K s G =)(C 、Ts s G 1)(=D 、Ts s G =)(10. 积分环节的传递函数是( C )A 、1)(+=Ts K s G B 、K s G =)( C 、Ts s G 1)(= D 、Ts s G =)(11. 对于物理可实现系统,传递函数分子最高阶次m 与分母最高阶次n 应保持( C )A 、n m <B 、n m >C 、n m ≤D 、n m ≥12. f (t )=0.5t +1,则L [f (t )]=( B )A 、s s 15.02+ B 、s s 1212+C 、25.0sD 、s s +22113. f (t )=2t +1,则L [f (t )]=( B )A 、s s 122+B 、s s 122+C 、22sD 、s s +22114. 通常把反馈信号与偏差信号的拉普拉斯变换式之比,定义为( C )A 、闭环传递函数B 、前向通道传递函数C 、开环传递函数D 、误差传递函数15. 在闭环控制中,把从系统输入到系统输出的传递函数称为( A )A 、闭环传递函数B 、前向通道传递函数C 、开环传递函数D 、误差传递函数16. 单位脉冲信号的拉氏变换为( B )A 、L [1(t )]=1/sB 、L [δ(t )]=1C 、L [t •1(t )]=1/s 2D 、L [t 2/2]=1/s 317. 单位阶跃信号的拉氏变换为( A )A 、L [1(t )]=1/sB 、L [δ(t )]=1C 、L [t •1(t )]=1/s 2D 、L [t 2/2]=1/s 318. 单位斜坡信号的拉氏变换为( C )A 、L [1(t )]=1/sB 、L [δ(t )]=1C 、L [t •1(t )]=1/s 2D 、L [t 2/2]=1/s 319. 对于稳定的系统,时间响应中的暂态分量随时间增长趋于( D )A 、1B 、无穷大C 、稳态值D 、零20. 当稳定系统达到稳态后,稳态响应的期望值与实际值之间的误差,称为(B )A 、扰动误差B 、稳态误差C 、暂态误差D 、给定偏差21. 对一阶系统的单位阶跃响应,当误差范围取2%时,调整时间为( A )A 、t s =4τB 、t s =3τC 、t s =2τD 、t s =τ22. 对一阶系统的单位阶跃响应,当误差范围取5%时,调整时间为( B )A 、t s =4τB 、t s =3τC 、t s =2τD 、t s =τ23. 根据线性定常系统稳定的充要条件,必须全部位于s 平面左半部的为系统全部的( C )A 、零点B 、临界点C 、极点D 、零点和极点24. 对二阶系统当10<<ξ时,其为( B )A 、过阻尼系统B 、欠阻尼系统C 、零阻尼系统D 、临界阻尼系统25. 根据劳斯稳定判据,系统具有正实部极点的个数应等于劳斯表中第1列元素(A ) A 、符号改变的次数B 、为负值的个数C 、为正值的个数D 、为零的次数26. 根据劳斯稳定判据,系统具有正实部极点的个数应等于劳斯表中第1列元素(B ) A 、符号改变的次数 B 、为负值的个数C 、为正值的个数D 、为零的次数27. 典型二阶系统的开环传递函数为( C )A 、阻尼振荡角频率B 、阻尼特性C 、时间常数D 、无阻尼固有频率28. 时间常数T 的大小反映了一阶系统的( A )A 、惯性的大小B 、输入量的大小C 、输出量的大小D 、准确性29. 典型二阶系统的特征方程为( C )A 、022=+s s n ξωB 、0222=++n n s ωξωC 、0222=++n n s s ωξωD 、022=++n n s s ωξω30. 调整时间t s 表示系统暂态响应持续的时间,从总体上反映系统的( C )A 、稳态误差B 、瞬态过程的平稳性C 、快速性D 、阻尼特性31. 伯德图低频段渐近线是34dB 的水平直线,传递函数是( A )A 、1250+sB 、5500+sC 、s 50D 、225s32. 过40=c ω且斜率为-20dB/dec 的频率特性是( C )A 、4040+ωj B 、)40(40+ωωj jC 、)101.0(40+ωωj jD 、)101.0(402+-ωωj33. 在ω=10 rad/s 处,相角滞后90° 的传递函数是( D )A 、1020+s B 、20500+sC 、11010502++s sD 、11.001.0502++s s34. 放大器的对数增益为14dB ,其增益K 为( B )A 、2B 、5C 、10D 、5035. 过40=c ω且斜率为-40dB/dec 的频率特性是( D )A 、4040+ωj B 、)40(40+ωωj jC 、)101.0(40+ωωj jD 、)101.0(16002+-ωωj36. 下列传递函数中不是..最小相位系统的是( C )A 、1020+s B 、20500+-sC 、156502--s sD 、451502+++s s s37. 伯德图低频段渐近线是20dB 的水平直线,传递函数是( D)A 、12100+sB 、5500+sC 、250+s D 、110+s38. 在ω=20 rad/s 处,相角滞后45° 的传递函数是( B )A 、1220+sB 、20500+sC 、12050+s D 、110+s39. 系统的截止频率愈大,则( B )A 、对高频噪声滤除性能愈好B 、上升时间愈小C 、快速性愈差D 、稳态误差愈小40. 进行频率特性分析时,对系统的输入信号为( B )A 、阶跃信号B 、正弦信号C 、脉冲信号D 、速度信号41. 积分环节的相角为( A )A 、-90ºB 、90ºC 、-180ºD 、180º42. 系统开环奈氏曲线与负实轴相交时的频率称为( B )A 、幅值交界频率B 、相位交界频率C 、幅值裕量D 、相位裕量43. 在具有相同幅频特性的情况下,相角变化范围最小的是( C )A 、快速响应系统B 、非最小相位系统C 、最小相位系统D 、高精度控制系统44. 微分环节的相角为( B )A 、-90ºB 、90ºC 、-180ºD 、180º45. 系统开环奈氏曲线与单位圆相交时的频率称为( A )A 、幅值交界频率B 、相位交界频率C 、幅值裕量D 、相位裕量46. 串联校正装置11)(21++=sT s T s G c ,若其为滞后校正,则应该( B )A 、T 1>T 2B 、T 1<T 2C 、T 1=T 2D 、T 1≠T 247. 若在系统的前向通路上串联比例-微分(PD )校正装置,可使( A) A 、相位超前 B 、相位滞后C 、相位不变D 、快速性变差48. 硬反馈指的是反馈校正装置的主体是( C )A 、积分环节B 、惯性环节C 、比例环节D 、微分环节49. 串联校正装置11)(21++=s T s T s G c ,若其为超前校正,则应该( B )A 、T 1>T 2B 、T 1<T 2C 、T 1=T 2D 、T 1≠T 250. 若在系统的前向通路上串联比例-积分(PI )校正装置,可使( B )A 、相位超前B 、相位滞后C 、相位不变D 、快速性变好51. 软反馈指的是反馈校正装置的主体是( D )A 、积分环节B 、惯性环节C 、比例环节D 、微分环节52. 校正装置的传递函数是101.011.0++s s ,该校正是( A ) A 、比例微分校正 B 、近似比例积分校正C 、比例积分校正D 、比例积分微分校正53. 比例-积分(PI )校正能够改善系统的( C )A 、快速性B 、动态性能C 、稳态性能D 、相对稳定性54. 硬反馈在系统的动态和稳态过程中都起( D )A 、超前校正作用B 、滞后校正作用C 、滞后-超前校正作用D 、反馈校正作用55. PD 校正器又称为( B )A 、比例-积分校正B 、比例-微分校正C 、微分-积分校正D 、比例-微分-积分校正56. 闭环采样系统的稳定的充分必要条件为:系统特征方程的所有根均在Z 平面的( D )A 、左半平面B 、右半平面C 、单位圆外D 、单位圆内57. 采样控制系统中增加的特殊部件是( A )A 、采样开关和采样信号保持器B 、采样开关和模数转换器C 、采样信号保持器和数模转换器D 、采样开关和信号发生器58. 采样系统的闭环脉冲传递函数的极点位于单位圆内的正实轴上,则其暂态分量( B )A 、为衰减振荡函数B 、按指数规律衰减C 、是发散的D 、衰减越慢59. 单位阶跃函数的Z 变换是( C )A 、1B 、z 1C 、1-z zD 、zz 1- 60. 采样信号保持器的作用是将采样信号恢复为( A )A 、连续信号B 、离散信号C 、输出信号D 、偏差信号61. 采样系统的闭环脉冲传递函数的极点位于单位圆内的负实轴上,则其暂态分量( A )A 、为衰减振荡函数B 、按指数规律衰减C 、是发散的D 、衰减越慢62. 单位脉冲函数的Z 变换是( A )A 、1B 、z 1C 、1-z zD 、zz 1- 63. 采样控制系统的闭环脉冲传递函数的极点距z 平面坐标原点越近,则衰减速度( B )A 、越慢B 、越快C 、变化越慢D 、变化越快64. 为了使采样控制系统具有比较满意的暂态响应性能,闭环极点最好分布在( D )A 、单位圆外的左半部B 、单位圆外的右半部C 、单位圆内的左半部D 、单位圆内的右半部65. 在工程实际中,为了保证采样过程有足够的精确度,常取ωs 为( C )A 、2~4ωmaxB 、3~5ωmaxC 、5~10ωmaxD 、8~12ωmax66. 状态变量描述法不仅能反映系统输入和输出的关系,而且还能提供系统( D )A 、全部变量的信息B 、外部各个变量的信息C 、线性关系D 、内部各个变量的信息67. 能观标准型的系统矩阵是能控标准型系统矩阵的( C )A 、对称矩阵B 、逆阵C 、转置D 、单位阵68. 约当标准型的系统矩阵是对角线阵,对角线元素依次为( C )A 、零点B 、开环极点C 、系统特征根D 、各部分分式的系数69. 在现代控制理论中采用的状态变量描述法,又称为( D )A 、全部变量描述法B 、外部描述法C 、线性描述法D 、内部描述法70. 能观标准型的控制矩阵是能控标准型输出矩阵的( C )A 、对称矩阵B 、逆阵C 、转置D 、单位阵71. 线性定常系统状态能控的充分必要条件是,其能控性矩阵的( B )A 、行数为nB 、秩为nC 、列数为nD 、行列式值为n72. 系统状态变量的个数等于系统( C )A 、全部变量的个数B 、外部变量的个数C 、独立变量的个数D 、内部变量的个数73. 能观标准型的输出矩阵是能控标准型控制矩阵的( C )A 、对称矩阵B 、逆阵C 、转置D 、单位阵74. 线性定常系统状态完全能观的充分和必要条件是,其能观性矩阵的( B )A 、行数为nB 、秩为nC 、列数为nD 、行列式值为n75. 一个状态变量为n 维的单输入,单输出系统,下面说法正确的是( A )A 、系数阵A 为n ×n 维B 、控制阵B 为1×n 维C 、输出阵C 为n ×1维D 、A ,B ,C 三个阵均为n ×n 维二、计算题76. 求如图所示系统的微分方程,图中x(t)为输入位移,y(t)为输出位移。
现代控制理论试卷及答案-总结
、〔10分,每小题1分〕试判断以下结论的正确性,若结论是正确的, 一〔√〕1. 由一个状态空间模型可以确定惟一一个传递函数.〔√〕2. 若系统的传递函数不存在零极点对消,则其任意的一个实现均为最小实现.〔×〕 3. 对一个给定的状态空间模型,若它是状态能控的,则也一定是输出能控的.〔√〕4. 对线性定常系统x = Ax ,其Lyapunov意义下的渐近稳定性和矩阵A的特征值都具有负实部是一致的.〔√〕5.一个不稳定的系统,若其状态彻底能控,则一定可以通过状态反馈使其稳定.〔×〕 6. 对一个系统,只能选取一组状态变量;〔√〕7. 系统的状态能控性和能观性是系统的结构特性,与系统的输入和输出无关;〔×〕 8. 若传递函数G(s) = C(sI 一A)一1 B 存在零极相消,则对应的状态空间模型描述的系统是不能控且不能观的;〔×〕9. 若一个系统的某个平衡点是李雅普诺夫意义下稳定的,则该系统在任意平衡状态处都是稳定的;〔×〕 10. 状态反馈不改变系统的能控性和能观性.二、已知下图电路,以电源电压 u<t>为输入量,求以电感中的电流和电容中的电压作为状态变量的状态方程,和以电阻 R2 上的电压为输出量的输出方程.〔10 分〕解:〔1〕由电路原理得:二.〔10 分〕图为 R-L-C 电路,设u 为控制量,电感L 上的支路电流和 电容 C 上的电压x 为状态变量,电容 C 上的电压x 为输出量,试求: 网2 2络的状态方程和输出方程,并绘制状态变量图.解:此电路没有纯电容回路,也没有纯电感电路,因有两个储能元件, 故有独立变量.以 电感 L 上 的 电流和 电容两端 的 电压为状态变量 , 即令:i L = x 1 , u c = x 2,由基尔霍夫电压定律可得电压方程为: • •y y21 =-x x21+ u三、 〔每小题 10 分共 40 分〕基础题〔1〕试求 y - 3y - 2y = u + u 的一个对角规 X 型的最小实现.〔10 分〕Y(s) = s 3 + 1 = (s +1)(s 2 - s +1) = s 2 - s +1 = 1+ 1+ -1 …………4 分不妨令X (s)1 = 1 ,X (s)2 = - 1 …………2 分 于是有 又Y(s)U(s)= 1+ X (s)1U(s)+ X (s)2U(s),所以Y(s) = U (s) + X 1 (s) + X 2 (s) , 即有y = u + x + x …………2 分1 2最终的对角规 X 型实现为则系统的一个最小实现为:=「|2 0 ]+「| 1 ]|u, y = [1 1…………2 分 U (s) s 3 - 3s - 2 (s +1)(s 2 - s - 2) s 2 - s - 2 s - 2 s + 1 L 0 -1-1」U (s) s - 2 U (s) s + 1从上述两式可解出x 1 ,x 2 ,即可得到状态空间表达式如下:〔2〕已知系统 =「| 0 1]| +「|1]|u, y = [1 -2] ,写出其对偶系统,判断该系统的能控性与其对偶系统的能观性.〔10 分〕解答:= 10 3-2+ -12 u…………………………2 分y = [1 2] ……………………………………2 分〔3〕设系统为试求系统输入为单位阶跃信号时的状态响应〔10 分〕 .解(t )=「|e-t 0 ]|L 0 e -2t 」……………………………..…….……..3 分(t) = (t )(0) + j 0t (t )u(t )d τ……….….……….……..3 分=11+ j 0t11d τ ….……..2 分=「| e-t ]| + j t 「| e -(t -t ) ]|d τL e -2t 」 0 |L e -2(t -t )」| .................................................................................... 1 分=(1- e1(1-2= 21 (1 e -2t )………………..1 分〔4〕已知系统 x =01 01x + 11u 试将其化为能控标准型.〔10 分〕 「0 1 ]解: u c = 11 02 , u -c 1 =|L 21 - 21 」| ............2 分 p 1= [0 1]u -c1 = [0 1]-121= [21 - 21].…….1 分 p 2= p 1A = [21- 21]01 01= [21 21].……..1 分 L -2 3」 L 2」「 1 - 1 ] 「 1 1]P = |L 212」| ,P -1 = |L -1 1」| ....................2 分能控标准型为x =「|0 1]|x +「|0]|u........ 4 分 四、设系统为试对系统进行能控性与能观测性分解,并求系统的传递函数.〔10 分〕 解:能控性分解:能观测性分解: 传递函数为g(s) ==(2分)五、试用李雅普诺夫第二法,判断系统 x •=「| 0 1 ]| x 的稳定性.〔10分〕方法一:解: x 1= x 2原点 x =0是系统的惟一平衡状态 .选取标准二次型函数为李雅e普诺夫函数,即当x 1 = 0 ,x 2 = 0 时, v(x) = 0 ;当x 1 丰 0 ,x 2 = 0 时,v(x) = 0 ,因此v(x) 为 负半定.根据判断,可知该系统在李雅普诺夫意义下是稳定的. 另选一个李雅普诺夫函数,例如:为正定,而为负定的,且当 x ) w ,有V (x)) w .即该系统在原点处是大 X 围渐进 稳定. 方法二:• • ••L -1 -1」L 0 1」 L 1」解:或者设P =则由 A T P + PA = -I 得+=可知 P 是正定的.因此系统在原点处是大 X 围渐近稳定的六、 〔20 分〕线性定常系统的传函为 Y (s) = s +4U (s) (s + 2)(s +1)〔1〕实现状态反馈,将系统闭环的希翼极点配置为(-4,-3),求反馈阵K .〔5 分〕〔2〕试设计极点为(-10,-10) 全维状态观测器〔5 分〕 . 〔3〕绘制带观测器的状态反馈闭环系统的状态变量图〔4 分〕 〔4〕分析闭环先后系统的能控性和能观性〔4 分〕注明:由于实现是不惟一的,本题的答案不惟一!其中一种答案为:解:〔1〕 Y (s) = s + 4 = s + 4U (s) (s + 2)(s +1) s 2 + 3s + 2系统的能控标准型实现为: X =「| 0 1 ]| X +「|0]| u, y = [4 1]X ……1 分系统彻底可控,则可以任意配置极点……1 分 令状态反馈增益阵为K = [k k ]……1 分1 2则有A - BK =「| 0 1 ]|,则状态反馈闭环特征多项式为又期望的闭环极点给出的特征多项式为: (s + 4)(s + 3) = s 2+ 7s +12由入2 + (k + 3)入 + (k + 2) = s 2 + 7s +12 可得到K = [4 10]……3 分1 2〔2〕观测器的设计:L -k 2 - 2 -k 1- 3」 L -2 -3」 L 1」由传递函数可知,原系统不存在零极点相消,系统状态彻底能观,可以任意配置观测器的极点.……1 分 令E = [e e ]T ……1 分1 2由观测器 = (A - EC)+ Bu + Ey 可得其期望的特征多项式为:f * (s) = f (s) 亭 E = - 311 395T ……4 分〔3〕绘制闭环系统的摹拟结构图第一种绘制方法:……4 分〔注:观测器输出端的加号和减号应去掉!不好意思, 刚发现!!〕第二种绘制方法:〔4〕闭环前系统状态彻底能控且能观,闭环后系统能控但不能观〔因 为状态反馈不改变系统的能控性 ,但闭环后存在零极点对消 ,所以系 统状体不彻底可观测〕……4 分A 卷-+-41 s32x 21 sx1x14+ + y10++22 - 3+ +1 s 222 - 358 -34 322 - 3 + ++1+ + - s1 4 43v u +-++++一、判断题,判断下例各题的正误,正确的打√ , 错误的打×〔每小题1 分,共10 分〕1、状态方程表达了输入引起状态变化的运动,输出方程则表达了状态引起输出变化的变换过程〔√〕2、对于给定的系统,状态变量个数和选择都不是惟一的〔×〕3、连续系统离散化都没有精确离散化,但近似离散化方法比普通离散化方法的精度高〔×〕4、系统的状态转移矩阵就是矩阵指数〔×〕5、若系统的传递函数存在零极点相消,则系统状态不彻底能控〔×〕6、状态的能空性是系统的一种结构特性,依赖于系统的结构, 与系统的参数和控制变量作用的位置有关〔√〕7、状态能控性与输出能控性之间存在必然的联系〔×〕8、一个传递函数化为状态方程后,系统的能控能观性与所选择状态变量有关〔√ 〕9、系统的内部稳定性是指系统在受到小的外界扰动后,系统状态方程解的收敛性,与输入无关〔√〕10、若不能找到合适的李雅普诺夫函数,那末表明该系统是不稳定的〔×〕二、已知系统的传递函数为试分别用以下方法写出系统的实现:(1) 串联分解(2) 并联分解(3) 直接分解(4) 能观测性规X 型〔20 分〕解:2对于s3 +10s2 + 31s + 30 有(1) 串联分解串联分解有多种,如果不将 2 分解为两个有理数的乘积,如2 = 1 8 ,绘制该系统串联分解的结4构图,然后每一个惯性环节的输出设为状态变量,则可得到系统四种典型的实现为:则对应的状态空间表达式为:需要说明的是, 当交换环节相乘的顺序时,对应地交换对应行之间对角线的元素. . 的实现为:〈0 0一311]XX + u则. .的实现为:〈0一311]XX + u挨次类推!! (2) 并联分解实现有无数种,若实现为〈X = X + 21u只要满足y = [c L 1 c 2 c 3]2 1〔3〕直接分解〔4〕能观测规 X 型三、给定一个二维连续时间线性定常自治系统 = A , t > 0 .现知,对应于两个不同初态的状态响应分别为试据此定出系统矩阵A.〔10 分〕解: x(t) = e At x(0) 可得四、已知系统的传递函数为〔1〕试确定 a 的取值,使系统成为不能控,或者为不能观测;〔2〕在上述 a 的取值下,写出使系统为能控的状态空间表达式,判断系统的能观测性; 〔3〕若a = 3 ,写出系统的一个最小实现.〔15 分〕解:〔1〕因为因此当a = 1 或者a = 2 或者a = 3 时, 浮现零极点对消现象,系统就成为不能控或者不能观测的系统 〔2〕可写系统的能控标准形实现为此问答案不惟一 存在零极相消,系统不能观 〔3〕 a = 3 ,则有G(s) =2 3 一1 3 如例如: s 3 + 10s 2 + 31s +30 = (s + 2) + (s + 3) + (s + 5),则其实现可以为:可写出能控标准形最小实现为此问答案不惟一,可有多种解五、已知系统的状态空间表达式为 〔1〕判断系统的能控性与能观测性; 〔2〕若不能控,试问能控的状态变量数为多少? 〔3〕试将系统按能控性进行分解; 〔4〕求系统的传递函数.〔15 分〕 解:〔1〕系统的能控性矩阵为U C = [b Ab ]= 10 -20, det U C = 0, rankU C = 1 < 2故系统的状态不能控系统的能观测性矩阵为「 c ] 「 2 5 ]故系统的状态不能观测 4 分〔2〕 rankU = 1 , 因此能控的状态变量数为 1C〔3〕由状态方程式可知是x 能控的, x 是不能控的2 1〔4〕系统的传递函数为1 分2 分G(s) = c (sI - A )-1 b = c (sI - A )-1 b = 5 只与能控子系统有关六、给定系统解李雅普诺夫方程,求使得系统渐近稳定的 a 值 X 围.〔10 分〕七、伺服机电的输入为电枢电压,输出是轴转角,其传递函数为〔1〕设计状态反馈控制器u = -Kx + v ,使得闭环系统的极点为-5 士 j5 ;〔2〕设计全维状态观测器,观测器具有二重极点-15;〔3〕将上述设计的反馈控制器和观测器结合,构成带观测器的反馈控制器,画出闭环系统的状 态变量图;〔4〕求整个闭环系统的传递函数.〔20 分〕 第二章题 A 卷第一题:判断题,判断下例各题的正误,正确的打√ ,错误的打× 〔每小题 1 分,共 10 分〕 11、状态方程表达了输入引起状态变化的运动,输出方程则表达了状态引起输出变化的变换 过程〔 √〕12、对于给定的系统,状态变量个数和选择都不是惟一的〔×〕13、连续系统离散化都没有精确离散化,但近似离散化方法比普通离散化方法的精度高〔×〕3 分2 2 2s + 2U O= |L cA 」| = |L 19 -10」| , det U C = -115 丰 0, rankU O = 214、系统的状态转移矩阵就是矩阵指数〔×〕15、若系统的传递函数存在零极点相消,则系统状态不彻底能控〔×〕16、状态的能空性是系统的一种结构特性 ,依赖于系统的结构, 与系统的参数和控制变量作 用的位置有关〔 √〕17、状态能控性与输出能控性之间存在必然的联系〔×〕18、一个传递函数化为状态方程后,系统的能控能观性与所选择状态变量有关〔√〕 19、系统的内部稳定性是指系统在受到小的外界扰动后,系统状态方程解的收敛性,与输入无 关〔 √〕20、若不能找到合适的李雅普诺夫函数,那末表明该系统是不稳定的〔×〕第二题:已知系统的传递函数为G(s) == ,试分别用以下方法写出系统的实现:(5) 串联分解〔4 分〕 (6) 并联分解〔4 分〕 (7) 直接分解〔4 分〕 (8) 能观测性规 X 型〔4 分〕(9) 绘制串联分解实现时系统的结构图〔4 分〕解:s对于有s 3 +10s 2 + 31s + 30(3) 串联分解 串联分解有三种s = s . 1 . 1 = 1 . s . 1 = 1 . 1 . s s 3 +10s 2 + 31s + 30 (s + 1) (s + 2) (s + 3) (s + 1) (s + 2) (s + 3) (s + 1) (s + 2) (s + 3) = (1)..=.(1).=.(1)对应的状态方程为:(4) 并联分解实现有无数种,其中之三为: 〔3〕直接分解 〔4〕能观测规 X 型 (10) 结构图第二章题 B 卷第一题:判断题,判断下例各题的正误,正确的打√ ,错误的打× 〔每小题 1 分,共 10 分〕 1、状态空间模型描述了输入-输出之间的行为,而且在任何初始条件下都能揭示系统的内部 行为〔 √〕2、状态空间描述是对系统的一种彻底的描述,而传递函数则只是对系统的一种外部描述〔√〕3、任何采样周期下都可以通过近似离散化方法将连续时间系统离散化〔×〕4、对于一个线性系统来说,经过线性非奇妙状态变换后,其状态能控性不变〔 √〕5、系统状态的能控所关心的是系统的任意时刻的运动〔×〕6、能观〔能控〕性问题可以转化为能控〔能观〕性问题来处理〔√〕7、一个系统的传递函数所表示的是该系统既能控又能观的子系统〔√〕8、一个系统的传递函数若有零、 极点对消现象,则视状态变量的选择不同,系统或者是不能控的Y(s) s 3 +10s 2 + 31s + 32U (s) (s 2 + 5s + 6)(s + 1)或者是不能观的〔 √〕9、对于一个给定的系统,李雅普诺夫函数是惟一的〔 ×〕 10、若系统对所有有界输入引起的零状态响应的输出是有界的,则称该系统是外部稳定的〔√〕 第二题: 求以下 RLC 网络系统的状态空间模型, 并绘制其结构图.取电压 e_i 为输入,e_o 为输 出.其中 R 1 、R 2 、C 和 L 为常数.第二题图答案:解: 〔状态变量可以另取〕定义状态变量: x 1 为电阻两端电压 v,x 2 为通过电感的电流 i.输入 u 为 e_i ,输出 y 为e_o .使用 基尔霍夫电流定理列 R 1 和 R 2 间节点的电流方程:使用基尔霍夫电压定理列出包含 C 、R 2 、L 回路的电压方程: 最后,输出电压的表达式为: 得到状态空间模型: 结构图为:第三题: 如图所示,系统的输入量为 u 1 和 u 2、输出量为 y 和请选择适当的状态变量,并写出系 统的状态空间表达式,根据状态空间表达式求系统的闭环传递函数:第三题图 解:状态变量如下图所示〔3 分〕从方框图中可以写出状态方程和输出方程〔4〕 状态方程的矩阵向量形式: 系统的传递函数为〔3 分〕:. 解:由电路图可知:图1 :RC 无源网络可得:选,,=所以可以得到:解:运用公式可得:可得传递函数为:解:先求出系统的.可得:令,X<k>+解:计算算式为:所以:解:由于 A 无特定形式,用秩判据简单.因此,不管 a 去何值都不能够联合彻底能控和彻底能观测解:〔1〕选取李雅普若夫函数V<x>,取,可知:V<0>=0,即〔2〕计算基此可知:即:〔3〕判断和出:为正定.并判断其定号性.对取定和系统状态方程,计算得到:为负半定..对此, 只需判断的不为系统状态方程的解.为此,将带入状态方程, 导表明,状态方程的解只为, 不是系统状态方程的解.通过类似分析也可以得证不是系统状态方程的解. 基此, 可知判断.〔4〕综合可知,对于给定非线性时不变系统,可构造李雅普若夫函数判断满足:V<x>为正定, 为负定;对任意,当,有基此,并根据李雅普若夫方法渐近稳定性定理知:系统原点平衡状态为大X 围渐近稳定.解:可知,系统彻底可控,可以用状态反馈进行任意极点配置. 由于状态维数为 3 维.所以设.系统期望的特征多项式为:而令,二者相应系数相等.得:5 3 ]即: 验证:A 卷二、基础题〔每题 10 分〕1、给定一个二维连续时间线性定常自治系统 = A , t > 0 .现知,对应于两个不同初态的状 态响应分别为试据此定出系统矩阵 A .解: x(t) = e At x(0) 2 分可得e At = 4 4「| 1 (e -t + e 3t )4 分4 e -t + 4 e 3t |「 1 -5 e -t + 3 e 3t |L -1 1 1 ] 21 (e -t + e 3t )」2 ]-1 「| 43 e -t + 41 e 3t -1」| = - 23 e -t + 21e 3t45 e -t + 43e 3t ]|「-1 - 25 e -t + 23e 3t 」 |L 1-2] 1 」| A ==-te3t14-43t =0 = 41 11 2、设线性定常连续时间系统的状态方程为取采样周期T = 1s ,试将该连续系统的状态方程离散化. 解:① 首先计算矩阵指数.采用拉氏变换法:e t = L -1 (s -)-1 = L -1〈-1= L -122)=3 分② 进而计算离散时间系统的系数矩阵.= e T =「|1 0.5 (1- e -2T )] T 「14 分0.4323] 0.1353」|2 分 「3 e -t + 1 e 3t |L 0 e -2T 」|| 将T = 1s 代入得 = e = |L 0 - 4 e -t + 4 e 3t| |- 3 e -t + 1 e 3t |L 2 2 = | 2||L -e -t + e 3t2 2 」|=(j T)B =〈(|j T「|10 |l 0 |L00.5(1- e-2t)] )|「0]「0.5T + 0.25e-2T - 0.25]=|L -0.5e-2T + 0.5 」|「1.0789]= | |③故系统离散化状态方程为xx21 = xx21kk+ u (k ) 2 分3、已知系统的传递函数为〔1〕试确定a 的取值,使系统成为不能控,或者为不能观测;〔2〕在上述a 的取值下,写出使系统为能控的状态空间表达式,判断系统的能观测性;〔3〕若a = 3 ,写出系统的一个最小实现.〔10 分〕解:〔1〕因为因此当a = 1 或者a = 2 或者a = 3 时, 浮现零极点对消现象,系统就成为不能控或者不能观测的系统 3 分〔2〕可写系统的能控标准形实现为此问答案不惟一x =-x + u y =[2a 2 0]x3 分存在零极相消,系统不能观 1 分〔3〕a = 3 ,则有G(s) =可写出能控标准形最小实现为此问答案不惟一,可有多种解三、已知系统的状态空间表达式为3 分〔1〕判断系统的能控性与能观测性;〔2〕若不能控,试问能控的状态变量数为多少?〔3〕试将系统按能控性进行分解;〔4〕求系统的传递函数.〔10 分〕解:〔1〕系统的能控性矩阵为UC= [b Ab]=1-2, det UC= 0, rankUC= 1 < 23 分L0.4323」|dt卜||e-2t 」| J|L 1」故系统的状态不能控系统的能观测性矩阵为「 c ] 「 2 5 ] U O= | | = | | ,detU = -115 丰 0, rankU = 2 C O4 分〔2〕 rankU = 1 , 因此能控的状态变量数为 1 1 分 C〔3〕由状态方程式可知是x 能控的, x 是不能控的 2 分3 分B 卷二、基础题〔每题 10 分〕1、给定一个连续时间线性定常系统, 已知状态转移矩阵个(t) 为 试据此定出系统矩阵 A .解:A =〈dt d(t) 卜Jt =0=t =0「 0 2 ] = | |2、设线性定常连续时间系统的状态方程为取采样周期T = 1s ,试将该连续系统的状态方程离散化.解:① 首先计算矩阵指数.采用拉氏变换法: ② 进而计算离散时间系统的系数矩阵.「 1 T ] 「1 1]= e T = |L 0 1」|将T = 1s 代入得 = e T = |L 0 1」| ③ 故系统离散化状态方程为 3、已知系统的传递函数为试写出系统的能控标准形实现.〔10 分〕解:系统的能控标准形实现为三、试确定下列系统当 p 与 q 如何取值系统既能控又能观.〔10 分〕 解:系统的能控性矩阵为其行列式为 det [b Ab ]= p 2 + p - 12根据判定能控性的定理 , 若系统能控 , 则系统能控性矩阵的秩为 2,亦即行列式值不为2 1〔4〕系统的传递函数为G(s) = c (sI - A )-1 b = c (sI - A )-1 b = 5 只与能控子系统有关2 2 2s + 2L -1 -3」L cA 」 L 19 -10」 故系统的状态不能观测[b Ab]= p2+ p - 12 丰00 , det因此当p 丰3,-4 时系统能控系统能观测性矩阵为其行列式为根据判定能观性的定理, 若系统能观, 则系统能观性矩阵的秩为2, 亦即「c ]det | | = 12q2 - q - 1 丰0L cA」1 1因此当q 丰, - 时系统能观3 41 1综上可知, 当p 丰3, -4 , q 丰, - 时系统既能控又能观3 4。
现代控制理论试卷答案3套
现代控制理论试卷 1一、(10分)判断以下结论,若是正确的,则在括号里打√,反之打×(1)用独立变量描述的系统状态向量的维数是唯一。
()(2)线性定常系统经过非奇异线性变换后,系统的能观性不变。
()(3)若一个系统是李雅普诺夫意义下稳定的,则该系统在任意平衡状态处都是稳定的。
()(4)状态反馈不改变被控系统的能控性和能观测性。
()(5)通过全维状态观测器引入状态反馈来任意配置系统的闭环极点时,要求系统必须同时能控和能观的。
()二、(12分)已知系统1001010,(0)00121x x x⎛⎫⎛⎫⎪ ⎪==⎪ ⎪⎪ ⎪⎝⎭⎝⎭,求()x t.三、(12分) 考虑由下式确定的系统:2s+2(s)=43Ws s++,求其状态空间实现的能控标准型和对角线标准型。
四、(9分)已知系统[]210020,011003x x y⎡⎤⎢⎥==⎢⎥⎢⎥-⎣⎦,判定该系统是否完全能观?五、(17分) 判断下列系统的能控性、能观性;叙述李亚普诺夫稳定性的充要条件并分析下面系统的稳定性.[]xy u x x 11103211=⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡--=六、(17分)已知子系统1∑ 111121011x x u -⎡⎤⎡⎤=+⎢⎥⎢⎥-⎣⎦⎣⎦,[]1110y x = 2∑ []22222110,01011x x u y x -⎡⎤⎡⎤=+=⎢⎥⎢⎥-⎣⎦⎣⎦求出串联后系统的状态模型和传递函数.七、(15分)确定使系统2001020240021a x x u b -⎡⎤⎡⎤⎢⎥⎢⎥=-+⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦为完全能控时,待定参数的取值范围。
八、(8分)已知非线性系统 ⎩⎨⎧--=+-=2112211sin 2x a x xx x x试求系统的平衡点,并确定出可以保证系统大范围渐近稳定的1a 的范围。
现代控制理论 试卷 1参考答案一、(10分)判断以下结论,若是正确的,则在括号里打√,反之打× (1) 用独立变量描述的系统状态向量的维数是唯一。
现代控制理论试题与答案
现代控制理论1.经典-现代控制区别:经典控制理论中,对一个线性定常系统,可用常微分方程或传递函数加以描述,可将某个单变量作为输出,直接和输入联系起来;现代控制理论用状态空间法分析系统,系统的动态特性用状态变量构成的一阶微分方程组描述,不再局限于输入量,输出量,误差量,为提高系统性能提供了有力的工具.可以应用于非线性,时变系统,多输入-多输出系统以及随机过程.2.实现-描述由描述系统输入-输出动态关系的运动方程式或传递函数,建立系统的状态空间表达式,这样问题叫实现问题.实现是非唯一的.3.对偶原理系统=∑1A1,B1,C1和=∑2A2,B2,C2是互为对偶的两个系统,则∑1的能控性等价于∑2的能观性, ∑1的能观性等价于∑2的能控性.或者说,若∑1是状态完全能控的完全能观的,则∑2是状态完全能观的完全能控的.对偶系统的传递函数矩阵互为转置4.对线性定常系统∑0=A,B,C,状态观测器存在的充要条件是的不能观子系统为渐近稳定第一章控制系统的状态空间表达式1.状态方程:由系统状态变量构成的一阶微分方程组2.输出方程:在指定系统输出的情况下,该输出与状态变量间的函数关系式3.状态空间表达式:状态方程和输出方程总合,构成对一个系统完整动态描述4.友矩阵:主对角线上方元素均为1:最后一行元素可取任意值;其余元素均为05.非奇异变换:x=Tz,z=T-1x;z=T-1ATz+T-1Bu,y=CTz+为任意非奇异阵变换矩阵,空间表达式非唯一6.同一系统,经非奇异变换后,特征值不变;特征多项式的系数为系统的不变量第二章控制系统状态空间表达式的解1.状态转移矩阵:eAt,记作Φt2.线性定常非齐次方程的解:xt=Φtx0+∫t0Φt-τBuτdτ第三章线性控制系统的能控能观性1.能控:使系统由某一初始状态xt0,转移到指定的任一终端状态xtf,称此状态是能控的.若系统的所有状态都是能控的,称系统是状态完全能控2.系统的能控性,取决于状态方程中系统矩阵A和控制矩阵b3.一般系统能控性充要条件:1在T-1B中对应于相同特征值的部分,它与每个约旦块最后一行相对应的一行元素没有全为0.2T-1B中对于互异特征值部分,它的各行元素没有全为0的4.在系统矩阵为约旦标准型的情况下,系统能观的充要条件是C中对应每个约旦块开头的一列的元素不全为05.约旦标准型对于状态转移矩阵的计算,可控可观性分析方便;状态反馈则化为能控标准型;状态观测器则化为能观标准型6.最小实现问题:根据给定传递函数阵求对应的状态空间表达式,其解无穷多,但其中维数最小的那个状态空间表达式是最常用的.第五章线性定常系统综合1.状态反馈:将系统的每一个状态变量乘以相应的反馈系数,然后反馈到输入端与参考输入相加形成控制律,作为受控系统的控制输入.K为rn维状态反馈系数阵或状态反馈增益阵2.输出反馈:采用输出矢量y构成线性反馈律H为输出反馈增益阵3.从输出到状态矢量导数x的反馈:A+GC4.线性反馈:不增加新状态变量,系统开环与闭环同维,反馈增益阵都是常矩阵动态补偿器:引入一个动态子系统来改善系统性能5.1状态反馈不改变受控系统的能控性2输出反馈不改变受控系统的能控性和能观性6.极点配置问题:通过选择反馈增益阵,将闭环系统的极点恰好配置在根平面上所期望的位置,以获得所希望的动态性能1采用状态反馈对系统任意配置极点的充要条件是∑0完全能控2对完全能控的单输入-单输出系统,通过带动态补偿器的输出反馈实现极点任意配置的充要条件1∑0完全能控2动态补偿器的阶数为n-13对系统用从输出到x线性反馈实现闭环极点任意配置充要条件是完全能观7.传递函数没有零极点对消现象,能控能观8.对完全能控的单输入-单输出系统,不能采用输出线性反馈来实现闭环系统极点的任意配置9.系统镇定:保证稳定是控制系统正常工作的必要前提,对受控系统通过反馈使其极点均具有负实部,保证系统渐近稳定1对系统采用状态反馈能镇定的充要条件是其不能控子系统渐近稳定2对系统通过输出反馈能镇定的充要条件是其结构分解中的能控且能观子系统是输出反馈能镇定的,其余子系统是渐近稳定的3对系统采用输出到x反馈实现镇定充要条件是其不能观子系统为渐近稳定10.解耦问题:寻求适当的控制规律,使输入输出相互关联的多变量系统的实现每个输出仅受相应的一个输入所控制,每个输入也仅能控制相应的一个输出 11.系统解耦方法:前馈补偿器解耦和状态反馈解耦 12.全维观测器:维数和受控系统维数相同的观测器现代控制理论试题1 ①已知系统u u uy y 222++=+ ,试求其状态空间最小实现;5分 ②设系统的状态方程及输出方程为11000101;0111x x u ⎡⎤⎡⎤⎢⎥⎢⎥=+⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦[]001y x =试判定系统的能控性;5分2 已知系统的状态空间表达式为00001⎛⎫⎡⎤=+ ⎪⎢⎥⎝⎭⎣⎦x x u t ;[]x y 01=; ⎥⎦⎤⎢⎣⎡=11)0(x 试求当0;≥=t t u 时,系统的输出)(t y ;10分 3给定系统的状态空间表达式为u x x ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=100100110100013 ,211021y x -⎡⎤=⎢⎥⎣⎦ 试确定该系统能否状态反馈解耦,若能,则将其解耦10分 4 给定系统的状态空间表达式为设计一个具有特征值为 1 1 1---,,的全维状态观测器10分 5 ①已知非线性系统 ⎩⎨⎧--=+-=2112211sin 2x a x xx x x试求系统的平衡点,并确定出可以保证系统大范围渐近稳定的1a 的范围;5分② 判定系统11221223x x x x x x =-+⎧⎨=--⎩在原点的稳定性;5分6 已知系统 u x x⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡=110011 试将其化为能控标准型;10分 7 已知子系统1∑ 111121011x x u -⎡⎤⎡⎤=+⎢⎥⎢⎥-⎣⎦⎣⎦,[]1110y x = 求出串联后系统现代控制理论试题1 ① 取拉氏变换知 )()2()()22(33s u s s s y s ++=+21121)1(21)(2213++-=+++=s s s s s g 3分其状态空间最小实现为u x x⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡-=101110 ; 21021+⎥⎦⎤⎢⎣⎡=x y 2分② 1n c u B ABA B -⎡⎤=⎣⎦012111101⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦,秩为2,系统状态不完全能控; 2 解 02210(,)0.50.51⎛⎫Φ= ⎪-⎝⎭t t t t , 0()(,0)(0)(,)()tx t t x t B d τττ=Φ+Φ⎰ 1y = 3解 [][]100211101101c B ⎡⎤⎢⎥=-=-⎢⎥⎢⎥⎣⎦, [][]200021102101c B ⎡⎤⎢⎥==⎢⎥⎢⎥⎣⎦所以120d d ==,121121E E E -⎡⎤⎡⎤==⎢⎥⎢⎥⎣⎦⎣⎦; 1111213--⎡⎤=⎢⎥⎣⎦E 又因为E 非奇异,所以能用实现解耦控制; 2分12630011c A F c A ⎡⎤⎡⎤==⎢⎥⎢⎥-⎣⎦⎣⎦1分 求出u kx Lv =-+4 解 令122E E E E ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦, 代入系统得()123120()011100101sE sI A EC sE s E --⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪--=---⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭理想特征多项式为*332()(1)331f x s s s s =-=+++ 列方程,比较系数求得 001E ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦ 全维状态观测器为[]ˆˆx A EC x Bu Ey =-++ 12020ˆ01100,00111x u y --⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=-++⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦5 解 ①显然原点为一个平衡点,根据克拉索夫斯基方法,可知 因为 02<-;所以,当0)cos 21(42cos 21cos 212211111>--=----x a a x x时,该系统在原点大范围渐近稳定;解上述不等式知,491>a 时,不等式恒成立; 即491>a 时,系统在原点大范围渐近稳定; ② 解 2114523I A λλλλλ+--==+++,两个特征根均具有负实部,系统大范围一致渐近稳定;2分6 解 1210c u ⎡⎤=⎢⎥⎣⎦,1112201c u -⎡⎤=⎢⎥-⎣⎦ [][][]1111221122010101c p u -⎡⎤===-⎢⎥-⎣⎦[][]11112122221100p p A ⎡⎤==-=⎢⎥⎣⎦11221112211,11P P --⎡⎤⎡⎤==⎢⎥⎢⎥-⎣⎦⎣⎦能控标准型为u x x ⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡=101010 7 解 组合系统状态空间表达式为[]1200101001,00010011010010x x u y x -⎡⎤⎡⎤⎢⎥⎢⎥-⎢⎥⎢⎥=+=⎢⎥⎢⎥-⎢⎥⎢⎥-⎣⎦⎣⎦5分组合系统传递函数为21()()()G s G s G s = 2分21331(1)(1)(1)(1)s s s s s s s ++=⨯=+-+-+ 3分。
现代控制理论试题与答案
现代控制理论试题与答案《现代控制理论参考答案》第一章答案1-1试求图1-27系统的模拟结构图,并建立其状态空间表达式。
解:系统的模拟结构图如下:系统的状态方程如下:令,则所以,系统的状态空间表达式及输出方程表达式为1-2有电路如图1-28所示。
以电压为输入量,求以电感中的电流和电容上的电压作为状态变量的状态方程,和以电阻上的电压作为输出量的输出方程。
解:由图,令,输出量有电路原理可知:既得写成矢量矩阵形式为:1-4两输入,,两输出,的系统,其模拟结构图如图1-30所示,试求其状态空间表达式和传递函数阵。
解:系统的状态空间表达式如下所示:1-5系统的动态特性由下列微分方程描述列写其相应的状态空间表达式,并画出相应的模拟结构图。
解:令,则有相应的模拟结构图如下:1-6(2)已知系统传递函数,试求出系统的约旦标准型的实现,并画出相应的模拟结构图解:1-7给定下列状态空间表达式‘画出其模拟结构图求系统的传递函数解:(2)1-8求下列矩阵的特征矢量(3)解:A 的特征方程解之得:当时,解得:令得(或令,得)当时,解得:令得(或令,得)当时,解得:令得1-9将下列状态空间表达式化成约旦标准型(并联分解)(2)解:A的特征方程当时,解之得令得当时,解之得令得当时,解之得令得约旦标准型1-10已知两系统的传递函数分别为W1(s)和W2(s)试求两子系统串联联结和并联连接时,系统的传递函数阵,并讨论所得结果解:(1)串联联结(2)并联联结1-11(第3版教材)已知如图1-22所示的系统,其中子系统1、2的传递函数阵分别为求系统的闭环传递函数解:1-11(第2版教材)已知如图1-22所示的系统,其中子系统1、2的传递函数阵分别为求系统的闭环传递函数解:1-12已知差分方程为试将其用离散状态空间表达式表示,并使驱动函数u的系数b(即控制列阵)为(1)解法1:解法2:求T,使得得所以所以,状态空间表达式为第二章习题答案2-4 用三种方法计算以下矩阵指数函数。
现代控制理论基础(习题).doc
现代控制理论基础(习题)14两输入旳、勺,两输出X、儿的系统,其模拟结构图如下所示,试求其状态空间表达式和传递函数阵。
x, = -a t Xj - a2x2 -。
七 + b x ux3 = -a5x^ - a3x3 - a4x4 + h2u x4 = x2 + x3输出方程为忙::X = 1 ~a20、兀+00、0 / 、整理有<_。
5 0 5 ~a40 b2 < 0 1 1 0) <0 0丿P 1 0 0、V =X,0 0 0 1丿求传函:解:状态方程q(0 °丿'$ + d]% 0、-1%0、厂0 1o) -1 s0 0 0 0,0 0 0 1丿% 0 s + 6 勺0 b2I 0 -1 -1s )<0丿’$ + 0] a2 ci6(-l)-(-l)l+2det仏a60 5 +。
30、a4+ (—1)2+2., det"s + d] a60]a5、T "I S ,I 0\-1=a2s(s + 色)一a4a6 + a2a4 + s'(s + R )($ + a') + a" (s + R )s - a5a6s22 43 2 2 2=a2s a2a.s -a4a(y +a2a4 +5 +(«)+a3)5?+a}a3s +a4s a4a}s -a5a6s2 2=S +(Q] +°3)厂 +(再°3—°5°6 +°2 +°4)$ + (。
]°斗 + + °2°4 一°4°61-5.系统的动态特性由卜•列微分方程描述(1) y + 5y + 7» + 3y = " + 2” (2) y + 5j; + 7» + 3)u〃 + 3〃 + 2«列写其相应的状态空间表达式,并画出相应的模拟结构图。
现代控制理论试题
现代控制理论试题现代控制理论试题⼀、名词解释(15分)1、能控性2、能观性3、系统的最⼩实现4、渐近稳定性⼆、简答题(15分)1、连续时间线性时不变系统(线性定常连续系统)做线性变换时不改变系统的那些性质?2、如何判断线性定常系统的能控性?如何判断线性定常系统的能观性?3、传递函数矩阵的最⼩实现A、B、C和D的充要条件是什么?4、对于线性定常系统能够任意配置极点的充要条件是什么?5、线性定常连续系统状态观测器的存在条件是什么?三、计算题(70分)1、RC⽆源⽹络如图1所⽰,试列写出其状态⽅程和输出⽅程。
其中,为系统的两端的电压为状态变量,两端的电压为状态变量,电压为为系统的输出输⼊,选y。
23、4、求取下列各连续时间线性时不变系统的状态变量解和5、a的6、判断原点平衡状态即稳定:7、试确定⼀个状态反馈矩阵K,使闭环极点配置为,和。
现代控制理论试题答案⼀、概念题1、何为系统的能控性和能观性?答:(1)对于线性定常连续系统,若存在⼀分段连续控制向量u(t),能在有限时间区间[t0,t1]内将系统从初始状态x(t0)转移到任意终端状态x(t1),那么就称此状态是能控的。
(2)对于线性定常系统,在任意给定的输⼊u(t)下,能够根据输出量y(t)在有限时间区间[t0,t1]内的测量值,唯⼀地确定系统在t0时刻的初始状态x(t0 ),就称系统在t0时刻是能观测的。
若在任意初始时刻系统都能观测,则称系统是状态完全能观测的,简称能观测的。
2、何为系统的最⼩实现?答:由传递函数矩阵或相应的脉冲响应来建⽴系统的状态空间表达式的⼯作,称为实现问题。
在所有可能的实现中,维数最⼩的实现称为最⼩实现。
3、何为系统的渐近稳定性?答:若在时刻为李雅普若夫意义下的稳定,且存在不依赖于的实数和任意给定的初始状态,使得时,有,则称为李雅普若夫意义下的渐近稳定⼆、简答题1、连续时间线性时不变系统(线性定常连续系统)做线性变换时不改变系统的那些性质?答:系统做线性变换后,不改变系统的能控性、能观性,系统特征值不变、传递函数不变2、如何判断线性定常系统的能控性?如何判断线性定常系统的能观性?答:⽅法1:对n维线性定常连续系统,则系统的状态完全能控性的充分必要条件为:。
现代控制理论基础试卷及答案
现代控制理论基础考试题西北工业大学考试题(A卷)(考试时间120分钟)学院:专业:姓名:学号:一.填空题(共27分,每空1.5分)1.现代控制理论基础的系统分析包括___________和___________。
2._______是系统松弛时,输出量、输入量的拉普拉斯变换之比。
3.线性定常系统齐次状态方程是指系统___________时的状态方程。
4.推导离散化系统方程时在被控对象上串接一个开关,该开关以T为周期进行开和关。
这个开关称为_______。
5.离散系统的能______和能______是有条件的等价。
6.在所有可能的实现中,维数最小的实现称为最小实现,也称为__________。
7.构造一个与系统状态x有关的标量函数V(x, t)来表征系统的广义能量,V(x, t)称为___________。
8.单输入-单输出线性定常系统,其BIBO稳定的充要条件是传递函数的所有极点具有______。
9.控制系统的综合目的在于通过系统的综合保证系统稳定,有满意的_________、_________和较强的_________。
10.所谓系统镇定问题就是一个李亚普诺夫意义下非渐近稳定的系统通过引入_______,以实现系统在李亚普诺夫意义下渐近稳定的问题。
11.实际的物理系统中,控制向量总是受到限制的,只能在r维控制空间中某一个控制域内取值,这个控制域称为_______。
12._________和_________是两个相并行的求解最优控制问题的重要方法。
二.判断题(共20分,每空2分)1.一个系统,状态变量的数目和选取都是惟一的。
(×)2.传递函数矩阵的描述与状态变量选择无关。
(√)3.状态方程是矩阵代数方程,输出方程是矩阵微分方程。
(×)4.对于任意的初始状态)(tx和输入向量)(t u,系统状态方程的解存在并且惟一。
(√)5.传递函数矩阵也能描述系统方程中能控不能观测部分的特性。
现代控制理论基础复习资料_普通用卷
现代控制理论基础课程一单选题 (共30题,总分值30分 )1. 已知,则该系统是()(1 分)A. 能控不能观的B. 能控能观的C. 不能控能观的D. 不能控不能观的2. 下面关于线性连续定常系统的最小实现说法中( )是不正确的。
(1 分)A. 最小实现的维数是唯一的。
B. 最小实现的方式是不唯的,有无数个。
C. 最小实现的系统是能观且能控的。
D. 最小实现的系统是稳定的。
3. 下面关于连续线性时不变系统的能控性与能观性说法正确的是()(1 分)A. 能控且能观的状态空间描述一定对应着某些传递函数阵的最小实现。
B. 能控性是指存在受限控制使系统由任意初态转移到零状态的能力。
C. 能观性表征的是状态反映输出的能力。
D. 对控制输入的确定性扰动影响线性系统的能控性,不影响能观性。
4. 下面关于线性非奇异变换说法错误的是()(1 分)A. 非奇异变换阵P是同一个线性空间两组不同基之间的过渡矩阵。
B. 对于线性定常系统,线性非奇异变换不改变系统的特征值。
C. 对于线性定常系统,线性非奇异变换不改变系统的传递函数。
D. 对于线性定常系统,线性非奇异变换不改变系统的状态空间描述。
5. 线性定常系统的状态转移矩阵,其逆是()(1 分)A.B.C.D.6. 下面关于系统Lyapunov稳定性说法正确的是()(1 分)A. 系统Lyapunov稳定性是针对平衡点的,只要一个平衡点稳定,其他平衡点也稳定。
B. 通过克拉索夫斯基法一定可以构造出稳定系统的Lyapunov函数。
C. Lyapunov第二法只可以判定一般系统的稳定性,判定线性系统稳定性,只可以采用Lyapunov方程。
D. 线性系统Lyapunov局部稳定等价于全局稳定性。
7. 线性SISO定常系统,输出渐近稳定的充要条件是()(1 分)A. 其不可简约的传递函数的全部极点位于s的左半平面。
B. 矩阵A的特征值均具有负实部。
C. 其不可简约的传递函数的全部极点位于s的右半平面。
现代控制理论试卷答案与解析
现代控制理论试卷答案与解析现代控制理论现代控制理论试卷及解答一(图为R-L-C电路,设为控制量,电感上的支路电流Lu010,,,,Yx,,,,11,,,,和电容C上的电压为状态变x,,URRRR21212,,,,,,,,,Yx22,,,,RRRRRR,,,,,,,121212,,,,量,电容C上的电压为输出量,试求:网络的状态方程和输出方程x2(注意指明参考方向)。
解:此电路没有纯电容回路,也没有纯电感电路,因有两个储能元件,故有独立变量。
以电感L上的电流和电容两端的电压为状态变量,即令:,由ixux,,,Lc12基尔霍夫电压定律可得电压方程为:,,RCxxLx,,,02221,,RxCxLxu()0,,,,1121,,从上述两式可解出,,即可得到状态空间表达式如下: xx21RRRR,,,,1212,,,,,,,,xRRL()x,()()RRLRRL,,,,11211212,,,,,, ,u,,,,,,,R,,,x11,,12x,,,,2,,,,()()RRCRRC,,()RRC,,,,1212,12010,,,,yx,,,,11RRRR,,,,121=+ 2u,,,,,yx,,,,22,,,,,,R,RRRRR121212,,,,二、考虑下列系统:- , -现代控制理论(a)给出这个系统状态变量的实现; (b)可以选出参数(或)的某个值,使得这个实现或者丧失能控Ka性,或者丧失能观性,或者同时消失。
解:(a)模拟结构图如下:,xukxx,,,3131,xukx,,23, 21xxxax,,,31233321yxx,,1233则可得系统的状态空间表达式:,,,x1,,x0,3,k1,,,,,,1,,,,,,,,,x, 00,,kxu12,,2,,,,,,,,,,,,2313,,,,a0x,,,,3,,x,,3,,x,,1,, y,23130x,,2,,,,x3,,- , -现代控制理论0,3,k1,,,,,,,,(b) 因为 0,kA,0b,1,,,,,,,,,a13230,,,,0,3,k13,,,,,,,,,,,,, 0,k10,Ab,0,,,,,,,,,,,,a13,0123,,,,,,0,3,k,39,k,,,,,,,,,,,,2 0,k,,kAb,00,,,,,,,,,,,,,a13,,2a231,,,,,,,3191,k,k0,,,,,2,,, ,Mb,0Ab,31Ab,1,,k0,,,,,,,11,a,,,00,,20a,,,,所以:当时,该系统不能控;当时,该系统能控。
现代控制理论试题(详细答案)-现控题目
现代控制理论试题B 卷及答案一、1 系统[]210,01021x x u y x ⎡⎤⎡⎤=+=⎢⎥⎢⎥-⎣⎦⎣⎦能控的状态变量个数是,能观测的状态变量个数是cvcvx 。
2试从高阶微分方程385y y y u ++=求得系统的状态方程和输出方程(4分/个)解 1. 能控的状态变量个数是2,能观测的状态变量个数是1。
状态变量个数是2。
…..(4分)2.选取状态变量1x y =,2x y =,3x y =,可得 …..….…….(1分)12233131835x x x x x x x u y x ===--+= …..….…….(1分)写成010*********x x u ⎡⎤⎡⎤⎢⎥⎢⎥=+⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦…..….…….(1分)[]100y x = …..….…….(1分)二、1给出线性定常系统(1)()(),()()x k Ax k Bu k y k Cx k +=+=能控的定义。
(3分)2已知系统[]210 020,011003x x y x ⎡⎤⎢⎥==⎢⎥⎢⎥-⎣⎦,判定该系统是否完全能观?(5分)解 1.答:若存在控制向量序列(),(1),,(1)u k u k u k N ++-,时系统从第k 步的状态()x k 开始,在第N 步达到零状态,即()0x N =,其中N 是大于0的有限数,那么就称此系统在第k 步上是能控的。
若对每一个k ,系统的所有状态都是能控的,就称系统是状态完全能控的,简称能控。
…..….…….(3分) 2.[][]320300020012 110-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=CA ………..……….(1分) [][]940300020012 3202=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=CA ……..……….(1分) ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=940320110 2CA CA C U O ………………..……….(1分) rank 2O U n =<,所以该系统不完全能观……..….…….(2分)三、已知系统1、2的传递函数分别为2122211(),()3232s s g s g s s s s s -+==++-+求两系统串联后系统的最小实现。
现代控制理论试卷 答案与解析
现代控制理论试卷作业一.图为R-L-C 电路,设u 为控制量,电感L 上的支路电流11121222121212010Y x U R R R R Y x R R R R R R ⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥=+⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦+++⎢⎥⎢⎥⎣⎦⎣⎦和电容C 上的电压2x 为状态变量,电容C 上的电压2x 为输出量,试求:网络的状态方程和输出方程(注意指明参考方向)。
解:此电路没有纯电容回路,也没有纯电感电路,因有两个储能元件,故有独立变量。
以电感L 上的电流和电容两端的电压为状态变量,即令:12,L c i x u x ==,由基尔霍夫电压定律可得电压方程为:从上述两式可解出1x ∙,2x ∙,即可得到状态空间表达式如下:⎥⎦⎤⎢⎣⎡21y y =⎥⎥⎦⎤⎢⎢⎣⎡++-211212110R R R R R R R ⎥⎦⎤⎢⎣⎡21x x +u R R R ⎥⎥⎦⎤⎢⎢⎣⎡+2120 二、考虑下列系统:(a )给出这个系统状态变量的实现;(b )可以选出参数K (或a )的某个值,使得这个实现或者丧失能控性,或者丧失能观性,或者同时消失。
解:(a )模拟结构图如下:则可得系统的状态空间表达式:(b ) 因为 3023A -⎡⎢=⎢⎢⎣ 0013 k k a -⎤⎥-⎥⎥-⎦ 110b ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦所以:当1a =时,该系统不能控;当1a ≠时,该系统能控。
又因为:[2C = 1 ]0所以:当0k =或1a =时,该系统不能观;当0k ≠且1a ≠时,该系统能观。
综上可知:当1a =时或0k =且1a =时,该系统既不能控也不能观。
三、已知系统.Ax x =∙的状态转移矩阵为:(1)试确定矩阵A ,并验证At e 确为上式。
(2)已知A 求At e ,以下采用三种方法计算At e ,并对计算结果进行讨论。
解:(1)利用书上P53状态转移矩阵的性质四:对于状态转移矩阵,有A t t A t )()()(φφφ==∙ 即A e Ae e dtd At At At == 当t=0时 I =)0(φ I =-)0(1φ验证At e :(利用P59的公式(2-24)来验证)解得:221-==λλ,13-=λ,有一对复根,重根部分按公式(2-24)处理,非重根部分的i a 仍按公式(2-23)计算。
现代控制理论试卷与答案
一、名词解释与简答题(共3题,每小题5分,共15分)
1、经典控制理论与现代控制理论的区别
2、对偶原理的内容
3、李雅普诺夫稳定
二、分析与计算题(共8小题,其中4-10小题每题10分,第11小题15分,共85分)
4、电路如图所示,设输入为1u ,输出为2u ,试自选状态变量并列写出其状态空间表达式。
u 2R 1R u C1C2u 12
u
5、已知系统的微分方程u u
y y y y 75532+=+++ 。
试列写出状态空间表达式。
6、试将下列状态方程化为对角标准型或者约当标准型。
7、已知系统状态空间表达式为[]01134111u y ⎧⎡⎤⎡⎤=+⎪⎢⎥⎢⎥-⎨⎣⎦⎣⎦⎪=⎩
x x x ,求系统的单位阶跃响应。
8、已知线性定常系统(A ,B ,C ),[]210,011,310301100-=⎥⎥⎥⎦
⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=C B A ,试判断系统是否完全能观?若能观求其能观标准型,不能观则按照能观性进行分解。
9、利用李雅普诺夫方程判断系统1123-⎡⎤=⎢⎥-⎣⎦
x x 是否为大范围渐近稳定,并求出其一个李雅普诺夫函数。
10、将状态方程u x x ⎥⎦
⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡-=11 4321 化为能控标准型。
11、已知系统为12233
1233x x x x x x x x u = ⎧⎪= ⎨⎪=---+⎩,试确定线性状态反馈控制律,使闭环极点都是3-,并画出闭环系统的结
构图。
1
2
3。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
尼,而且位移足够小,满足近似式 sin
, cos 1 。
( 1)写出系统的运动微分方程;
( 2)写出系统的状态方程。
【解】
( 1)对左边的质量块,有
ML2 1
L f cos 1
2
对右边的质量块,有
L k sin 1
2
sin 2
L cos 1
2
MgL sin 1
ML2 2
L k 2 sin 1 sin 2
01 , rankQc 2 ,由系统能控性的定义可
13
知:存在有限控制序列,使得在有限时间内由状态初值转移到零。 (2)由系统状态完全能控的性质可知,此系统为二阶系统,可用适当的
u(0) , u(1),使
得 x(2) 0 ,即 N 的最小值为 1。
根据状态方程 x( k 1) Gx( k) hu( k) 进行递推如下: x(1) Gx (0) hu(0) x(2) Gx (1) hu(1) G Gx(0) hu(0) hu(1) G 2 x(0) Ghu(0) hu(1) 0 ,
精品文档
一.(本题满分 10 分)
如图所示为一个摆杆系统,两摆杆长度均为 L ,摆杆的质量忽略不计,
摆杆末端两个质量块 (质量均为 M )视为质点, 两摆杆中点处连接一条弹簧,
1 与 2 分别为两摆杆与竖直方向的夹角。当 1 2 时,弹簧没有伸长和压缩。
水平向右的外力 f (t ) 作用在左杆中点处,假设摆杆与支点之间没有摩擦与阻
在位移足够小的条件下,近似写成:
L
cos 2
2
MgL sin 2
f kL
ML 1
1 2 Mg 1
24
kL
ML 2
1 2 Mg 2
4
即
(2)定义状态变量
精品文档
kg
k
f
1
1
2
4M L
4M
2 ML
k
kg
2
1
2
4M
4M L
x1 1 , x2
1 , x3
2 , x4
2
精品文档
则
或写成
x1 x2 k
x2 4M
e 2t 2e t e 2t e t
2e 2t 2e t 1
2e 2t e t
3
7e 2t 8e t 7e 2t 4e t
三.(本题满分 10 分) 已知某系统的方块图如下,
回答下列问题: (1)按照上图指定的状态变量建立状态空间表达式;
(2)确定使系统状态完全能控且完全能观时,参数 k 的取值范围。 【解答】(1)系统的状态空间表达式为
x3 x4 k
x4 4 M x1
g
k
f
x1
x3
L
4M
2ML
kg 4M L x3
0
1
0
0
x1 x2
kg0
k
4M L
4M
x1
0
0 x2
1
2ML f
x3
0
0
0
1 x3
0
x4
k
0
k
g
0 x4
0
4M
4M L
二.(本题满分 10 分)
设一个线性定常系统的状态方程为 x
1
若 x(0)
时 , 状 态 响 应 为 x(t)
1
u( N ) ,使得系统由已知的初始状态
x1(0) , x2(0) 转移到 x1( N 1) 0 , x2 (N 1) 0 ?试给出判断依据和判断过程。
(2)若存在,求 N 的最小值及控制序列 u(0) u(1)
精品文档
u(N) 。
精品文档
【解答】
(1)由题意,
41
G
,h
23
0 1 , Qc
h Gh
求得状态转移矩阵为 eAt
e 2t e 2t
2e t et
eAt 1 2 11
e 2t e 2t
2e t et
1
12 11
e 2t e 2t
2e t et
12 11
精品文档
精品文档
e 2t 2e t e 2t e t
2e 2t 2e 2t
2e t et
当 x(0)
1 时的状态响应为
3 x(t ) eAt 1 3
1
Ax ,其中 A R2 2 。
e 2t
2
e 2t ; x(0)
1
时,状态响应为
2e t
x(t )
e t 。试求当 x(0)
【解答】系统的状态转移矩阵为
1 3 时的状态响应 x(t) 。
Φ( t ) x(t)
eAt ,根据题意有
e 2t e 2t
eAt 1 1
2e t
x(t)
et
eAt 2 1
合并得
z 5 l z l 5 l y 100u
根据题意,降维观测器的极点为 -10,即 5 l 10,解得 l 5 。
k1
k2
x1 x2
4x1 3x2 。
2
,n
22 2
2 ,期望特征多
六.(本题满分 10 分) 设系统的状态空间表达式为 x
y
01 x
05 1 0x
0 u
100
若该系统的状态 x2 不可测量,试设计一个降维状态观测器, 使降维观测器的极点为 10 ,
要求写出降维观测器动态方程,并写出状态 【解答】将状态空间表达式写成:
0.707 ;阶跃响
精品文档
精品文档
闭环特征多项式为 f ( ) det I A0 6ຫໍສະໝຸດ k16 k11 x
5 k2
1 5 k2
2 5 k2
6 k1
根据题意的要求,
0.707
2 , tP
2
n1
项式为
f*( )
根据多项式恒等的条件可得:
解得
22 n
2 n
5 k2 2 6 k1 2
k1 4 k2 3
状态反馈控制律为 u
x2 的估计方程。
精品文档
精品文档
进一步写成
x1 x2 x2 5 x2 100u y x1
设降维观测器方程为
x2 5x2 100u y x2
x2 5 l x2 100u l
x2 5 l x2 100u ly
引入中间变量 z x2 ly ,两边求导数得
z x2 ly
5 l x2 100u ly ly 5 l x2 100u z 5 l z ly 100u
由上面最后一步可得
Ghu(0) hu(1) G 2x(0)
即
u(1) h Gh
u(0)
G2 x(0)
u(1) Qc u(0)
G 2 x(0)
即 u(0)
u(1) u(0)
Qc 1G 2 x(0)
40 10 x(0)
18 7
18 x1(0) 7x2(0) , u(1) 40 x1(0) 10 x2 (0) 。
40 10 x1(0) 18 7 x2(0)
五.(本题满分 10 分) 对下列系统
01
0
x
xu
65 1
试设计一个状态反馈控制器,满足以下要求:闭环系统的阻尼系数
应的峰值时间等于 3.14 秒。 【解答】
假设状态反馈控制律为 u
k1
k2
x1 x2 ,代入状态方程得闭环系统
01
0
x
6
x 5
1
k1 k2 x
x1
2 k x1
1 u
x2
1 0 x2 1
x1 y 10
x2
(2)使系统状态完全能控且完全能观时,参数 k 3 且 k 0 。
四.(本题满分 10 分)
离散系统的状态方程为
x1( k 1)
41
x2 (k 1) 2 3
(1)是否存在一个有限控制序列 u(0) u(1)
x1(k ) x2 (k )
0 u(k )