北师大版九年级数学第一次月考试卷
九年级数学第一次月考卷(北师大版)(全解全析)【测试范围:第一章~第三章】A4版
2024-2025学年九年级数学上学期第一次月考卷基础知识达标测(考试时间:120分钟试卷满分:120分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.测试范围:第一章~第三章(北师大版)。
5.考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷一、单选题1.下列方程是关于x的一元二次方程的是().A.1+x=2B.x2―2y=0xC.x2+2x=x2―1D.x2=0【答案】D【分析】本题考查了一元二次方程的定义,掌握一元二次方程的定义是解题的关键.根据一元二次方程定义,只含有一个未知数,并且未知数项的最高次数是2的整式方程叫做一元二次方程,逐项分析判断即可求解.+x=2,是分式方程,不是一元二次方程;故该选项不符合题意;【详解】解:A.1xB.x2―2y=0,含有两个未知数,不是一元二次方程,故该选项不符合题意;C.x2+2x=x2―1,化简后为:2x+1=0,不是一元二次方程,故该选项不符合题意;D.x2=0,是一元二次方程,故该选项符合题意;故选D.2.下列事件中,属于必然事件的是()A.打开电视,正在播放跳水比赛B.一个不透明的袋子中装有3个红球和1个白球,除颜色外,这些球无其他差别,随机摸出两个球,至少有一个是红球C.抛掷两枚质地均匀的骰子,点数和为6D.一个多边形的内角和为600°【答案】B【分析】本题考查事件的分类,必然事件指在一定条件下,一定发生的事件;不可能事件是指在一定条件下,一定不发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件,由此对每一项进行分析即可.【详解】A,打开电视,可能播放跳水比赛,也可能不播放,因此该事件是随机事件;B,一个不透明的袋子中装有3个红球和1个白球,除颜色外,这些球无其他差别,随机摸出两个球,可能是2个红球,也可能是1个红球和1个白球,因此至少有一个是红球,该事件是必然事件;C,抛掷两枚质地均匀的骰子,点数和为可能是6,也可能不是6,因此该事件是随机事件;D,设一个n边形的内角和为600°,则(n―2)⋅180°=600°,解得n=16,不是整数,因此这种情3况不存在,该事件是不可能事件;故选B.3.下列命题是假命题的是()A.有一组邻边相等的矩形是正方形B.有一组邻边相等的四边形是平行四边形C.有三个角是直角的四边形是矩形D.对角线互相垂直且平分的四边形是菱形【答案】B【分析】根据正方形的判定、平行四边形的判定、矩形和菱形的判定判断即可.【详解】解:A、有一组邻边相等的矩形是正方形,是真命题;B、有一组邻边相等的四边形不一定是平行四边形,如筝形,原命题是假命题;C、有三个角是直角的四边形是矩形,是真命题;D、对角线互相垂直且平分的四边形是菱形,是真命题;故选:B.【点睛】本题考查的是命题的真假判断,主要包括平行四边形的判定和特殊平行四边形的判定.判断命题的真假关键是要熟悉课本中的性质定理.4.已知m是方程x2―x―4=0的一个根,则―2m2+2m的值为()A.4B.―4C.8D.―8【答案】D【分析】根据一元二次方程的根的定义,可知m2―m=4,然后整体代入求值即可.【详解】解:∵m是方程x2―x―4=0的一个根,∴m2―m―4=0,整理,可得m2―m=4,∴―2m2+2m=―2(m2―m)=―2×4=―8.故选:D.【点睛】本题主要考查了一元二次方程的根的定义以及代数式求值,理解一元二次方程的根的定义是解题关键.5.某农机厂4月份生产零件50万个,第二季度共生产零件182万个,设该厂5,6月份平均每月的增长率为x,那么x满足的方程是()A.50(1―x)2=182B.50+50(1+x)+50(1+x)2=182C.50(1+2x)=182D.50+50(1+x)+50(1+2x)=182【答案】B【分析】本题主要考查一元二次方程的增长率问题,根据题意分别表示出五月份,六月份生产零件的量,最后相加列出等式即可.【详解】解:根据题意,该厂五月份生产零件为:50(1+x),则该厂六月份生产零件为:50(1+x)(1+x)=50(1+x)2,故该厂第二季度共生产零件为:50+50(1+x)+50(1+x)2=182.故选:B6.如图,在3×3的正方形网格中,已有两个小正方形被凃黑,再将图中剩余的小正方形中任意一个涂黑,则三个被涂黑的小正方形能构成轴对称图形的概率是()A.17B.37C.47D.57【答案】B【分析】本题考查了概率公式,轴对称图形,熟记概率公式和能识别轴对称图形是解题的关键.分别将7个空白处涂黑,判断出所得图案是轴对称图形的个数,再根据概率公式进行计算.【详解】解:如图①②③任意一处涂黑时,图案为轴对称图形,∵共有7个空白处,将①②③处任意一处涂黑,图案为轴对称图形,共3处,∴构成轴对称图形的概率是3,7故选:B7.若1和―1有一个是关于x的方程x2+bx+a=0的根,则一元二次方程(a+1)x2+2bx+(a+1)=0根的情况是( )A.有两个不相等的实数根B.有两个相等的实数根C.有两个实数根D.没有实数根【答案】B【分析】本题考查了一元二次方程的根,一元二次方程的根的判别式.熟练掌握:当Δ=0时,一由(a+1)x2+2bx+(a+1)=0,可知Δ=4b2―4(a+1)2,由题意,当1是方程的根时,b=―(1+a),则Δ=0,此时,方程有两个相等的实数根;当―1是方程的根时,b=1+a,则Δ=0,此时,方程有两个相等的实数根;然后作答即可.【详解】解:∵(a+1)x2+2bx+(a+1)=0,∴Δ=4b2―4(a+1)2,∵1和―1有一个是关于x的方程x2+bx+a=0的根,当1是方程的根时,则1+b+a=0,解得,b=―(1+a),∴Δ=4b2―4(a+1)2=4[―(1+a)]2―4(a+1)2=0,此时,方程有两个相等的实数根;当―1是方程的根时,则1―b+a=0,解得,b=1+a,∴Δ=4b2―4(a+1)2=4(1+a)2―4(a+1)2=0,此时,方程有两个相等的实数根;综上,方程有两个相等的实数根,故选:B.8.如图,菱形ABCD的顶点A,B的坐标分别为1,2,―2,―1,BC∥x轴,将菱形ABCD平移,使点B与原点O重合,则平移后点D的对应点的坐标为()A.3―1,2B.2,3)C.+1,2)D.+3,3)【答案】D【分析】本题考查了菱形的性质,坐标与图形,勾股定理以及平移等知识,先利用勾股定理求出AB,然后利用菱形的性质求出点D的坐标,最后利用平移的性质求解即可.【详解】解∶∵A,B的坐标分别为1,2,―2,―1,∴AB==∵菱形ABCD,∴AD=AB=AD∥BC,又BC∥x轴,∴AD∥x轴,∴D的坐标为(1+,∵菱形ABCD平移,使点B与原点O重合,∴菱形ABCD向右平移2个单位,向上平移1个单位,∴平移后点D的对应点的坐标为3,3),故选∶D.9.如图,在平行四边形ABCD中,∠C=135°,AB=2,AD=3,点H,G分别是CD,BC上的动点,连接AH,GH.E,F分别为AH,GH的中点,则EF的最小值是( )A.2B C D.【答案】C【分析】作AQ⊥BC,根据中位线定理可推出EF=12AG,进一步可得当AG⊥BC时,AG有最小值,此时EF的值也最小.据此即可求解.【详解】解:作AQ⊥BC,如图:∵E,F分别为AH,GH的中点∴EF=12AG故:当AG⊥BC时,AG有最小值,此时EF的值也最小∴EF的最小值是12AQ∵∠C=135°,AB=2∴∠B=180°―135°=45°∴AQ=AB×sin45°=∴EF故选:C【点睛】本题考查了中位线定理、平行四边形的性质、解直角三角形等.掌握相关结论即可.10.对于一元二次方程ax2+bx+c=0(a≠0),下列说法:①若a―b+c=0,则b2―4ac≥0;②若方程ax2+c=0有两个不相等的实数根,则方程ax2+bx+c=0必有两个不相等的实数根;③若c是方程ax2+bx+c=0的一个根,则一定有ac+b+1=0成立;④若x0是一元二次方程ax2+bx+c=0的根,则b2―4ac=(2ax0+b)2;⑤若方程ax2+bx+c=0(a≠0)两根为x1,x2且满足x1≠x2≠0,则方程cx2+bx+a=0(c≠0),必有实数根1x1,1x2.其中,正确的是( )A.②④⑤B.②③⑤C.①②③④⑤D.①②④⑤【答案】D【分析】一元二次方程ax2+bx+c=0(a≠0)有两个不相等的实数根,则Δ=b2―4ac>0;有两个相等的实数根,则Δ=b2―4ac=0;没有实数根,则Δ=b2―4ac<0;若一元二次方程ax2+bx+c=0(a≠0)的两个根为x1,x2,则x1+x2=―ba ,x1·x2=ca.【详解】解:①若a―b+c=0,则x=―1是一元二次方程ax2+bx+c=0的解∴Δ=b2―4ac≥0,故①正确;②∵方程ax2+c=0有两个不相等的实数根∴Δ=―4ac>0∴b2―4ac≥4ac>0∴方程ax2+bx+c=0必有两个不相等的实数根,故②正确;③∵c是方程ax2+bx+c=0的一个根∴ac2+bc+c=0当c=0时,无法得出ac+b+1=0,故③错误;④∵x0是一元二次方程ax2+bx+c=0的根∴x0=∴±=2ax0+b∴b2―4ac=(2ax0+b)2,故④正确;⑤∵方程ax2+bx+c=0(a≠0)两根为x1,x2∴x1+x2=―ba ,x1·x2=ca∴b=―a(x1+x2),c=ax1x2∴方程cx2+bx+a=0(c≠0)可化为:ax1x2x2―a(x1+x2)x+a=0(c≠0)即:x1x2x2―(x1+x2)x+1=0∴(x1x―1)(x2x―1)=0∴x=1x1或x=1x2,故⑤正确;综上分析可知,正确的是①②④⑤.故选:D【点睛】本题考查了一元二次方程根的判别式和根与系数的关系.熟记相关结论是解题关键.第II卷(非选择题)二、填空题11.已知关于x的一元二次方程(m―2)x2―2x+1=0有实数根,则实数m的取值范围是.【答案】m≤3且m≠2【分析】本题考查了一元二次方程的定义及根的判别式,根据一元二次方程的定义及根的判别式可得,解不等式即可求解,掌握一元二次方程的定义及根的判别式与根的关系是解题的关键.【详解】解:由题意得,Δ=(―2)2―4(m―2)×1=12―4m≥0,且m―2≠0,∴m≤3且m≠2.12.在一个不透明的盒子中装有6个红球、若干个黑球,它们除颜色不同外,其余均相同.若从中随机摸出一个球,它是红球的概率为23,则盒子中黑球的个数为.【答案】3【分析】设黑球的个数为x个,根据概率的求法得:66+x =23,解方程即可求出黑球的个数.【详解】解:设黑球的个数为x个根据题意得:66+x =23解得:x=3经检验:x=3是原分式方程的解∴黑球的个数为3故答案为:3.【点睛】本题考查了概率的求法,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn.13.把关于x的一元二次方程x²―8x+c=0配方,得(x―m)²=11,则c+m=.【答案】9【分析】本题考查了配方法解一元二次方程;把常数项c移项后,在左右两边同时加上一次项系数8的一半的平方得(x―4)2=16―c,进而得出c=5,m=4,即可求解.【详解】解:x2―8x+c=0配方,得(x―4)2=16―c∴m=4,16―c=11∴c=5∴c+m=9,故答案为:9.14.如图,在Rt△ABC中,∠ACB=90°,且Rt△ABC的周长是12cm,斜边上的中线CD长为52cm,则S△ABC=.【答案】6cm2【分析】先根据直角三角形斜边上的中线等于斜边的一半可得AB=2CD=5cm,再利用勾股定理可得AC2 +BC2=25cm2,利用三角形的周长公式可得AC+BC=7cm,然后利用完全平方公式可得AC⋅BC的值,最后利用三角形的面积公式求解即可得.cm,【详解】解:∵在Rt△ABC中,斜边上的中线CD长为52∴AB=2CD=5cm,∴AC2+BC2=AB2=25(cm2),∵Rt△ABC的周长是12cm,∴AC+BC+AB=AC+BC+5=12,∴AC+BC=7(cm),×(72―25)=12(cm2),∴AC⋅BC=AC+BC)2―(AC2+BC2)=12AC⋅BC=6cm2,则S△ABC=12故答案为:6cm2.【点睛】本题考查了直角三角形斜边上的中线等于斜边的一半、勾股定理、完全平方公式等知识点,熟练掌握直角三角形斜边上的中线等于斜边的一半是解题关键.15.如图,在矩形ABCD中,AB=4,AD=3.P是射线AB上一动点,将矩形ABCD沿着PD对折,点A的对应点为A′.当P,A′,C三点在同一直线上时,则AP的长.【答案】4±【分析】分类讨论:当点P在AB上时,由折叠的性质得AD=A′D=3,AP=A′P,∠A=∠DA′P=90°,利用勾股定理求得A′C=AP=A′P=x,则PB=4―x,PC=x+定理列方程求解即可;当点P在AB的延长线上时,由折叠的性质得∠A=∠A′=90°,AP=A′P,AD=A′D=3,利用勾股定理求得A′C=AP=A′P=a,则CP=a―BP=a―4,利用勾股定理列方程求解即可.【详解】解:如图,当点P在AB上时,由折叠的性质得,AD=A′D=3,AP=A′P,∠A=∠DA′P=90°,∴∠DA′C=90°,在Rt△DA′C中,A′C==设AP=A′P=x,则PB=4―x,PC=x+在Rt△BCP中,BC2+BP2=PC2,即32+(4―x)2=(x+2,解得x=4―∴AP=4―如图,当点P在AB的延长线上时,由折叠的性质得,∠A=∠A′=90°,AP=A′P,AD=A′D=3,在Rt△A′DC中,A′C==设AP=A′P=a,则CP=a―BP=a―4,在Rt△BCP中,BC2+BP2=CP2,即32+(a―4)2=(a―2,解得a=4+综上所述,AP=±+4,故答案为:4±【点睛】本题考查矩形的性质、折叠的性质、勾股定理、解一元一次方程,运用分类讨论思想解决问题是解题的关键.16.正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…,按如图所示放置,点A1,A2,A3,…,在直线y=x+2上,点C1,C2,C3,…在x轴上,则B2023的坐标是.【答案】(22024―2,22023)【分析】利用一次函数图象上点的坐标特征及正方形的性质可得出B1,B2,B3,……,的坐标,根据点的坐标的变化找出变化规律,再代入n=2023即可得出结论.【详解】解:∵直线y=x+2,当x=0时,y=2,∴A1的坐标为(0,2).∵四边形A1B1C1O为正方形,∴B1的坐标为(2,2),C1的坐标为(2,0).当x=2时,y=4,∴A2的坐标为(2,4),∵四边形A2B2C2C1为正方形,∴B2的坐标为(6,4),C2的坐标为(6,0).同理,可知:B3的坐标为(14,8),……,∴B n的坐标为(2n+1―2,2n)(n为整数),∴点B2023的坐标是(22024―2,22023).故答案为:(22024―2,22023).【点睛】本题考查了一次函数图象上点的坐标特征,正方形的性质及规律型,解题的关键是根据点的坐标的变化找出变化规律.三、解答题17.解方程:(1)x2―4x―1=0.(2) x(x―1)+2=2x【答案】(1)x1=2+2=2―(2)x1=2,x2=1【分析】(1)利用配方法解方程即可;(2)利用因式分解法解方程即可.【详解】(1)x2―4x―1=0x2―4x=1x2―4x+4=1+4(x―2)2=5x―2=±x1=2x2=2―(2)x(x―1)+2=2xx(x―1)+2―2x=0x(x―1)―2(x―1)=0(x―2)(x―1)=0x1=2,x2=1【点睛】本题考查了解一元二次方程,选择合适的方法是解题的关键.18.小明的手机没电了,现有一个只含A,B,C,D四个同型号插座的插线板(如图,假设每个插座都适合所有的充电插头,且被选中的可能性相同),请计算:(1)若小明随机选择一个插座插入,则插入插座C的概率为______;(2)现小明同时对手机和学习机两种电器充电,请用列表或画树状图的方法计算两种电器插在不相邻的插座的概率.【答案】(1)14(2)12【分析】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n ,再从中选出符合事件A 或B 的结果数目m ,然后利用概率公式计算事件A 或事件B 的概率.(1)直接利用概率公式计算;(2)画树状图展示所有12种等可能的结果数,再找出两个插头插在不相邻插座的结果数,然后根据概率公式计算.【详解】(1)小明随机选择一个插座插入,则插入A 的概率=14;故答案为:14;(2)画树状图为:共有12种等可能的结果数,其中两个插头插在不相邻插座的结果数为6,所以两个插头插在不相邻插座的概率=612=12.19.如图,用长为34米的篱笆,一面利用墙(墙的最大可用长度为20米),围成中间隔有一道篱笆的长方形花圃,为了方便出入,在建造篱笆花圃时,在BC 上用其他材料做了宽为1米的两扇小门(如图),设花圃垂直于墙的边AB 长为x 米.(1)用含x 的代数式表示BC ;(2)当AB 为多少米时,所围成花圃面积为105平方米?【答案】(1)(36―3x )米(2)当AB 为7米时,所围成花圃面积为105平方米【分析】(1)用绳子的总长减去三个AB 的长,然后加上两个门的长即可表示出BC ;(2)由(1)得花圃长BC=36―3x,宽为x,然后再根据面积为105,列一元二次方程方程解答即可.【详解】(1)解:设花圃垂直于墙的边AB长为x米,则长BC=34―3x+2=36―3x(米)故答案为:(36―3x);(2)由题意可得:(36―3x)x=105解得:x1=5,x2=7∵当AB=5时,BC=36―3×5=21>20,不符合题意,故舍去;当AB=7时,BC=36―3×7=15<20,符合题意,∴AB=7(米).答:当AB为7米时,所围成花圃面积为105平方米.【点睛】本题主要考查一元二次方程的应用,弄清题意、用x表示出BC是解答本题的关键.20.已知关于x的一元二次方程x2+6x―m2=0.(1)求证:该方程有两个不相等的实数根;(2)若该方程的两个实数根x1,x2满足x1+2x2=―5,求m的值.【答案】(1)见解析(2)m=±【分析】(1)根据一元二次方程根的判别式,代入计算即可解答;(2)根据一元二次方程根与系数的关系,求得x1,x2,再将其代入求得m的值即可.【详解】(1)证明:∵在方程x2+6x―m2=0中,Δ=62―4×1×(―m2)=36+4m2>0,∴该方程有两个不相等的实数根.(2)解:∵该方程的两个实数根分别为x1,x2,∴x1+x2=―6①,x1⋅x2=―m2②.∵x1+2x2=―5③,∴联立①③,解得x1=―7,x2=1.∴x1⋅x2=―7=―m2,解得m=±【点睛】本题考查了一元二次方程根的判别式,根与系数的关系,熟知相关公式是解题的关键.21.如图,已知△ABC中,D是AC的中点,过点D作DE⊥AC交BC于点E,过点A作AF∥BC交DE 于点F,连接AE、CF.(1)求证:四边形AECF是菱形;(2)若CF=2,∠FAC=30°,∠B=45°,求AB的长.【答案】(1)见解析(2)AB=【分析】(1)由题意可得△AFD≌△CED(AAS),则AF=EC,根据“一组对边平行且相等的四边形是平行四边形”可得四边形AECF是平行四边形;又EF垂直平分AC,根据垂直平分线的性质可得AF=CF,根据“有一组邻边相等的平行四边形是菱形”可得结论;(2)过点A作AG⊥BC于点G,根据题意可得∠AEG=60°,AE=2,则BG=AG=AB=BG=【详解】(1)证明:在△ABC中,点D是AC的中点,∴AD=DC,∵AF∥BC,∴∠FAD=∠ECD,∠AFD=∠CED,∴△AFD≌△CED(AAS),∴AF=EC,∴四边形AECF是平行四边形,又EF⊥AC,点D是AC的中点,即EF垂直平分AC,∴平行四边形AECF是菱形.(2)解:如图,过点A作AG⊥BC于点G,由(1)知四边形AECF是菱形,又CF=2,∠FAC=30°,∴AF∥EC,AE=CF=2,∠FAE=2∠FAC=60°,∴∠AEB=∠FAE=60°,∵AG⊥BC,∴∠AGB=∠AGE=90°,∴∠GAE=30°,AE=1,AG==∴GE=12∵∠B=45°,∴∠GAB=∠B=45°,∴BG=AG=∴AB==.【点睛】本题主要考查菱形的性质与判定,含30°角的直角三角形的三边关系,等腰直角三角形的性质与判定等内容,根据45°,30°等特殊角作出正确的垂线是解题关键.22.如图,在Rt△ABC中,AC=24cm,BC=7cm,点P在BC上从B运动到C(不包括C),速度为2cm/s;点Q在AC上从C运动到A(不包括A),速度为5cm/s.若点P,Q分别从B,C同时出发,当P,Q两点中有一个点运动到终点时,两点均停止运动.设运动时间为t秒,请解答下列问题,并写出探索的主要过程.(1)当t为何值时,P,Q两点的距离为?(2)当t 为何值时,△PCQ 的面积为15cm 2【答案】(1)经过1秒,P ,Q 两点的距离为(2)经过1.5秒或2秒,△PCQ 的面积为15cm 2【分析】本题考查一元二次方程的应用,勾股定理.熟练掌握勾股定理,列出一元二次方程,是解题的关键.(1)设经过t 秒,P ,Q 两点的距离为,勾股定理列式求解即可;(2)利用S △PCQ =12PC ⋅CQ ,列式计算即可.【详解】(1)解:设经过t 秒,P ,Q 两点的距离为,由题意,得:BP =2t cm ,CQ =5t cm ,∵在Rt △ABC 中,AC =24cm ,BC =7cm ,∴CP =BC ―BP =(7―2t )cm ,由勾股定理,得:CP 2+CQ 2=PQ 2,即:(7―2t )2+(5t )2=2,解得:t 1=1,t 2=―129(舍去);∴经过1秒,P ,Q 两点的距离为;(2)解:设经过t 秒,△PCQ 的面积为15cm 2,此时:BP =2t cm ,CQ =5t cm ,则:CP =BC ―BP =(7―2t )cm ,∴S △PCQ =12PC ⋅CQ =12(7―2t )⋅5t =15,解得:t 1=2,t 2=1.5,∴经过1.5秒或2秒,△PCQ 的面积为15cm 2.23.暑假期间某景区商店推出销售纪念品活动,已知纪念品每件的进货价为30元,经市场调研发现,当该纪念品的销售单价为40元时,每天可销售280件;当销售单价每增加1元,每天的销售数量将减少10件.(销售利润=销售总额-进货成本)(1)若该纪念品的销售单价为45元时则当天销售量为 件.(2)当该纪念品的销售单价为多少元时,该产品的当天销售利润是2610元.(3)该纪念品的当天销售利润有可能达到3700元吗?若能,请求出此时的销售单价;若不能,请说明理由.【答案】(1)230(2)59元或39元(3)不可能达到3700元,理由见解析【分析】本题考查一元二次方程的应用,找准等量关系是解题的关键,正确列出一元二次方程是解题的关键.(1)根据当天销售量=280―10×增加的销售单价,即可得到答案;(2)设该纪念品的销售单价为x元,则当天的销售利润为[280―(x―10)×10]件,列出一元二次方程即可得到答案;(3)设该纪念品的销售单价为y元,则当天的销售利润为[280―(y―10)×10]件,列出一元二次方程根据根的判别式判断即可.【详解】(1)解:280―(45―40)×10=230(件),故答案为:230;(2)解:设该纪念品的销售单价为x元,则当天的销售利润为[280―(x―10)×10]件,依题意得(x―30)[280―(x―40)×10]=2610,整理得x2―98x+2301=0,整理解得x1=39,x2=59,答:当该纪念品的销售单价定价为59元或39元时,该产品的当天销售利润是2610元.(3)解:不能,理由如下:设该纪念品的销售单价为y元,则当天的销售利润为[280―(y―10)×10]件,依题意得(y―30)[280―(y―40)×10]=2610,整理得y2―98y+2410=0,∵Δ=(―98)2―4×1×2410=―36<0,故该方程没有实数根,即该纪念品的当天利润不可能达到3700元.24.如图,正方形ABCD中,点P是线段BD上的动点.(1)当PE⊥AP交BC于E时,①如图1,求证:PA=PE.②如图2,连接AC 交BD 于点O ,交PE 于点F ,试探究线段PA 2、PO 2、PF 2之间用等号连接的数量关系,并说明理由;(2)如图3,已知M 为BC 的中点,PQ 为对角线BD 上一条定长线段,若正方形边长为4,随着P 的运动,CP +QM 的最小值为PQ 的长.【答案】(1)①见解析;②PO 2⋅(PA 2+PF 2)=PA 2⋅PF 2【分析】(1)①连接PC ,根据SAS 证明△ABP≌△CBP (SAS),得到PA =PC ,∠BAP =∠BCP ,再求出∠BAP +∠BEP =180°,进一步证明∠BCP =∠PEC 得到PC =PE ,等量代换可得结果;②先根据PE ⊥AP 得到S △APF =12PO ⋅AF =12PA ⋅PF ,得到PO 2⋅AF 2=PA 2⋅PF 2,结合勾股定理得到PO 2⋅(PA 2+PF 2)=PA 2⋅PF 2;(2)连接AC 交BD 于点O ,先根据正方形的性质得到AC ⊥BD ,BO =CO =P 与点O 重合时,CP 的最小值,QM 的最小值,以及此时QM ⊥BD ,QM∥AC ,最后根据M 为BC 中点得到Q 为BO 中点,即可求解.【详解】(1)解:①如图1,连接PC ,∵四边形ABCD 是正方形,∴AB =BC ,∠ABC =90°,∠ABD =∠CBD =45°,在△ABP 和△CBP 中,AB =BC ∠ABD =∠CBD BP =BP,∴△ABP≌△CBP (SAS),∴PA =PC ,∠BAP =∠BCP,∵PE ⊥AP ,∴∠APE =90°,又∠BAP +∠BEP +∠ABC +∠APE =360°,∴∠BAP +∠BEP =180°,∵∠PEC +∠BEP =180°,∴∠BAP =∠PEC ,∴∠BCP =∠PEC ,∴PC =PE ,∴PA =PE ;②如图,PO 2⋅(PA 2+PF 2)=PA 2⋅PF 2,理由是:∵PE ⊥AP ,∴PA 2+PF 2=AF 2,∵四边形ABCD 是正方形,∴AC ⊥BD ,∵S △APF =12PO ⋅AF =12PA ⋅PF ,∴PO 2⋅AF 2=PA 2⋅PF 2,∴PO 2⋅(PA 2+PF 2)=PA 2⋅PF 2;(2)如图,连接AC 交BD 于点O ,∵四边形ABCD 是正方形,边长为4,∴AC ⊥BD ,BO =CO ==∴当点P 与点O 重合时,CP 的最小值为CO =∵CP +QM 的最小值为∴QM ∴当点P 与点O 重合时,QM ⊥BD ,如图,∴QM∥AC ,∵M 为BC 中点,∴Q 为BO 中点,∴PQ =12BO =12×=。
北师大版2022-2023学年九年级数学上册第一次月考测试题(附答案)
2022-2023学年九年级数学上册第一次月考测试题(附答案)一、单项选择题(共18分)1.关于x的方程(a﹣1)x2+4x﹣3=0是一元二次方程,则()A.a>1B.a=1C.a≠1D.a≥02.如图,在菱形ABCD中,对角线AC,BD相交于点O,E为AD边的中点,AB=6,则OE的长为()A.2B.3C.6D.123.下列说法正确的是()A.对角线互相垂直的四边形是菱形B.邻边相等的矩形是正方形C.对角线相等的平行四边形是正方形D.有一个内角是直角的四边形是矩形4.已知m是一元二次方程x2+4x﹣1011=0的一个根,则2m2+8m+1的值是()A.﹣2022B.﹣2023C.2022D.20235.如图,在矩形ABCD中,AB=2cm,对角线AC与BD相交于点O,DE⊥AC,垂足为E,OE=CE,则BC的长为()A.2cm B.4cm C.2cm D.2cm6.已知关于x的一元二次方程(p+1)x2+2qx+(p+1)=0(其中p,q为常数)有两个相等的实数根,则下列结论中,错误的是()A.1可能是方程x2+qx+p=0的根B.﹣1可能是方程x2+qx+p=0的根C.0可能是方程x2+qx+p=0的根D.1和﹣1都是方程x2+qx+p=0的根二、填空题(共18分)7.方程2x 2+3x ﹣4=0的二次项系数为 .8.如图,在菱形ABCD 中,∠A =40°,则∠CBD 的度数为 .9.关于x 的一元二次方程x 2+4x +m =0有两个相等的实数根,则m 的值为 . 10.观察表格,一元二次方程x 2﹣x ﹣1.1=0的一个解的取值范围是 .x 1.31.41.51.61.7 1.8 1.9 x 2﹣x ﹣1.1﹣0.71 ﹣0.54 ﹣0.35 ﹣0.140.090.340.6111.边长为2的一个正方形和一个等边三角形按如图所示的方式摆放,则△ABC 的面积为 .12.如图,在平面直角坐标系中,矩形OABC 的边OA 在x 轴上,OC 在y 轴上,OA =2,OC =4,对角线AC 的垂直平分线交AB 于点E ,交AC 于点D .若y 轴上有一点P (不与点C 重合),能使△AEP 是以AE 为腰的等腰三角形,则点P 的坐标为 .三、解答题(共30分)13.如图,∠ABC =∠ADC =90°,O 是线段AC 的中点,求证:OB =OD .14.解方程:x2﹣4x+3=0.15.以下是某同学解方程x2﹣3x=﹣2x+6的过程:解:方程两边因式分解,得x(x﹣3)=﹣2(x﹣3),①方程两边同除以(x﹣3),得x=﹣2,②∴原方程的解为x=﹣2.③(1)上面的运算过程第步出现了错误.(2)请你写出正确的解答过程.16.如图,在菱形ABCD中,对角线AC,BD相交于点O,过点B作BE∥AC,且BE=AC,连接EC,求证:四边形BECO是矩形.17.如图,在正方形ABCD中,E是AB的中点,请仅用无刻度的直尺按下列要求画图.(保留画图痕迹)(1)如图1,作正方形ABCD的一条对称轴,且该对称轴与AD平行.(2)如图2,在AD上找一点F,使得CF⊥DE.18.已知关于x的一元二次方程x2﹣(2k﹣1)x+k2﹣k﹣2=0.(1)求证:无论k为何值,方程都有两个不相等的实数根.(2)若方程有一个根为﹣2,求k的值.四、解答题(共24分)19.如图,一矩形草坪的长为25米,宽为12米,在草坪上有两条互相垂直且宽度相等的矩形小路(阴影部分),非阴影部分的面积是230平方米.(1)求小路的宽.(2)每平方米小路的建设费用为200元,求修建两条小路的总费用.20.如图,四边形ABCD是平行四边形,对角线AC,BD交于点O,AC=2AB,BE∥AC,OE∥AB.(1)求证:四边形ABEO是菱形.(2)若AC=4,BD=8,求四边形ABEO的面积.21.阅读下面的材料,解答问题.材料:解含绝对值的方程:x2﹣3|x|﹣10=0.解:分两种情况:①当x≥0时,原方程化为x2﹣3x﹣10=0,解得x1=5,x2=﹣2(舍去);②当x<0时,原方程化为x2+3x﹣10=0,解得x3=﹣5,x4=2(舍去).综上所述,原方程的解是x1=5,x2=﹣5.请参照上述方法解方程x2﹣|x+1|﹣1=0.五、解答题(共18分)22.关于x的一元二次方程x2+bx+c=0经过适当变形,可以写成(x﹣s)(x﹣t)=p(s≤t)的形式.现列表探究x2﹣4x﹣5=0的变形:变形s t p(x+1)(x﹣5)=0﹣150x(x﹣4)=5045(x﹣1)(x﹣q)=81q8(x﹣2)2=9229回答下列问题:(1)表格中q的值为.(2)观察上述探究过程,表格中s与t满足的等量关系为.(3)记x2+bx+c=0的两个变形为(x﹣s1)(x﹣t1)=p1和(x﹣s2)(x﹣t2)=p2(p1≠p2),求的值.23.如图1,在正方形ABCD中,O是对角线的交点,P是线段AO上任一点(不与点A,O重合),过点P作PE⊥PB,PE交边CD于点E.(1)∠PCE的度数为.(2)求证:PB=PE.(3)如图2,若正方形ABCD的边长为4,过点E作EF⊥AC于点F,在点P运动的过程中,PF的长度是否发生变化?若不发生变化,直接写出这个不变的值;若发生变化,请说明理由.六、解答题(本大题共12分)24.课本再现:(1)下图所示的是北师大版九年级上册数学课本上的一道题:※5.如图,在矩形ABCD中,AB=3,AD=4,P是AD上不与A和D重合的一个动点,过点P分别作AC和BD的垂线,垂足为E.F求PE+PF的值.如图1,连接PO,利用△P AO与△PDO的面积之和是矩形面积的,可求出PE+PF的值,请你写出求解过程.知识应用:(2)如图,在矩形ABCD中,点M,N分别在边AD,BC上,将矩形ABCD沿直线MN折叠,使点D恰好与点B重合,点C落在点C'处.①如图2,P为线段MN上一动点(不与点M,N重合),过点P分别作直线BM,BC的垂线,垂足分别为E和F,以PE,PF为邻边作平行四边形PEGF,若DM=13,CN=5,求平行四边形PEGF的周长.②如图3,当点P在线段MN的延长线上运动时,若DM=m,CN=n.请用含m,n的式子直接写出GF与GE之间的数量关系.参考答案一、单项选择题(共18分)1.解:由题意得:a﹣1≠0,解得:a≠1,故选:C.2.解:∵四边形ABCD是菱形,∴AC⊥BD,AB=AD=6,∵点E是AD的中点,∴OE=AD=3,故选:B.3.解:A.对角线互相垂直的平行四边形是菱形,所以A选项不符合题意;B.邻边相等的矩形是正方形,所以B选项符合题意;C.对角线相等的平行四边形是矩形,所以C选项不符合题意;D.有一个内角是直角的平行四边形是矩形,所以D选项不符合题意.故选:B.4.解:∵m为一元二次方程x2+4x﹣1011=0的一个根.∴m2+4m﹣1011=0,即m2+4m=1011,∴2m2+4m+1=2(m2+4m)+1=2×1011+1=2023.故选:D.5.解:∵四边形ABCD是矩形,∴OA=OC=AC,OD=BD,AC=BD,CD=AB=2cm,∴OA=OD=OC,∵DE⊥AC,OE=CE,∴∠DEA=90°,OD=CD,∴OC=OD=CD=2cm,∴BD=2OD=4cm,∴BC==2(cm),故选:A.6.解:根据题意,可得Δ=(2q)2﹣4(p+1)2=0,且p+1≠0,∴q=±(p+1),当q=p+1时,q﹣p﹣1=0,此时x=﹣1是方程x2+qx+p=0的根,当q=﹣(p+1)时,q+p+1=0,此时x=1是方程x2+qx+p=0的根,∵p+1≠0,∴p+1≠﹣(p+1),∴x=1和x=﹣1不能同时是方程x2+qx+p=0的根,当x=0时,p=0,∴q=±1,∴当p=0,q=±1时,x=0是方程x2+qx+p=0的根,故选项D符合题意,故选:D.二、填空题(共18分)7.解:方程2x2+3x﹣4=0的二次项系数为2.故答案为:2.8.解:∵四边形ABCD是菱形,∴∠A=∠C=40°,CD=CB,∴∠CBD=70°,故答案为:70°.9.解:根据题意得Δ=42﹣4m=0,解得m=4.故答案为4.10.解:由x=1.6时,x2﹣x﹣1.1=﹣0.14,x=1.7时,x2﹣x﹣1.1=0.09,由函数的增减性,得x2﹣x﹣1.1=0的解满足1.6<x<1.7,故答案为:1.6<x<1.7.11.解:过点C作CD和CE垂直正方形的两个边长,如图,∵一个正方形和一个等边三角形的摆放,∴四边形DBEC是矩形,∴CE=DB=1,∴△ABC的面积=AB•CE=×1×2=1,故答案为:1.12.解:∵对角线AC的垂直平分线交AB于点E,∴AE=CE,∵OA=2,OC=4,∴AB=OC=4,BC=OA=2,∴设AE=m,则BE=4﹣m,CE=m,在Rt△BCE中,BE2+BC2=CE2,即:(4﹣m)2+22=m2,解得:,∴,设点P坐标为(0,y),∵△AEP是以为AE为腰的等腰三角形,当AP=AE,则,解得:,当EP=AE,则,解得:y1=4,y2=1,∴点P的坐标为或或(0,4)或(0,1),故答案是:或或(0,4)或(0,1).三、解答题(共30分)13.证明:∵∠ABC=∠ADC=90°,点O是AC的中点,∴OB=AC,OD=AC,∴OB=OD.14.解:x2﹣4x+3=0(x﹣1)(x﹣3)=0x﹣1=0,x﹣3=0x1=1,x2=3.15.解:(1)上面的运算过程第②步出现了错误;故答案为:②;(2)方程两边因式分解,得x(x﹣3)=﹣2(x﹣3),移项得x(x﹣3)+2(x﹣3)=0,方程左边分解得(x﹣3)(x+2)=0,方程转化为x﹣3=0或x+2=0,所以原方程的解为x1=3,x2=﹣2.16.证明:∵四边形ABCD是菱形,∴∠BOC=90°,OC=OA=AC,∵BE=AC,∴BE=OC,∵BE∥AC,∴四边形BECO是平行四边形,∵∠BOC=90°,∴平行四边形BECO是矩形.17..解:(1)(2)∵CN//AB,∴,∵AD//BC,∴∴∴F是AD的中点,∴AE=DF,又∵AD=CD,∠EAD=∠FDC∴△EAD≌△FDC,∴∠DFM+∠FDM=90°,∴CF⊥DE.18.(1)证明:在方程x2+(2k﹣1)x+k2﹣k﹣2=0中,Δ=b2﹣4ac=(2k﹣1)2﹣4×(k2﹣k﹣2)=9>0,∴此方程总有两个不相等的实数根.(2)解:将x=﹣2代入x2+(2k﹣1)x+k2﹣k﹣2=0中,k2+3k=0,解得:k=0或﹣3.∴如果方程有一个根为﹣2,k的值为0或﹣3.四、解答题(共24分)19.解:(1)设小路的宽为x米,则非阴影部分可合成长为(25﹣x)米,宽为(12﹣x)米的矩形,依题意得:(25﹣x)(12﹣x)=230,解得:x2﹣37x+70=0,解得:x1=2,x2=35(不符合题意,舍去).答:小路的宽为2米.(2)200×(25×12﹣230)=14000(元).答:修建两条小路的总费用为14000元.20.证明:(1)∵BE∥AC,OE∥AB,∴四边形ABEO是平行四边形,∵四边形ABCD是平行四边形,∴AC=2AO,∵AC=2AB,∴AO=AB,∴四边形ABEO是菱形;(2)解:∵四边形ABCD是平行四边形,∴AO=AC=2,OB=BD=4,连接AE交BO于M,由(1)知,四边形ABEO是菱形,∴AE、OB互相垂直平分,∴OM=BO=2,∴AM===4,∴AE=8,∴四边形ABEO的面积=AE•OB=×8×4=16.21.解:当x+1≥0,即x≥﹣1时,原方程可化为x2﹣(x+1)﹣1=0,即x2﹣x﹣2=0,(x﹣2)(x+1)=0,x﹣2=0或x+1=0,解得x1=2,x2=﹣1,当x+1<0,即x<﹣1时,原方程可化为x2+(x+1)﹣1=0,即x2+x=0,x(x+1)=0,x=0或x+1=0,解得x1=0(舍去),x2=﹣1(舍去),综上所述,原方程的解是x1=2,x2=﹣1.五、解答题(共18分)22.解:(1)∵x2﹣4x﹣5=0,x2﹣4x+3=8,(x﹣1)(x﹣3)=8,所以q=3;故答案为:3;(2)表格中s与t满足的等量关系为s+t=4;故答案为:s+t=4;(3)由(2)得s1+t1=﹣b,s2+t2=﹣b,所以s1+t1=s2+t2,即t1﹣t2=s2﹣s1,所以=﹣1.23.(1)解:∵四边形ABCD是正方形,∴∠ACD=45°,∵P是线段AO上任一点,点E在CD边上,∴∠PCE=45°,故答案为:45°;(2)证明:如图1,过点P作MN∥AD,交AB于点M,交CD于点N,∵PB⊥PE,∴∠BPE=90°,∴∠MPB+∠EPN=90°.∵四边形ABCD是正方形,∴∠BAD=∠D=90°,∵AD∥MN,∴∠BMP=∠BAD=∠PNE=∠D=90°,∵∠MPB+∠MBP=90°,∴∠EPN=∠MBP,在Rt△PNC中,∠PCN=45°,∴△PNC是等腰直角三角形,∴PN=CN,∵∠BMP=∠PNE=∠ABC=90°,∴四边形BMNC是矩形,∴BM=CN=PN,∴△BMP≌△PNE(ASA),∴PB=PE;(3)解:在P点运动的过程中,PF的长度不发生变化,PF=2,理由:如图2,连接OB,∵点O是正方形ABCD对角线AC的中点,∴OB⊥AC,∴∠AOB=90°,∴∠AOB=∠EFP=90°,∴∠OBP+∠BPO=90°,∵PE⊥PB,∴∠BPE=90°,∴∠BPO+∠OPE=90°,∴∠OBP=∠OPE,由(1)得PB=PE,∴△OBP≌△FPE(AAS),∴PF=OB,∵AB=4,△ABO是等腰直角三角形,∴OB==2,∴PF的长为定值2.六、解答题(本大题共12分)24.解(1)如图1,连接PO,∵四边形ABCD是矩形,∴S矩形ABCD=12,OA=OC=OB=OD,S△ABD=S△BCD,∠ABC=90°,BC=AD=4,∴,∴S△AOD=S△ABO=S△BOC=S△COD,∴,,∴===3,∴;(2)①∵四边形ABCD是矩形,∴AD=BC,∠A=∠ABC=90°,AD∥BC,∴∠DMN=∠BNM,连接BP,过点M作MH⊥BC于H,如图2所示:则四边形ABHM是矩形,∴MH=AB,由折叠的性质得:DM=BM,∠DMN=∠BMN,∴∠BMN=∠BNM,∴DM=BM=BN=13,∴AD=BC=BN+CN=13+5=18,∴AM=AD﹣DM=18﹣13=5,在Rt△ABM中,由勾股定理可得,,∴MH=12,∵S△BMN=S△PBM+S△PBN,PE⊥BM,PF⊥BN,∴,∵BM=BN,∴PE+PF=MH=12,∴平行四边形PEGF的周长=2(PE+PF)=2×12=24,②GF与GE之间的数量关系为:,理由如下:连接BP,过点M作MH⊥BC于H,如图3所示:由折叠的性质得:DM=BM=BN=m,∴AD=BC+CN=BN+n,∴AM=AD﹣DM=m+n﹣m=n,∴,∵S△BMP=S△NBM+S△PBN,PE⊥BM,PF⊥BN,∴⋅PF,∵BM=BN,∴PE=MH+PF,∴,∵四边形PEGF是平行四边形,∴GF=PE,GE=PF,∴,即.。
北师大版九年级上册数学第一次月考测试卷(含答案)
北师大版九年级上册数学第一次月考测试卷(满分120分,时间120分钟)合要求的)1.下列方程是关于x的一元二次方程的是( )=0B.ax²+bx+c=0 C.(x--1)(x+2)=0 D.3x²−2xy−5y²=0A.x2+1x22.四边形ABCD中,O是对角线的交点,下列条件中能判定此四边形是正方形的是( )①AC=BD,AB∥CD,AB=CD;②AD∥BC,∠BAD=∠BCD;③AO=CO,BO=DO,AB=BC;④AO=BO=CO=DO,AC⊥BD.A.1个B.2个C.3个D.4个3.已知方程x²+px+q=0的两个根分别是2和-3,则x²−px+q可分解为( )A.(x+2)(x+3)B.(x-2)(x-3)C.(x-2)(x+3)D.(x+2)(x--3)4.如图所示,菱形ABCD中,AB=2,∠A=120°,点P,Q,K 分别为线段BC,CD,BD 上任意一点,则PK+QK 的最小值为( )A.1B.√3C.2D.√3+15.已知α,β是方程.x²+2006x+1=0的两个根,则(1+2008α+α²)(1+2008β+β²)的值为( )A.1B.2C.3D.46.用配方法解一元二次方程x²−6x−4=0,,下列变形正确的是( )A.(x−6)²=−4+36B.(x−6)²=4+36C.(x−3)²=−4+9D.(x−3)²=4+97.如图所示,小红在作线段AB的垂直平分线时,是这样操作的:分别以点A,B 为圆心,大于线段AB 长度的一半的长为半径画弧,相交于点C,D,则直线CD 即为所求.连接AC,BC,AD,BD,根据她的作图方法可知四边形ADBC一定是( )A.矩形B.菱形C.正方形D.等腰梯形8.教师节期间,某校数学组教师向本组其他教师各发一条祝福短信.据统计,全组共发了240条祝福短信,如果设全组共有x名教师,依题意,可列出的方程是( )x(x+1)=240 A. x(x+1)=240 B. x(x-1)=240 C.2x(x+1)=240 D.129.如图所示,在矩形ABCD 中,边AB的长为3,点E,F 分别在AD,BC上,连接BE,DF,EF,BD,若四边形B EDF 是菱形,且 EF=AE+FC,则BC的长为( )√3A.2√3B.3√3C.6√3D.9210.如图所示,在一张矩形纸片 ABCD 中,AB=4,BC=8,点 E,F 分别在AD,BC上,将纸片 ABCD 沿直线EF折叠,点C落在AD 上的一点H 处,点 D 落在点G 处,有以下四个结论:①四边形 CFHE 是菱形;②CE平分∠DCH;③线段BF的取值范围为3≤BF≤4;④当点 H 与点A 重合时,EF=2√5.以上结论中,你认为正确的有( )A.1个B.2个C.3个D.4个二、填空题(本大题共8小题,每小题4分,共32分,本题要求把正确结果填在规定的横线上,不需要解答过程)=0有实数根,则k的取值范围是 .11.关于x的方程kx2−4x−2312.如图,AB∥GH∥CD,点 H 在 BC 上,AC 与 BD 交于点G,AB=2,BG:DG=2:3,,则GH 的长为13.如图所示,在四边形ABCD中,对角线AC⊥BD,垂足为O,点E,F,G,H 分别为边AD,AB,BC,CD 的中点.若AC=8,BD=6,则四边形EFGH的面积为 .14.将相同的矩形卡片按如图所示的方式摆放在一个直角上,每个矩形卡片长为2,宽为1,以此类推,摆放2 014个时,实线部分长为 .。
北师大版九年级上册数学第一次月考试卷及答案【完整】
北师大版九年级上册数学第一次月考试卷及答案【完整】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.2-的相反数是( )A .2-B .2C .12D .12- 2.已知a =2018x +2018,b =2018x +2019,c =2018x +2020,则a 2+b 2+c 2-ab -ac -bc 的值是( )A .0B .1C .2D .33.关于x 的一元一次方程224a x m -+=的解为1x =,则a m +的值为( )A .9B .8C .5D . 4 4.如图,数轴上有三个点A 、B 、C ,若点A 、B 表示的数互为相反数,则图中点C 对应的数是( )A .﹣2B .0C .1D .45.已知2,1=⎧⎨=⎩x y 是二元一次方程组7,{1ax by ax by +=-=的解,则a b -的值为( ) A .-1 B .1 C .2 D .36.抛物线2y 3(x 1)1=-+的顶点坐标是( )A .()1,1B .()1,1-C .()1,1--D .()1,1-7.如图,将矩形ABCD 沿GH 折叠,点C 落在点Q 处,点D 落在AB 边上的点E 处,若∠AGE=32°,则∠GHC 等于( )A .112°B .110°C .108°D .106°8.下列图形中,是中心对称图形的是( )A .B .C .D .9.扬帆中学有一块长30m ,宽20m 的矩形空地,计划在这块空地上划出四分之一的区域种花,小禹同学设计方案如图所示,求花带的宽度.设花带的宽度为xm ,则可列方程为( )A .()()3302020304x x --=⨯⨯ B .()()130********x x --=⨯⨯ C .130********x x +⨯=⨯⨯ D .()()33022020304x x --=⨯⨯ 10.如图,在△ABC 中,∠C=90°,AC=BC=3cm.动点P 从点A 出发,以2cm/s 的速度沿AB 方向运动到点B .动点Q 同时从点A 出发,以1cm/s 的速度沿折线AC →CB 方向运动到点B .设△APQ 的面积为y (cm 2).运动时间为x (s ),则下列图象能反映y 与x 之间关系的是( )A .B .C .D .二、填空题(本大题共6小题,每小题3分,共18分)1.计算368⨯-的结果是______________.2.因式分解:x 3﹣4x=_______.3.若a 、b 为实数,且b =22117a a a -+-++4,则a+b =__________. 4.如图,AB ∥CD ,点P 为CD 上一点,∠EBA 、∠EPC 的角平分线于点F ,已知∠F =40°,则∠E =__________度. 5.如图所示,直线a 经过正方形ABCD 的顶点A ,分别过正方形的顶点B 、D 作BF ⊥a 于点F ,DE ⊥a 于点E ,若DE =8,BF =5,则EF 的长为__________.6.如图,已知正方形ABCD 的边长为5,点E 、F 分别在AD 、DC 上,AE=DF=2,BE 与AF 相交于点G ,点H 为BF 的中点,连接GH ,则GH 的长为__________.三、解答题(本大题共6小题,共72分)1.解方程:214111x x x ++=--2.先化简,再求值:233()111a a a a a -+÷--+,其中2+1.3.如图,Rt△ABC中,∠ABC=90°,以AB为直径作⊙O,点D为⊙O上一点,且CD=CB、连接DO并延长交CB的延长线于点E(1)判断直线CD与⊙O的位置关系,并说明理由;(2)若BE=4,DE=8,求AC的长.4.在▱ABCD中,∠BAD的平分线交直线BC于点E,交直线DC于点F(1)在图1中证明CE=CF;(2)若∠ABC=90°,G是EF的中点(如图2),直接写出∠BDG的度数;(3)若∠ABC=120°,FG∥CE,FG=CE,分别连接DB、DG(如图3),求∠BDG 的度数.5.甲、乙两家快递公司揽件员(揽收快件的员工)的日工资方案如下:甲公司为“基本工资+揽件提成”,其中基本工资为70元/日,每揽收一件提成2元;乙公司无基本工资,仅以揽件提成计算工资.若当日揽件数不超过40,每件提成4元;若当日搅件数超过40,超过部分每件多提成2元.如图是今年四月份甲公司揽件员人均揽件数和乙公司搅件员人均揽件数的条形统计图:(1)现从今年四月份的30天中随机抽取1天,求这一天甲公司揽件员人均揽件数超过40(不含40)的概率;(2)根据以上信息,以今年四月份的数据为依据,并将各公司揽件员的人均揽件数视为该公司各揽件员的揽件数,解决以下问题:①估计甲公司各揽件员的日平均件数;②小明拟到甲、乙两家公司中的一家应聘揽件员,如果仅从工资收入的角度考虑,请利用所学的统计知识帮他选择,井说明理由.6.东营市某学校2015年在商场购买甲、乙两种不同足球,购买甲种足球共花费2000元,购买乙种足球共花费1400元,购买甲种足球数量是购买乙种足球数量的2倍,且购买一个乙种足球比购买一个甲种足球多花20元.(1)求购买一个甲种足球、一个乙种足球各需多少元;(2)2016年为响应习总书记“足球进校园”的号召,这所学校决定再次购买甲、乙两种足球共50个,恰逢该商场对两种足球的售价进行调整,甲种足球售价比第一次购买时提高了10%,乙种足球售价比第一次购买时降低了10%,如果此次购买甲、乙两种足球的总费用不超过2900元,那么这所学校最多可购买多少个乙种足球?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、D3、C4、C5、A6、A7、D8、D9、D10、D二、填空题(本大题共6小题,每小题3分,共18分)12、x(x+2)(x﹣2)3、5或34、805、136三、解答题(本大题共6小题,共72分)1、x=﹣3.2、3、(1)相切,略;(2).4、(1)略;(2)45°;(3)略.5、(1)215;(2)39件;仅从工资收入的角度考虑,小明应到乙公司应聘.6、(1)购买一个甲种足球需50元,购买一个乙种足球需70元;(2)这所学校最多可购买18个乙种足球.。
北师大版九年级数学上册第一次月考试卷及答案【完整】
北师大版九年级数学上册第一次月考试卷及答案【完整】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.2020的相反数是( )A .2020B .2020-C .12020D .12020- 2.关于x 的一元二次方程2(1)210k x x +-+=有两个实数根,则k 的取值范围是( )A .0k ≥B .0k ≤C .0k <且1k ≠-D .0k ≤且1k ≠-3.下列结论中,矩形具有而菱形不一定具有的性质是( )A .内角和为360°B .对角线互相平分C .对角线相等D .对角线互相垂直4.若实数a 、b 满足a 2﹣8a+5=0,b 2﹣8b+5=0,则1111b a a b --+--的值是( ) A .﹣20 B .2 C .2或﹣20D .12 5.已知2,1=⎧⎨=⎩x y 是二元一次方程组7,{1ax by ax by +=-=的解,则a b -的值为( ) A .-1 B .1 C .2 D .36.正十边形的外角和为( )A .180°B .360°C .720°D .1440°7.如图,AC 是⊙O 的直径,弦BD ⊥AO 于E ,连接BC ,过点O 作OF ⊥BC 于F ,若BD=8cm ,AE=2cm ,则OF 的长度是( )A .3cmB 6C .2.5cmD 58.如图,已知BD是ABC的角平分线,ED是BC的垂直平分线,90BAC∠=︒,3AD=,则CE的长为()A.6 B.5 C.4 D.339.如图,△ABC中,AD是BC边上的高,AE、BF分别是∠BAC、∠ABC的平分线,∠BAC=50°,∠ABC=60°,则∠EAD+∠ACD=()A.75°B.80°C.85°D.90°10.如图,⊙O中,弦BC与半径OA相交于点D,连接AB,OC,若∠A=60°,∠ADC=85°,则∠C的度数是()A.25°B.27.5°C.30°D.35°二、填空题(本大题共6小题,每小题3分,共18分)1.计算:2131|32|2218-⎛⎫--+=⎪⎝⎭____________.2.分解因式:34x x-=________.3.已知a、b为两个连续的整数,且11a b<<,则a b+=__________.4.把两个同样大小的含45°角的三角尺按如图所示的方式放置,其中一个三角尺的锐角顶点与另一个的直角顶点重合于点A ,且另三个锐角顶点B ,C ,D 在同一直线上.若AB=2,则CD=__________.5.如图,反比例函数y=k x的图象经过▱ABCD 对角线的交点P ,已知点A ,C ,D 在坐标轴上,BD ⊥DC ,▱ABCD 的面积为6,则k=_________.6.如图,在ABC ∆中,AB AC =,点A 在反比例函数k y x=(0k >,0x >)的图象上,点B ,C 在x 轴上,15OC OB =,延长AC 交y 轴于点D ,连接BD ,若BCD ∆的面积等于1,则k 的值为_________.三、解答题(本大题共6小题,共72分)1.解方程(1)2250x x --= (2)1421x x =-+2.先化简,再求值:22121244x x x x x x +-⎛⎫-÷ ⎪--+⎝⎭,其中3x =3.已知:如图,平行四边形ABCD ,对角线AC 与BD 相交于点E ,点G 为AD 的中点,连接CG,CG的延长线交BA的延长线于点F,连接FD.(1)求证:AB=AF;(2)若AG=AB,∠BCD=120°,判断四边形ACDF的形状,并证明你的结论.4.如图,在平面直角坐标系中,直线l1:y=﹣12x与反比例函数y=kx的图象交于A,B两点(点A在点B左侧),已知A点的纵坐标是2;(1)求反比例函数的表达式;(2)根据图象直接写出﹣12x>kx的解集;(3)将直线l1:y=﹣12x沿y向上平移后的直线l2与反比例函数y=kx在第二象限内交于点C,如果△ABC的面积为30,求平移后的直线l2的函数表达式.5.某中学九(1)班为了了解全班学生喜欢球类活动的情况,采取全面调查的方法,从足球、乒乓球、篮球、排球等四个方面调查了全班学生的兴趣爱好,根据调查的结果组建了4个兴趣小组,并绘制成如图所示的两幅不完整的统计图(如图①,②,要求每位学生只能选择一种自己喜欢的球类),请你根据图中提供的信息解答下列问题:(1)九(1)班的学生人数为,并把条形统计图补充完整;(2)扇形统计图中m= ,n= ,表示“足球”的扇形的圆心角是度;(3)排球兴趣小组4名学生中有3男1女,现在打算从中随机选出2名学生参加学校的排球队,请用列表或画树状图的方法求选出的2名学生恰好是1男1女的概率.6.某商店经销一种学生用双肩包,已知这种双肩包的成本价为每个30元.市场调查发现,这种双肩包每天的销售量y(个)与销售单价x(元)有如下关系:y=﹣x+60(30≤x≤60).设这种双肩包每天的销售利润为w元.(1)求w与x之间的函数关系式;(2)这种双肩包销售单价定为多少元时,每天的销售利润最大?最大利润是多少元?(3)如果物价部门规定这种双肩包的销售单价不高于42元,该商店销售这种双肩包每天要获得200元的销售利润,销售单价应定为多少.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、D3、C4、C5、A6、B7、D8、D9、A10、D二、填空题(本大题共6小题,每小题3分,共18分)1、2+2、x (x +2)(x ﹣2).3、7415、-36、3三、解答题(本大题共6小题,共72分)1、(1)1211x x ==(2)3x =是方程的解.2、3x 3、(1)略;(2)结论:四边形ACDF 是矩形.理由略.4、(1)y= 8x ;(2)y=﹣12x+152; 5、(1)40,补全统计图见详解.(2)10;20;72.(3)见详解.6、(1)w =﹣x 2+90x ﹣1800;(2)当x =45时,w 有最大值,最大值是225;(3)该商店销售这种双肩包每天要获得200元的销售利润,销售单价应定为40元.。
24-25九年级数学第一次月考卷(陕西专用)(全解全析)【测试范围:第一章~第四章】(北师大版)
2024-2025学年九年级数学上学期第一次月考卷(陕西专用)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
4.测试范围:北师大版九年级上册第一章~第四章:特殊平行四边形、一元二次方程、概率的进一步认识、图形的相似。
5.难度系数:0.7。
一、选择题(共8小题,每小题3分,计24分.每小题只有一个选项是符合题意的)1.下列各组图形中,不相似的是( )A.B.C.D.【答案】C【解析】A、符合相似定义,故此选项不合题意;B、符合相似定义,故此选项不合题意;C、形状不同,不符合相似定义,故此选项符合题意;D、符合相似定义,故此选项不合题意.故选C.2.如果4a=7b,那么下面的等式成立的是( )(a、b均不等于0)A.a:7=4:b B.a:4=b:7C.a:b=4:7D.a:b=7:4【答案】D【解析】∵4a=7b,∴a:b=7:4,a:7=b:4,故选D.3.关于x的一元二次方程x2﹣4x+2m=0有不相等的两个实数根,则m的值可能是( )A .1B .2C .3D .4【答案】A 【解析】∵关于x 的一元二次方程x 2﹣4x +2m =0有不相等的两个实数根,∴Δ=(﹣4)2﹣4×2m >0,解得m <2,故选A .4.某航空公司有若干个飞机场,每两个飞机场之间都开辟一条航线,一共开辟了15条航线,则这个航空公司共有飞机场( )A .5个B .6个C .7个D .8个【答案】B【解析】设这个航空公司共有飞机场共有x 个.x (x ﹣1)=15×2,解得x 1=6,x 2=﹣5(不合题意,舍去).故选B .5.一个盒子中装有标号为1,2,3的三个小球,这些球除标号外都相同.从中随机摸出两个小球,则摸出的小球标号之和大于4的概率为( )A .14B .23C .12D .13【答案】D【解析】画树状图如下:共有6种等可能的结果,其中摸出的小球标号之和大于4的结果有:(2,3),(3,2),共2种,∴摸出的小球标号之和大于4的概率为26=13.故选D .6.如图,在矩形COED 中,点D 的坐标是(1,3),则CE 的长是( )A.3B.C D.4【答案】C【解析】∵四边形COED是矩形,∴CE=OD,∵点D的坐标是(1,3),∴OD==CE=故选C.7.如图,正方形ABCD的边长是2,对角线AC、BD相交于点O,点E、F分别在边AD、AB上,且OE⊥OF,则四边形AFOE的面积是( )A.4B.2C.1D.1 2【答案】C【解析】∵四边形ABD是正方形,∴OA=OB,∠OAE=∠OBF=45°,AC⊥BD,∴∠AOB=90°,∵OE⊥OF,∴∠EOF=90°,∴∠AOE=∠BOF,在△AOE和△BOF中,∠AOE=∠BOFOA=OB∠OAE=∠OBF,∴△AOE≌△BOF(ASA),∴△AOE的面积=△BOF的面积,∴四边形AFOE的面积=14正方形ABCD的面积=14×22=1;故选C.8.如图,DE是△ABC的中位线,F是DE的中点,CF的延长线交AB于点G,若BC=10,DG=2,则AB的长为( )A .10B .12C .8D .14【答案】B 【解析】∵DE 是△ABC 的中位线,∴AD =BD ,DE ∥BC ,DE =12BC ,又∵点F 为DE 的中点,∴DF =12DE =14BC ,∵DE ∥BC ,∴△DFG ∽△BCG ,∴DG BG =DF BC ,即2BG =14,∴BG =8,∴BD =AD =BG ﹣DG =8﹣2=6,∴AB =AD +BD =6+6=12.故选B .二、填空题(共5小题,每小题3分,计15分)9.如果方程(x ﹣5)2=m ﹣7可以用直接开平方求解,则m 的取值范围是__________.【答案】m ≥7【解析】∵方程(x ﹣5)2=m ﹣7可以用直接开平方求解,∴m ﹣7≥0,解得:m ≥7,故答案为:m ≥7.10.如图,点E 是菱形ABCD BD 上一点,连接AE ,若AD =DE ,∠AEB =105°,则∠BAE 的度数为__________°.【答案】45【解析】∵∠AEB =105°,∴∠AED =75°,∵AD =DE ,∴∠AED =∠EAD =75°,∴∠ADB =30°,∵四边形ABCD 是菱形,∴AB =AD ,∴∠ABD =∠ADB =30°,∴∠BAE =∠AED ﹣∠ABD =45°,故答案为:45.11.根据物理学规律,如果把一个物体从地面以10(m /s )的速度竖直上抛(如图所示),那么物体经过xs离地面的高度(单位:m )为10x ﹣4.9x 2.根据上述规律,该物体落回地面所需要的时间x 约为__________s (结果保留整数).【答案】2【解析】S =10x ﹣4.9x 2,落回地面时S =0,所以10x ﹣4.9x 2=0,解得:x 1=0(不合题意舍去),x 2=10049≈2.故答案为:2.12.如图①是装满了液体的高脚杯(数据如图),用去部分液体后,放在水平的桌面上如图②所示,此时液面AB 的长为__________.【答案】3.2cm【解析】如图:∵CD ∥AB ,∴△ABO ∽△CDO ,即相似比为OA OC =410=25,∴AB CD =OA OC =25,∵CD =8cm ,∴AB =3.2cm ,故答案为:3.2cm .13.如图,在矩形ABCD 中,CD =12,点E 、F 分别在边BC 、CD 上,连接AE 、BF ,AE 与BF 相交于点P ,∠AEB =∠BFC ,点O 为AB 的中点,连接OP ,则OP 的长为__________.【答案】6【解析】∵四边形ABCD为矩形,∴∠C=90°,AB=CD=12,∴∠FBC+∠BFC=90°,∵∠AEB=∠BFC,∴∠FBC+∠AEB=90°,∴∠BPA=∠BPE=90°,∵点O为AB的中点,∴OP=12AB=6,故答案为:6.三、解答题(共13小题,计81分.解答应写出过程)14.若(m2﹣2m)x|m﹣2|﹣mx﹣3=0是关于x的一元二次方程,求m的值.【解析】由题意得:|m﹣2|=2且m2﹣2m≠0,解得m=4.即m的值为4.15.如图,在菱形ABCD中,AC和BD相交于点O,若AB=10,AC=12,求BD的长.【解析】∵四边形ABCD是菱形,∴AC⊥BD,OA=12AC=6,BD=2OB.∴在Rt△AOB中,OB===8,∴BD=2OB=16.16.一个不透明的布袋中装有除颜色外均相同的7个黑球、5个白球和若干个红球.每次摇匀后随机摸出一个球,记下颜色后再放回袋中,通过大量重复摸球试验后,发现摸到红球的频率稳定在0.4,估计袋中红球的个数.【解析】由题意可得:摸到黑球和白球的频率之和为:1﹣0.4=0.6,∴总的球数为:(7+5)÷0.6=20,∴红球有:20﹣(7+5)=8(个).17.如图,点E 在边长为13的正方形ABCD 内,AE =5,BE =12,求出图中阴影部分的面积.【解析】∵AE =5,BE =12,AB =13,∴AE 2+BE 2=52+122=169=132=AB 2,∴∠AEB =90°,∴S 阴影=S 正方形ABCD ―S △ABE =AB 2―12AE ×BE =139.18.劳动教育已纳入人才培养全过程,某学校加大劳动教育投入,建设校园农场.该农场一种作物的产量在两年内从200千克增加到242千克,若平均每年的增产率相同,求该作物平均每年的增产率.【解析】设该作物平均每年的增产率为x ,根据题意,得200(x +1)2=242,解得x 1=0.1=10%,x 2=﹣2.1(不合题意,舍去).答:该作物平均每年的增产率为10%.19.如图,AB ∥CD ∥EF .若AD =2,DF =1.5,CE =1.8,求线段BE 的长.【解析】∵AB ∥CD ∥EF ,∴BC CE =AD DF ,即BC 1.8=21.5,∴BC =2.4,∴BE =BC +CE =2.4+1.8=4.2.20.如图,点A 、B 、C 、D 均在边长为1的小正方形网格的格点上,连接AD ,求证:△ABD ∽△CBA .【解析】根据勾股定理得,AB ==BD =1,BC =5,∴AB BC =5,BD AB =1=5,∴AB BC =BD AB,又∠ABD =∠CBA ,∴△ABD ∽△CBA .21.南通地铁1号线“世纪大道站”有标识为1、2、3、4的四个出入口.某周六上午,甲、乙两位学生志愿者随机选择该站一个出入口,开展志愿服务活动.(1)甲在2号出入口开展志愿服务活动的概率为 14 ;(2)求甲、乙两人在同一出入口开展志愿服务活动的概率.【解析】(1)P (甲在2号出入口开展志愿服务活动)=14,故答案为:14;(2)∵一共有16种情况,甲、乙两人在同一出入口开展志愿服务活动有4种情况,∴P (甲、乙两人在同一出入口开展志愿服务活动)=416=14.22.已知关于x的一元二次方程x2﹣2mx+2m﹣2=0.(1)若该方程有一个根是x=2,求m的值;(2)求证:无论m取什么值,该方程总有两个实数根.【解析】(1)解:把x=2代入x2﹣2mx+2m﹣2=0中得:22﹣4m+2m﹣2=0,解得m=1;(2)证明:由题意得,Δ=(﹣2m)2﹣4(2m﹣2)=4m2﹣8m+8=4(m﹣1)2+4≥0,∴无论m取什么值,该方程总有两个实数根.23.如图,在平面直角坐标系中,A(2,1),B(3,3),C(4,2).以原点O为位似中心将△ABC向右侧放大两倍得到△A'B'C'.(1)在图中画出△A'B'C';(2)若△ABC内有一点P(a,b),则点P放大后的对应点的坐标是 .【解析】(1)如图,△A'B'C'即为所求;(2)点P的对应点的坐标为(2a,2b),故答案为:(2a,2b).24.已知:如图,锐角△ABC中,CD、BE分别是边AB、AC上的高,M、N分别是线段DE、BC的中点.(1)求证:MN⊥DE;(2)连接DN、EN,猜想∠A与∠DNE之间的关系,并说明理由.【解析】(1)证明:如图,连接DN ,EN ,∵CD 、BE 分别是AB 、AC 边上的高,N 是BC 的中点,∴DN =12BC ,EN =12BC ,∴DN =EN ,又∵M 为DE 中点,∴MN ⊥DE ;(2)解:∠DNE =180°﹣2∠A ,理由如下:在△ABC 中,∠ABC +∠ACB =180°﹣∠A ,∵DN =EN =BN =NC ,∴∠BND +∠CNE =(1802ABC )+(180°﹣2∠ACB )=360°﹣2(∠ABC +∠ACB )=360°﹣2(180°﹣∠A )=2∠A ,∴∠DNE =180°﹣2∠A .25.圭表是中国古代根据日影长度变化测定季节、划分四季和推算历法的工具.图1为圭表示意图.某同学受到启发,利用一根标杆和一个卷尺轻松测量出学校旗杆的高度.如图2,旗杆MN 的影长MA 在水平地面上,将标杆AB (长度1米)竖直放置在影长的最远端点A 处,此时标杆AB 的影长为AD .经测量,AD =1.2米,AM =12.1米.(1)根据以上信息,计算旗杆MN 的高度.(结果保留整数)(2)若该同学在操作过程中,测量完AD 的长度后,准备测量AM 的长度时,发现卷尺不够长,又去寻找更长一点的卷尺,半小时后回来测量AM 的长度,请问这样可以准确得到旗杆的高度吗?简单说明理由.【解析】(1)由题意可知BD ∥AN ,∴∠NAM =∠D ,∵∠NMA =∠BAD =90°,∴△MNA ∽△ABD ,∴MN AB =MA AD ,即MN 1=12.11.2,∴MN ≈10,答:旗杆MN 的高度约为10米;(2)不可以.理由如下:旗杆和标杆的影长随着时间的变化而变化,必须同时测量,小明测量标杆影长后半个小时再测量旗杆影长,此时旗杆影长已经发生变化,故不可以准确得到旗杆的高度.26.定义:两个顶角相等且顶角顶点重合的等腰三角形组合称为“相似等腰组”.如图1,等腰△ABC 和等腰△ADE 即为“相似等腰组”.(1)如图2,将上述“相似等腰组”中的△ADE 绕看点A 逆时针旋转一定角度,判断△ABD 和△ACE 是否全等;(2)如图3,等腰△ABC 和等腰△ADE 是“相似等腰组”,且∠BAC =90°,DC 和BE 相交于点O ,判断DC 和BE 的位置及大小关系.【解析】(1)△ABD 和△ACE 全等,理由:∵等腰△ABC 和等腰△ADE 为“相似等腰组”,∴∠BAC =∠DAE ,AB =AC ,AD =AE ,∴∠BAD =∠CAE ,在△ABD与△ACE中,AB=AC∠BAD=∠CAEAD=AE,∴△ABD≌△ACE(SAS);(2)DC和BE的位置及大小关系为:DC=BE,DC⊥BE,理由:∵等腰△ABC和等腰△ADE为“相似等腰组”,∴∠BAC=∠DAE=90°,∴∠BAE=∠CAD,在△ABE与△ACD中,AB=AC∠BAE=∠CADAD=AE,∴△ABE≌△ACD(SAS),∴DC=BE,∠ABE=∠ACD,∵∠ABE+∠EBC+∠ACB=90°,∴∠ACD+∠EBC+∠ACB=90°,∴∠EBC+∠DCB=90°,∴∠BOC=90°,∴DC⊥BE.。
2024-2025学年初中九年级上学期数学第一次月考卷及答案(北师大版)
2024-2025学年九年级数学上学期第一次月考模拟卷(考试时间:120分钟试卷满分:120分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.测试范围:第1章~第3章(北师版)。
5.考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷一.单项选择题(本题共12小题,每小题3分,共36分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1.下列方程中,是一元二次方程的是()A.xx2−3xx−5=−5B.2xx2−yy−1=0C.xx2−xx(xx+2.5)=0D.aaxx2+bbxx+cc=02.下列命题为真命题的是()A.有两边相等的平行四边形是菱形B.有一个角是直角的平行四边形是菱形C.对角线互相垂直的平行四边形是矩形D.有三个角是直角的四边形是矩形3.若关于xx的方程xx2+mmxx−6=2.则mm为()A.−2B.1 C.4 D.−34.a是方程xx2+2xx−1=0的一个根,则代数式aa2+2aa+2020的值是()A.2018 B.2019 C.2020 D.20215.如图,在正方形AAAAAAAA中,EE为AAAA上一点,连接AAEE,AAEE交对角线AAAA于点FF,连接AAFF,若∠AAAAEE=35°,则∠AAFFAA的度数为()A.80°B.70°C.75°D.45°6.有一块长40m,宽32m的矩形种植地,修如图等宽的小路,使种植面积为1140m2,求小路的宽.设小路的宽为x,则可列方程为()A.(40﹣2x)(32﹣x)=1140 B.(40﹣x)(32﹣x)=1140C.(40﹣x)(32﹣2x)=1140 D.(40﹣2x)(32﹣2x)=11407.在一个不透明的袋子中放有若干个球,其中有6个白球,其余是红球,这些球除颜色外完全相同.每次把球充分搅匀后,任意摸出一个球记下颜色再放回袋子.通过大量重复试验后,发现摸到白球的频率稳定在0.25左右,则红球的个数约是()A.2 B.12 C.18 D.248.如图,在菱形AAAAAAAA中,对角线AAAA,AAAA相交于点OO,EE是AAAA的中点,若菱形的周长为20,则OOEE的长为()A.10 B.5 C.2.5D.19.在一次新年聚会中,小朋友们互相赠送礼物,全部小朋友共互赠了110件礼物,若假设参加聚会小朋友的人数为xx人,则根据题意可列方程为()A.xx(xx−1)=110B.xx(xx+1)=110C.(xx+1)2=110D.(xx−1)2=11010.关于xx的一元二次方程kkxx2−2xx−1=0有两个不相等的实数根,则kk的取值范围是()A.kk>−1B.kk>−1且kk≠0C.kk<1D.kk<1且kk≠011.如图,在菱形纸片ABCD中,AB=2,∠A=60°,将菱形纸片翻折,使点A落在CD的中点E处,折痕为FG,点F,G分别在边AB,AD上,则EF的长为()A.74B.95C.1910D.76�312.如图,在正方形AAAAAAAA中,AAAA=4,E为对角线AAAA上与点A,C不重合的一个动点,过点E作EEFF⊥AAAA于点F,EEEE⊥AAAA与点G,连接AAEE,FFEE,有下列结论:①AAEE=FFEE.②AAEE⊥FFEE.③∠AAFFEE=∠AAAAEE.④FFEE的最小值为3,其中正确结论的序号为()A.①②B.②③C.①②③D.①③④第Ⅱ卷二.填空题(本题共6小题,每小题3分,共18分.)13.一元二次方程5xx2+2xx−1=0的一次项系数二次项系数常数项.14.xx1,xx2为一元二次方程xx2−2xx−10=0的两根,则1xx1+1xx2=.15.如图,矩形ABCD中,对角线AC、BD相交于点O,若OB=2,∠ACB=30°,则AB的长度为.16.如图所示,菱形AAAAAAAA的对角线AAAA、AAAA相交于点OO.若AAAA=6,AAAA=8,AAEE⊥AAAA,垂足为EE,则AAEE的长为.17.如图,将一张长方形纸片AAAAAAAA沿AAAA折起,重叠部分为ΔΔAAAAEE,若AAAA=6,AAAA=4,则重叠部分ΔΔAAAAEE的面积为.18.如图,在正方形AAAAAAAA中,AAAA=6,点E,F分别在边AAAA,AAAA上,AAEE=AAFF=2,点M在对角线AAAA上运动,连接EEEE和EEFF,则EEEE+EEFF的最小值等于.三、解答题(本题共8小题,共66分.解答应写出文字说明、证明过程或演算步骤.)19.(6分)解下列方程:(1)3xx2−4xx−1=0;(2)2�xx−3�2=xx2−920.(8分)已知方程xx2+�kk+1−6=0是关于xx的一元二次方程.(1)求证:对于任意实数kk方程中有两个不相等的实数根.(2)若xx1,xx2是方程的两根,kk=6,求1xx1+1xx2的值.21.(8分)如图,在菱形AAAAAAAA中,对角线AAAA,AAAA交于点OO,AAEE⊥AAAA交AAAA延长线于EE,AAFF∥AAEE交AAAA延长线于点FF.(1)求证:四边形AAEEAAFF是矩形;(2)若AAEE=4,AAAA=5,求AAAA的长.22.(10分)“端午节”是我国的传统佳节,民间历来有吃“粽子”的习俗,某食品公司为了解市民对去年销量较好的肉馅粽、豆沙馅粽、红枣馅粽、蛋黄馅粽(以下分别用A、B、C、D表示)这四种不同口味粽子的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查情况绘制成如图两幅统计图.请根据以上信息回答:(1)参加本次调查的有______人,若该居民区有8000人,估计整个居民区爱吃D粽的有______人.(2)请将条形统计图补充完整;(3)食品公司推出一种端午礼盒,内有外形完全相同的A、B、C、D粽各一个,小王购买了一个礼盒,并从中任意取出两个食用,请用列表或画树状图的方法,求他恰好能吃到C粽的概率.23.(8分)阅读材料,回答问题.材料1:为了解方程�xx2�2−13xx2+36=0,如果我们把xx2看作一个整体,然后设yy=xx2,则原方程可化为yy2−13yy+36=0,经过运算,原方程的解为xx1,2=±2,xx3,4=±3,我们把以上这种解决问题的方法通常叫做换元法.材料2:已知实数mm,nn满足mm2−mm−1=0,nn2−nn−1=0,且mm≠nn,显然mm,nn是方程xx2−xx−1=0的两个不相等的实数根,由韦达定理可知mm+nn=1,mmnn=−1.根据上述材料,解决以下问题:(1)为解方程xx4−xx2−6=0,可设yy=____,原方程可化为____.经过运算,原方程的解是____.(2)应用:若实数aa,bb满足:2aa4−7aa2+1=0,2bb4−7bb2+1=0且aa≠bb,求aa4+bb4的值;24.(10分)中秋期间,某商场以每盒140元的价格购进一批月饼,当每盒月饼售价为180元时,每天可售出60盒.为了扩大销售,商场决定采取适当降价的方式促销,经调查发现,如果每盒月饼降价2元,那么商场每天就可以多售出5盒.(1)设售价每盒下降xx元,则每天能售出______盒(用含xx的代数式表示);(2)当月饼每盒售价为多少元时,每天的销售利润恰好能达到2550元;(3)该商场每天所获得的利润是否能达到2700元?请说明理由.25.(12分)在数学实验课上,老师让学生以“折叠筝形”为主题开展数学实践探究活动.定义:两组邻边分别相等的四边形叫做“筝形”.(1)概念理解:如图1,将一张纸对折压平,以折痕为边折出一个三角形,然后把纸展平,折痕为四边形AAAAAAAA.判断四边形AAAAAAAA的形状:筝形(填“是”或“不是”);(2)性质探究:如图2,已知四边形AAAAAAAA纸片是筝形,请用测量、折叠等方法猜想筝形的角、对角线有什么几何特征,然后写出一条性质并进行证明;(3)拓展应用:如图3,AAAA是锐角△AAAAAA的高,将△AAAAAA沿边AAAA翻折后得到△AAAAEE,将△AAAAAA沿边AAAA翻折后得到△AAAAFF,延长EEAA,FFAA交于点G.①若∠AAAAAA=50°,当△AAAAEE是等腰三角形时,请直接写出∠AAAAAA的度数;②若∠AAAAAA=45°,AAAA=2,AAAA=5,AAEE=EEEE=FFEE,求AAAA的长.26.(12分)探究式学习是新课程倡导的重要学习方式,某兴趣小组学习正方形以后做了以下探究:在正方形AAAAAAAA中,E,F为平面内两点.【初步感知】(1)如图1,当点E在边AAAA上时,AAEE⊥AAFF,且B,C,F三点共线.请写出AAEE与FFAA的数量关系______;【深入探究】(2)如图2,当点E在正方形AAAAAAAA外部时,AAEE⊥AAFF,AAEE⊥EEFF,E,C,F三点共线.若AAEE=2,AAEE=4,求AAEE的长;【拓展运用】(3)如图3,当点E在正方形AAAAAAAA外部时,AAEE⊥EEAA,AAEE⊥AAFF,AAEE⊥AAEE,且D,F,E三点共线,猜想并证明AAEE,AAEE,AAFF之间的数量关系.2024-2025学年九年级数学上学期第一次月考模拟卷(考试时间:120分钟试卷满分:120分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
2022-2023学年北师大版九年级数学第一学期第一次月考测试卷含答案
九年级数学上册第一次月考检测试题(满分:150分 时间:120分钟)一.选择题。
(每小题4分,共48分)1.如图,已知AB ∥CD ∥EF ,AD :AF =3:5,BC =6,CE 的长为( ) A.2 B.4 C.3 D.5(第1题图) (第3题图) (第5题图) 2.若△ABC ∽△A'B'C',∠A=55°,∠B=100°,则∠C'的度数是( ) A .100° B .55° C .25° D .不能确定3.如图,已知菱形ABCD 的边长为2,∠DAB=60°,则对角线BD 的长是( ) A.1 B.3 C.2 D.234.关于x 的方程0242=+-x kx 有两个不相等的实数根,则k 的取值范围是( ) A.k ≤2 B.k>2 C.k<2且k ≠0 D.k ≤2且k ≠05.如图,在△ABC 中,D 是边AB 上的一点,∠ADC=∠ACB,AD=2,BD=6,则边AC 的长为( ) A .2 B .4 C .6 D .86.如图,在△ABC 中,EF ∥BC ,AE EB =23,四边形BCFE 的面积为21,则△ABC 的面积是( )A .913 B .25 C .35 D .63(第6题图) (第7题图) (第10题图)7.如图,四边形ABCD 为平行四边形,延长AD 到E ,使DE=AD ,连接EB ,EC ,DB ,添加一个条件,不能使四边形DBCE 成为矩形的是( )A.∠ADB=90°B.BE ⊥DCC.AB=BED.CE ⊥DE8.近几年,我国经济高速发展,但退休人员待遇持续偏低,为了促进社会和平,国家决定大幅增加退休人员退休金,企业退休职工李师傅2020年月退休金为4500元,2022年达到5445元,设李师傅的月退休金从2020年到2022年年平均增长率为x ,可列方程为( ) A.54452)1(x -=4500 B.45002)1(x +=5445C.45002)1(x -=5445 D.4500+4500(1+x )+45002)1(x +=54459.在平面直角坐标系中,已知点E (-4,2)F (-2,-2),以原点O 为位似中心,相似比为2:1,把△EFO 放大,则点E 对应点'E 的坐标是( )A.(-2,1)B.(-8,4)C.(-2,1)或(2,-1)D.(-8,4)或(8,-4) 10.如图,在正方体网格上,与△ABC 相似的三角形是( ) A.△AFD B.△AED C.△FED D.不能确定11.如图所示,一电线杆AB 的影子落在地面和墙壁上,同一时刻,小明在地面上竖立一根1米高的标杆(PQ ),量得其影长(QR )为0.5米,此时他又量得电线杆AB 落在地面上的影子BD 长为3米,墙壁上的影子CD 高为2米,小明用这些数据很快算出了电线杆AB 的高为( ) A .5米 B .6米 C .7米 D .8米(第11题图) (第12题图)12.如图,在平行四边形ABCD 中,AC ,BD 相交于点O ,点E 是OA 的中点,连接BE 并延长交AD 于点F ,已知S △AEF =4,则下列结论:①21FD AF =;②S △BCE =36;③S △ABE =12;④△AEF ~△ACD ,其中一定正确的是( ) A .①②③④ B .①④ C .②③④ D .①②③ 二.填空题。
北师大版2024-2025学年九年级数学上册第一次月考试题(原卷版)
九年级上学期第一学月数学学科练习试卷一、选择题(10小题,每小题3分,共30分)1. 若关于x 的方程()2220m m x x −−+=是一元二次方程,则m 的值是( ) A. 2− B. 2±C. 3D. 3± 2. 将方程221210x x −+=配方成()2x m n −=的形式,下列配方结果正确的是( ) A. ()2317x += B. ()21732x += C. ()2317x −= D. ()21732x −= 3. 如图,在菱形ABCD 中,对角线AC BD ,相交于点O ,点M ,N 分别是边AD CD ,的中点,连接MN OM ,,若3MN =,24ABCD S =菱形,则OM 的长为( )A. 3B. 3.5C. 2D. 2.54. 如图,在矩形ABCD 中,O 是对角线AC BD ,的交点,AE BD ⊥于点E ,若:1:2OE OD =,2cm OD =,则AE 的长为( )A. 1cmB.C.D. 2cm5. 根据下列表格的对应值,判断方程20ax bx c ++=(0a ≠,a ,b ,c 为常数)的一个解x 的范围是( ) x 3.23 3.24 3.25 3.262ax bx c ++ 0.06− 0.02− 0.03 0.09A. 3 3.23x <<B. 3.23 3.24x <<C. 3.24 3.25x <<D. 3.25 3.26x <<6. 下列四个命题:①一组对边平行,另一组对边相等的四边形是平行四边形;②有一组邻边相等的四边形是菱形;③对角线互相平分且相等的四边形是矩形;④一组对角互补的平行四边形是矩形.其中真命题的个数是( )A. 1B. 2C. 3D. 47. 在平面直角坐标系中,若直线3y x b =−+不经过第一象限,则关于x 的方程220230bx x ++=的实数根的个数为( )A. 0个B. 1个C. 2个D. 1或2个8. 如图,在ABC 中,90ACB ∠=°,8AC =,7BC =,以斜边AB 为边向外作正方形ABDE ,EF 垂直于CA 的延长线于F ,连接CE ,则CE 的长为( )A. 13B. 15C. 17D. 209. 顺次连结任意四边形ABCD 四边中点,所得的图形是一个矩形,则四边形ABCD 一定是 ( )A. 矩形B. 菱形C. 对角线相等的四边形D. 对角线互相垂直的四边形10. 如图,四边形ABCD 是矩形,AB AD =P 是边AD 上一点(不与点A ,D 重合),连接PB PC ,.点M ,N 分别是PB PC ,的中点,连接MN ,AM ,DN ,点E 在边AD 上,ME DN ∥,则AM ME +的最小值是( )A. B. 3 C. D.二、填空题(每小题3分,共15分)11. 一元二次方程254x x =的根是_________________.12. 如图,菱形ABCD 的对角线AC ,BD 相交于点O ,AC =16cm .BD =12cm ,则菱形边AB 上的高,DH 的长是 _____cm .13. 已知关于x 的一元二次方程()21210k x x −−+=有两个实数根,则k 的取值范围是__________. 14. 等腰三角形一条边的边长为3,它的另两条边的边长是关于x 的一元二次方程x 2﹣12x+k=0的两个根,则k 的值是________.15. 如图,在正方形ABCD 中,E 为AB 中点,连接DE ,过点D 作⊥DF DE 交BC 的延长线于点F ,连接EF .若1AE =,则EF 的长为______.三、解答题(共75分)16 解方程:(1)21240x x −−=(配方法解). (2)25820y y −+=(公式法解). (3)()()22223x x −=+.(4)()22324x x −=−. 17. 关于x 一元二次方程()222110x k x k −−++=有两个不相等的实数根1x ,2x . (1)求实数k 的取值范围;(2)若方程的两实数根1x ,2x 满足1212x x x x +=−⋅,求k 的值. 18. 已知关于x 的方程()2310x m x m ++++=(1)求证:无论m 取何值,原方程总有两个不相等的实数根.(2)若方程的一个根是1,求m 的值及方程的另一个根 .19. 已知关于x 方程()2121402x k x k−++−=. (1)求证:无论k 取何值,此方程总有实数根;.的的(2)若等腰ABC 的一边长4a =,另两边b c 、恰好是这个方程的两个根,求这个等腰三角形的周长是多少?20. 如图,在ABC 中,D 是BC 边上的一点,E 是AD 的中点,过A 点作BC 的平行线交CE 的延长线于点F ,且AF BD =,连接BF .(1)BD 与CD 有什么数量关系,并说明理由;(2)当ABC 满足什么条件时,四边形AFBD 是菱形?请说出理由.21. 在矩形ABCD 中,已知5cm 6cm AB BC ==,,点P 从点A 开始沿边AB 向终点B 以1cm/s 的速度运动;同时,点Q 从点B 开始沿边BC 向终点C 以2cm/s 的速度运动.当点Q 运动到点C 时,两点停止运动.设运动时间为t 秒.(1)分别用含t 的代数式表示PB 与BQ ;(2)当t 为何值时,PQ 的长度等于5cm ?(3)是否存在t 的值,使得五边形APQCD 的面积等于226cm ?若存在,请求出此时t 的值;若不存在,请说明理由.22. 如图,在ABC 中,点F 是BC 中点,点E 是线段AB 延长线上一动点,连接EF ,过点C 作AB 的平行线CD ,与线段EF 的延长线交于点D ,连接CE 、BD .(1)求证:四边形DBEC 是平行四边形.(2)若120ABC ∠=°,4ABBC ==,则在点E 的运动过程中:①当当BE = 时,四边形BECD的是矩形;②当BE = 时,四边形BECD 是菱形.23. 如图①,QPN ∠的顶点P 在正方形ABCD 两条对角线的交点处,QPN α∠=, 将QPN ∠绕点P 旋转,旋转过程中QPN ∠的两边分别与正方形ABCD 的边AD 和CD 交于点E 和点F (点F 与点C ,D 不重合).(1)如图①,当90α=°时,DE ,DF ,AD 之间满足的数量关系是______________;(2)如图②,将图①中正方形ABCD 改为120ADC ∠=°的菱形, 其他条件不变, 当60α=°时,(1)中的结论变为_____________________,请给出证明;(3)在(2)的条件下,若旋转过程中QPN ∠的边PQ 与直线AD 交于点E ,PF 与直线DC 相交与点F ,其他条件不变,探究在整个运动变化过程中.........,DE ,DF ,AD 之间满足的数量关系,直接写出结论,不用证明.的。
2024-2025学年九年级上册数学第一次月考试卷01【北师大版】
2024-2025学年九年级上册数学第一次月考试卷01【北师大版】一、选择题(每题3分,共30分)1.下列方程中是一元二次方程的是()A .210x += B.12x x += C.210x -= D.221x x+=-2.关于反比例函数y =﹣3x,下列说法不正确的是()A.点(3,﹣1)在它的图象上B.它的图象在第二、四象限C.当x >3时,﹣1<y <0D.当x >0时,y 随x 的增大而减小3.已知四边形ABCD 是平行四边形,对角线AC 与BD 交于点O ,下列结论不正确的是()A.当AB BC =时,它是菱形B.当AC BD ⊥时,它是菱形C.当BAO DAO ∠=∠时,它是菱形D.当AC BD =时,它是菱形4.下列说法正确的是()A.任意两个位似三角形一定相似B.物体在任何光线照射下影子的方向都是相同的C.如果23a b =,则23a b =D.点P 是长为2的线段AB 的黄金分割点,则1AP =5.已知蓄电池的电压为定值,使用蓄电池时,电流I (单位:A )与电阻R (单位:Ω)是反比例函数关系,它的图像如图所示.则这个反比例函数的解析式为()A.24I R=B.36I R=C.48I R=D.64I R=6.如图,在一张长宽分别为50cm 和30cm 的长方形纸板上剪去四个边长为cm x 的小正方形,并用它做成一个无盖的小长方体盒子,若要使长方体盒子的底面积为2300cm ,求x 的值,根据题意,可列得的方程为()A.()()5030300x x --=B.()()502302300x x --=C.()()50230300x x --= D.215004300x -=7.如图,△ABC 中,点D 、E 分别为AB 、AC 的中点,连接DE ,线段BE 、CD 相交于点O ,若OD=2,则OC=().A.3B.4C.5D.68.大约在两千四五百年前,墨子和他的学生做了世界上第1个小孔成倒像的实验.并在《墨经》中有这样的精彩记录:“景到,在午有端,与景长,说在端”.如图所示的小孔成像实验中,若物距为10cm ,像距为15cm ,蜡烛火焰倒立的像的高度是8cm ,则蜡烛火焰的高度是()A.92B.6C.163D.89.已知0ab <,一次函数y ax b =-与反比例函数ay x=在同一直角坐标系中的图象可能()A. B.C.D.10.如图,在正方形ABCD 中,E ,F 是对角线AC 上的两点,且EF =2AE =2CF ,连接DE 并延长交AB 于点M ,连接DF 并延长交BC 于点N ,连接MN ,则AMDMBNS S =△△()A.34B.23C.1D.12二、填空题(每题3分,共15分)11.如果32x y =,那么22x y x y+-=___________.12.已知反比例函数()0ky k x=>,点P 为该反比例函数图象上一点,过点P 向两坐标轴引垂线,得到四边形OAPB ,若四边形OAPBk 的值为_____________.13.已知菱形ABCD 的两条对角线分别为6和8,M 、N 分别是边BC 、CD 的中点,P 是对角线BD 上一点,则PM +PN 的最小值=___.14.如图,ABC 是等边三角形,点A ,C 在反比例函数()0ky k x=>的图象上AB x ⊥轴于点B .若4AB =,则k 的值为_______.15.如图,△ABC ≌△DEF (点A 、B 分别与点D 、E 对应),AB =AC =5,BC =6,△ABC 固定不动,△DEF 运动,并满足点E 在BC 边从B 向C 移动(点E 不与B 、C 重合),DE 始终经过点A ,EF 与AC 边交于点M ,当△AEM 是等腰三角形时,BE =__________.三、解答题16.解下列方程:(1)()22240x x --+=;(2)2410x x --=.17.如图,嘉嘉同学正在使用手电筒进行物理光学实验,地面上从左往右依次是墙、木板和平面镜.手电筒的灯泡在点G 处,手电筒的光从平面镜上点B 处反射后,恰好经过木板的边缘点F ,落在墙上的点E 处,点E 到地面的高度 3.5m DE =,点F 到地面的高度 1.5m CF =,灯泡到木板的水平距离 5.4AC m =,墙到木板的水平距离为4CD m =.已知光在镜面反射中的入射角等于反射角,图中点A 、B 、C 、D 在同一水平面上.(1)求BC 的长.(2)求灯泡到地面的高度.18.如图,在平面直角坐标系中,一次函数y =ax +b (a ≠0)的图象分别交x 轴,y 轴于A ,B 两点,与反比例函数y =kx(k ≠0)的图象交于C ,D 两点,DE ⊥x 轴于点E ,点C 的坐标为(6,−1),DE =3.(1)求反比例函数与一次函数的表达式;(2)若点P 在反比例函数图象上,且△POA 的面积等于8,求P 点的坐标.19.某超市销售的红豆进价为每千克8元.当红豆每千克售价为15元时,日销售量为300千克.该超市为扩大销售量、增加经营利润,计划采取降价的方式进行促销.经市场调查发现,当红豆每千克售价每下降0.5元时,日销售量就会增加5千克.(1)当销售量为320千克时,红豆售价为___________元;当红豆每千克售价是10元时,日销售量是多少千克?(2)该商场计划每日销售红豆获利1020元,则红豆售价应定为每千克多少元?20.如图,四边形ABCD 是矩形,点E 在CD 边上,点F 在DC 延长线上,AE =BF .(1)求证:四边形ABFE 是平行四边形;(2)若∠BEF =∠DAE ,AE =3,BE =4,求EF 的长.21.【综合实践】如图所示,是《天工开物》中记载的三千多年前中国古人利用桔槔在井上汲水的情境(杠杆原理:阻力⨯阻力臂=动力⨯动力臂,如图,即12A B F L F L ⨯=⨯),受桔槔的启发,小杰组装了如图所示的装置.其中,杠杆可绕支点O 在竖直平面内转动,支点O 距左端11m L =,距右端20.4m L =,在杠杆左端悬挂重力为80N 的物体A .(1)若在杠杆右端挂重物B ,杠杆在水平位置平衡时,重物B 所受拉力为______N .(2)为了让装置有更多的使用空间,小杰准备调整装置,当重物B 的质量变化时,2L 的长度随之变化.设重物B 的质量为N x ,2L 的长度为cm y .则①y 关于x 的函数解析式是______.②完成下表:/Nx …1020304050…/cmy …8a832b…③在直角坐标系中画出该函数的图象.(3)在(2)的条件下,将函数图象向右平移4个单位长度,与原来的图像组成一个新的函数图象,记为L .若点A 的坐标为()2,0,在L 上存在点Q ,使得9OAQ S =△.请直接写出所有满足条件的点Q 的坐标.22.【证明体验】(1)如图1,AD 为ABC 的角平分线,60ADC ∠=︒,点E 在AB 上,AE AC =.求证:DE 平分ADB ∠.【思考探究】(2)如图2,在(1)的条件下,F 为AB 上一点,连结FC 交AD 于点G .若FB FC =,2DG =,3CD =,求BD 的长.【拓展延伸】(3)如图3,在四边形ABCD 中,对角线AC 平分,2BAD BCA DCA ∠∠=∠,点E 在AC 上,EDC ABC ∠=∠.若5,2BC CD AD AE ===,求AC 的长.2024-2025学年九年级上册数学第一次月考试卷01【北师大版】一、选择题(每题3分,共30分)1.下列方程中是一元二次方程的是()A.210x +=B.12x x += C.210x -= D.221x x+=-【答案】C 【解析】【分析】根据一元二次方程的定义“只含有一个未知数,且未知数的最高次数是2的整式方程叫做一元二次方程”逐项判断即可.【详解】A.2x +1=0是一元一次方程,故不符合题意;B.12x x+=,分母含有未知数,故不符合题意;C.210x -=为一元二次方程,符合题意;D.221x x+=-,分母含有未知数,故不符合题意;故选C .【点睛】此题主要考查一元二次方程的定义,解题的关键是熟知一元二次方程的特点.2.关于反比例函数y =﹣3x,下列说法不正确的是()A.点(3,﹣1)在它的图象上B.它的图象在第二、四象限C.当x >3时,﹣1<y <0D.当x >0时,y 随x 的增大而减小【答案】D 【解析】【分析】由题意利用反比例函数的性质可解.【详解】∵当k <0,双曲线的两支分别位于第二、第四象限,在每一象限内y 随x 的增大而增大.∴反比例函数y=-3x的图象分别位于第二、第四象限,在每一象限内y 随x 的增大而增大.故选D .【点睛】本题考查了反比例函数的性质,熟练掌握反比例函数的性质是解答本题的关键.3.已知四边形ABCD 是平行四边形,对角线AC 与BD 交于点O ,下列结论不正确的是()A.当AB BC =时,它是菱形B.当AC BD ⊥时,它是菱形C.当BAO DAO ∠=∠时,它是菱形D.当AC BD =时,它是菱形【答案】D 【解析】【分析】由菱形的判定和矩形的判定分别对各个选项进行判断即可.【详解】解:A 、 四边形ABCD 是平行四边形,AB BC =,∴平行四边形ABCD 是菱形,故选项A 不符合题意;B 、 四边形ABCD 是平行四边形,AC BD ⊥,∴平行四边形ABCD 是菱形,故选项B 不符合题意;C 、如图,四边形ABCD 是平行四边形,AD BC ∴∥,DAO BCA ∴∠=∠,BAO DAO ∠=∠ ,BAO BCA ∴∠=∠,AB CB ∴=,∴平行四边形ABCD 是菱形,故选项C 不符合题意;D 、 四边形ABCD 是平行四边形,AC BD =,∴平行四边形ABCD 是矩形,故选项D 符合题意;故选:D .【点睛】本题考查了菱形的判定、平行四边形的性质、矩形的判定以及等腰三角形的判定等知识,熟练掌握菱形的判定方法是解题的关键.4.下列说法正确的是()A.任意两个位似三角形一定相似B.物体在任何光线照射下影子的方向都是相同的C.如果23a b =,则23a b =D.点P 是长为2的线段AB 的黄金分割点,则1AP =【答案】A 【解析】【分析】根据位似图形,平行投影,比例,黄金分割,逐项判断即可求解.【详解】解:A 、任意两个位似三角形一定相似,符合题意;B 、物体在太阳光线照射下影子的方向都是相同的,在灯光的照射下影子的方向与物体的位置有关,故本选项中的命题是假命题,不符合题意;C 、如果23a b =,则32a b =,故本选项中的命题是假命题,不符合题意;D 、点P 是长为2的线段AB 的黄金分割点,则1AP =或3-故选:A .【点睛】本题主要考查了位似图形,平行投影,比例,黄金分割,熟练掌握相关知识点是解题的关键.5.已知蓄电池的电压为定值,使用蓄电池时,电流I (单位:A )与电阻R (单位:Ω)是反比例函数关系,它的图像如图所示.则这个反比例函数的解析式为()A.24I R=B.36I R=C.48I R=D.64I R=【答案】C 【解析】【分析】根据题意,电流与电阻是反比例函数关系,根据图中给出的坐标即可求出该反比例函数解析式.【详解】根据题意,电流与电阻是反比例函数关系,在该函数图像上有一点(6,8),故设反比例函数解析式为I=k R,将(6,8)代入函数解析式中,解得k=48,故I=48R故选C .【点睛】本题主要考查反比例函数解析式的求解方法,掌握求解反比例函数解析式的方法是解答本题的关键.6.如图,在一张长宽分别为50cm 和30cm 的长方形纸板上剪去四个边长为cm x 的小正方形,并用它做成一个无盖的小长方体盒子,若要使长方体盒子的底面积为2300cm ,求x 的值,根据题意,可列得的方程为()A.()()5030300x x --= B.()()502302300x x --=C.()()50230300x x --= D.215004300x -=【答案】B【解析】【分析】先分别表示出底面长方形的长和宽,然后根据长方形面积公式列出方程即可.【详解】解:由题意得,底面长方形的长为()502cm x -,宽为()302cm x -,∵要使长方体盒子的底面积为2300cm ,∴()()502302300x x --=,故选B .【点睛】本题主要考查了从实际问题中抽象出一元二次方程,正确理解题意表示出底面长方形的长和宽是解题的关键.7.如图,△ABC 中,点D 、E 分别为AB 、AC 的中点,连接DE ,线段BE 、CD 相交于点O ,若OD=2,则OC=().A.3B.4C.5D.6【答案】B【解析】【详解】试题分析:由题意,知DE 为△ABC 的中位线,则DE ∥BC ,DE=12BC ,再证明△ODE ∽△OCB ,由相似三角形对应边成比例即可得出OC=2OD .试题解析:∵点D 、E 分别为AB 、AC 的中点,∴DE 为△ABC 的中位线,∴DE ∥BC ,DE=12BC ,∴∠ODE=∠OCB ,∠OED=∠OBC ,∴△ODE ∽△OCB ,∴OD :OC=DE :BC=1:2,∴OC=2OD=4.故选B .考点:1.相似三角形的判定与性质;2.三角形中位线定理.8.大约在两千四五百年前,墨子和他的学生做了世界上第1个小孔成倒像的实验.并在《墨经》中有这样的精彩记录:“景到,在午有端,与景长,说在端”.如图所示的小孔成像实验中,若物距为10cm ,像距为15cm ,蜡烛火焰倒立的像的高度是8cm ,则蜡烛火焰的高度是()A.92 B.6 C.163 D.8【答案】C【解析】【分析】根据小孔成像的性质及相似三角形的性质求解即可.【详解】解:根据小孔成像的性质及相似三角形的性质可得:蜡烛火焰的高度与火焰的像的高度的比值等于物距与像距的比值,设蜡烛火焰的高度为cm x ,则:10815x =,解得:163x =,即蜡烛火焰的高度为16cm 3,故选:C .【点睛】本题考查了相似三角形性质的应用,解题的关键在于理解小孔成像的原理得到相似三角形.9.已知0ab <,一次函数y ax b =-与反比例函数a y x =在同一直角坐标系中的图象可能()A.B.C.D.【答案】A【解析】【分析】根据反比例函数图象确定b 的符号,结合已知条件求得a 的符号,由a,b 的符号确定一次函数图象所经过的象限.【详解】解:若反比例函数a xy =经过第一、三象限,则0a >.所以0b <.则一次函数y ax b =﹣的图象应该经过第一、二、三象限;若反比例函数a xy =经过第二、四象限,则a<0.所以b>0.则一次函数y ax b =﹣的图象应该经过第二、三、四象限.故选项A 正确;故选A .【点睛】本题考查了反比例函数的图象性质和一次函数函数的图象性质,要掌握它们的性质才能灵活解题.10.如图,在正方形ABCD 中,E ,F 是对角线AC 上的两点,且EF =2AE =2CF ,连接DE 并延长交AB 于点M ,连接DF 并延长交BC 于点N ,连接MN ,则AMD MBN S S △△()A.34 B.23 C.1 D.12【答案】A【解析】【分析】设3AB AD BC CD a ====,首先证明AM CN =,再利用平行线分线段成比例定理求出CN a =,推出AM a =,2BM BN a ==,可得结论.【详解】解:设3AB AD BC CD a ====,四边形ABCD 是正方形,45DAE DCF ∴∠=∠=︒,90DAM DCN ∠=∠=︒,在DAE ∆和DCF ∆中,DA DCDAE DCF AE CF=⎧⎪∠=∠⎨⎪=⎩,()DAE DCF SAS ∴∆≅∆,ADE CDF \Ð=Ð,在DAM ∆和DCN ∆中,ADM CDNDA DC DAM DCN∠=∠⎧⎪=⎨⎪∠=∠⎩,()DAM DCN ASA ∴∆≅∆,AM CN ∴=,AB BC = ,BM BN ∴=,//CN AD ,∴13CNCFAD AF ==,CN AM a ∴==,2BM BN a ==,∴133212242ADM BMN AD AMS a a S a a BM BN ∆∆⋅⋅⨯===⨯⋅⋅,故选:A.【点睛】本题考查正方形的性质,全等三角形的判定和性质,平行线分线段成比例定理等知识,解题的关键是学会利用参数,设正方形的边长为3a ,求出AM a =,2BM BN a ==.二、填空题(每题3分,共15分)11.如果32x y =,那么22x y x y+-=___________.【答案】74【解析】【分析】根据32x y =,得到32x y =,代入分式求值即可.【详解】解:∵32x y =,∴23x y =,∴32x y =∴32272234y y x y x y y y ++==--,故答案为:74.【点睛】本题考查比例的性质,熟练掌握比例的性质,是解题的关键.12.已知反比例函数()0k y k x =>,点P 为该反比例函数图象上一点,过点P 向两坐标轴引垂线,得到四边形OAPB ,若四边形OAPBk 的值为_____________.【解析】【分析】因为过反比例函数上任意一点向两坐标轴引垂线,所得四边形OAPB面积是个定值,即00k x k x ⋅==再由函数图象所在的象限确定k 的值即可.【详解】解:∵点P 为反比例函数()0k y k x=>图象上一点,设00(,)k P x x ,又∵过点P 向两坐标轴引垂线,得到四边形OAPB ,若四边形OAPB,∴00k x k x ⋅==【点睛】本题主要考查了反比例函数()0k y k x=>中k 的几何意义,即过双曲线上任意一点向两坐标轴引垂,是经常考查的一个知识点;这里体现了数形结合的思想,做此类题一定要正确理解的几何意义.13.已知菱形ABCD 的两条对角线分别为6和8,M 、N 分别是边BC 、CD 的中点,P 是对角线BD 上一点,则PM +PN 的最小值=___.【答案】5【解析】【分析】作M 关于BD 的对称点Q ,连接NQ ,交BD 于P ,连接MP ,此时MP +NP 的值最小,连接AC ,求出CP 、PB ,根据勾股定理求出BC 长,证出MP +NP =QN =BC ,即可得出答案.【详解】解:作M 关于BD 的对称点Q ,连接NQ ,交BD 于P ,连接MP ,此时MP +NP 的值最小,连接AC ,∵四边形ABCD 是菱形,∴AC ⊥BD ,∠QBP =∠MBP ,即Q 在AB 上,∵MQ ⊥BD ,∴AC ∥MQ ,∵M 为BC 中点,∴Q 为AB 中点,∵N 为CD 中点,四边形ABCD 是菱形,∴BQ ∥CD ,BQ =CN ,∴四边形BQNC 是平行四边形,∴NQ =BC ,∵四边形ABCD 是菱形,∴CP =12AC =3,BP =12BD =4,在Rt △BPC 中,由勾股定理得:BC =5,即NQ =5,∴MP +NP =QP +NP =QN =5,故答案为5【点睛】本题考查轴对称-最短路线问题;菱形的性质,熟练掌握其性质是解决此问题的关键.14.如图,ABC 是等边三角形,点A ,C 在反比例函数()0k y k x=>的图象上AB x ⊥轴于点B .若4AB =,则k 的值为_______.【答案】【解析】【分析】设点(),4A a ,过点C 作CD AB ⊥于点D ,表示A 和C 的坐标,列方程可得a 的值,代入k y x=可得k 的值.【详解】解:如图,设点(),4A a ,过点C 作CD AB ⊥于点D ,则CD =,2BD =,则()C a +.点A ,C 在同一个反比例函数的图象上,(42a a ∴=+,a ∴=4k ∴=⨯=故答案为:【点睛】本题考查了反比例函数的图象上点的坐标特征,等边三角形的性质,能够利用待定系数法求解析式是解题的必要方法,根据等边三角形的性质确定各点的坐标是解题的关键.15.如图,△ABC ≌△DEF (点A 、B 分别与点D 、E 对应),AB =AC =5,BC =6,△ABC 固定不动,△DEF 运动,并满足点E 在BC 边从B 向C 移动(点E 不与B 、C 重合),DE 始终经过点A ,EF 与AC 边交于点M ,当△AEM 是等腰三角形时,BE =__________.【答案】1或116【解析】【分析】首先由∠AEF =∠B =∠C ,且∠AME >∠C ,可得AE ≠AM ,然后分别从AE =EM 与AM =EM 去分析,利用全等三角形与相似三角形的性质求解即可求得答案.【详解】∵∠AEF =∠B =∠C ,且∠AME >∠C ,∴∠AME >∠C ,∴AE ≠AM ,当AE =EM 时,∵∠B =∠C ,∠BAE +∠BEA =∠CEM +∠BEA ,∴∠BAE =∠CEM ,则△ABE ≌△ECM ,∴CE =AB =5,∴BE =BC -EC =6-5=1;当AM =EM 时,则∠MAE =∠EMA ,∴∠MAE +∠BAE =∠MEA +∠C EM ,∴∠CAB =∠CEA ,又∵∠C =∠C ,∴CE AC AC CB=,∴2256AC CB CE ==,∴BE =2511666-=,综上所述BE =1或116,故答案为:1或116.【点睛】本题考查了相似三角形的判定和性质、全等三角形的性质和判定、等腰三角形的性质,熟练掌握性质定理是解题的关键.三、解答题16.解下列方程:(1)()22240x x --+=;(2)2410x x --=.【答案】(1)x 1=2,x 2=4(2)x 1,x 2【解析】【分析】(1)先把方程的左边分解因式,即可得出两个一元一次方程,再求出方程的解即可;(2)移项后配方,开方,即可得出两个一元一次方程,再求出方程的解即可.【小问1详解】(x -2)2-2x +4=0,(x -2)2-2(x -2)=0,(x -2)(x -2-2)=0,x -2=0或x -2-2=0,解得:x 1=2,x 2=4;【小问2详解】x 2-4x -1=0,x 2-4x =1,配方,得x 2-4x +4=1+4,(x -2)2=5,开方得:x解得:x 1,x 2=2-.【点睛】本题考查了解一元二次方程,能选择适当的方法解方程是解此题的关键,解一元二次方程的方法有直接开平方法,公式法,配方法,因式分解法等.17.如图,嘉嘉同学正在使用手电筒进行物理光学实验,地面上从左往右依次是墙、木板和平面镜.手电筒的灯泡在点G 处,手电筒的光从平面镜上点B 处反射后,恰好经过木板的边缘点F ,落在墙上的点E 处,点E 到地面的高度 3.5m DE =,点F 到地面的高度 1.5m CF =,灯泡到木板的水平距离 5.4AC m =,墙到木板的水平距离为4CD m =.已知光在镜面反射中的入射角等于反射角,图中点A 、B 、C 、D 在同一水平面上.(1)求BC 的长.(2)求灯泡到地面的高度.【答案】(1)3m ;(2)1.2m .【解析】【分析】(1)直接利用相似三角形的判定与性质得出BC 的长;(2)根据相似三角形的性质列方程进而求出AG 的长.【小问1详解】解:由题意可得:FC DE ∥,则BFC BED △△∽,故BC FC BD DE =,即 1.54 3.5BC BC =+,解得:3BC =,经检验,3BC =是上述分式方程的解,∴BC 的长为3m ;【小问2详解】∵ 5.4m AC =,∴ 5.43 2.4AB =-=(m ),∵光在镜面反射中的入射角等于反射角,∴FBC GBA ∠=∠,又∵FCB GAB ∠=∠,∴BGA BFC ∽ ,∴AG FC AB BC =,∴ 1.52.43AG =,解得: 1.2AG =(m ),∴灯泡到地面的高度AG 为1.2m .【点睛】此题主要考查了相似三角形的应用,正确得出相似三角形是解题关键.18.如图,在平面直角坐标系中,一次函数y =ax +b (a ≠0)的图象分别交x 轴,y 轴于A ,B 两点,与反比例函数y =k x(k ≠0)的图象交于C ,D 两点,DE ⊥x 轴于点E ,点C 的坐标为(6,−1),DE =3.(1)求反比例函数与一次函数的表达式;(2)若点P在反比例函数图象上,且△POA的面积等于8,求P点的坐标.【答案】(1)反比例函数的关系式为y=-6x;一次函数的关系式为y=-12x+2;(2)点P的坐标是(-32,4)或(32,-4).【解析】【分析】(1)用待定系数法求出反比例函数表达式,进而求出点D的坐标,再利用待定系数法求出一次函数表达式即可求解;(2)设点P的坐标是(m,n),根据三角形面积公式求得即可.【小问1详解】解:∵点C(6,-1)在反比例函数y=kx(k≠0)的图象上,∴k=6×(-1)=-6,∴反比例函数的关系式为y=-6 x,∵点D在反比例函数y=-6x上,且DE=3,∴y=3,代入求得:x=-2,∴点D的坐标为(-2,3).∵C、D两点在直线y=ax+b上,则6123a ba b+=-⎧⎨-+=⎩,解得122ab⎧=-⎪⎨⎪=⎩,∴一次函数的关系式为y=-12x+2;【小问2详解】解:设点P的坐标是(m,n).把y=0代入y=-12x+2,解得x=4,即A(4,0),则OA=4,∵△POA的面积等于8,∴12×OA×|n|=8,解得:|n|=4,∴n1=4,n2=-4,∴点P的坐标是(-32,4)或(32,-4).【点睛】此题考查了一次函数与反比例函数的交点问题,涉及的知识有:坐标与图形性质,待定系数法确定函数解析式,一次函数与坐标轴的交点,三角形面积,熟练掌握待定系数法是解本题的关键.19.某超市销售的红豆进价为每千克8元.当红豆每千克售价为15元时,日销售量为300千克.该超市为扩大销售量、增加经营利润,计划采取降价的方式进行促销.经市场调查发现,当红豆每千克售价每下降0.5元时,日销售量就会增加5千克.(1)当销售量为320千克时,红豆售价为___________元;当红豆每千克售价是10元时,日销售量是多少千克?(2)该商场计划每日销售红豆获利1020元,则红豆售价应定为每千克多少元?【答案】(1)13,350(2)11元【解析】【分析】(1)因为每吨售价每下降10元时,月销售量就会增加7.5吨,可求出当每吨售价是240元时,此时的月销售量是多少吨.(2)红豆售价应定为每千克x 元,则每千克的销售利润为()8x -元,日销售量为()153005450100.5x x -+⨯=-千克,根据题意列出方程求解即可.【小问1详解】解:根据题意得:当销售量为320千克时,红豆售价为()150.532030013--=元;151********.5-+=(千克).答:当销售量为320千克时,红豆售价为13元;当红豆每千克售价是10元时,日销售量是350千克;【小问2详解】解:设红豆售价应定为每千克x 元,则每千克的销售利润为()8x -元,日销售量为()153005450100.5x x -+⨯=-千克,根据题意得:()()8450101020x x --=,整理得:2534620x x -+=,解得:1211,42x x ==(不符合题意,舍去).答:则红豆售价应定为每千克11元.【点睛】此题考查一元二次方程的应用,关键是找出红豆每千克售价每下降0.5元时,日销售量就会增加5千克的关系,从而列方程求解.20.如图,四边形ABCD 是矩形,点E 在CD 边上,点F 在DC 延长线上,AE =BF .(1)求证:四边形ABFE是平行四边形;(2)若∠BEF=∠DAE,AE=3,BE=4,求EF的长.【答案】(1)证明见解析;(2)EF=5【解析】【分析】(1)先根据矩形性质证得AD=BC,∠D=∠BCD=∠BCF=90°,再根据全等三角形的判定与性质证明Rt△ADE≌Rt△BCF得到∠DEA=∠F,则有AE∥BF,然后根据平行四边形的判定可证得结论;(2)先证得∠AEB=90°,根据勾股定理求得AB=5,根据平行四边形的性质得到EF=AB即可求解.【详解】解:(1)∵四边形ABCD是矩形,∴AD=BC,∠D=∠BCD=90°.∴∠BCF=180°﹣∠BCD=180°﹣90°=90°.∴∠D=∠BCF.在Rt△ADE和Rt△BCF中AE BF AD BC=⎧⎨=⎩,∴Rt△ADE≌Rt△BCF(HL),∴∠DEA=∠F.∴AE∥BF.∵AE=BF,∴四边形ABFE是平行四边形.(2)解:如图,∵∠D=90°,∴∠DAE+∠1=90°.∵∠BEF=∠DAE,∴∠BEF+∠1=90°.∵∠BEF+∠1+∠AEB=180°,∴∠AEB=90°.在Rt△ABE中,AE=3,BE=4,AB5==.∵四边形ABFE是平行四边形,∴EF=AB=5.【点睛】本题考查平行四边形的判定与性质、矩形的性质、直角三角形的两锐角互余、勾股定理,熟练掌握矩形的性质,平行四边形的判定方法以及勾股定理是解答本题的关键.21.【综合实践】如图所示,是《天工开物》中记载的三千多年前中国古人利用桔槔在井上汲水的情境(杠杆原理:阻力⨯阻力臂=动力⨯动力臂,如图,即12A B F L F L ⨯=⨯),受桔槔的启发,小杰组装了如图所示的装置.其中,杠杆可绕支点O 在竖直平面内转动,支点O 距左端11m L =,距右端20.4m L =,在杠杆左端悬挂重力为80N 的物体A .(1)若在杠杆右端挂重物B ,杠杆在水平位置平衡时,重物B 所受拉力为______N .(2)为了让装置有更多的使用空间,小杰准备调整装置,当重物B 的质量变化时,2L 的长度随之变化.设重物B 的质量为N x ,2L 的长度为cm y .则①y 关于x 的函数解析式是______.②完成下表:/N x …1020304050…/cm y …8a 832b …③在直角坐标系中画出该函数的图象.(3)在(2)的条件下,将函数图象向右平移4个单位长度,与原来的图像组成一个新的函数图象,记为L .若点A 的坐标为()2,0,在L 上存在点Q ,使得9OAQ S =△.请直接写出所有满足条件的点Q 的坐标.【答案】(1)200(2)①80y x=;②见解析;③见解析(3)8099⎛⎫ ⎪⎝⎭,或11699⎛⎫ ⎪⎝⎭,【解析】【分析】(1)根据公式12A B F L F L ⨯=⨯进行计算即可;(2)①根据公式12A B F L F L ⨯=⨯即可得到80y x =;②根据(2)①所求求出a 、b 的值即可;③先描点,再连线,画出函数图象即可;(3)先根据面积求出点Q 的纵坐标,再根据反比例函数性质和平移的性质求出点Q 的坐标即可.【小问1详解】解:∵12A B F L F L ⨯=⨯,∴12801200(N)0.4A B F L F L ⨯⨯===∴重物B 所受拉力为200N ,故答案为:200;【小问2详解】解:①∵12A B F L F L ⨯=⨯,∴12A B F L L F ⨯=,即80180y x x⨯==,故答案为:80y x =;②由(2)①得80808420505a b ====,,填表如下:/N x …1020304050.../cm y (848)3285…③函数图象如下所示:【小问3详解】解:∵点A 的坐标为()2,0,∴2OA =,∵9OAQ S =△,∴192Q OA y ⋅=,∴9Q y =,在80y x =中,当9y =时809x =,∴在函数80y x =上满足题意的Q 的坐标为8099⎛⎫ ⎪⎝⎭,∵将函数80y x =图象向右平移4个单位长度,与原来的图像组成一个新的函数图象,记为L ,∴点80499⎛⎫+ ⎪⎝⎭,,即11699⎛⎫ ⎪⎝⎭,也在L 上,即满足题意的Q 的坐标为11699⎛⎫ ⎪⎝⎭;综上所述,点Q 的坐标为8099⎛⎫⎪⎝⎭或11699⎛⎫ ⎪⎝⎭.【点睛】本题主要考查了反比例函数的实际运用,正确理解题意是解题的关键.22.【证明体验】(1)如图1,AD 为ABC 的角平分线,60ADC ∠=︒,点E 在AB 上,AE AC =.求证:DE 平分ADB ∠.【思考探究】(2)如图2,在(1)的条件下,F 为AB 上一点,连结FC 交AD 于点G .若FB FC =,2DG =,3CD =,求BD 的长.【拓展延伸】(3)如图3,在四边形ABCD 中,对角线AC 平分,2BAD BCA DCA ∠∠=∠,点E 在AC 上,EDC ABC ∠=∠.若5,5,2BC CD AD AE ===,求AC 的长.【答案】(1)见解析;(2)92;(3)163【解析】【分析】(1)根据SAS 证明EAD CAD ≌△△,进而即可得到结论;(2)先证明EBD GCD ∽,得BD DE CD DG=,进而即可求解;(3)在AB 上取一点F ,使得AF AD =,连结CF ,可得AFC ADC ≌,从而得DCE BCF ∽,可得,CD CE CED BFC BC CF=∠=∠,4CE =,最后证明EAD DAC ∽,即可求解.【详解】解:(1)∵AD 平分BAC ∠,∴EAD CAD ∠=∠,∵,==AE AC AD AD ,∴()EAD CAD SAS ≌,∴60ADE ADC ∠=∠=︒,∴18060EDB ADE ADC ∠=︒-∠-∠=︒,∴BDE ADE =∠∠,即DE 平分ADB ∠;(2)∵FB FC =,∴EBD GCD ∠=∠,∵60BDE GDC ∠=∠=︒,∴EBD GCD ∽,∴BD DE CD DG=.∵EAD CAD ≌△△,∴3DE DC ==.∵2DG =,∴92BD =;(3)如图,在AB 上取一点F ,使得AF AD =,连结CF .∵AC 平分BAD ∠,∴FAC DAC∠=∠∵AC AC =,∴()AFC ADC SAS ≌,∴,,CF CD ACF ACD AFC ADC =∠=∠∠=∠.∵2ACF BCF ACB ACD ∠+∠=∠=∠,∴DCE BCF ∠=∠.∵EDC FBC ∠=∠,∴DCE BCF ∽,∴,CD CE CED BFC BC CF=∠=∠.∵5,BC CF CD ===,∴4CE =.∵180180AED CED BFC AFC ADC ∠=︒-∠=︒-∠=∠=∠,又∵EAD DAC ∠=∠,∴EAD DAC∽∴12EA AD AD AC ==,∴4AC AE =,∴41633 AC CE==.【点睛】本题主要考查全等三角形的判定和性质,相似三角形的判定和性质,添加辅助线,构造全等三角形和相似三角形,是解题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
秋季九年级数学月考卷
姓名:_________班级:________成绩:________
一.选择题(共14小题)
1.若关于x的方程ax2+3x+1=0是一元二次方程,则a满足的条件是()A.a≤B.a>0C.a≠0D.a>
2.若x=﹣1是关于x的一元二次方程ax2+bx﹣1=0的一个根,则2020+2a﹣2b的值为()A.2018B.2020C.2022D.2024
3.一元二次方程x2﹣4x﹣3=0的二次项系数、一次项系数和常数项分别是()A.1,4,3B.0,﹣4,﹣3C.1,﹣4,3D.1,﹣4,﹣3
4.关于x的方程x+x﹣3=0是一元二次方程,则()
A.m=﹣3B.m=2C.m=3D.m=±3
5.已知关于x的方程(m+1)x2﹣3=0是一元二次方程,则m的取值范围是()A.m>﹣1B.m≠0C.m≤﹣1D.m≠﹣1
6.若△ABC的一边为4,另两边同时满足方程x2﹣6x+k=0,则△ABC的周长()A.为10B.为11C.为12D.不确定
7.若n(n≠0)是关于x的方程x2+mx+2n=0的根,则m3+n3﹣6mn的值为()A.﹣2B.8C.﹣6D.﹣8
8.用配方法解一元二次方程x2﹣4x﹣9=0,可变形为()
A.(x﹣2)2=9B.(x﹣2)2=13C.(x+2)2=9D.(x+2)2=13
9.用配方法解方程4x2﹣2x﹣1=0时,配方结果正确的是()
A.(x﹣)2=B.(x﹣)2=
C.(x﹣)2=D.(x﹣)2=
10.代数式x2﹣4x+3的最小值为()
A.﹣1B.0C.3D.5
11.若x2+4y2﹣8x+4y+17=0,则xy=()
A.﹣2B.﹣1C.2D.1
12.若a,b,c是△ABC的三边长,且a2+b2+c2﹣ab﹣ac﹣bc=0,则△ABC的形状是()A.等腰三角形B.等腰直角三角形
C.等边三角形D.不能确定
13.关于x的方程(m+2)x|m|+mx﹣1=0是一元二次方程,则m=()
A.2或﹣2B.2C.﹣2D.014.关于x的一元二次方程(a﹣2)x2+x+a2﹣4=0的一个根是0,则a的值是()A.0B.2C.﹣2D.2或﹣2
二.填空题(共6小题)
15.若关于x的方程ax2+4x﹣3=0有唯一实数解,则a的值为.
16.关于x的一元二次方程2x2﹣4x+m﹣=0有实数根,则实数m的取值范围是.17.一元二次方程x2﹣x+(b+1)=0无实数根,则b的取值范围为.
18.已知一元二次方程x2+2x﹣8=0的两根为x1、x2,则+2x1x2+=.19.已知a2﹣2a﹣1=0,b2+2b﹣1=0,且ab≠1,则的值为.
20.已知a、b是方程x2+2x﹣5=0的两个实数根,则a2+ab+2a的值为.
三.解答题(共10小题)
21.解方程:(1)x2﹣4x﹣1=0;(2)2(x﹣1)2﹣8=0.
22.阅读理解:已知m2﹣2mn+2n2﹣8n+16=0,求m、n的值.
解:∵m2﹣2mn+2n2﹣8n+16=0
∴(m2﹣2mn+n2)+(n2﹣8n+16)=0.
∴(m﹣n)2+(n﹣4)2=0.
∴(m﹣n)2=0,(n﹣4)2=0
∴n=4,m=4.
方法应用:(1)已知a2+b2﹣10a+4b+29=0,求a、b的值;
(2)已知x+4y=4.
①用含y的式子表示x:;
②若xy﹣z2﹣6z=10,求y x+z的值.
23.已知实数a,b,c满足+(2b2﹣3b+1)2+|(c﹣2)(c﹣1)﹣c+2|=0,求关于x的方程ax2+bx+c﹣2=0的根.
24.已知关于x的一元二次方程x2+(k﹣1)x+k﹣2=0
(1)求证:方程总有两个实数根;
(2)若方程有一根为正数,求实数k的取值范围.
25.已知关于x的一元二次方程(m﹣1)x2+2x﹣1=0有两个不相等的实数根,求m的取值范围.
26.已知关于x的一元二次方程x2﹣6x+(2m+1)=0有实数根.
(Ⅰ)求m的取值范围;
(Ⅱ)如果方程的两个实数根为x1,x2,且2x1x2+x1+x2>4,求m的取值范围.
27.已知x1,x2是关于x的一元二次方程x2+2(m﹣3)x+m2+1的两个根.
(1)当m取何值时,原方程有两个不相等的实数根?
(2)若以x1,x2为对角线的菱形边长是,试求m的值.28.列方程(组)解应用题
某驻村工作队,为带动群众增收致富,巩固脱贫攻坚成效,决定在该村山脚下,围一块面积为600m2的矩形试验茶园,便于成功后大面积推广.如图所示,茶园一面靠墙,墙长35m,另外三面用69m长的篱笆围成,其中一边开有一扇1m 宽的门(不包括篱笆).求这个茶园的长和宽.
29.(1)一个长方形纸片的长减少3cm,宽增加2cm,就成为一个正方形纸片,并且长方形纸片周长的3倍比正方形纸片周长的2倍多30cm.这个长方形纸片的长、宽各是多少?
(2)小明同学想用(1)中得到的正方形纸片,沿着边的方向裁出一块面积为30cm2的长方形纸片,使它的长宽之比为3:2.请问小明能用这块纸片裁出符合要求的纸片吗?请说明理由.
30.某药店购进一批消毒液,计划每瓶标价100元,由于疫情得到有效控制,药店决定对这批消毒液全部降价销售,设每次降价百分率相同,经过连续两次降价后,每瓶售价为81元.
(1)求每次降价的百分率.
(2)若按标价出售,每瓶能盈利100%,问第一次降价后销售消毒液100瓶,第二次降价后至少需要销售多少瓶,总利润才能超过5000元?。