面面垂直公开课PPT课件
高中数学人教版必修2-面面垂直的判定 课件(共17张PPT)

D1 A1
D O
A
C1
B1 C
B
1.二面角的范围
。
。
[0 ,180 ]
2.直二面角
A
平面角为直角的二面角
叫做直二面角
O
B
归纳:求二面角大小的步骤为:
(1)找出或作出二面角的平面角;
(2)证明其符合定义(垂直于公共棱);
(3)计算.
两个平面垂直的定义
B A
O
如果两个平面相交 所成的二面角是直二 面角,那么我们称这 两个平面相互垂直.
分析:线面垂直 面面垂直
已知AB⊥平面BCD,BC⊥CD, 你能发现哪些平面互相垂直的,为什么?
A
B
D
C
三、证明题:
在空间四边AC的中点.
求证:平面BEF 平面BDG。 A
E
G D
B F
C
归纳小结:
(1)二面角的定义 (2)判定面面垂直的两种方法: ①定义法(直二面角) ②根据面面垂直的判定定理 (3)从面面垂直的判定定理我们还可以看出 面面垂直的问题可以转化为线面垂直的问
面面垂直的判定
宁德市实验学校
观察下面两个图形,它们之间有什么关系?
墙所在的平面和地面所在的平面之间的位置关 系?
直观感受面面所成的角
思考如何刻画面面所 成的角?
二面角的定义
A
O
两个半平面
B
在两个半平面上
垂直于棱的两条 射线
公共棱
如图,在棱长为a的正方体ABCD-A1B1C1D1 中,找出二面角C1—BD—C的平面角。
题来解决.
点击输入学校名称
谢谢大家!
一日不读口生,一日不写手生。 不要抱怨自己所处的环境,如果改变不了环境,那么就改变自己的心态。 不要自卑,你不比别人笨。不要自满,别人不比你笨。 付出了不一定有回报,但不付出永远没有回报。 天才是百分之一的灵感加上百分之九十九的努力。 学到很多东西的决窍,就是一下子不要学很多的东西。 学贵精不贵博。……知得十件而都不到地,不如知得一件却到地也。 困难越大,荣耀也越大。 每一发奋努力的背后,必有加倍的赏赐。 人若软弱就是自己最大的敌人。 不论你在什么时候结束,重要的是结束之后就不要悔恨。 当一个人真正觉悟的一刻,他放弃追寻外在世界的财富,而开始追寻他内心世界的真正财富。 目标不是都能达到的,但它可以作为瞄准点。 没有人能替你承受痛苦,也没有人能抢走你的坚强。 人不能创造时机,但是它可以抓住那些已经出现的时机。 如果放弃太早,你永远都不知道自己会错过什么。 勇敢地迎接逆境,即使不能实现最初的梦想,也会打开另一扇梦想的大门。 努力耕耘,少问收获。 不论你在什么时候开始,重要的是开始之后就不要停止。 生活就像海洋,只有意志将强的人才能到达彼岸。 人生道路,绝大多数人,绝大多数时候,人都只能靠自己。
面面垂直的判定定理课件

Part
04
面面垂直的判定定理在几何中 的应用
应用场景一:多面体
在多面体中,如果一个平面与多面体的一个面相交,并且交线与多面体的一个顶 点垂直,则该平面与多面体的所有面都垂直。这个判定定理在证明多面体的性质 和解决相关问题时非常有用。
例如,利用面面垂直的判定定理可以证明正方体的六个面都是正方形,也可以证 明长方体的相对两面平行。
复杂几何问题的思考
问题1
在长方体中,如果一个顶点上的 三条棱分别与另一个顶点上的三 条棱垂直,那么这两个顶点是否
在同一平面上?
问题2
在四面体中,如果一个顶点上的三 条棱分别与另一个顶点上的三条棱 垂直,那么这两个顶点是否在同一 平面上?
问题3
在球体中,是否存在两个点,使得 从一个点出发的三条射线分别与从 另一个点出发的三条射线垂直?
符号表示
设平面α内有两条相交直线$a$和$b$, 平面β内有一直线$c$,若$a ⊥ c$,$b ⊥ c$,则平面α与平面β互相垂直,记 作α⊥β。
定理证明
• 证明过程:首先,由于直线$a$和$b$在平面α内相交,且都与直线$c$垂直,根据空间几何的性质,我们知道两条相 交的直线确定一个平面。因此,我们可以确定直线$a$和$b$确定的平面记作γ。接下来,由于直线$c$与平面γ内的 两条相交直线$a$和$b$都垂直,根据面面垂直的判定定理,我们可以得出结论:平面α与平面γ互相垂直。
相关定理与公式的关联性探讨
定理1
如果一个平面内的两条相交 直线分别与另一个平面垂直 ,那么这两个平面垂直。
定理2
如果一个平面内的任意一条 直线都与另一个平面垂直, 那么这两个平面垂直。
公式1
在直角三角形中,斜边的 平方等于两直角边的平方 和。
面面垂直的判定与性质课件

如果两个平面都与同一直线垂直,那 么这两个平面之间的夹角为90度,即 这两个平面互相垂直。
性质3:垂直于同一平面的两条直线互相平行
总结词
如果两条直线都垂直于同一个平面,则这两条直线互相平行。
详细描述
如果两条直线都与同一个平面垂直,那么这两条直线之间的夹角为0度,即这两 条直线互相平行。
应用场景1:建筑学中的面面垂直
逆定理的表述
• 逆定理:如果一个平面内的两条相交直线与另一 个平面垂直,则这两个平面互相垂直。
逆定理的证明
• 证明:设两条相交直线为$a$和$b$,它们与平面$\alpha$垂直。根据直线与平面垂直的性质,有$a \perp \alpha$和$b \perp \alpha$。由于$a$和$b$相交,根据平面的性质,过$a$和$b$的平面$\beta$与平面$\alpha$垂直。因此,逆定理 得证。
推论
总结词
如果两个平面都垂直于同一个平面,则这两个平面之间的距离相等。
详细描述
根据面面垂直的性质,如果两个平面都与第三个平面垂直,那么这两个平面之间的距离 是相等的。这是因为它们都与第三个平面形成相同的角度,所以它们之间的距离也是相
等的。
推论
总结词
如果两个平面都垂直于同一条直线,则 这两个平面之间的距离相等。
电子设备设计中,面面垂直的应用有助于提高设备的性能和稳定性。
详细描述
在电子工程中,电路板和电子元件的布局都需要遵循面面垂直的判定与性质。例如,在制造手机的过程中,利用 面面垂直的判定方法可以确保屏幕与机壳之间的垂直度,从而提高手机的显示效果和使用寿命。此外,在制造高 精度传感器的过程中,也需要利用面面垂直的判定方法来确保传感器的精确度和稳定性。
面面垂直的判定公开课课件

方法2:利用面面平行的性质判定面面垂直
总结词
通过证明两个平面平行,然后利用面面平行的性质判定两个平面垂直
详细描述
首先证明两个平面平行,然后利用面面平行的性质,即如果两个平面平行,那么其中一个 平面内的任意一条直线都与另一个平面垂直,从而得出两个平面垂直的结论。
证明过程
利用三垂线定理证明一个平面内的两 条相交直线分别与另一个平面垂直, 从而得出两个平面垂直的结论。
要点三
证明过程
设直线a、b为平面α内的两条相交直 线,直线c为平面β外的一条直线,我 们需要证明直线a、b与平面β垂直, 进而证明平面α与平面β垂直。根据三 垂线定理,如果直线c与平面β的斜线 c'在点A处相交,那么c'在点A处的垂 足d在直线a、b上,且直线c、a、b 都与直线d垂直。由此可知,直线a、 b与平面β垂直。由此可知,平面α与 平面β垂直。
设平面α与平面β平行,直线a在平面α内,我们需要证明直线a与平面β垂直。由于平面α 与平面β平行,根据面面平行的性质,平面α内的任意一条直线都与平面β垂直。因此,直 线a与平面β垂直。由此可知,平面α与平面β垂直。
方法3:利用三垂线定理判定面面垂直
要点过三垂线定理证明两个平面垂直
面面垂直的判定公开课课件
$number {01}
目录
• 面面垂直的判定定理 • 面面垂直的性质 • 面面垂直的判定方法 • 面面垂直的实例分析 • 面面垂直的习题与解答
01
面面垂直的判定定理
判定定理的陈述
• 判定定理:如果一个平面内的一条直线与另一个平面垂直,那么这两个平面互 相垂直。
判定定理的证明
• 证明:假设平面α内有直线l,且l与平面β垂直。为了证明平面α 与平面β垂直,我们需要证明平面α上的任意一条直线m都与平 面β垂直。设直线m在平面α上并与直线l相交于点P。由于l与β 垂直,根据直线与平面垂直的性质定理,l与β上的任意一条直 线(包括m)都垂直。因此,m与β也垂直。由于m是平面α上 的任意一条直线,所以我们可以得出结论:平面α与平面β垂直 。
《面面垂直的判定》课件

《面面垂直的判定》ppt课件目录CONTENCT •引言•面面垂直的定义•面面垂直的判定定理•面面垂直的判定方法•实例分析•总结与思考01引言主题介绍垂直关系在几何学中的重要性垂直关系是几何学中的基本概念之一,它在许多实际问题中有广泛的应用。
面面垂直的判定定理面面垂直的判定定理是“如果一个平面内的两条相交直线与另一个平面垂直,则这两个平面垂直”。
理解面面垂直的判定定理会应用面面垂直的判定定理解决问题培养空间想象能力和逻辑思维能力通过本课件的学习,学生应能够理解并掌握面面垂直的判定定理。
学生应能够运用所学知识解决一些实际问题,如建筑物的垂直度测量、机械零件的设计等。
通过本课件的学习,学生应能够培养空间想象能力和逻辑思维能力,为后续学习打下基础。
学习目标02面面垂直的定义两个平面互相垂直,当且仅当一个平面内的任意直线都与另一个平面垂直。
文字定义文字定义给出了面面垂直的充分必要条件,即一个平面内的任意直线与另一个平面垂直。
解释两个平面互相垂直,当且仅当一个平面与另一个平面的法线垂直。
图形定义01020304性质1性质2定理解释性质与定理如果一个平面内的两条相交直线分别与另一个平面垂直,那么这两个平面互相垂直。
如果一个平面内的任意直线都与另一个平面垂直,那么这两个平面互相垂直。
如果两个平面互相垂直,那么其中一个平面内的任意直线都与另一个平面垂直。
性质和定理进一步阐述了面面垂直的判定条件,为解决实际问题提供了理论依据。
03面面垂直的判定定理总结词简洁明了地概括了面面垂直的判定定理。
详细描述面面垂直的判定定理是,如果一个平面内的两条相交直线与另一个平面垂直,则这两个平面互相垂直。
定理内容总结词详细说明了面面垂直的判定定理的证明过程。
详细描述首先,假设两个平面$alpha$和$beta$,且$alpha$内的两条相交直线$a$和$b$与$beta$垂直。
我们需要证明$alpha perp beta$。
根据直线与平面垂直的判定定理,如果一条直线与平面内的两条相交直线都垂直,则这条直线与这个平面垂直。
《平面与平面垂直》课件

02
平面与面垂直的性质
平面与平面垂直的性质定理
总结词
描述平面与平面垂直的性质定理的内容。
详细描述
平面与平面垂直的性质定理是平面几何中的基本定理之一,它描述了两个平面垂直时所具有的性质特点。具体来 说,如果两个平面互相垂直,那么一个平面内的任意直线与另一个平面内的任意直线所成的角都为直角。这个定 理是证明其他相关性质和定理的基础。
详细描述
首先确定一条直线,然后过这条 直线作一个平面,最后在这个平 面上作该直线的垂线,即为所求 的平面与平面垂直。
通过点作平面的垂线
总结词
通过点作平面的垂线是平面与平面垂 直作图的常用方法。
详细描述
首先确定一个点,然后过这个点作一 个平面,最后在这个平面上作该点的 垂线,即为所求的平面与平面垂直。
风口的位置。这需要运用平面与平面垂直的知识,以确保窗户和通风口
与地面和立面之间的垂直关系。
工程制图中的应用
制图基础
在工程制图中,平面与平面垂直的概念是绘图的基础。工 程师需要准确地绘制各种平面图,并确保它们之间的垂直 关系,以便准确地表达设计意图。
施工指导
工程图纸中的平面与平面垂直关系对于指导施工过程至关 重要。施工人员需要根据图纸中的垂直关系,准确地构建 建筑物或机械部件。
要点一
总结词
要点二
详细描述
列举平面与平面垂直的性质定理在实际问题中的应用。
平面与平面垂直的性质定理在现实生活中有着广泛的应用 。例如,在建筑学中,这个定理被用来确定建筑物的垂直 度,以保证建筑物的稳定性和安全性;在机械工程中,这 个定理被用来设计和制造各种机械零件,以保证其精确度 和稳定性。此外,这个定理在物理学、化学、计算机图形 学等领域也有着广泛的应用。
《面面垂直的判定》课件

2 解决方法
通过计算两个平面的法线向量,并判断它们是否相互垂直。
面面垂直和其他几何概念的关系
面面垂直和其他几何概念,如平行、垂直和平面之间的交点等,都有密切的联系。理解它们之间的关系有助于 解决更复杂的几何问题。
面面垂直和平行的关系
面面垂直和平行是几何中常见的关系。如果两个平面之间垂直,它们不能同 时平行。然而,两个面面垂直的平面可以是平行的。
建筑设计
面面垂直的概念是建筑设计 师在设计房屋和建筑物时必 须考虑的重要因素。
地理测量
面面垂直的知识对于测量地 球表面的起伏和海拔高度非 常几何问题和定理证明的 关键概念。
面面垂直和水平垂直的区别
尽管面面垂直和水平垂直都涉及到垂直关系,但它们的定义和应用领域有所 不同。面面垂直是两个平面之间的垂直关系,而水平垂直是指物体与地球表 面的垂直关系。
《面面垂直的判定》PPT 课件
欢迎来到《面面垂直的判定》课件!在本课程中,我们将探讨面面垂直的定 义、原理、计算方法以及应用场景。让我们一起开始这个令人兴奋的学习之 旅吧!
什么是面面垂直?
面面垂直是指两个平面之间的夹角为90度。它是几何学中重要的概念,被广 泛应用于建筑、地理和数学等领域。
面面垂直的应用场景和优势
面面垂直的原理和定义
面面垂直的原理是通过两个平面的法线向量判断它们之间的垂直关系。当两 个平面的法线向量相互垂直时,这两个平面就是面面垂直的。
面面垂直的计算方法
计算面面垂直的方法包括求解两个平面的法线向量,并进行向量运算来判断它们之间是否垂直。
面面垂直的常见问题及解决方法
1 问题
如何确定两个平面之间的垂直关系?
平面与平面垂直的性质定理典型PPT课件

位置关系?
直线a在平面 内
α aP
β
第6页/共22页
例1 如图,已知平面,, ,直线a满足a , a ,试判断直线a与平面的位置关系. 分析:寻找平面α内与a平行的直线.
α
b
a
l
β
A
第7页/共22页
解:在α内作垂直于 与交
线的直线b,
∵ ,∴ b ,
∵ a , ∴a∥b.
β
又∵ a ,∴a∥α.
α
b
a
l
A
即直线a与平面α平行.
结论:垂直于同一平面的直线和平面平行(a ).
,a ,a a / /
第8页/共22页
变式 已知平面 , AB,直线a∥,
a AB,试判断直线a与的位置关系.
α
垂直
bB a l
β A
第9页/共22页
例2.已知平面,, 满足 , , l, 求证:l .
感谢您的观看。
第22页/共22页
C1 B1
D
C
α βE
A
B
第2页/共22页
思考2 , CD,AB , AB CD,
垂足为B,那么直线AB与平面β的位置关系如
何?
Eβ D
垂直
α
B
A
C
第3页/共22页
证明:在平面 内作BE⊥CD,垂足为B.
则∠ABE就是二面角 CD 的 平面角.
∵ , ∴AB⊥BE.
又由题意知AB⊥CD, 且BE CD=B
又因为BC 平面BCE,
所以平面BDE⊥平面BEC.
第19页/共22页
1.平面与平面垂直的性质定理:
面面垂直 2.几个结论
线面垂直 C
高中数学——面面垂直的性质 PPT课件 图文

垂直于第二个平面的直线,在第一个平面内.
练习.在互相垂直的两个平面中,下列命题中正
确命题的个数为 [ ]
①一个平面内的已知直线必垂直于另一个平面内
的任意一条直线;
②一个平面内的已知直线必垂直于另一个平面内
的无数多条直线;
③一个平面内的任意一条直线必垂直于另一个平
已知: α⊥γ ,β ⊥γ ,α ∩ β =l 求证:l ⊥γ
α
β
lB
γ
A
例 4:如图,平面 AED⊥平面 ABCD,⊿AED 是等边
三角形,四边形 ABCD 矩形,且 AD= a ,AB= 2a ,
(1) 求证:EA⊥CD (2) 求 EC 与平面 ABCD 所成的角
E 解(1)∵平面AED⊥平面ABCD 又CD⊥AD ∴CD⊥平面AED ∵AE在平面AED内 ∴CD⊥EA
(2) 若E、F分别是AB、BC的中点,
D
求证: 平面A1C1FE⊥平面B1D
(3) 若G是BB1的中点
A
E
求证:平面A1C1G⊥平面B1D
D1
A1
C
F B G GG G
C1
B1
谢谢! 学妹给我打电话,说她又换工作了,这次是销售。电话里,她絮絮叨叨说着一年多来工作上的不如意,她说工作一点都不开心,找不到半点成就感。 末了,她问我:学姐,为什么想 找一份 自己热 爱的工 作这么 难呢? 我问她上一份工作干了多久,她 说不到 三个月 ,做的 还是行 政助理 的工作 ,工作 内容枯 燥乏味 不说, 还特别 容易得 罪人, 实在不 是自己 的理想 型。 我又问了她前几份工作辞职的原 因,结 果都是 大同小 异,不 是因为 工作乏 味,就 是同事 不好相
平面和平面垂直的判定课件公开课

2.3.2平面与平面 垂直的判定(2)
复习回顾:
从一条直线出发的两个半 1、二面角的平面角 平面所组成的图形叫做二 必须满足三个条件 面角。这条直线叫做二面 2、二面角的平面角 1、定义法 角的棱。这两个半平面叫 的大小与 其顶点 2、垂面法 做二面角的面。 在棱上的位置无关 3、三垂线法 二、二面角的表示方法: 3、二面角的大小用 o o 它的平面角的大 二面角的范围: [ 0 , 180 ]. 三、二面角的平面角: 小来度量
其实,世上最温暖的语言,“ 不是我爱你,而是在一起。” 所以懂得才是最美的相遇!只有彼此以诚相待,彼此尊重, 相互包容,相互懂得,才能走的更远。 相遇是缘,相守是爱。缘是多么的妙不可言,而懂得又是多么的难能可贵。否则就会错过一时,错过一世! 择一人深爱,陪一人到老。一路相扶相持,一路心手相牵,一路笑对风雨。在平凡的世界,不求爱的轰轰烈烈;不求誓 言多么美丽;唯愿简单的相处,真心地付出,平淡地相守,才不负最美的人生;不负善良的自己。 人海茫茫,不求人人都能刻骨铭心,但求对人对己问心无愧,无怨无悔足矣。大千世界,与万千人中遇见,只是相识的 开始,只有彼此真心付出,以心交心,以情换情,相知相惜,才能相伴美好的一生,一路同行。 然而,生活不仅是诗和远方,更要面对现实。如果曾经的拥有,不能天长地久,那么就要学会华丽地转身,学会忘记。 忘记该忘记的人,忘记该忘记的事儿,忘记苦乐年华的悲喜交集。 人有悲欢离合,月有阴晴圆缺。对于离开的人,不必折磨自己脆弱的生命,虚度了美好的朝夕;不必让心灵痛苦不堪, 弄丢了快乐的自己。擦汗眼泪,告诉自己,日子还得继续,谁都不是谁的唯一,相信最美的风景一直在路上。 人生,就是一场修行。你路过我,我忘记你;你有情,他无意。谁都希望在正确的时间遇见对的人,然而事与愿违时, 你越渴望的东西,也许越是无情无义地弃你而去。所以美好的愿望,就会像肥皂泡一样破灭,只能在错误的时间遇到错的人。 岁月匆匆像一阵风,有多少故事留下感动。愿曾经的相遇,无论是锦上添花,还是追悔莫及;无论是青涩年华的懵懂赏 识,还是成长岁月无法躲避的经历……愿曾经的过往,依然如花芬芳四溢,永远无悔岁月赐予的美好相遇。 其实,人生之路的每一段相遇,都是一笔财富,尤其亲情、友情和爱情。在漫长的旅途上,他们都会丰富你的生命,使 你的生命更充实,更真实;丰盈你的内心,使你的内心更慈悲,更善良。所以生活的美好,缘于一颗善良的心,愿我们都能 善待自己和他人。 一路走来,愿相亲相爱的人,相濡以沫,同甘共苦,百年好合。愿有情有意的人,不离不弃,相惜相守,共度人生的每 一个朝夕……直到老得哪也去不了,依然是彼此手心里的宝,感恩一路有你!
面面垂直的判定和性质.pptx

平面与平面垂直的性质定理是:
如果两个平面相互垂直,那么在 一个平面内垂直于它们交线的直线 垂直于另一个平面。
α A
D
β
B C
问题 发现 猜想 证明 证第明12过页/程共21页结论 注
性质定理
• 面面垂直线面垂直; (线是一个平面内垂直于两平面交线的一条直线)
• 平面 ⊥平面β,要过平面 内一点引平
P
证明: 正方形ABCD中 C,BDA
P B
A平 D平
面 面
AA BBPCCA DDB
D
A
D
A
C平
面
P
AC平 ,面 P AP A
C
B
O
C
A C P AA
B D平 面 P A C平 面 PA平C面。 P B D B D平 面 P B D
例1题目 解答
第15页/共21页
例2已知直线PA垂直于O所在的平面, A为垂足,AB为O的直径,C是圆周上 异于A、B的一点。求证:平面PAC平
已知:直线AB平面,直线AB平面。 求证:平面 平面。
α A
D
β
E B C
判定定理 证证明明 证明过程第判6页定/共2方1页法
判定定理
已知:直线AB平面,直线AB平面。求证:平面 平面。
证明:设 β=CD,则AB β=B ,在平面β内过B点作BE⊥CD。
AB
CD
β β
A
B
EB CCDDA
由平面 平面,平面 内的直线AB不一定
能与平面垂直。
α A
D
β
α A
D
β
B
B
C
C
那么在已有条件的基础上,再添加什么条件,
面面垂直性质优秀课件

为E, ∵平面PAB⊥平面PBC,
P
平面PAB∩平面PBC=PB,
∴AE⊥平面PBC
∵BC 平面PBC
A
C
∴AE⊥BC
∵PA⊥平面ABC,BC 平面ABC
∴PA⊥BC
B
∵PA∩AE=A,
∴BC⊥平面PAB
例3:如图,AB是⊙O的直径,C是圆周上不同 于A,B的任意一点,平面PAC⊥平面ABC,
(1)判断BC与平面PAC的位置关系,并证明。
(1)平面α内的任意一条直线必垂直于平面β( ×)
(2)垂直于交线l的直线必垂直于平面β( ×)
(3)过平面α内任意一点作交线的垂线,则此垂线
√ 必垂直于平面β( )
理论迁移
例1 如图,已知α⊥β,l⊥β,l ,试
判断直线l与平面α的位置关系,并说明理由.
解:直l与 线平面 平行,证明如下:
在平面 内作一条a直 垂线 直于 与的交m 线 , α a
ab
α
√ 2 、 a , b // a b
b
a
l
α
3、 l,/ / l√
l
b α
β
a
4、 l ,l / /√
l α
β
P7、 1 已知a,直 b和线 平, 面且 ab,a, 则b与的位置关系是什么?
b
a
b
α
平面与平面垂直的性质定理
Ⅰ. 观察实验 观两察个两平垂面直垂平直面中,则,一一个个平平
(2)判断平面PBC与平面PAC的位置关系。
(1)证明:∵ AB是⊙O的直径, P
C是圆周上不同于A,B的任
意一点
∴∠ACB=90°∴BC⊥AC 又∵平面PAC⊥平面ABC,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
B1
D
C
B
证明:过B在平面β内作BE⊥CD,
α
A D
β
B C
E
两个面垂直的性质定理: 如果两个平面垂直,那么在 一个平面内垂直于它们交线的直 线垂直于另一个面。
3)那么到现在为止,我们学了 1)这个性质定理有什么用? 证明线面垂直的方法有多少种? 2)在运用这个面面垂直的性质定理时, 应具备什么条件?
在我们的课室里,黑板所在 平面与地面所在平面垂直,你能 否在黑板上画一条直线与地面垂 直?
在下所给正方体中,判断下列是否正确?
1)平面ADD1A1 平面ABCD; A1 2)D1A AB; 3)D1A 面ABCD 过点A可以在平面ADD1A1A 内作无数条直线,而这些直 线满足什么条件就可以使之 与平面ABCD垂直?
2)性质定理有时要和其他定理结合 起来用
课本81页 习题2.3 A组 B组
2,6 3
α
b
a
β
课本81页的⊥γ. 求证: a ⊥γ.
分析: “从已知想性质,从求证想判定” 这是证明几何问题的基本思维方法. 从已知出发:面面垂直=>线面垂直=>线线垂直 从求证出发:欲证直线a与平面γ垂直, 大致有以下思路: (1)证明直线a垂直于γ内两条相交直线,从而进 一步想如何在γ内找到这两条相交直线; (2)证明直线a与γ的垂线平行,从而进一步想 如何找γ的垂线;
(1)证明直线a垂直于γ内两条相交直线,从而进 一步想如何在γ内找到这两条相交直线;
a
α
证明:设
b m
c
P
γ
.
n
β
内 点
(2)证明直线a与γ的垂线平行,从而进一步想 如何找γ的垂线;
a m n b c β
证明:
α γ
1)证明直线和平面垂直,若能说明 该直线在两个垂直平面其中一个内且 与交线垂直,则这条直线和另一个平 面垂直。