试验27偏振光的特性研究
偏振光的研究实验报告

偏振光的研究实验报告偏振光的研究实验报告引言:偏振光是指光波中电场矢量在空间中的振动方向固定的光。
它在光学领域有着广泛的应用,包括材料的表征、光学器件的设计和光通信等。
本实验旨在通过研究偏振光的性质和特点,探索其在实际应用中的潜力。
实验一:偏振片的特性在实验中,我们首先使用了一块偏振片。
偏振片是一种能够选择性地通过特定方向偏振光的光学器件。
我们将偏振片放置在光源前方,并逐渐旋转它。
观察到当光通过偏振片时,光强度会随着旋转角度的变化而发生明显的变化。
这说明偏振片能够选择性地通过特定方向的偏振光。
实验二:马吕斯定律的验证马吕斯定律是描述光的偏振现象的基本定律之一。
它表明,当一束偏振光通过一个偏振片时,出射光的偏振方向与入射光的偏振方向之间的夹角保持不变。
我们使用了两块偏振片,并将它们叠加在一起。
通过旋转第二块偏振片,我们观察到光的强度随着旋转角度的变化而发生周期性的变化。
这一结果验证了马吕斯定律的正确性。
实验三:偏振光的干涉在实验中,我们使用了一束激光器发出的偏振光,并将其分成两束,分别通过两个不同的光程。
然后,我们将两束光重新合并在一起。
通过调节两束光的光程差,我们观察到干涉现象。
当光程差等于整数倍的波长时,干涉现象最为明显。
这一实验结果说明了偏振光的干涉现象是由于光的相位差引起的。
实验四:偏振光的旋光性质偏振光的旋光性质是指光在通过旋光物质时,偏振方向会发生旋转的现象。
我们使用了一块旋光片,并将它放置在光源前方。
通过观察光通过旋光片后的偏振方向,我们发现光的偏振方向确实发生了旋转。
这一实验结果验证了偏振光的旋光性质。
结论:通过以上实验,我们对偏振光的性质和特点有了更深入的了解。
偏振光的研究不仅有助于我们理解光的本质,还在许多实际应用中发挥着重要作用。
例如,在材料的表征中,偏振光可以用来分析材料的结构和性质。
在光学器件的设计中,偏振光可以用来控制光的传输和调制。
在光通信中,偏振光可以用来提高信号传输的可靠性和速率。
【大学物理实验(含 数据+思考题)】偏振光的特性研究实验报告

实验3.4 光的偏振特性研究一、实验目的(1)了解自然光和偏振光的定义及特性。
(2)观察光的偏振现象,了解偏振光的产生方法和检验方法。
(3)了解波片的作用和用波片产生椭圆和圆偏振光及其检验方法。
二、实验仪器GSZ-Ⅱ光学平台(配有光具座、氦氖激光器及电源、扩束镜、偏振片、波片、观察屏等)。
三、实验原理1.自然光和偏振光的定义自然光:由普通光源所发射的光波,在光的传播方向上,任意一个场点,光矢量既有空间分布的均匀,又有时间分布的均匀性。
偏振光:光矢量相对于光的传播方向分布的非对称性。
部分偏振光:光波光矢量的振动在传播过程中只是在某一确定的方向上占有相对优势。
平面偏振光:光在传播的过程中光矢量的振动只限于某一特定的平面内。
圆偏振光:在光的传播方向上,任意一个场点光矢量以一定的角速度转动它的方向,但大小不变,其光矢量的末端在垂直于光传播方向的平面内的投影是一个圆。
椭圆偏振光:在光的传播方向上,任意一个场点光矢量即改变它的大小,又以一定的角速度转动它的方向,其光矢量的末端在垂直于光传播方向的平面内的投影是一个椭圆。
2.偏振光的产生及检验方法(1)平面偏振光的产生和检验方法:产生:本次实验中我们利用偏振片来生成平面偏振光。
偏振片是由具有二向色性的晶体制作成的,这些晶体对不同方向振动的光矢量具有不同的吸收本领,当自然光入射到这些晶体上时,透射光的光矢量仅在某一个特定的方向上,形成了平面偏振光。
检验:线性偏振光通过检偏器后,按照马吕斯定律,强度为I0的线偏振光通过检偏器,透射光的强度为I=I0cos2α,α=0/π时,透射光的强度最大,当α= (π/2)/(3π/2)时,透射光的强度为0,出现消光现象。
所以偏振器旋转一周,透射光的强度将发生强弱变化,并且消光两次,根据这个特点可以检测是否有平面偏振光。
(2)椭圆和圆偏振光的产生和检验方法:产生:波片是光轴平行于晶面的各向异性晶体薄片。
双折射是光束入射到各向异性的晶体,分解为两束光而沿不同方向折射的现象。
偏振光研究实验报告

偏振光研究实验报告偏振光研究实验报告引言:光是一种电磁波,它具有波动性和粒子性的双重性质。
在光学研究中,我们经常会遇到偏振光,即光波在传播方向上的振动方向是确定的。
偏振光的研究对于理解光的性质和应用具有重要意义。
本实验旨在通过实验方法研究偏振光的特性以及其在光学器件中的应用。
一、偏振光的产生偏振光的产生可以通过多种方式实现。
本实验中,我们采用了经典的马吕斯定律实验装置。
该装置由一束自然光通过偏振片、透光物体和分析片组成。
透光物体可以是晶体、液晶等,通过透光物体的作用,自然光的振动方向发生改变,从而形成了偏振光。
二、偏振光的特性1. 偏振光的振动方向偏振光的振动方向与透光物体的结构有关。
例如,当透光物体是一片玻璃,偏振光的振动方向与玻璃表面平行;当透光物体是一片金属,偏振光的振动方向与金属表面垂直。
通过旋转分析片,我们可以观察到偏振光的振动方向的变化。
2. 偏振光的强度偏振光的强度与入射光的强度有关。
通过调节偏振片的角度,我们可以改变偏振光的强度。
当偏振片与偏振光的振动方向垂直时,偏振光的强度最小;当二者平行时,偏振光的强度最大。
三、偏振光的应用1. 偏振片的使用偏振片是偏振光研究中常用的光学器件。
通过选择不同的偏振片,我们可以实现对偏振光的选择性透过或阻挡。
这在光学仪器的设计和制造中具有重要意义。
2. 偏振光的检测在光学测量中,我们常常需要检测偏振光的存在和强度。
偏振光的检测可以通过偏振片和光检测器实现。
通过调节偏振片和分析片的角度,我们可以选择性地检测特定方向的偏振光。
3. 偏振光的应用领域偏振光在众多应用领域中发挥着重要作用。
例如,在光通信中,偏振光可以用于信号传输和解调;在光学显微镜中,偏振光可以用于观察材料的结构和性质;在液晶显示屏中,偏振光可以用于调节像素的亮度和颜色。
结论:通过本实验,我们对偏振光的产生、特性和应用有了更深入的了解。
偏振光在光学研究和应用中具有重要的地位,对于推动光学技术的发展和应用具有重要意义。
偏振光特性研究

线偏振光垂直入射厚度为d的波片时(如图4所示),沿
同一方向传播的o光和e光, 由于传播速度不同,从波片 射出时其相位差为:
波片:当
的波片。
取不同值时,波片 的透射光性质如图5所 示。
❖从 波片透射出的光 一般为椭圆偏振光;
❖当 时,透射光为 圆偏振光;
椭圆偏振光通过检偏器
圆偏振光通过Βιβλιοθήκη 偏器四、实验内容和步骤1、按图6依次放置各元件,调节它们等高共轴;
2、先不放波片C,使起偏器P的振动面与检偏 器A的振动面互相垂直(此时应观察到消光现 象);
3、在P、A之间插入波片C,转动C使消光,然 后将A转动360°,观察到什么现象?判断 这时从C出来的偏振光的性质;
4、依次将C转动15°、 30°、45°、60°、 75°、90°,每次都将A转动360°,记录 所观察到的现象,判断从波片C出来的偏振 光的性质,填在如下的表各中:
一束光强度为 的线偏振光,透过检偏器以 后,透射光的光强度为
其中 是线偏振光的光振动方向与检偏器偏振化方 向间的夹角,该式称为马吕斯定律。
该定律说明,对线偏振光,检偏器旋转一周会 出现两次消光现象(演示2)。
3.椭圆和圆偏振光的产生与 波片的作用
双折射现象:一束光入射到单轴晶体时,被分成两束光, 其中一束光的传播遵从折射定律称为o光, 另一束光不遵从折射定律称为e光。
的传播方向; B、自然光 :“在垂直于光传播方
向的平面内,沿各方向振动的 电矢量呈对称分布”的光就称 为~; C、偏振光:电矢量的振动在某个方向具有相对优 势,而使其在垂直于光传播方向的平面内不具 有对称性的光,统称为~ 。
❖ 部分偏振光:在垂直于光传播方向的 平面内沿各方向振动的电矢量都有, 但振幅不对称的光称为~;
偏振光特性的研究实验报告

竭诚为您提供优质文档/双击可除偏振光特性的研究实验报告篇一:偏振光的研究实验报告偏振光的研究班级:物理实验班21学号:2120909006姓名:黄忠政光的偏振现象是波动光学的一种重要现象,它的发现证实了光是横波,即光的振动垂直于它的传播方向。
光的偏振性质在光学计量、光弹技术、薄膜技术等领域有着重要的应用。
一.实验目的:1.了解产生和检验偏振光的原理和方法;2.了解各种偏振片和波片的作用。
二.实验装置;计算机,格兰陵镜,1/2、1/4波片,调节支架,光电接系统,激光器。
三.实验原理:1.偏振光的概念和基本规律(1)偏振光的种类光波是一种电磁波,根据电磁学理论,光波的矢量e、磁矢量h和光的传播方向三者相互垂直,所以光是横波。
通常人们用电矢量e代表光的振动方向,而电矢量e和光的传播方向所构成的平面称为光波的振动面。
普通光源发出的光是由大量原子或分子的自发辐射所产生的,它们所发射的光的电矢量在各个方向振动的几率相同,称为自然光。
电矢量的振动方向始终沿某一确定方向的光,称为线偏振光或平面偏振光。
若电矢量在各个方向都振动,但在某个固定方向占绝对优势,这种光称为部分偏振光,电矢量的末端在垂直于光传播方向的任一平面内做椭圆(或圆)运动的光,称为椭圆(或圆)偏振光。
各种偏振光的电矢量e如图1所示,注意光的传播方向垂直于纸面。
(2)偏振光、波片和偏振光的产生通常的光源都是自然光,研究光的偏振性质,必须采用一些物理方法将自然光变成偏振光,这一转变过程称为起偏,获得线偏振光的器件称为起偏器。
线偏振光可用人造偏振片获得,如:某些有机化合物晶体具有二向色性,用这些材料制成的偏振片,能吸收某一方向振动的光,与此方向垂直振动的光则能通过,从而产生线偏振光;还可以利用光的反射和折射起偏的平行玻璃片堆;利用晶体的双折射特性起偏的尼科尔棱镜等。
椭圆偏振光、圆偏振光可用波片来产生,将双折射晶体割成光轴与表面平行的晶片,就制成波片了。
当波长为λ线偏振光垂直入射到厚度为d波片时,线偏振光在此波片中分成o光和e光,二者的电矢量e分别垂直于和平行于光轴,它们的传播方向相同,但在波片中的传播速度v0、ve却不同。
偏振光的研究实验报告

偏振光的研究实验报告篇一:偏振光的观测与研究~~实验报告偏振光的观测与研究光的干涉和衍射实验证明了光的波动性质。
本实验将进一步说明光是横波而不是纵波,即其E和H 的振动方向是垂直于光的传播方向的。
光的偏振性证明了光是横波,人们通过对光的偏振性质的研究,更深刻地认识了光的传播规律和光与物质的相互作用规律。
目前偏振光的应用已遍及于工农业、医学、国防等部门。
利用偏振光装置的各种精密仪器,已为科研、工程设计、生产技术的检验等,提供了极有价值的方法。
【实验目的】1.观察光的偏振现象,加深偏振的基本概念。
2.了解偏振光的产生和检验方法。
3.观测布儒斯特角及测定玻璃折射率。
4.观测椭圆偏振光和圆偏振光。
【实验仪器】光具座、激光器、偏振片、1/4波片、1/2波片、光电转换装置、光点检流计、观测布儒斯特角装置图1 实验仪器实物图【实验原理】1.偏振光的基本概念按照光的电磁理论,光波就是电磁波,它的电矢量E和磁矢量H相互垂直。
两者均垂直于光的传播方向。
从视觉和感光材料的特性上看,引起视觉和化学反应的是光的电矢量,通常用电矢量E代表光的振动方向,并将电矢量E和光的传播方向所构成的平面称为光振动面。
在传播过程中,光的振动方向始终在某一确定方位的光称为平面偏振光或线偏振光,如图2(a)。
光源发射的光是由大量原子或分子辐射构成的。
由于热运动和辐射的随机性,大量原-子或分子发射的光的振动面出现在各个方向的几率是相同的。
一般说,在106s内各个方向电矢量的时间平均值相等,故出现如图2(b)所示的所谓自然光。
有些光的振动面在某个特定方向出现的几率大于其他方向,即在较长时间内电矢量在某一方向较强,这就是如图2(c)所示的所谓部分偏振光。
还有一些光,其振动面的取向和电矢量的大小随时间作有规则的变化,其电矢量末端在垂直于传播方向的平面上的移动轨迹呈椭圆(或圆形),这样的光称为椭圆偏振光(或圆偏振光),如图2(c)所示。
图2 光波按偏振的分类 2.获得偏振光的常用方法 (1)非金属镜面的反射。
大学物理偏振光实验报告

大学物理偏振光实验报告大学物理偏振光实验报告引言:偏振光是光波在传播过程中振动方向固定的光波,其振动方向与传播方向垂直。
在本次实验中,我们将通过一系列实验来研究偏振光的性质和应用。
通过实验,我们将探索偏振光在介质中的传播规律、偏振片的工作原理以及偏振光的应用。
实验一:偏振片的特性研究在这个实验中,我们将使用偏振片来研究偏振光的特性。
首先,我们将光源调整到最亮的状态,然后将一个偏振片放在光源前方。
随着我们旋转偏振片,我们会观察到光的强度发生变化。
这是因为偏振片只允许特定方向的光通过,其他方向的光被滤除掉。
通过旋转偏振片,我们可以改变通过偏振片的光的振动方向,从而改变光的强度。
实验二:马吕斯定律的验证在这个实验中,我们将验证马吕斯定律,即入射光的偏振方向与透射光的偏振方向之间的关系。
我们将使用一个偏振片作为偏振器,一个偏振片作为分析器。
我们将调整偏振器的角度,观察透射光的强度变化。
根据马吕斯定律,当偏振器和分析器的偏振方向相同时,透射光的强度最大;当两者的偏振方向垂直时,透射光的强度最小。
通过实验,我们可以验证这一定律。
实验三:双折射现象的观察在这个实验中,我们将研究双折射现象。
我们将使用一块具有双折射性质的晶体,如石英晶体。
当将光线通过这块晶体时,我们会观察到光线分裂成两束,这是因为晶体中存在两个不同的折射率。
我们可以调整入射光的角度和晶体的厚度,观察到不同的双折射现象,如双折射光线的偏振状态和双折射光线的干涉等。
实验四:偏振光的应用在这个实验中,我们将研究偏振光的应用。
首先,我们将使用偏振片来解析光源中的偏振光,从而得到纯净的偏振光。
然后,我们将使用偏振光来研究材料的光学性质,如透射率和反射率。
通过调整偏振光的偏振方向和入射角度,我们可以得到不同的光学性质数据,从而深入了解材料的光学特性。
结论:通过这一系列的实验,我们深入研究了偏振光的性质和应用。
我们通过验证马吕斯定律,了解了入射光和透射光的偏振方向之间的关系。
光的偏振特性研究实验报告

光的偏振特性研究实验报告光的偏振特性研究实验报告引言:光是一种电磁波,具有波动性和粒子性的双重性质。
光的偏振特性是指光的电场矢量在传播方向上的振动方向。
通过研究光的偏振特性,可以深入了解光的性质,并且在光学领域的应用中具有重要意义。
本实验旨在通过实验手段探究光的偏振现象及其相关性质。
实验一:偏振片的工作原理在实验开始之前,我们首先需要了解偏振片的工作原理。
偏振片是一种光学元件,可以选择性地通过或阻挡特定方向的光振动。
它由一系列平行排列的分子或晶体组成,这些分子或晶体只允许特定方向的光通过。
当光线垂直于偏振片的方向时,光可以完全通过;而当光线与偏振片的方向垂直时,光将被完全阻挡。
实验一的目的是验证偏振片的工作原理。
我们将使用一束偏振光照射到偏振片上,并通过观察光的透射情况来验证偏振片的效果。
实验结果显示,当光的振动方向与偏振片的方向垂直时,光被完全阻挡,透射光强度为零;而当光的振动方向与偏振片的方向平行时,光可以完全透射,透射光强度最大。
实验二:偏振光的旋光现象在实验一中,我们了解了偏振片的工作原理。
实验二的目的是研究偏振光的旋光现象。
旋光是指光在通过某些物质后,光的振动方向发生旋转的现象。
这种旋转是由于物质的分子结构对光的振动方向产生影响所致。
我们将使用一束偏振光通过一个旋光样品,并通过旋光仪来测量光的旋转角度。
实验结果显示,当光通过旋光样品时,光的振动方向会发生旋转,旋转角度与旋光样品的性质和厚度有关。
这种旋转现象在化学、生物等领域中有着广泛的应用,例如用于测量物质的浓度、判断化学反应的进行等。
实验三:偏振光的干涉现象在实验三中,我们将研究偏振光的干涉现象。
干涉是指两束或多束光相遇时,光的振动方向相互叠加或相互抵消的现象。
干涉现象是光的波动性质的重要体现,通过研究干涉现象可以了解光的波动性质和相干性。
我们将使用两束偏振光通过两个偏振片,调整两束光的振动方向使之互相垂直,然后使两束光相遇。
实验结果显示,当两束光的振动方向相同时,光的强度最大;而当两束光的振动方向垂直时,光的强度最小。
偏振光的性质与应用研究

偏振光的性质与应用研究偏振光是指在传播方向上的电矢量在空间分布上有一定规律的光波。
它与自然光相比,具有一些独特的性质和应用。
本文将深入探讨偏振光的性质以及其在许多领域的应用研究。
一、偏振光的性质1. 偏振状态偏振光的一个重要特性是其偏振状态。
偏振状态描述了电矢量在空间内振动的方向和方式。
常见的偏振状态有线偏振、圆偏振和椭圆偏振。
线偏振光的电矢量在平面上振动,其方向可以是任意角度;圆偏振光的电矢量在平面上绕传播方向旋转,其旋转方向可以是顺时针或逆时针;椭圆偏振光则是一种既有振动方向又有旋转方向的偏振光。
2. 偏振光的传播特性偏振光在传播过程中具有一些独特的传播特性。
例如,偏振光在与晶体或其他介质相互作用时会发生双折射现象,也就是将一束入射线分成两束不同方向的偏振分量。
这种双折射现象可以被利用来制造偏振器件和调节光信号的偏振状态。
此外,偏振光还具有折射率与偏振状态相关的性质,这对光学器件的设计和应用起着重要作用。
3. 偏振光的相位差当两束具有不同偏振状态的光波相遇时,它们之间的相位差会导致干涉现象的出现。
相位差可以根据不同偏振状态之间的光程差来计算。
干涉现象是偏振光在显微镜和干涉仪等领域应用的基础,也是测量物质性质和形成图像的重要工具。
二、偏振光的应用研究1. 光通信偏振光在光通信领域中具有重要应用。
由于偏振光的传播特性稳定且不容易受到外界干扰,可以提高光通信系统的传输速率和容量。
此外,应用偏振分割复用技术可实现多信道的同时传输,并减少系统复杂度和成本。
因此,研究偏振光在光通信中的性质和应用对提高通信效率和可靠性至关重要。
2. 光电显示与光存储器偏振光在光电显示和光存储器领域也有广泛应用。
通过控制偏振器和液晶屏之间的相对位置和角度,可以实现高分辨率和高对比度的显示效果。
而在光存储器中,偏振光通常用于记录和读取信息。
通过利用偏振光的传播特性和相位差,可以实现大容量和快速读写的光存储器。
3. 光学显微镜偏振光在生物和材料科学中的显微镜研究中起着重要作用。
偏振光的观察与研究实验报告数据(精选10篇)

偏振光的观察与研究实验报告数据偏振光指的是只在一个平面上振动的光,它的传播方式与普通光有所不同。
由于其具有特殊的偏振状态,因此可以在各个领域中发挥重要作用。
在本次实验中,我们对偏振光的观察与研究进行了探究。
一、实验目的1. 学习偏振光的概念及其传播方式。
2. 观察线偏振器和波片对偏振光的影响。
3. 研究偏振光的干涉现象。
二、实验仪器及材料1. 两个偏光片2. 一块玻璃板3. 一块亚克力板4. 一束激光光源5. 一个手机屏幕三、实验步骤1. 将一块玻璃板和一块亚克力板插入两个偏光片之间,调整偏光片的方向,观察得到的光的强度变化。
2. 将一个偏光片放置在激光器前,记录得到的光的强度值,并将其称为“I”。
然后将另一个偏光片放在激光光路中,并逐渐旋转它的方向。
记录得到的光的强度值,并将其称为“T”。
3. 将一个手机屏幕放置在两个偏光片之间,逐渐旋转其中一个偏光片的方向。
观察手机屏幕的显示情况。
4. 在两个偏光片之间插入一块玻璃板,然后将其中一个偏光片旋转一定的角度,并记录得到光的强度值。
四、实验结果1. 调整偏光片的方向之后,得到的光的强度会发生变化,实验表明,当两个偏光片的方向垂直时,通过的光线最弱,当两个偏光片的方向相同时,通过光线最强。
2. 在实验过程中,我们发现,当两个偏光片的方向偏离90度时,通过的光线几乎消失。
这说明当光的振动方向被偏振后,只有振动方向与偏振方向一致的光才能通过。
3. 在手机屏幕的观察实验中,我们发现当两个偏光片的方向相同时,手机屏幕显示为亮屏,而当两个偏光片的方向垂直时,手机屏幕显示为黑屏。
这说明手机屏幕与偏振光的作用原理是相似的。
4. 在偏振光的干涉实验中,我们发现,在通过玻璃板的偏振光中,存在两个方向的振动状态,这两个方向的振动状态会互相干涉,导致光线强度的变化。
五、实验结论本次实验通过观察偏振光的传播方式,观察了线偏振器和波片对偏振光的影响,以及研究了偏振光的干涉现象。
偏振光的研究实验报告

偏振光的研究实验报告
偏振光是一种具有特殊振动方向的光线,它的研究对于光学领域具有重要意义。
本实验旨在通过对偏振光的实验研究,深入了解其特性和应用。
在实验中,我们使用了偏振片、偏振光源和检偏器等设备,通过一系列实验操作和数据记录,得出了一些有意义的结果。
首先,我们进行了偏振光的产生实验。
通过调节偏振片的方向和角度,我们成
功地产生了一束具有特定偏振方向的偏振光。
这表明偏振片可以有效地选择光的振动方向,为后续实验奠定了基础。
接着,我们进行了偏振光的传播实验。
将偏振光通过不同材质的透明介质,我
们观察到了偏振光在传播过程中的特点。
我们发现,偏振光在经过介质后,振动方向会发生改变,这为我们理解偏振光在介质中的传播规律提供了重要线索。
然后,我们进行了偏振光的检测实验。
通过使用检偏器,我们成功地对偏振光
进行了检测和分析。
我们发现,检偏器可以有效地改变偏振光的传播方向,同时也可以用来测量偏振光的偏振方向和强度,这为我们对偏振光的测量和控制提供了重要参考。
最后,我们进行了偏振光的应用实验。
我们利用偏振光的特性,设计并制作了
偏振光传感器,并对其进行了实际应用测试。
实验结果表明,偏振光传感器在检测偏振光方面具有良好的性能,具有广泛的应用前景。
通过以上一系列实验,我们对偏振光的特性和应用有了更深入的了解。
偏振光
作为一种特殊的光线,具有许多独特的物理特性和广泛的应用前景,对其进行深入研究具有重要的科学意义和实际价值。
希望通过本实验报告的分享,能够对偏振光的研究和应用提供一些有益的参考和启发。
偏振光研究报告实验报告

偏振光研究报告实验报告偏振光研究报告一、实验目的本实验旨在研究偏振光的特性,通过观察和分析偏振光的干涉现象,验证光的偏振原理,并探讨其在光学领域中的应用。
二、实验原理偏振光是光的一种特殊状态,其电矢量在传播方向上具有一定的振动方向。
偏振光的干涉是利用两个或多个偏振光的叠加产生相干光,通过观察干涉现象可以研究偏振光的性质。
本实验将通过偏振光干涉实验来验证光的偏振原理。
三、实验步骤1.准备实验器材:偏振片、起偏器、检偏器、光源、光导纤维、屏幕等。
2.将光源、偏振片、起偏器、检偏器按照一定顺序连接起来,确保光路畅通。
3.打开光源,调整偏振片和起偏器的角度,观察干涉现象。
4.分别改变偏振片和检偏器的角度,观察干涉现象的变化。
5.利用光导纤维将光引入屏幕,记录干涉条纹的形状和分布。
6.分析实验数据,得出结论。
四、实验结果与分析1.实验结果在实验中,我们观察到了明显的干涉现象。
当偏振片和检偏器的角度合适时,屏幕上呈现清晰的干涉条纹。
随着偏振片和检偏器角度的变化,干涉条纹的形状和分布也发生了明显的变化。
通过光导纤维的引导,我们成功地将光引入屏幕,并记录下了干涉条纹的形状和分布。
2.结果分析通过实验结果可以看出,偏振光的干涉现象是真实存在的。
当两个偏振光的振动方向相互垂直时,它们将产生相互干扰的现象,导致屏幕上出现明暗相间的条纹。
这些条纹的形状和分布取决于偏振片和检偏器的相对角度以及光的波长等因素。
此外,我们还发现偏振光的干涉在光学领域中具有重要的应用价值。
例如,通过测量干涉条纹的形状和分布,我们可以推断出光的偏振状态和传播方向等信息。
此外,利用偏振光的干涉还可以实现光学加密和图像处理等功能。
五、结论本实验通过观察和分析偏振光的干涉现象,验证了光的偏振原理。
实验结果表明,偏振光的干涉是一种有效的光学现象,可以用于研究光的性质和光学信号处理等领域。
在未来的研究中,我们可以进一步探讨偏振光的干涉机制以及其在光学领域中的应用前景。
偏振光特性的研究实验报告

偏振光特性的研究实验报告篇一:偏振光特性的研究光学设计性实验论文偏振光特性的研究摘要:实验目的:(一)学习用光电转换的方法测定相对光强, 验证马吕斯定律。
(二)研究1/4波片的光学特性(三)研究半导体激光器的偏振特性(测出其偏振度)(四)研究物质的旋光特性(五)观察石英晶体的旋光特性和测量旋光度(六)观察旋光色散,并解释现象实验要求:(一)掌握各种偏振光的特性。
(二)学会辨别各种偏振光。
(三)了解偏振光干涉和双折射现象关键词:偏振、马吕斯定律、1/4波片、偏振特性、偏振度、旋光特性、旋光色散。
引言:光的干涉和衍射现象揭示了光的波动性质,而光的偏振现象进一步验证了光波是横波。
我们研究偏振现象不仅可以认识光的电磁波性质,而且可以对光的传播规律有许多新的认识。
实验原理:1.偏振光的种类光是电磁波,它的电矢量E和磁矢量H相互垂直,且又垂直于光的传播方向.通常用电矢量代表光矢量,并将光矢量和光的传播方向所构成的平面称为光的振动面.按光矢量的不同振动状态,可以把光分为五种偏振态:如光矢量沿着一个固定方向振动,称为线偏振光或平面偏振光;如在垂直于传播方向的平面内,光矢量的方向是任意的,且各个方向的振幅相等,则称为自然光;如果有的方向光矢量的振幅较大,有的方向振幅较小,则称为部分偏振光;如果光矢量的大小和方向随时间作周期性的变化,且光矢量的末端在垂直于光传播方向的平面内的轨迹是圆或椭圆,则分别称为圆偏振光或椭圆偏振光.能使自然光变成偏振光的装置或器件,称为起偏器;用来检验偏振光的装置或器件,称为检偏器.2.线偏振光的产生(1)反射和折射产生偏振根据布儒斯特定律,当自然光以ib?arctann的入射角从空气或真空入射至折射率为n的介质表面上时,其反射光为完全的线偏振光,振动面垂直于入射面,而透射光为部分偏振光,ib称为布儒斯特角.如果自然光以ib入射到一叠平行玻璃片堆上,则经过多次反射和折射最后从玻璃片堆透射出来的光也接近于线偏振光.玻璃片的数目越多,透射光的偏振度越高.(2)偏振片它是利用某些有机化合物晶体的“二向色性”制成的.当自然光通过这种偏振片后,光矢量垂直于偏振片透振方向的分量几乎完全被吸收,光矢量平行于透振方向的分量几乎完全通过,因此透射光基本上为线偏振光.(3)双折射产生偏振当自然光入射到某些双折射晶体(如方解石、石英等)时,经晶体的双折射所产生的寻常光(o光)和非常光(e光)都是线偏振光. 3.波晶片波晶片简称波片,它通常是一块光轴平行于表面的单轴晶片,一束平面偏振光垂直入射到波晶片后,便分解为振动方向与光轴方向平行的e光和与光轴方向垂直的o光两部分(如图1所示).这两种光在晶体内的传播方向虽然一致,但它们在晶体内传播的速度却不相同(为么?).于是,e光和o光通过波晶片后就产生固定的相位差?,即??2??(ne?no)l式中?为入射光的波长,l为晶片的厚度,ne和,no分别为e和o光的主折射率。
偏振光的研究 实验报告

偏振光的研究实验报告偏振光的研究实验报告引言:偏振光是一种特殊的光波,其振动方向在一个平面内,与普通光波相比,具有更强的定向性。
在过去的几十年里,偏振光的研究得到了广泛的关注和应用。
本实验旨在通过对偏振光的实验研究,深入了解其特性和应用。
实验一:偏振片的特性在本实验中,我们首先使用了一块偏振片。
偏振片是一种能够选择性地通过或阻挡特定方向振动的光的装置。
我们将光源发出的自然光通过偏振片,观察到了光的强度发生了明显的变化。
这是因为偏振片只允许与其方向平行的光通过,而将垂直于其方向的光阻挡。
通过旋转偏振片,我们可以观察到光的强度随着角度的变化而变化。
实验二:偏振光的产生在本实验中,我们使用了一束自然光通过一个偏振片,将其转换为偏振光。
然后,我们使用另一个偏振片,将偏振光的方向进行调整。
我们观察到,当两个偏振片的方向相同时,光通过的强度最大;而当两个偏振片的方向垂直时,光通过的强度最小。
这表明,偏振光的方向可以通过调整偏振片的方向来改变。
实验三:偏振光的应用偏振光在许多领域中有着广泛的应用。
例如,在光学显微镜中,通过使用偏振光可以增强图像的对比度,使得细小结构更加清晰可见。
在液晶显示器中,偏振光的旋转可以控制光的透过与阻挡,实现像素点的开闭。
此外,偏振光还被应用于光学通信、光学传感器等领域。
实验四:偏振光的检测在本实验中,我们使用了偏振片和偏振光检测器来测量光的偏振状态。
通过旋转偏振片,我们可以调整光的偏振方向,而偏振光检测器可以测量到通过的光的强度。
通过实验数据的分析,我们可以得到光的偏振状态的信息,例如偏振方向和偏振度。
结论:通过本实验,我们深入了解了偏振光的特性和应用。
偏振光具有较强的定向性,可以通过偏振片的选择和调整来改变其方向。
在光学领域,偏振光的研究和应用已经取得了重要的进展,并在许多领域发挥着重要的作用。
通过对偏振光的深入研究,我们可以进一步拓展其应用,并为光学技术的发展做出贡献。
致谢:在此,我要感谢实验室的老师和同学们对本实验的支持和帮助。
光的偏振实验观察光的偏振现象和偏振光特性

光的偏振实验观察光的偏振现象和偏振光特性光是一种电磁波,它可以在空间中传播,而光的偏振现象则是光具有特殊的传播性质。
光的偏振实验给我们提供了观察和研究光的偏振现象以及偏振光特性的方法。
光的波动性质使得它可以在垂直于传播方向的平面内振动,而这种振动方式会决定光的偏振性质。
当光的振动方向只在一个平面上,而不能垂直于该平面时,我们称之为偏振光。
在实际的观察中,我们可以通过偏振片来观察光的偏振现象。
偏振片是一种有选择性地吸收振动方向的光的设备。
当光通过偏振片时,只有与其特定振动方向垂直的光被吸收,而与其振动方向平行的光则被透过。
通过适当调整偏振片的方向,我们可以观察到不同的偏振现象。
在光的偏振实验中,我们可以使用两个偏振片。
当两个偏振片的振动方向相互垂直时,光将完全被吸收,无法通过。
这种情况下,我们称之为“交叉偏振”。
当两个偏振片的振动方向平行时,光能够完全透过,这种情况下我们称之为“同向偏振”。
通过旋转第二个偏振片,我们可以观察到从透明到黑暗的过渡,这是因为光的振动方向与第二个偏振片的振动方向之间形成了夹角,导致了部分光被吸收。
在光的偏振实验中,我们还可以观察到偏振光的特性。
偏振光具有明显的方向特性,在特定方向上振动。
通过使用偏振片,我们可以将偏振光的方向进行调整。
此外,偏振光还具有干涉、衍射等光的波动性质,这些现象也可以通过偏振实验进行观察和研究。
光的偏振实验不仅有助于我们理解光的波动性质,还在许多领域中具有重要的应用。
例如,在光学领域中,偏振光的特性能够帮助我们研究材料的结构和性质。
在通信和显示技术中,偏振光可以用于增强和调节光的传输和显示效果。
同时,光的偏振实验还在生物医学和纳米技术等领域有着广泛的应用。
总之,光的偏振实验是一种重要的观察和研究光的偏振现象和偏振光特性的方法。
通过使用偏振片和调整其方向,我们可以观察到交叉偏振和同向偏振现象,并研究偏振光的方向特性以及其他光的波动性质。
这些实验不仅有助于加深对光的波动性质的理解,还在许多领域中具有重要的应用。
偏振光的研究实验报告

偏振光的研究实验报告
本次实验,中非合作联合实验室专家们,研究了偏振光的特性及其生物活性化合物检
测术,通过反射式偏振光法建立了物质的偏振特征数据库,得到了更深入的理解。
首先,为了模拟实际的非线性效应,我们以大功率激光器为激发源,采用双色偏振调
制的技术,进行偏振检测试验,排列组合各种偏振状态,确定最佳偏振状态和观察获得的
信号强度。
然后,我们建立了偏振特征数据库,输入不同类型的生物活性物质,观察它们在反射
式偏振光下的特征,并将其与标准特征进行比较,进行检测。
另外,我们还建立了偏振光
成像技术,用它来观测偏振光波的相位变化,并分析相位变化的原因,观测物质的偏振特性。
最后,我们运用了强偏振技术,并采用非线性光谱研究,探讨偏振材料的变动特性,
从而更好地理解偏振光在生物活性物质检测中的作用及其机理。
实验结果表明,采用反射式偏振光技术可以检测准确,从而确定特定生物活性物质,
而在非线性光谱研究中,偏振材料的一致性和稳定性也非常重要。
总之,本次实验研究了偏振光的特性及其在生物活性物质检测中的应用,有助于更深
入的理解偏振光的机理并发挥其更好的生物检测效果,从而获得更精确、准确的实验结果。
偏振光特性的研究实验报告

偏振光特性的研究实验报告篇一:偏振光特性的研究光学设计性实验论文偏振光特性的研究摘要:实验目的:(一)学习用光电转换的方法测定相对光强, 验证马吕斯定律。
(二)研究1/4波片的光学特性(三)研究半导体激光器的偏振特性(测出其偏振度)(四)研究物质的旋光特性(五)观察石英晶体的旋光特性和测量旋光度(六)观察旋光色散,并解释现象实验要求:(一)掌握各种偏振光的特性。
(二)学会辨别各种偏振光。
(三)了解偏振光干涉和双折射现象关键词:偏振、马吕斯定律、1/4波片、偏振特性、偏振度、旋光特性、旋光色散。
引言:光的干涉和衍射现象揭示了光的波动性质,而光的偏振现象进一步验证了光波是横波。
我们研究偏振现象不仅可以认识光的电磁波性质,而且可以对光的传播规律有许多新的认识。
实验原理:1.偏振光的种类光是电磁波,它的电矢量E和磁矢量H相互垂直,且又垂直于光的传播方向.通常用电矢量代表光矢量,并将光矢量和光的传播方向所构成的平面称为光的振动面.按光矢量的不同振动状态,可以把光分为五种偏振态:如光矢量沿着一个固定方向振动,称为线偏振光或平面偏振光;如在垂直于传播方向的平面内,光矢量的方向是任意的,且各个方向的振幅相等,则称为自然光;如果有的方向光矢量的振幅较大,有的方向振幅较小,则称为部分偏振光;如果光矢量的大小和方向随时间作周期性的变化,且光矢量的末端在垂直于光传播方向的平面内的轨迹是圆或椭圆,则分别称为圆偏振光或椭圆偏振光.能使自然光变成偏振光的装置或器件,称为起偏器;用来检验偏振光的装置或器件,称为检偏器.2.线偏振光的产生(1)反射和折射产生偏振根据布儒斯特定律,当自然光以ib?arctann的入射角从空气或真空入射至折射率为n的介质表面上时,其反射光为完全的线偏振光,振动面垂直于入射面,而透射光为部分偏振光,ib称为布儒斯特角.如果自然光以ib入射到一叠平行玻璃片堆上,则经过多次反射和折射最后从玻璃片堆透射出来的光也接近于线偏振光.玻璃片的数目越多,透射光的偏振度越高.(2)偏振片它是利用某些有机化合物晶体的“二向色性”制成的.当自然光通过这种偏振片后,光矢量垂直于偏振片透振方向的分量几乎完全被吸收,光矢量平行于透振方向的分量几乎完全通过,因此透射光基本上为线偏振光.(3)双折射产生偏振当自然光入射到某些双折射晶体(如方解石、石英等)时,经晶体的双折射所产生的寻常光(o光)和非常光(e光)都是线偏振光. 3.波晶片波晶片简称波片,它通常是一块光轴平行于表面的单轴晶片,一束平面偏振光垂直入射到波晶片后,便分解为振动方向与光轴方向平行的e光和与光轴方向垂直的o光两部分(如图1所示).这两种光在晶体内的传播方向虽然一致,但它们在晶体内传播的速度却不相同(为么?).于是,e光和o光通过波晶片后就产生固定的相位差?,即??2??(ne?no)l式中?为入射光的波长,l为晶片的厚度,ne和,no分别为e和o光的主折射率。
偏振光的研究实验报告

偏振光的研究实验报告篇一:偏振光的观测与研究~~实验报告偏振光的观测与研究光的干涉和衍射实验证明了光的波动性质。
本实验将进一步说明光是横波而不是纵波,即其E和H 的振动方向是垂直于光的传播方向的。
光的偏振性证明了光是横波,人们通过对光的偏振性质的研究,更深刻地认识了光的传播规律和光与物质的相互作用规律。
目前偏振光的应用已遍及于工农业、医学、国防等部门。
利用偏振光装置的各种精密仪器,已为科研、工程设计、生产技术的检验等,提供了极有价值的方法。
【实验目的】1.观察光的偏振现象,加深偏振的基本概念。
2.了解偏振光的产生和检验方法。
3.观测布儒斯特角及测定玻璃折射率。
4.观测椭圆偏振光和圆偏振光。
【实验仪器】光具座、激光器、偏振片、1/4波片、1/2波片、光电转换装置、光点检流计、观测布儒斯特角装置图1 实验仪器实物图【实验原理】1.偏振光的基本概念按照光的电磁理论,光波就是电磁波,它的电矢量E和磁矢量H相互垂直。
两者均垂直于光的传播方向。
从视觉和感光材料的特性上看,引起视觉和化学反应的是光的电矢量,通常用电矢量E代表光的振动方向,并将电矢量E和光的传播方向所构成的平面称为光振动面。
在传播过程中,光的振动方向始终在某一确定方位的光称为平面偏振光或线偏振光,如图2(a)。
光源发射的光是由大量原子或分子辐射构成的。
由于热运动和辐射的随机性,大量原-子或分子发射的光的振动面出现在各个方向的几率是相同的。
一般说,在106s内各个方向电矢量的时间平均值相等,故出现如图2(b)所示的所谓自然光。
有些光的振动面在某个特定方向出现的几率大于其他方向,即在较长时间内电矢量在某一方向较强,这就是如图2(c)所示的所谓部分偏振光。
还有一些光,其振动面的取向和电矢量的大小随时间作有规则的变化,其电矢量末端在垂直于传播方向的平面上的移动轨迹呈椭圆(或圆形),这样的光称为椭圆偏振光(或圆偏振光),如图2(c)所示。
图2 光波按偏振的分类 2.获得偏振光的常用方法 (1)非金属镜面的反射。
光的偏振特性研究

实验7 光的偏振特性研究光的干涉衍射现象揭示了光的波动性,但是还不能说明光波是纵波还是横波。
而光的偏振现象清楚地显示其振动方向与传播方向垂直,说明光是横波。
1808年法国物理学家马吕斯(Malus,1775—1812)研究双折射时发现折射的两束光在两个互相垂直的平面上偏振。
此后又有布儒斯特(Brewster,1781—1868)定律和色偏振等一些新发现。
光的偏振有别于光的其它性质,人的感觉器官不能感觉偏振的存在。
光的偏振使人们对光的传播规律(反射、折射、吸收和散射)有了新的认识。
本实验通过对偏振光的观察、分析和测量,加深对光的偏振基本规律的认识和理解。
偏振光的应用很广泛,从立体电影、晶体性质研究到光学计量、光弹、薄膜、光通信、实验应力分析等技术领域都有巧妙的应用。
一、实验目的1. 观察光的偏振现象,了解偏振光的产生方法和检验方法。
2. 了解波片的作用和用1/4波片产生椭圆和圆偏振光及其检验方法。
3. 通过布儒斯特角的测定,测得玻璃的折射率。
4. 验证马吕斯定律。
二、实验原理1. 自然光和偏振光光是一种电磁波,电磁波中的电矢量E就是光波的振动矢量,称作光矢量。
通常,光源发出的光波,其电矢量的振动在垂直于光的传播方向上作无规则的取向。
在与传播方向垂直的平面内,光矢量可能有各种各样的振动状态,被称为光的偏振态。
光的振动方向和传播方向所组成的平面称为振动面。
按照光矢量振动的不同状态,通常把光波分为自然光、部分偏振光、线偏振光(平面偏振光)、圆偏振光和椭圆偏振光五种形式。
如果光矢量的方向是任意的,且在各方向上光矢量大小的时间平均值是相等的,这种光称为自然光。
自然光通过介质的反射、折射、吸收和散射后,光波的电矢量的振动在某个方向具有相对优势,而使其分布对传播方向不再对称。
具有这种取向特征的光,统称为偏振光。
偏振光可分为部分偏振光、线偏振光(平面偏振光)、圆偏振光和椭圆偏振光。
如果光矢量可以采取任何方向,但不同方向的振幅不同,某一方向振动的振幅最强,而与该方向垂直的方向振动最弱,这种光为部分偏振光。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验27 偏振光的特性研究光的干涉和衍射现象揭示了光的波动性,而光的偏振现象却直接有力地证明了光波是横波。
光的偏振现象已广泛运用于光开关、光调制器、应力分析等科研和生产实际中。
本实验通过对偏振光的观察和分析,以加深对光的偏振基本规律的理解。
【预习提要】(1)什么是偏振光?(2)偏振光有哪几种?(3)什么是起偏器?什么是检偏器?(4)什么是马吕斯定律?(5)波片有什么作用?(6)什么是旋光效应?(7)什么是电光效应?(8)什么是磁光效应?【实验要求】(1)掌握各种偏振光的特性。
(2)学会辨别各种偏振光。
(3)了解偏振光干涉和双折射现象。
(4)利用各种偏振光测量有关的物理量。
【实验目的】(1)观察光的偏振现象,掌握产生偏振光的方法和检验方法。
(2)学习用光电转换的方法测定相对光强,验证马吕斯定律。
(3)了解波片的作用及椭圆偏振光的产生和检验方法。
(4)学会利用偏振光进行一些物理量的测量。
【实验器材】λ波片,2/λ波片,起偏器,检偏器,晶体劈尖,旋光激光器,白光源,滤色片,4/器件,电光器件,磁光器件,微电流放大器,光电池,光具座。
【实验原理】1.自然光和偏振光·206··207·光波是横波,光波电矢量的振动方向垂直于光的传播方向。
通常光源发出的光波,其电矢量的振动在垂直于光的传播方向上作无规则的取向。
从统计规律看,在空间所有可能的方向上,光波电矢量的分布可看作是机会均等的,它们的总和与光的传播方向对称。
这种光称为自然光。
由于自然光通过媒质的折射、反射、吸收和散射后,使光波电矢量的振动在某个方向具有相对的优势,而使其分布对传播方向不再对称。
具有这种取向的光,统称为偏振光。
偏振光可分为部分偏振光、平面偏振光(线偏振光)、圆偏振光和椭圆偏振光。
如果光波电矢量的振动在传播过程中只是在某一确定的方向上占有相对优势,则这种偏振光称为部分偏振光;如果光波电矢量的振动方向只局限在某一确定的平面内,则这种偏振光称为平面偏振光,因其电矢量末端的轨迹为一直线,故又称为线偏振光,如图4-27-1所示;如果光波电矢量随时间作有规则的改变,即电矢量末端在垂直于传播方向的平面的轨迹呈圆形或椭圆形,则称为圆偏振光或椭圆偏振光,如图4-27-2所示。
能使自然光变成偏振光的装置或器件,称为起偏器。
用来检验偏振光的装置或器件,称为检偏器。
实际上,任何起偏器都可看作为检偏器。
2.平面偏振光的产生和特性产生平面偏振光的方法有:反射产生偏振、多次折射产生偏振、双折射产生偏振和选择性吸收产生偏振。
本实验采用具有选择吸收的偏振片产生平面偏振光。
图4-27-1 平面偏振光 图4-27-2 椭圆偏振光 有些晶体对两个振动方向相互垂直的光波电矢量具有不同的吸收本领,这种选择性吸收,称为二向色性。
当自然光通过二向色性晶体时,振动的电矢量与晶体光轴垂直时几乎被完全吸收;电矢量与光轴平行时几乎没有损失,于是,透射光就成为平面偏振光。
偏振片是用人工方法制成的薄膜,具有二向色性,是用特殊方法使选择性吸收很强的微晶体在透明胶质层中作有规律的排列而制成,它允许透过某一电矢量振动方向的光(此方向称为偏振化方向),而吸收与它垂直方向振动的光。
因此,自然光通过偏振片后,透射光基本上成为平面偏振光。
由于偏振片易于制作,所以它是普遍使用的偏振器。
在图4-27-3中,M M ′和N N ′分别表示起偏器和检偏器的“偏振化方向”,它们之间的夹角为θ。
令A 0为通过起偏器的振幅,将A 0分解为θcos 0A 和θsin 0A ,其中只有平行于检偏器N N ′的分量θcos 0A 可以通过检偏器。
设I 0和I 分别为透过起偏器和检偏器的光强,透过检偏器的光振幅θcos 0A A =,因光强度与振幅平方成正比,所以2020//A A I I =,故·208· 透过检偏器的光强为θθ20202202cos /cos I A A I I == (4-27-1)式(4-27-1)称为马吕斯定律。
图4-27-3 自然光通过起偏器和检偏器的变化根据马吕斯定律,平面偏振光透过检偏器的光强随偏振面和检偏器的“偏振化方向”之间的夹角θ而变化。
当0=θ或π时,透射光强最大;而当2/πθ=或2/3π时,透射光强为零,即当检偏器转动一周时会出现两次消光现象。
3.椭圆、圆偏振光的产生和4/λ波片的作用波片是从单轴双折射晶体上平行于光轴方向切下的薄片。
若平面偏振光垂直入射波片,且其振动面(振动方向与传播方向所确定的平面)与波片的光轴成α角,则在波片内入射光就分解为振动方向互为垂直的两束平面偏振光,称为o 光和e 光,如图4-27-4所示。
它们的传播方向一致,因在晶体内传播速度不同而产生一定的相位差,当它们经过厚度为d 的波片时,光程差为d n n e )(0−,即相应的相位差为d n ne )(20−=λπδ (4-27-2)式中,λ为入射光波长;0n 和e n 分别为波片对o 光和e 光的折射率。
显然,通过晶片后的偏振光,将是沿同一方向传播的两个平面偏振光叠加的结果。
由于o 光和e 光的振幅不等,有一定相位差,且振动方向互相垂直,一般合成为椭圆偏振光。
椭圆的形状随o 光和e 光的相位差δ值的不同而改变。
对于同种晶体,决定椭圆形状的因素是入射光的振动方向与光轴的夹角α以及晶片的厚度d 。
如图4-27-5所示。
若相位差πδK 2=,!,3,2,1=K ,则 d n n K e )(220−=λππ图4-27-4 平面偏振光透过波片·209·)(0e n n K d −=λ (4-27-3) 故波片的厚度为波长的整数倍,称为全波片。
从波片透射出的光为平面偏振光。
图4-27-5 不同δ值的椭圆形状当πδ)12(+=K ,!,3,2,1=K ,则)(120e n n d −⋅=λ (4-27-4) 称为λ21波片,从波片透射出的光为平面偏振光,但振动面相对于入射光转过2α角。
当2/)12(πδ+=K ,!,3,2,1=K ,则)(140e n n d −⋅=λ (4-27-5)图4-27-6 圆、椭圆偏振光·210· 称为λ4/1波片。
一般透射光为椭圆偏振光。
但是,当0=α或2/πα=时,透射光为平面偏振光。
当4/πα=时,透射光为圆偏振光,如图4-27-6所示。
4.偏振光干涉(1)偏振干涉的产生两列频率相同、振动方向一致和有恒定的位相差的光波是相干的。
无论自然光还是平面偏振光,只要满足上述条件,都会发生光的干涉现象。
平面偏振光通过光轴平行于折射表面的晶片时,分成o 光和e 光,它们的频率相同,有恒定的位相差,但它们的振动方向互相垂直不能产生干涉。
如果在晶片后再放置一检偏器,则o 光和e 光平行于检偏器主截面的分量可以透过检偏器,它们的振动方向平行并且满足相干条件,因此发生干涉。
若晶片成尖劈状(可用石英晶体制作),则见有明暗相间的干涉条纹,这种现象称为偏振光的干涉。
如图4-27-7所示,当θ=Л/4时,无论P1和P2是平行还是正交放置,Ae 和Ao 的大小相等,这时干涉条纹的可见度最好。
这是实际工作中常用的状态。
(2)显色偏振由于光强I 1(垂直)与I 2(平行)是互补的,所以对于给定的一晶片,在正交偏振器中由系统透射出来的光为干涉最大,而在平行偏振器中却为干涉最小,反之亦然。
用白光照射该系统时,对各种不同波长的光,干涉最大和最小的条件不是同时满足的,所以不同波长的光有不同程度的加强和减弱,混合起来就呈现彩色,不同厚度的晶片出现不同的彩色称为干涉色。
任何两种彩色,如果混合起来能够成为白色,则每一种都称为另一种的互补色,对于同一晶片,在正交偏振器系统中所呈现的颜色与在平行偏振器系统呈现颜色不同,但它们总是互补的。
在两偏振器由正交向平行过渡时,随着转动其中一个偏振器,视场中将显示出各种色彩的变化,这种现象叫做显色偏振。
显色偏振是检验双折射现象的十分灵敏的方法。
当两个主折射率差n o -n e 很小时,用直接观察o 光和e 光的方法,很难判断双折射的发生。
然而,持具有微弱的各向异性物质做成的薄片置于正交的偏振器之间,用白光照射,观察是否显示彩色的现象,即能判定有否双折射存在。
图4-27-7 偏振光的干涉(3)偏光干涉现象的实际应用如果两个偏振片间插入的是一块透明的各向异性物质C(例如透明的塑料、玻璃等),一般就没有光从P2中透出,可是一旦使C受到挤压或拉伸,其内部立即会沿受力方向出现人为的“光轴”,使C显现出人为双折射性。
线偏振光通过C被分解为振动方向互相垂直、彼此间又具有一定相位差的两束线偏振光,故通过检偏器P2后引导到同一振动方向而产生干涉。
因光源S是白光,所以出现彩色的干涉条纹。
偏光干涉现象有许多实际应用,工业上常用模拟实验的方法来分析某些机械部件或工程构件在实际使用条件下内部的应力分布。
双折射是各向异性介质中的普遍现象,在各向同性介质如玻璃或塑料中是不存在的.但是如果玻璃或塑料在制造过程中残存内应力,或者在制成后外加一定大小的外应力,那么由于这些应力总是各向异性的,因而这种玻璃或塑料也会出现各向异性而产生双折射现象。
利用偏光干涉现象可以很容易观察到这种双折射,从而检查材料中的应力分布,这种仪器称为光测弹性仪,它主要就是让一束单色光入射到两个透振方向相互垂直放置的偏振片,把待测工件插入这两个偏振片之间,观察由工件上应力造成的干涉条纹。
这种仪器常用来检查光学玻璃材料的退火是否完善,因为若退火不完善,就会有剩余应力,因而会出现干涉条纹。
条纹越密表示应力越大。
此外,如果把一块玻璃或塑料做成某种形状,例如轮轴或横梁等,放在光测弹性仪的两偏振片中,然后从一定方向外加压力,于是可以看到在该元件中产生应力的分布情况。
根据这种对应力分布的观察,可以对改进轮轴或横梁等的设计提供可靠的实验依据。
5.旋光现象虽然光沿着光轴方向传播时,不会发生双折射,但是却发现平面偏振光沿着光轴传播时,它的振动面会以光线前进方向为轴逐渐旋转,这种现象称为旋光现象。
单色平面偏振光通过旋光性物质时,光的振动面转过的角度Φ,与在该物质中通过放距离L成正比:Φ(4-27-6)=acLC为溶液的浓度,比例系数a称为物质的旋光率,它的数值等于单位浓度的该物质中光通过单位长度时振动面所转过的角度。
各种不同波长的光旋转的角度不同,一毫米厚的石英晶片,使589.0nm的平面偏振光转过21.750,而404.7nm偏振光则转过48.950,257.1nm的则转过1430。
波长越短转的角度越大。
旋光率随波长变化的现象称为旋光色散。
图4-27-8 旋光效应直线偏振光通过蔗糖(CuH220u)水溶液时,其方位发生旋转,用这种方法可测定糖的浓度。