随机过程(超容易理解+配套例题)

合集下载

随机过程试题及答案

随机过程试题及答案

随机过程试题及答案随机过程是概率论与数理统计的重要理论基础之一。

通过研究随机过程,可以揭示随机现象的规律性,并应用于实际问题的建模与分析。

以下是一些关于随机过程的试题及答案,帮助读者更好地理解与掌握这一概念。

1. 试题:设随机过程X(t)是一个马尔可夫过程,其状态空间为S={1,2,3},转移概率矩阵为:P =| 0.5 0.2 0.3 || 0.1 0.6 0.3 || 0.1 0.3 0.6 |(1) 计算X(t)在t=2时的转移概率矩阵。

(2) 求X(t)的平稳分布。

2. 答案:(1) 根据马尔可夫过程的性质,X(t)在t=2时的转移概率矩阵可以通过原始的转移概率矩阵P的2次幂来计算。

令Q = P^2,则X(t=2)的转移概率矩阵为:Q =| 0.37 0.26 0.37 || 0.22 0.42 0.36 || 0.19 0.36 0.45 |(2) 平稳分布是指随机过程的状态概率分布在长时间内保持不变的分布。

设平稳分布为π = (π1,π2, π3),满足πP = π(即π为右特征向量),且所有状态的概率之和为1。

根据πP = π,可以得到如下方程组:π1 = 0.5π1 + 0.1π2 + 0.1π3π2 = 0.2π1 + 0.6π2 + 0.3π3π3 = 0.3π1 + 0.3π2 + 0.6π3解以上方程组可得到平稳分布:π = (0.25, 0.3125, 0.4375)3. 试题:设随机过程X(t)是一个泊松过程,其到达率为λ=1,即单位时间内到达的事件平均次数为1。

(1) 请计算X(t)在t=2时的累计到达次数的概率P{N(2)≤3}。

(2) 计算X(t)的平均到达速率。

4. 答案:(1) 泊松过程具有独立增量和平稳增量的性质,且在单位时间内到达次数服从参数为λ的泊松分布。

所以,P{N(2)≤3} = P{N(2)=0} + P{N(2)=1} + P{N(2)=2} +P{N(2)=3},其中P{N(2)=k}表示在时间间隔[0,2]内到达的次数为k的概率。

随机过程课文例题(考试必备)

随机过程课文例题(考试必备)

定义1.10 设随机变量X 的分布函数为F(x),称∞<<-∞=====⎰∞∞-t x dF e e E d t g itx itX ),()()( 为X 的特征函数.特征函数的性质:(1) g(0)=1,|g(t)|≤1,g(-t)=-------t g )( .(2) g(t)在),(∞∞-上一直连续. (3) 若随机变量X 的n 阶矩EX n 存在,则X 的特征函数g (t )可微分n 次,且当k ≤n 时,有k k k i 0g EX =)()(。

(4) g(t)是非负定函数。

即对任意正整数n 及任意实数n 321t ...,t t t ,,和复数n 21z ...z z ,,,,有0)(g 1,≥-∑=l k n l k l k z z t t 。

(5) 若n X X X (21),是相互独立随机变量,侧n X X X X +++=...21的特征函数)()...()()(21t g t g t g t g n =其中)(t g i 是随机变量i X 的特征函数,i=1,2,…,n.(6) 随机变量的分布函数由其特征函数唯一确定。

例1.2 设X 服从B (n ,p ),求X 的特征函数)(t g 及EX 、EX 2、DX 。

解 X 的分布例为,,...1,0,1,)k (n k p q q p c X P k n k k n =-===- ∑∑=-=-==n k k n k it k n n k k n k k n itk q pe c q p c e t g 00)()( =nit q pe )(+。

又性质知 np q pe dt d iig EX t n it =+-=-==0')()0(, ,)()1()0()(220222''22p n npq q pe dt d g i EX t n it +=+-=-== npq EX EX DX =-=22)(例1.3 设X~N (0,1),求X 的特征函数)(t g .解 :⎰∞∞=-2x it .e 21t g 2dx —)(π 由于|ixe22x itx -|=2x 2e |x |—,且∞<⎰∞∞-2x .e |x |212dx —π,故可对(1,2)式右端在积分号求导,得 ⎰⎰∞∞--∞∞--==)(221t g 2222x itx x itx de e i dx ixe ππ)(’ =--∞∞--222x itx ixe i π⎰∞∞--dx e tx itx 222π=—tg (t ),于是得微分方程 0)()(g '=-t tg t 分离变量方程有.)()(tdt t g t dg -= 两边积分的,21)(ln 2c t t g +-= 故方程通解为c t e t g +-=221)(.由于g (0)=1,所以c=0,于是X 得特征函数为22)(t e t g -=例1.4 随机变量X 的特征函数为)(t X g ,b aX Y +=,其中a ,b 为任意实数,证明Y 的特征函数)(t g Y 为 )()(at gx e t g itb Y =.证 ][)()(b aX it Y eE t g += =][)(itb X ta i e e E =)(g ][x )(at e e E e itb X ta i itb =定义1.12 设X 是非负整数值随机变量,分布列,....,1,0,p k ===k k X P )(则称∑∞======0)()(k k k X s ps E d s P为X 的母函数。

随机过程例题和知识点总结

随机过程例题和知识点总结

随机过程例题和知识点总结随机过程是研究随机现象随时间演变的数学学科,在通信、金融、物理等众多领域都有广泛应用。

下面我们通过一些例题来深入理解随机过程的相关知识点。

一、随机过程的基本概念随机过程可以看作是一族随机变量的集合,其中每个随机变量都对应着某个特定的时刻。

例如,考虑一个在时间段0, T内的股票价格变化过程,对于每个时刻 t∈0, T,都有一个对应的随机变量 X(t)表示股票的价格。

二、常见的随机过程类型1、泊松过程泊松过程常用于描述在一定时间内随机事件发生的次数。

例如,某电话交换台在单位时间内接到的呼叫次数就可以用泊松过程来建模。

例题:假设某电话交换台在上午 9 点到 10 点之间接到的呼叫次数是一个泊松过程,平均每分钟接到 2 次呼叫。

求在 9 点 10 分到 9 点 20 分这 10 分钟内接到至少 5 次呼叫的概率。

解:设 X(t) 表示在时间段 0, t 内接到的呼叫次数,且 X(t) 是一个强度为λ = 2 的泊松过程。

10 分钟内接到的呼叫次数 X(10) 服从参数为λt = 2×10 = 20 的泊松分布。

P(X(10) ≥ 5) = 1 P(X(10) < 5) = 1 P(X(10) = 0) + P(X(10) = 1) + P(X(10) = 2) + P(X(10) = 3) + P(X(10) = 4)通过泊松分布的概率质量函数可以计算出每个概率值,进而求得最终结果。

2、马尔可夫过程马尔可夫过程具有“无记忆性”,即未来的状态只与当前状态有关,而与过去的状态无关。

例题:一个状态空间为{0, 1, 2} 的马尔可夫链,其一步转移概率矩阵为 P = 05 03 02; 02 06 02; 01 03 06 ,初始状态为 0,求经过 3 步转移后处于状态 2 的概率。

解:通过计算 P³得到 3 步转移概率矩阵,然后取出第 0 行第 2 列的元素即为所求概率。

随机过程习题和答案

随机过程习题和答案

一、1.1设二维随机变量(,)的联合概率密度函数为:试求:在时,求。

解:当时,==1.2 设离散型随机变量X服从几何分布:试求的特征函数,并以此求其期望与方差。

解:所以:2.1 袋中红球,每隔单位时间从袋中有一个白球,两个任取一球后放回,对每 对应随机变量一个确定的t⎪⎩⎪⎨⎧=时取得白球如果对时取得红球如果对t e t tt X t 3)(.维分布函数族试求这个随机过程的一2.2 设随机过程,其中是常数,与是相互独立的随机变量,服从区间上的均匀分布,服从瑞利分布,其概率密度为试证明为宽平稳过程。

解:(1)与无关(2),所以(3)只与时间间隔有关,所以为宽平稳过程。

2.3是随机变量,且,其中设随机过程U t U t X 2cos )(=求:,.5)(5)(==U D U E.321)方差函数)协方差函数;()均值函数;((2.4是其中,设有两个随机过程U Ut t Y Ut t X ,)()(32==.5)(=U D 随机变量,且数。

试求它们的互协方差函2.5,试求随机过程是两个随机变量设B At t X B A 3)(,,+=的均值),(+∞-∞=∈T t 相互独若函数和自相关函数B A ,.),()(),2,0(~),4,1(~,21t t R t m U B N A X X 及则且立为多少?3.1一队学生顺次等候体检。

设每人体检所需的时间服从均值为2分钟的指数分布并且与其他人所需时间相互独立,则1小时内平均有多少学生接受过体检?在这1小时内最多有40名学生接受过体检的概率是多少(设学生非常多,医生不会空闲)解:令()N t 表示(0,)t 时间内的体检人数,则()N t 为参数为30的poisson 过程。

以小时为单位。

则((1))30E N =。

40300(30)((1)40)!k k P N e k -=≤=∑。

3.2在某公共汽车起点站有两路公共汽车。

乘客乘坐1,2路公共汽车的强度分别为1λ,2λ,当1路公共汽车有1N 人乘坐后出发;2路公共汽车在有2N 人乘坐后出发。

随机过程习题及部分解答【直接打印】

随机过程习题及部分解答【直接打印】

随机过程习题及部分解答习题一1. 若随机过程()(),X t X t At t =-∞<<+∞为,式中A 为(0,1)上均匀分布的随机变量,求X (t )的一维概率密度(;)X P x t 。

2. 设随机过程()cos(),X t A t t R ωθ=+∈,其中振幅A 及角频率ω均为常数,相位θ是在[,]ππ-上服从均匀分布的随机变量,求X (t )的一维分布。

习题二1. 若随机过程X (t )为X (t )=At t -∞<<+∞,式中A 为(0,1)上均匀分布的随机变量,求12[()],(,)X E X t R t t2. 给定一随机过程X (t )和常数a ,试以X (t )的相关函数表示随机过程()()()Y t X t a X t =+-的自相关函数。

3. 已知随机过程X (t )的均值M X (t )和协方差函数12(,),()X C i t t ϕ是普通函数,试求随机过程()()()Y t X t t ϕ=+是普通函数,试求随机过程()()()Y t X t t ϕ=+的均值和协方差函数。

4. 设()cos sin X t A at B at =+,其中A ,B 是相互独立且服从同一高斯(正态)分布2(0,)N σ的随机变量,a 为常数,试求X (t )的值与相关函数。

习题三1. 试证3.1节均方收敛的性质。

2. 证明:若(),;(),X t t T Y t t T ∈∈均方可微,a ,b 为任意常数,则()()aX t bY t +也是均方可微,且有[()()]()()aX t bY t aX t bY t '''+=+3. 证明:若(),X t t T ∈均方可微,()f t 是普通的可微函数,则()()f t X t 均方可微且[()()]()()()()f t X t f t X t f t X t '''=+4. 证明:设()[,]X t a b 在上均方可微,且()[,]X t a b '在上均方连续,则有()()()b aX t dt X b X a '=-⎰5. 证明,设(),[,];(),[,]X t t T a b Y t t T a b ∈=∈=为两个随机过程,且在T 上均方可积,αβ和为常数,则有[()()]()()b b baaaX t Y t dt X t dt Y t dt αβαβ+=+⎰⎰⎰()()(),b c baacaX t dt X t dt X t dt a c b =+⎰⎰⎰≤≤6. 求随机微分方程()()()[0,](0)0X t aX t Y t t X '+=∈+∞⎧⎨=⎩的()X t 数学期望[()]E X t 。

随机过程习题和答案

随机过程习题和答案

一、1.1设二维随机变量(,)的联合概率密度函数为:试求:在时,求。

解:当时,==1.2 设离散型随机变量X服从几何分布:试求的特征函数,并以此求其期望与方差。

解:所以:2.1 袋中红球,每隔单位时间从袋中有一个白球,两个任取一球后放回,对每 对应随机变量一个确定的t⎪⎩⎪⎨⎧=时取得白球如果对时取得红球如果对t e t tt X t 3)(.维分布函数族试求这个随机过程的一2.2 设随机过程,其中是常数,与是相互独立的随机变量,服从区间上的均匀分布,服从瑞利分布,其概率密度为试证明为宽平稳过程。

解:(1)与无关(2),所以(3)只与时间间隔有关,所以为宽平稳过程。

2.3是随机变量,且,其中设随机过程U t U t X 2cos )(=求:,.5)(5)(==U D U E.321)方差函数)协方差函数;()均值函数;((2.4是其中,设有两个随机过程U Ut t Y Ut t X ,)()(32==.5)(=U D 随机变量,且数。

试求它们的互协方差函2.5,试求随机过程是两个随机变量设B At t X B A 3)(,,+=的均值),(+∞-∞=∈T t 相互独若函数和自相关函数B A ,.),()(),2,0(~),4,1(~,21t t R t m U B N A X X 及则且立为多少?3.1一队学生顺次等候体检。

设每人体检所需的时间服从均值为2分钟的指数分布并且与其他人所需时间相互独立,则1小时内平均有多少学生接受过体检?在这1小时内最多有40名学生接受过体检的概率是多少(设学生非常多,医生不会空闲)解:令()N t 表示(0,)t 时间内的体检人数,则()N t 为参数为30的poisson 过程。

以小时为单位。

则((1))30E N =。

40300(30)((1)40)!k k P N e k -=≤=∑。

3.2在某公共汽车起点站有两路公共汽车。

乘客乘坐1,2路公共汽车的强度分别为1λ,2λ,当1路公共汽车有1N 人乘坐后出发;2路公共汽车在有2N 人乘坐后出发。

随机过程部分试题

随机过程部分试题

1,若从t=0开始每隔0.5秒抛一枚均匀的硬币作试验,定义随机过程X(t)={cosπt,t时刻抛得正面2t, t时刻抛得反面求:(1)X(t)的一维分布函数F(12;x)和F(1;x)(2)X(t)的二维分布函数F(0.5,1;x1,x2)(2)X(t)的均值函数μx(t)和方差函数σX2(t)解:硬币出现正、反面得概率均为1/2F(0.5,1;x1,x2 )=F(0.5;x1)F(1;x2)={0,x1<0或x2<−112,0≤x1≤1或x2≥2或x1≥1,−1≤x2<214,0≤x1<1,−1≤x2<21,x1≥1,x2≥22,设为参数为σ2的维纳过程, 求积分过程的均值函数和相关函数。

解:设,由与的对称性维纳过程是均方连续, 均方不可导, 均方可积的二阶矩过程.假设乘客按照参数为λ的poisson过程来到一个火车站乘坐某次列车,若火车在时刻t启程,试求在[0,t]内到达车站乘坐该次列车的乘客等待时间总和的数学期望。

设在时间间隔[0,τ]内到达的乘客数为,则时间间隔[0,t]内乘客的总等待时间为某人备有r把伞用于上下班. 如果一天的开始他在家(一天的结束他在办公室)中而且天下雨,只要有伞可取到,他将拿一把到办公室(家)中. 若天不下雨那么他不带伞.假设每天的开始(结束)下雨的概率为p,且与之前下不下雨独立.(1)定义一个有r+1个状态的Markov链并确定转移概率;(2)计算极限分布;(3)这人被雨淋湿的平均次数,所占比率是多少(称天下雨而全部伞却在另一边为被淋湿)?设{Xn}为此人在第n天身边拥有的雨伞数,则I={0, 1,2,…,r},注意到下雨才用伞,而每天的开始下不下雨与之前独立,即知为Markov链.该链的一步转移概率为:于是计算极限分布的状态方程,记显然处于的极限状态才可能被淋湿,但每天的开始(结束)下雨的概率为p, 所以此人被雨淋湿的平均次数,所占比率即被淋湿的概率为某一个只有一名理发师的理发部,至多容纳4名顾客。

随机过程试题与答案

随机过程试题与答案

随机过程试题与答案《随机过程》试题一、简答题(每小题4分,共16分) 1、φX t =E e jtX2、acos ωt +π3 ,acos ωt ?π4 . (任意两条即可)3、N t 为参数λ的poison 过程,{X n }是独立同分布的随机变量序列,且与N t相互独立,则称Y t = X n N tn=1为复合poison 过程。

4、二重积分 R X s,t dsdt ba b a 存在且有限。

二、(本题10分)解:(1)P N 12 ?N 8 =0 =e ?12. (5分)(2)f T t =3e ?3t t >00t ≤0(10分)三、(本题12分)解:(1){0,3}是正常返的闭集,{1,4}是正常返的闭集,{2}是非常返的。

(4分)(2)对于{0,3}和{1,4}的转移概率矩阵分别为P 1= 0.60.40.40.6 ,P 2= 0.60.40.20.8 (6分)记z 1 =(z 1 1,z 2 1),z 2 =(z 1 2,z 2 2),求解方程组z 1 =z 1 P 1, z 1 1 +z 2 1=1z 2 =z 2 P 2, z 1 2 +z 2 2=1得z 1 = 12,12 , z 2 = 13,23 。

则平稳分布为(10分)π= λ1,λ2,0,λ1,2λ2(12分)四、(本题13分)解:(1)Q = ?λλμ?(λ+μ) 0 0λ 00 μ0 0 ?(λ+μ)λμ?μ (4分)前进方程dP(t)dt =P(t)Q (6分)后退方程dP(t)dt=QP(t) (8分)(2)由πQ =0,π=1, π=(π0,π1,π2,π3) 解得平稳分布为π0=1?λμ1? λμ4,π1=λμ 1?λμ1? λμ4,π2=λμ2 1?λμ1? λμ4,π3=λμ3 1?λμ1? λμ4(13分) 五、(本题13分)解:(1)对任意的t 1,t 2,?,t n ∈R ,Z t 1 Z t 2 ?Z t n = t 12t 22?t n2 2t 12t 2?2t n X Y + ?2?2?2?2因X,Y 是相互独立的正态分布,所以 XY 是正态分布,又线性变换的性质可知Z t 1 ,Z t 2 ,?,Z t n T 服从多元正态分布,故Z t 是正态过程。

随机过程考试试题及答案详解

随机过程考试试题及答案详解

随机过程考试试题及答案详解1、(15分)设随机过程C t R t X +⋅=)(,),0(∞∈t ,C 为常数,R 服从]1,0[区间上的均匀分布。

(1)求)(t X 的一维概率密度和一维分布函数; (2)求)(t X 的均值函数、相关函数和协方差函数。

【理论基础】 (1(2F ((3(F (4,(1)(t X 为],[t C C +上的均匀分布,因此其一维概率密度⎪⎩⎪⎨⎧+≤≤=其他,0,1)(tC x C t x f ,一维分布函数⎪⎩⎪⎨⎧+>+≤≤-<=t C x t C X C tCx C x x F ,1,,0)(;(2)根据相关定义,均值函数C tt EX t m X +==2)()(; 相关函数2)(231)]()([),(C t s Cst t X s X E t s R X +++==; 协方差函数12)]}()()][()({[),(stt m t X s m s X E t s B X X X =--=(当t s =时为方差函数) 【注】)()()(22X E X E X D -=;)()(),(),(t m s m t s R t s B X X X X -=求概率密度的通解公式|)(|/)(|)(|)()(''y x y f x y y f x f t ==2、(15分)设{}∞<<∞-t t W ),(是参数为2σ的维纳过程,)4,1(~N R 是正态分布随机变量;且对任意的∞<<∞-t ,)(t W 与R 均独立。

令R t W t X +=)()(,求随机过程{}∞<<∞-t t X ),(的均值函数、相关函数和协方差函数。

【解答】此题解法同1题。

依题意,|)|,0(~)(2t N t W σ,)4,1(~N R ,因此R t W t X +=)()(服从于正态分布。

故:均值函数1)()(==t EX t m X ;相关函数5)]()([),(==t X s X E t s R X ;协方差函数4)]}()()][()({[),(=--=t m t X s m s X E t s B X X X (当t s =时为方差函数) 3、(10分)设到达某商场的顾客人数是一个泊松过程,平均每小时有180人,即180=λ;且每个顾客的消费额是服从参数为s 的指数分布。

随机过程试题及答案

随机过程试题及答案

随机过程试题及答案一、选择题1. 随机过程是研究什么的对象?A. 确定性系统B. 随机性系统C. 静态系统D. 动态系统答案:B2. 下列哪项不是随机过程的特点?A. 可预测性B. 随机性C. 连续性D. 状态的不确定性答案:A3. 随机过程的数学描述通常使用什么?A. 概率分布B. 微分方程C. 差分方程D. 以上都是答案:A4. 马尔可夫链是具有什么特性的随机过程?A. 独立性B. 无记忆性C. 均匀性D. 周期性答案:B5. 以下哪个是随机过程的数学工具?A. 傅里叶变换B. 拉普拉斯变换C. 特征函数D. 以上都是答案:D二、简答题1. 简述什么是随机过程的遍历性。

答:遍历性是随机过程的一种特性,指的是在足够长的时间内,随机过程的统计特性不随时间变化而变化,即时间平均与遍历平均相等。

2. 解释什么是泊松过程,并给出其主要特征。

答:泊松过程是一种计数过程,它描述了在固定时间或空间内随机发生的事件次数。

其主要特征包括:事件在时间或空间上独立发生,事件的发生具有均匀性,且在任意小的时间段内,事件发生的概率与该时间段的长度成正比。

三、计算题1. 假设有一个泊松过程,其平均事件发生率为λ。

计算在时间间隔[0, t]内恰好发生n次事件的概率。

答:在时间间隔[0, t]内恰好发生n次事件的概率由泊松分布给出,公式为:\[ P(N(t) = n) = \frac{e^{-\lambda t} (\lambda t)^n}{n!} \]2. 考虑一个具有两个状态的马尔可夫链,其状态转移概率矩阵为:\[ P = \begin{bmatrix}p_{11} & p_{12} \\p_{21} & p_{22}\end{bmatrix} \]如果初始时刻在状态1的概率为1,求在第k步时处于状态1的概率。

答:在第k步时处于状态1的概率可以通过马尔可夫链的状态转移矩阵的k次幂来计算,即:\[ P_{11}^{(k)} = p_{11}^k + p_{12} p_{21} (p_{11}^{k-1} + p_{12} p_{21}^{k-2} + \ldots) \]四、论述题1. 论述随机过程在信号处理中的应用及其重要性。

随机过程课后习地的题目

随机过程课后习地的题目

习题一1.设随机变量X 服从几何分布,即:(),0,1,2,...k P X k pq k ===。

求X 的特征函数、EX 及DX 。

其中01,1p q p <<=-是已知参数。

2.(1)求参数为(p,b )的Γ分布的特征函数,其概率密度函数为(2)求其期望和方差;(3)证明对具有相同的参数b 的Γ分布,关于参数p 具有可加性。

3.设X 是一随机变量,F (x )是其分布函数,且是严格单调的,求以下随机变量的特征函数。

(1)(),(0,)Y aF X b a b =+≠是常数; (2)Z=ln F()X ,并求()k E Z (k 为自然数)。

4.设12,,...,n X X X 相互独立,具有相同的几何分布,试求 的分布。

5.试证函数 为一特征函数,并求它所对应的随机变量的分布。

6.试证函数 为一特征函数,并求它所对应的随机变量的分布。

7.设12,,...,n X X X 相互独立同服从正态分布2(,)N a σ,试求n 维随机向量12,,...,n X X X 的分布,并求出其均值向量和协方差矩阵,再求 的概率密度函数。

8.设X 、Y 相互独立,且(1)分别具有参数为(m, p)及(n, p)的二项分布;(2)分别服从参数为12(,),(,)p b p b 的Γ分布。

求X+Y 的分布。

9.已知随机向量(X, Y )的概率密度函数为试求其特征函数。

10.已知四维随机向量X ,X ,X ,X 1234()服从正态分布,均值向量为0,协方差矩阵为B σ⨯kl 44=(),求(X ,X ,X ,X E 1234)。

11.设X 1,X 2 和X 3相互独立,且都服从(0,1)N ,试求随机变量112Y X X =+和213Y X X =+组成的随机向量(Y 1, Y 2)的特征函数。

12.设X 1,X 2 和X 3相互独立,且都服从2(0,)N σ,试求:(1)随机向量(X 1, X 2, X 3)的特征函数;1,0()0,0()p p bxb x e x p x p x --⎧>⎪Γ⎨⎪≤⎩=0,0b p >>1nk k X =∑(1)()(1)jt jnt jt e e f tn e -=-21()1f t t=+11ni i X X n ==∑221[1()],1,1(,)40,xy x y x y p x y ⎧+--<<⎪=⎨⎪⎩其他(2)设112123123,,S X S X X S X X X ==+=++,求随机向量(S 1, S 2, S 3)的特征函数;(3)121Y X X =-和232Y X X =-组成的随机向量(Y 1, Y 2)的特征函数。

随机过程试题及答案

随机过程试题及答案

随机过程试题及答案一、选择题1. 关于随机过程的描述,错误的是:A. 随机过程是一种由随机变量组成的集合B. 随机过程是一种在时间上有序排列的随机变量序列C. 随机过程可以是离散的,也可以是连续的D. 随机过程是一种确定性的数学模型答案:D2. 以下哪种过程不是随机过程?A. 白噪声过程B. 马尔可夫过程C. 布朗运动D. 正态分布答案:D3. 随机过程的一阶矩描述的是:A. 均值B. 方差C. 偏度D. 峰度答案:A4. 当随机过程的各个时间点上的随机变量是独立同分布时,该随机过程为:A. 马尔可夫过程B. 马尔可夫链C. 平稳随机过程D. 白噪声过程答案:B5. 下列关于马尔可夫过程的说法中,正确的是:A. 当前状态只与上一状态有关,与历史状态无关B. 当前状态只与历史状态有关,与上一状态无关C. 当前状态只与上一状态和历史状态有关D. 当前状态与所有历史状态均无关答案:A二、填空题1. 随机过程中,时域函数常用的表示方法是__________。

答案:概率分布函数或概率密度函数2. 马尔可夫过程的状态转移概率只与__________相关。

答案:当前状态和下一状态3. 随机过程的时间参数称为__________。

答案:时刻或时间点4. 白噪声过程的自相关函数是一个__________函数。

答案:冲激函数5. 平稳随机过程的自相关函数只与__________相关。

答案:时间差三、解答题1. 请简要解释随机过程的概念。

随机过程是一种由随机变量组成的集合,表示一个在时间上有序排列的随机变量序列。

它可以是离散的,也可以是连续的。

随机过程的描述通常包括概率分布函数或概率密度函数,以及相关的统计特征,如均值、方差等。

随机过程可以用于对随机现象进行建模和分析。

2. 请简要说明马尔可夫过程的特点及应用。

马尔可夫过程是一种具有马尔可夫性质的随机过程,即当前状态只与上一状态有关,与历史状态无关。

其状态转移概率只与当前状态和下一状态相关。

随机过程练习题[1]

随机过程练习题[1]

S (t ) X (t ) Y (t )
是具有强度 的泊松过程. 6.设齐次马氏链的转移概率矩阵为
1 / 3 1 / 2 P 1/ 4 0
1/ 3 1/ 3 0 1/ 2 0 0 1/ 4 0 1/ 2 1/ 2 0 1/ 2
(1) 此链有几个状态? (2) 试画出转移概率图; (3)从第 2 个状态至少要几步才能转移到第 3 个状态? 7.设齐次马氏链 { X n , n 1} 的状态空间为 S {0,1,2} ,一步转移概率矩阵为
1 / 2 1 / 2 0 P 1 / 3 1 / 3 1 / 3 0 3 / 4 1/ 4
初始分布 P ( X 0 i ) 1 / 3, i 0, 1, 2 .试求: (1) P ( X 0 0, X 2 1) ; (2) P ( X 2 0) . 8.设马氏链 { X n , n 1} 的状态空间为 S {1,2,3} ,一步转移概率矩阵为
试证此链不是遍历的. 10.设齐次马氏链 { X n , n 0} 的状态空间为 S {0,1,2} ,一步转移概率矩阵为
1 / 2 1 / 3 1 / 6 P 1 / 3 2 / 3 0 0 1/ 2 1/ 2
(画出转移概率图; (2)此链是否遍历?(3)若遍历,求其平稳分布.
随机过程练习题
1.设 Y (t ) Xt a, t T , X 为随机变量, a 为常数,且 E ( X ) 机过程 Y (t ), t T 的均值函数、协方差函数.
, D( X ) 2 ,试求随
2.设随机过程 X (t ) X 1 X 2 t , t R , X 1 , X 2 为相互独立的随机变量,且都服从正态 分布 N (0, ) .试求随机过程 X (t ) 的一维分布.

(完整版)随机过程习题和答案

(完整版)随机过程习题和答案

一、1.1设二维随机变量(,)的联合概率密度函数为:试求:在时,求。

解:当时,==1.2 设离散型随机变量X服从几何分布:试求的特征函数,并以此求其期望与方差。

解:所以:2.1 袋中红球,每隔单位时间从袋中有一个白球,两个任取一球后放回,对每 对应随机变量一个确定的t⎪⎩⎪⎨⎧=时取得白球如果对时取得红球如果对t e t tt X t 3)(.维分布函数族试求这个随机过程的一2.2 设随机过程,其中是常数,与是相互独立的随机变量,服从区间上的均匀分布,服从瑞利分布,其概率密度为试证明为宽平稳过程。

解:(1)与无关(2),所以(3)只与时间间隔有关,所以为宽平稳过程。

2.3是随机变量,且,其中设随机过程U t U t X 2cos )(=求:,.5)(5)(==U D U E.321)方差函数)协方差函数;()均值函数;((2.4是其中,设有两个随机过程U Ut t Y Ut t X ,)()(32==.5)(=U D 随机变量,且数。

试求它们的互协方差函2.5,试求随机过程是两个随机变量设B At t X B A 3)(,,+=的均值),(+∞-∞=∈T t 相互独若函数和自相关函数B A ,.),()(),2,0(~),4,1(~,21t t R t m U B N A X X 及则且立为多少?3.1一队学生顺次等候体检。

设每人体检所需的时间服从均值为2分钟的指数分布并且与其他人所需时间相互独立,则1小时内平均有多少学生接受过体检?在这1小时内最多有40名学生接受过体检的概率是多少(设学生非常多,医生不会空闲)解:令()N t 表示(0,)t 时间内的体检人数,则()N t 为参数为30的poisson 过程。

以小时为单位。

则((1))30E N =。

40300(30)((1)40)!k k P N e k -=≤=∑。

3.2在某公共汽车起点站有两路公共汽车。

乘客乘坐1,2路公共汽车的强度分别为1λ,2λ,当1路公共汽车有1N 人乘坐后出发;2路公共汽车在有2N 人乘坐后出发。

(完整)随机过程复习试题及答案,推荐文档

(完整)随机过程复习试题及答案,推荐文档

N(t)
N(t),t 0独立,令 X(t)= Yk , t 0 ,证明:若 E(Y12 <) ,则 EX(t) tEY1。
k=1
证明:由条件期望的性质 EX(t) E E X(t) N(t) ,而
E X(t)
N(t)
n
N(t) E i=1 Yi
N(t)
n
n
= E i=1
Yi
N(t)
,四步转移概率矩阵为
P(4)
P(2) P(2)
0.5749 0.5668
0.4251 0.4332 ,从而得到
今天有雨且第四天仍有雨的概率为
P(4) 00
0.5749 。
4.一质点在 1,2,3 三个点上作随机游动,1 和 3 是两个反射壁,当质点处于 2 时,下一时刻处于 1,2,3 是等可能的。写出一步转移概率矩阵,判断此链是否具有遍历性,若有,求出极限分布。
3.设Xn , n 0为马尔科夫链,状态空间为 I ,则对任意整数 n 0,1 l <n 和 i, j I , n 步转
移概率
p(n) ij
p p (l ) (n-l ) ik kj
,称此式为切普曼—科尔莫哥洛夫方程,证明并说明其意义。
kI
证明:
P(n) ij
P
X(n)=j X(0)=i
解:(1)样本函数集合为cos t,t, t (-,+) ;
(2)当 t=0 时, PX(0)=0 PX(0)=1 1 ,
2

F(;0 x<1
;同理
F(x;1)=
0 1
x<-1 1 x<1
2 1
x 1
2 1
x 1
2.设顾客以每分钟 2 人的速率到达,顾客流为泊松流,求在 2 分钟内到达的顾客不超过 3 人的概率。

随机过程题目

随机过程题目

1、Poisson 过程
2、更新过程
3、Lundberg-Cramer 破产模型
4、鞅
1、设某医院专家门诊,从早上8:00开始就已有无数患者等候,而每次专家只能为一名患者服务,服务的平均时间为20分钟,且每名患者的服务时间是独立的指数分布,求8:00-12:00门诊结束时接受过治疗的患者在医院停留的平均时间。

2、
+1”分,负者记“
-1”分,和局不计分,且当两人中有一人获得2分时结束比赛。

Markov 链。


(1)一步转移概率矩阵。

(2)求在甲获得1分的情况下,不超过两局可结束比赛的概率。

1
2、
1元,出现反面则输1元。

假设每次赌博所下赌注将于前面硬币的投掷结果有关,
后所输(赢)的总钱数,
设Markov。

随机过程超容易理解配套例题

随机过程超容易理解配套例题
研究随机过程旳一种主要切入点就是研究一种随机信号旳数字特征,数 字特征主要涉及数学期望、有关函数、方差、协方差、均方值。其中数 学期望是一阶矩,背面四个是二阶矩。能够经过研究随机过程旳二阶矩 特征来判断随机过程是否平稳等等。
Poisson过程
1、计数过程: 随机过程N(t),t 0称为计数过程,假如N(t) 表 达从0到t时刻某一特定事件A发生旳次数, 它具有下列两个特点:
t
0
M
t
sf
s ds,
t0 t0
3、更新方程旳解
设更新方程中H(t)为有界函数,则方程存在惟一旳在有限 区间内有界旳解
t
K (t) H (t) 0 H (t s)dm(s)
4、更新方程在人口学中旳一种应用
考虑一种拟定性旳人口模型
B(t) ------在时刻t女婴旳出生速率,即在 [t,t+dt]之间有
注: 在有限旳时间内不可能有无限屡次更新发生。因为
If EX k 0
Tn
n
所以,if n ,
由大数定律知,依概率1有
n
Then Tn
从而,无穷屡次更新只可能在无限长旳时间内发生,即有限旳时间内最多只 能发生有限次更新。
N t supn;Tn t maxn;Tn t
2、更新方程 :如下形式旳积分方程称为更新方程
取有限或可列个值(称为过程旳状态,记为0,1,2,…),
而且,对任意n 0 及状态 i, j,i0,i1, ,in1 ,有
P( X n1 j X 0 i0 , X1 i1, , X n1 in1, X n i) P( X n1 j X n i)
2、转移概率
定义 i, j S, 称 P Xn1 j Xn i pij n

(完整版)随机过程习题.doc

(完整版)随机过程习题.doc

随机过程复习一、回答: 1 、 什么是宽平稳随机过程?2 、 平稳随机过程自相关函数与功率谱的关系?3 、 窄带随机过程的相位服从什么分布?包络服从什么分布?4 、什么是白噪声?性质?二、计算:1 、随机过程 X (t) Acos t + Bsin t ,其中 是常数, A 、B 是相互独 立统计的高斯变量, 并且 E[A]=E[B]=0 , A2 ]=E[ B 2 ]= 2 。

求: X (t)E[ 的数学期望和自相关函数?2 、判断随机过程 X (t )A cos( t) 是否平稳?其中 是常数,A 、 分别为均匀分布和瑞利分布的随机变量,且相互独立。

af ( )12;f A ( a)a2e 2 2a 023 、求随机相位正弦函数 X (t)A cos( 0 t) 的功率谱密度, 其中 A 、 0是常数, 为[0,2 ]内均匀分布的随机变量。

4 、求用 X (t ) 自相关函数及功率谱表示的 Y (t ) X (t) cos(0 t)的自相关函数及谱密度。

其中, 为[0,2 ]内均匀分布的随机变量, X (t ) 是与 相互独立的随机过程。

5 、设随机过程 { X (t ) Acos( 0t Y),t} ,其中 0 是常数, A 与 Y是相互独立的随机变量, Y 服从区间 (0,2 ) 上的均匀分布, A 服从瑞利分布,其概率密度为x 2x2e 2 2x 0f A (x)0 x 0试证明 X (t ) 为宽平稳过程。

解:( 1) m X (t) E{ Acos(0 t Y)} E( A)E{cos( 0t Y )}x 2x22e 2 2 dxy)dy 0 与 t 无关2 cos( 0t 0( 2) X 2 (t)E{ X 2 (t )}E{ A cos( 0t Y)}2E( A 2 ) E{cos 2 ( 0t Y )} E( A 2 )3x2tE( A 2)x1 2t2e 2 2dt , 2 e 22dx2tttte 2 2|0e 2 2 dt2 2e 2 2|0 22所以X2(t )E{ X 2 (t )}(3) R X (t 1,t 2 ) E{[ A cos( 0t 1 Y)][ A cos( 0t 2 Y )]}E[ A 2] E{cos(0t1Y ) cos( 0t 2 Y)}22 2 10t10t 2 y) cos 0 (t 2 t 1)] 1 dy[cos(222cos 0(t 2 t 1 )只与时间间隔有关,所以 X (t ) 为宽平稳过程。

随机过程习题和答案

随机过程习题和答案

、1.1设二维随机变量(X , F)的联合概率密度函数为:=—i—[l241-ι>⅛= "k"QTh Xl-JF)1.2 设离散型随机变量X服从几何分布:Hm=(Ip)HPJt=U-试求/的特征函数,并以此求其期望E(X)与方差I K X)¾0 = Efr ir) = ∑e⅛ = *)解:一=⅛α-ri M P=√^∑^α-p)t U O-P) ⅛J1—(I-JI)1—q/(O)=α⅛24(1-小丄0<y<x<l苴它试求:在OJu <■ 1时,求I『F)解:J;240 H)JKfc0<y<l Jj2Jf(I_y)3 0<JF<1P 其它^{θ其它当OJXI 时,Aw)2OT(Xy)y<x<l其它所以:-⅛(0)二丄f PZUr=J Er3-(JEIf)3=^^-^=4PPp2.1袋中有一个白球,两个红球,每隔单位时间从袋中任取一球后放回,对每一个确定的t 对应随机变量x(t^3如果对t时取得红球e t如果对t时取得白球试求这个随机过程的一维分布函数族2.2设随机过程 W 加吨MIF)∙ gZ I叫,其中吗是常数,/与F是相互独立的随机变量,F服从区间(°2刘上的均匀分布,/服从瑞利分布,其概率密度为x>0x≤0试证明Xu)为宽平稳过程。

解:( 1)⑷+F)} q啊诚如+ f)}= 与无关(2)枚F(M 仪加血I(Q/伽说如")汁F(才),f _ t t⅛(Q) =-J PQ ÷g)= -te^t∣Γ÷p ^dt =-2σ1e^i∣Γ=2σ3所以必U)啟0⑴卜"(3)R lM壊M∞¼⅛+Hl∕∞Ψ⅛+y)]}=豺]£{oKs(A +Γ)∞<β(A +Γ)}=2^Jtt 2{α≈(0A + β⅛+ y)-rasfflfc A)I^⅛心’皿叫仏Z L)只与时间间隔有关,所以XU)为宽平稳过程2.3设随机过程 X(t)=Ucos2t,其中U是随机变量,且 E(U)= 5, D(U)= 5.求: (1)均值函数;(2)协方差函数;(3)方差函数2.4设有两个随机过程 X(t)=Ut2, Y(t)=Ut3,其中U是随机变量,且D(U) = 5.试求它们的互协方差函数2.5设代B是两个随机变量,试求随机过程X(t) =At ∙3B,t∙ T =(」:「:)的均值函数和自相关函数若A, B相互独立,且A~ N(1,4), B ~U (0,2),则mχ (t)及Rχ(t1,t2)为多少?3.1 一队学生顺次等候体检。

随机过程习题和答案

随机过程习题和答案

一、设二维随机变量(,)的联合概率密度函数为:试求:在时,求。

解:当时,==设离散型随机变量X服从几何分布:试求的特征函数,并以此求其期望与方差。

解:所以:袋中红球,每隔单位时间从袋中有一个白球,两个任取一球后放回,对每 对应随机变量一个确定的t⎪⎩⎪⎨⎧=时取得白球如果对时取得红球如果对t e t tt X t 3)(.维分布函数族试求这个随机过程的一设随机过程,其中是常数,与是相互独立的随机变量,服从区间上的均匀分布,服从瑞利分布,其概率密度为试证明为宽平稳过程。

解:(1)与无关(2),所以(3)只与时间间隔有关,所以为宽平稳过程。

是随机变量,且,其中设随机过程U t U t X 2cos )(=求:,.5)(5)(==U D U E.321)方差函数)协方差函数;()均值函数;((是其中,设有两个随机过程U Ut t Y Ut t X ,)()(32==.5)(=U D 随机变量,且数。

试求它们的互协方差函,试求随机过程是两个随机变量设B At t X B A 3)(,,+=的均值),(+∞-∞=∈T t 相互独若函数和自相关函数B A ,.),()(),2,0(~),4,1(~,21t t R t m U B N A X X 及则且立为多少?一队学生顺次等候体检。

设每人体检所需的时间服从均值为2分钟的指数分布并且与其他人所需时间相互独立,则1小时内平均有多少学生接受过体检在这1小时内最多有40名学生接受过体检的概率是多少(设学生非常多,医生不会空闲)解:令()N t 表示(0,)t 时间内的体检人数,则()N t 为参数为30的poisson过程。

以小时为单位。

则((1))30E N =。

4030(30)((1)40)!k k P N e k -=≤=∑。

在某公共汽车起点站有两路公共汽车。

乘客乘坐1,2路公共汽车的强度分别为1λ,2λ,当1路公共汽车有1N 人乘坐后出发;2路公共汽车在有2N 人乘坐后出发。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
与( X t1 h ,X t2 h , L , X tn h )
有相同的联合分布,也就是说主要性质 只与变量之间的时间间隔有关。
2)宽平稳过程: 如果随机过程{x(t), t T }所有二阶矩都存在, 并且E[x(t)]= ,协方差函数 (t,s) 只与时间差 t-s有关,那么称{x(t), t T }为宽平稳过程。
速率.即年龄为x的母亲在[t,t+dt]之间生下的女婴 数为 ( x ) dt.
我们要用过去的B(t)预测未来的B(t)。 因为
B (t x) S ( x)dx ---t时刻年龄在[x,x+dx]之间
的女性数。 B (t x) S ( x) ( x)dx ---t时刻年龄在[x,x+dx]之间 的女性在单位时间内所生 育的女婴数。 则在单位时间内所有育龄段女性生育的女婴 数为
t P N t s N s n
n!
n
e t
则称{N(t),t≥0}为条件泊松过程。
更新过程
1、更新过程的定义
设{Xn,n≥1}是独立同分布的非负随机变量,分布函数为F(x),且F(0)<1,令
T0 0, Tn X k

n
2、转移概率 定义
i, j S ,

P X n1 j X n i pij n
为n时刻的一步转移概率。若
i, j S , pij n pij
即pij与n无关,则称{Xn,n≥0}为齐次马尔可夫链。记P=(pij),称P为 {Xn,n≥0}的一步转移概率矩阵.
m(t ) F t m t s dF s ,
0
t
t0 t0
M (t ) f t M t s f s ds,
0
t
3、更新方程的解 设更新方程中H(t)为有界函数,则方程存在惟一的在有限 区间内有界的解
K (t ) H (t ) H (t s) dm( s)
0
t
4、更新方程在人口学中的一个应用 考虑一个确定性的人口模型 B(t)dt个女婴出生. 已知: S ( x) ------生存函数:指一个女婴能活到 年龄x的概率.
B (t ) ------在时刻t女婴的出生速率,即在 [t,t+dt]之间有
( x) ------生育的年龄强度:指年龄为x的母亲生育的
i
随机过程x(t,e)四种不同情况下的意义: .当t固定,e固定时,x(t)是一个确定值; .当t固定,e可变时,x(t)是一个随机变量; .当t可变,e固定时,x(t)是一个确定的时间函数; .当t可变,e可变时,x(t)是一个随机过程;
平稳过程 1)严平稳过程: 若 t1 , t2 , L tn T , 及h 0, ( X t ,X t , L , X tn ) 1 2
t n
n!
称为Poisson过程的强度或者速率,也就 是说单位事件内事件发生的次数。

例:顾客到达某商店服从 =4的Poisson分布
解:
设 N (t ) 表示在时间t时到达的顾客数
已知商店上午9:00开门,试求到9:30时 仅到一位顾客,而到11:30时总计已达5位 顾客的概率。
P ( N (0.5) 1, N (2.5) 5) P ( N (0.5) 1, N (2.5) N (0.5) 4)
E X n= xdF (x),0
0

k 1
N t sup n; Tn t
称{N(t),t≥0}更新过程。

N t I Tn t
n 1

一个典型的更新过程的例子就是机器零件的更换。在0时刻,安装上一 个新零件并开始运行,当零件在X1时刻发生损坏,马上用一个新的来 替换(假设替换零件不需要时间),当第二个零件从X1时间开始运行, 到X2时间发生损坏时,我们马上换第三个零件….这些零件的使用寿命 是独立同分布的,那么到t时刻为止已经更换的零件数目就构成一个更 新过程。
2、更新方程 :如下形式的积分方程称为更新方程
K (t ) H (t ) K (t s )dF ( s )
0
t
其中H(t),F(t)为已知,且当t<0时, H(t), F(t)均为0,当H(t)在任何区间上有界时称 此方程为适定更新方程,简称更新方程。
设m(t)为更新函数,其导数称为更新密度,记为M(t)
P 0 1 2 1 4 0 0 0 1 2 0 1 4 0 0 0 1 2 1 2 0 1 1 2 0 0 0 1 4 0 0 0 0 0 1 4 0 0 1 0 0 0 0 1 2 0
B (t ) B (t x) S ( x) ( x)dx
0
所以,
B (t ) B (t x) S ( x) ( x)dx
0 t
B (t x) S ( x) ( x)dx B (t x) S ( x) ( x)dx
t 0
这是一个更新方程,其中
其中C为常数,R满足方程


0
e S ( x) ( x)dx 1
Rx
当 F () 1 时,B(t)渐近指数地趋于0, 即人群最终消亡。 当 F () 1时, B(t)将趋于一个有限的正 数。
Markov链
有这样一类随机过程,它具备“无后效性”,即,要确定过程将 来的状态,知道它此刻的状态就足够了,并不需要对它以往状况 的认识,这类过程称为Markov过程。
2、随机过程的定义
i
设有一个过程x(t),若对每一个固定的时刻t (j=1,2…),X( t )是一个随 机变量,则x(t)称为随机过程。
j j
设随机试验E的样本空间为S={e},对其每一个元素 e (i=1,2,…)都以某种法 则确定一个样本函数x(t, e ),由全部元素{e}所确定的一族样本函数x(t,e) 称为随机过程,记为x(t)。
Ex.2 从杂乱电讯号的一段观察{Y(t),0< t< T} 中,研究是否存在某种随机信号S(t )?
i
随机过程直观解释: 对随机信号或者噪声信号作一次观测相当于做一次随机试 验,每次随机试验所得到的观测记录结果 x (t) 是一个确定 的函数,称为样本函数,所有的样本函数的全体构成了随 机过程。
复合Poisson过程 条件Poisson过程
X t Yi
i 1
称{X(t),t≥0}为复合泊松过程。
1、定义:设 是一个正的随机变量,分布函数为G(x),设N(t) 是一个计数过程, 在 的条件下, {N(t),t≥0}是参数为 的泊松过程,即对任意的 s, t≥0,有
生育的女婴数
f ( x)dx S ( x) ( x)dx
---一个新生的女婴在年龄[x,x+dx]之间 期待生育的女婴数 所以
F ( x) f (t )dt
0 x
---一个新生的女婴在年龄x之前期待生 育的女婴数
F () 表示其一生中将期待生育个女婴数
可以证明:
Rt B ( t ) Ce ,t 当 F () 1 时,
5
10 1 1 m(10) (t )dt dt dt 4.5 0 0 2.5 5 2 9 1 (4.5) 4.5 9 2 P{N (10) N (0) 1} e e 1! 2
设{Yi,i≥1}是一族独立同分布的随机变量, {N(t),t≥0}是泊松过程,且{Yi,i≥1}与 {N(t),t≥0}独立,记 N t
f ( x) S ( x) ( x) H (t ) B (t x) S ( x) ( x)dx
t
作变量替换 x=y+t 得
H (t ) B ( y ) S ( y t ) ( y t )dy
0
注意:
H (t )dt ---年龄≥t的女性在时间[t,t+dt]之间
2、Poisson过程 计数过程 {N(t),t 0}称为参数为 ( 0) 的Poisson 过程,如果 (1)N(0)=0; (2)过程有独立增量; (3)对任意的 s, t 0, P { N (t s) N (s) n} e t , n 0,1, 2.....
t

m(t) (s)ds
0
t
例 设某设备的使用期限为10年,在前5年内它平均2.5年需要维修一次, 后5年平均2年需要维修一次,求它在使用期内只维修过一次的概率。 解 考虑非齐次泊松过程,强度函数
1 2 .5 (t ) 1 2
10
0t5 5 t 10
随机过程简介
1、实际背景: 在许多实际问题中,不仅需要对随机现象做 特定时间点上的一次观察,且需要做多次的 连续不断的观察,以观察研究对象随时间推 移的演变过程. Ex.1 对某城市的气温进行n年的连续观察,记 录得 : { X ( t ), a t b},
研究该城市气温有无以年为周期的变化规律?
P( N (0.5) 1) P( N (2) 4) ( 4 0 .5)1 4 0.5 (4 2) 4 42 e e 1! 4!
0.0155
Poisson过程的推广
当Poisson过程的强度 不再是常数,而与时间t有关时, Poisson过程被推广为非齐次Poisson过程。一般来说,非 齐次Poisson过程不具有平稳增量。 非齐次Poisson过程 计数过程 {N(t), t 0} 称做强度函数为 (t) 0(t 0) 的非齐次 Poisson过程,如果 (1)N(0)=0; (2)过程有独立增量; (3)对任意实数 t 0, s 0, N (t s) N(t) 为具有参数 t s m(t s) m(t) ()d 的Poisson分布。
相关文档
最新文档