【精选】八年级数学全等三角形单元测试卷(含答案解析)
人教版初中数学八年级数学上册第二单元《全等三角形》测试卷(含答案解析)
![人教版初中数学八年级数学上册第二单元《全等三角形》测试卷(含答案解析)](https://img.taocdn.com/s3/m/f1adc0b2561252d381eb6e19.png)
一、选择题1.如图,AB ∥CD ,BE 和CE 分别平分∠ABC 和∠BCD ,AD 过点E ,且AD ⊥AB ,点P 为线段BC 上一动点,连接PE .若AD =14,则PE 的最小值为( )A .7B .10C .6D .52.如图,,,AB AD CB CD AC BD ==、相交于点O ,则下列说法中正确的个数是( ) ①OD OB =;②点O 到CB CD 、的距离相等;③BDA BDC ∠=∠;④BD AC ⊥A .4B .3C .2D .13.如图,OP 平分AOB ∠,PC OA ⊥于点C ,PD OB ⊥于点D ,延长CP ,DP 交OB , OA 于点E ,F ,下列结论错误的是( )A .PC PD =B .OC OD = C .CPO DPO ∠=∠ D .PC PE =4.如图,AD 平分BAC ∠交BC 于点D ,DE AB ⊥于点E ,DF AC ⊥于点F ,若ABC S 12=,DF 2=,AC 3=,则AB 的长是 ( )A .2B .4C .7D .95.下列四个命题中,真命题是( )A .如果 ab =0,那么a =0B .面积相等的三角形是全等三角形C .直角三角形的两个锐角互余D .不是对顶角的两个角不相等6.下列命题中,真命题是( )A .有两边和一角对应相等的两个三角形全等B .有两边和第三边上的高对应相等的两个三角形全等C .有两边和其中一边上的高对应相等的两个三角形全等D .有两边和第三边上的中线对应相等的两个三角形全等7.如图,在Rt △ABC 中,∠ACB =90°,BC =5cm ,在AC 上取一点E ,使EC =BC ,过点E 作EF ⊥AC ,连接CF ,使CF =AB ,若EF =12cm ,则下列结论不正确的是( )A .∠F =∠BCFB .AE =7cmC .EF 平分ABD .AB ⊥CF 8.在以下图形中,根据尺规作图痕迹,能判定射线AD 平分∠BAC 的是( )A .图2B .图1与图2C .图1与图3D .图2与图3 9.下列命题中,假命题是( )A .在同一平面内,垂直于同一条直线的两直线平行B .到线段两端点距离相等的点在这条线段的垂直平分线上C .一条直角边和另一条直角边上的中线对应相等的两个直角三角形全等D .一边长相等的两个等腰直角三角形全等10.如图,在Rt ABC 中,C 90∠=,AD 是BAC ∠的平分线,若AC 3=,BC 4=,则ABD ACD S :S 为( )A .5:4B .5:3C .4:3D .3:411.如图,AB BC ⊥,CD BC ⊥,AC BD =,则能证明ABC DCB ≅的判定法是( )A .SASB .AASC .SSSD .HL12.如图,AC 与DB 相交于E ,且BE CE =,如果添加一个条件还不能判定ABE △≌DCE ,则添加的这个条件是( ).A .AC DB = B .A D ∠=∠C .B C ∠=∠D .AB DC =二、填空题13.如图,AOP BOP ∠=∠,PD OA ⊥,C 是OB 上的动点,连接PC ,若4PD =,则PC 的最小值为_________.14.如图,ABC 中,D 是AB 上的一点,DF 交AC 于点E ,AE CE =,//CF AB ,若四边形DBCF 的面积是26cm ,则ABC 的面积为______2cm .15.如图,在△ABC 中,∠ACB =120°,BC =4,D 为AB 的中点,DC ⊥BC ,则点A 到直线CD 的距离是_____.16.如图,已知ABC 的周长是8,OB ,OC 分别平分ABC ∠和ACB ∠,OD BC 于D ,且3OD =,ABC 的面积是______.17.如图所示,ABC ≅△AB C '',20CAC ∠'=︒,BAB ∠'=___度.18.如图,点D ,E 分别在线段AB ,AC 上,CD 与BE 相交于点P ,已知AD =AE .若△ABE ≌△ACD ,则可添加的条件为_____.19.如图所示,己知ABC ∆的周长是22,,OB OC 分别平分ABC ∠和ACB OD BC D ∠⊥,于,且3OD =,则ABC ∆的面积是__________.20.已知△ABC ≌△DEF ,△ABC 的三边分别为3,m ,n ,△DEF 的三边分别为5,p ,q .若△ABC 的三边均为整数,则m+n+p+q 的最大值为________.三、解答题21.如图,在Rt ABC △和Rt DEF △中,90C F ∠=∠=︒,点A 、E 、B 、D 在同一直线上,BC 、EF 交于点M ,AC DF =,AB DE =.求证:(1)CBA FED ∠=∠;(2)AM DM =.22.OAB 和ODE 均为等腰三角形,且AOB DOE β∠=∠=,OA OB =,OD OE =,连接AD 、BE ,它们所在的直线交于点F .(1)观察发现:如图1,当60β︒=时,线段AD 与BE 的数量关系是______,AFB ∠的度数是______;(2)探究证明:如图2,当90β︒=时,线段AD 与BE 的数量关系是______,AFB ∠的度数是______,根据图2证明你的猜想;(3)拓展推广:当β为任意角时,线段AD 与BE 的数量关系是______,AFB ∠的度数是______.(用含β的式子表示)23.如图,已知:AB =AD ,BC =DE ,AC =AE ,试说明:∠1=∠2.24.已知:如图,AC=BD,BD⊥AD于点D,AC⊥BC于点C.求证:∠ABC=∠BAD.25.如图,点D,E分别在AB和AC上,DE//BC,点F是AD上一点,FE的延长线交BC延长线BH于点G.(1)若∠DBE=40°,∠EBC=35°,求∠BDE的度数;(2)求证:∠EGH>∠ADE;(3)若点E是AC和FG的中点,△AFE与△CEG全等吗?请说明理由.26.如图,在△ABC中,AD是∠BAC的角平分线,DE⊥AB,DF⊥AC,D是BC的中点,证明:∠B=∠C.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】当EP ⊥BC 时,EP 最短,根据角平分线的性质,可知EP=EA=ED=12AD ,由AD =14,求出即可.【详解】解:当EP ⊥BC 时,EP 最短,∵AB ∥CD ,AD ⊥AB ,∴AD ⊥CD ,∵BE 平分∠ABC ,AE ⊥AB ,EP ⊥BC ,∴EP=EA ,同理,EP=ED ,此时,EP=12AD=12×14=7, 故选A .【点睛】本题考查了角平分线的性质和垂线段最短,熟练找到P 点位置并应用角平分线性质求EP 是解题关键. 2.B解析:B【分析】先根据全等三角形的判定定理得出△ACD ≌△ACB ,△ABO ≌△ADO ,再根据全等三角形的性质即可得出结论.【详解】解:在△ABC 和△ADC 中,∵AB AD BC CD AC AC ⎧⎪⎨⎪⎩===,∴△ABC ≌△ADC (SSS ),∴∠BAC=∠DAC , ∠DCA=∠BCA∴点O 到CB 、CD 的距离相等.故②正确在△ABO 与△ADO 中AB AD BAC DAC OA OA ⎧⎪∠∠⎨⎪⎩===,∴△ABO ≌△ADO (SAS ),∴BO=DO ,∠BOA=∠DOA∵∠BOA+∠DOA=180°∴∠BOA=∠DOA=90°,即BD AC ⊥故①④正确;∵AD≠CD∴BDA BDC ∠≠∠,故③错误所以,正确的结论是①②④,共3个,故选:B .【点睛】本题考查了全等三角形的判定和性质,掌握全等三角形的判定方法是解题的关键. 3.D解析:D【分析】根据角平分线的性质定理判断A 选项;证明△OPC ≌△OPD 判断B 选项;根据△OPC ≌△OPD 即可判断C 选项;证明△DPE ≌△CPF 判断D 选项.【详解】∵OP 平分AOB ∠,PC OA ⊥于点C ,PD OB ⊥于点D ,∴PC=PD ,故A 选项正确;∵∠ODP=∠OCP=90︒,又∵OP=OP ,PC=PD ,∴Rt △OPC ≌Rt △OPD ,∴OC=OD ,故B 选项正确;∵△OPC ≌△OPD ,∴CPO DPO ∠=∠,故C 选项正确;∵∠PDE=∠PCF=90︒,PD=PC ,∠DPE=∠CPF ,∴△DPE ≌△CPF ,∴PE=PF ,∵PF>PC ,∴PE>PC ,故D 选项错误;故选:D .【点睛】此题考查三角形角平分线的性质定理,全等三角形的判定及性质,熟记角平分线的性质定理是解题的关键.4.D解析:D【分析】求出DE 的值,代入面积公式得出关于AB 的方程,求出即可.【详解】解:∵AD 平分∠BAC ,DE ⊥AB ,DF ⊥AC ,∴DE=DF=2,∵S△ABC=S△ABD+S△ACD,∴12=12×AB×DE+12×AC×DF,∴24=AB×2+3×2,∴AB=9,故选:D.【点睛】本题考查了角平分线性质,三角形的面积的应用,注意:角平分线上的点到角两边的距离相等.5.C解析:C【分析】根据有理数的乘法、全等三角形的概念、直角三角形的性质、对顶角的概念判断即可.【详解】解:A、如果ab=0,那么a=0或b=0或a、b同时为0,本选项说法是假命题,不符合题意;B、面积相等的三角形不一定全等,本选项说法是假命题,不符合题意;C、直角三角形的两个锐角互余,本选项说法是真命题,符合题意;D、不是对顶角的两个角可能相等,本选项说法是假命题,不符合题意;故选:C.【点睛】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题,判断命题的真假关键是要熟悉课本中的性质定理.6.D解析:D【分析】根据三角形全等的判定方法对A、D进行判断;利用三角形高的位置不同可对B、C进行判断.【详解】A、有两边和它们的夹角对应相等的两个三角形全等,所以A选项错误;B、有两边和第三边上的高对应相等的两个锐角三角形全等,所以B选项错误;C、有两边和其中一边上的高对应相等的两个锐角三角形全等,所以C选错误;D、有两边和第三边上的中线对应相等的两个三角形全等,所以D选项正确;故选:D.【点睛】本题考査了判断命题真假,以及全等三角形的判定,熟练掌握全等三角形的判定,仔细分类讨论是解题关键.7.C解析:C【分析】证明EF ∥BC 即可得到A 正确,证明()Rt ACB Rt FEC HL ≅,得AC =EF =12cm ,CE =BC =5cm ,得到B 正确,根据∠A +∠ACD =∠F +∠ACD =90°即可证明D 正确.【详解】解:∵EF ⊥AC ,∠ACB =90°,∴∠AEF =∠ACB =90°,∴EF ∥BC ,∴∠F =∠BCF ,故A 正确;在Rt ACB 和Rt FEC 中,CB EC AB FC =⎧⎨=⎩, ∴()Rt ACB Rt FEC HL ≅,∴AC =EF =12cm ,∵CE =BC =5cm ,∴AE =AC ﹣CE =7cm .故B 正确;如图,记AB 与EF 交于点G ,如果AE =CE ,∵EF ∥BC ,∴EG 是△ABC 的中位线,∴EF 平分AB ,而AE 与CE 不一定相等,∴不能证明EF 平分AB ,故C 错误;∵Rt ACB Rt FEC ≅,∴∠A =∠F ,∴∠A +∠ACD =∠F +∠ACD =90°,∴∠ADC =90°,∴AB ⊥CF ,故D 正确.∴结论不正确的是C .故选:C .【点睛】本题考查全等三角形的性质和判定,解题的关键是掌握全等三角形的性质和判定定理. 8.C【分析】利用基本作图对三个图形的作法进行判断即可.【详解】解:在图1中,利用基本作图可判断AD平分∠BAC;在图2中,利用基本作图得到D点为BC的中点,则AD为BC边上的中线;在图3中,利用作法得AE=AF,AM=AN,则可判断△AMF≌△ANE,所以∠AMD=∠AND,再根据ME=AM-AE=AN-AF=FN,∠MDE=∠NDF可判断△MDE≌△NDF,根据三角形面积公式则可判定D点到AM和AN的距离相等,则可判断AD平分∠BAC.故选:C.【点睛】本题考查了作图-基本作图,全等三角形的判定与性质,解决本题的关键是掌握角平分线的作法.9.D解析:D【分析】根据垂线的性质,线段垂直平分线的判定,全等三角形的判定对各选项分析判断后利用排除法求解.【详解】A、同一平面内,垂直于同一条直线的两直线互相平行,真命题,本选项不符合题意;B、到线段两端点距离相等的点在这条线段的垂直平分线上,真命题,本选项不符合题意;C、一条直角边和另一条直角边上的中线对应相等的两个直角三角形,首先根据“HL”定理,可判断两个小直角三角形全等,可得另一条直角边相等,然后,根据“SAS”,可判断两个直角三角形全等,真命题,本选项不符合题意;D、有一边相等的两个等腰直角三角形不一定全等,如:一个等腰直角三角形的直角边与另一个等腰直角三角形的斜边相等,这两个等腰直角三角形并不全等,假命题,本选项符合题意.故选:D.【点睛】本题考查了命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.10.B【分析】过D 作DF AB ⊥于F ,根据角平分线的性质得出DF =DC ,再根据三角形的面积公式求出ABD 和ACD 的面积,最后求出答案即可.【详解】解:过D 点作DF AB ⊥于F ,∵AD 平分CAB ∠,C 90∠=(即AC BC ⊥),∴DF CD =,设DF CD R ==,在Rt ABC 中,C 90∠=,AC 3=,BC 4=, ∴22AB 5AC BC =+=, ∴ABD 115SAB DF 5R R 222=⨯⨯=⨯⨯=,ACD 113S AC CD 3R R 222=⨯⨯=⨯⨯=, ∴ABD ACD 5S :S R 2⎛⎫= ⎪⎝⎭:3R 5:32⎛⎫= ⎪⎝⎭, 故选:B.【点睛】本题考查了角平分线的性质和三角形的面积,能根据角平分线的性质求出DF =CD 是解此题的关键.11.D解析:D【分析】直接证明全等三角形,即可确定判断方法.【详解】解:∵AB BC ⊥,CD BC ⊥,∴ABC 与△DCB 均为直角三角形,又AC DB =,BC CB =, ∴()ABC DCB HL ≅,故选:D.【点睛】本题考查全等三角形的判定定理,属于基础题.12.D解析:D【分析】根据全等三角形的判定定理,对每个选项分别分析、解答出即可.【详解】根据题意:BE=CE ,∠AEB=∠DEC ,∴只需要添加对顶角的邻边,即AE=DE (由AC=BD 也可以得到),或任意一组对应角,即∠A=∠D ,∠B=∠C ,∴选项A 、B 、C 可以判定,选项D 不能判定,故选:D .【点睛】此题考查全等三角形的判定定理,熟记判定定理并熟练应用是解题的关键.二、填空题13.4【分析】当PC 垂直于OB 时PC 最小根据角平分线的性质可求最小值【详解】解:当PC ⊥OB 时PC 最小∵PC ⊥OB ∴PC=PD=4故答案为:4【点睛】本题考查了垂线段最短和角平分线的性质能够根据垂线段最解析:4【分析】当PC 垂直于OB 时,PC 最小,根据角平分线的性质可求最小值.【详解】解:当PC ⊥OB 时,PC 最小,∵AOP BOP ∠=∠,PD OA ⊥,PC ⊥OB ,∴PC=PD=4,故答案为:4.【点睛】本题考查了垂线段最短和角平分线的性质,能够根据垂线段最短的性质判断出点C 的位置,并根据角平分线的性质得出PC=PD 是根关键.14.6【分析】根据CF ∥AB 得到∠DAE=∠FCE 结合AE=CE ∠AED=∠FEC 可得△AED ≌△CEF 根据即可得出结果【详解】解:∵CF ∥AB ∴∠DAE=∠FCE 又∵AE=CE ∠AED=∠FEC ∴△A解析:6【分析】根据CF ∥AB ,得到∠DAE=∠FCE ,结合AE=CE ,∠AED=∠FEC ,可得△AED ≌△CEF ,AED CEF S S =,根据 ABC AED CEF DBCE DBCE DBCF S S S S S S =+=+=四边形四边形四边形,即可得出结果.【详解】解:∵CF ∥AB ,∴∠DAE=∠FCE ,又∵AE=CE ,∠AED=∠FEC ,∴△AED ≌△CEF ,∴AED CEF SS =, ∴26ABC AED CEF DBCE DBCE DBCF S S S S S S cm =+=+==四边形四边形四边形,故答案为:6.【点睛】本题考查全等三角形的判定与性质,解题的关键是证得△AED ≌△CEF .15.4【分析】根据垂直的定义得到∠BCD=延长CD 到H 使DH=CD 由线段中点的定义得到AD=BD 根据全等三角形的性质得到AH=BC=4【详解】∵DC ⊥BC ∴∠BCD=∵∠ACB=∴∠ACD=如图延长CD解析:4【分析】根据垂直的定义得到∠BCD=90︒,延长CD 到H 使DH=CD ,由线段中点的定义得到 AD=BD ,根据全等三角形的性质得到 AH=BC=4.【详解】∵ DC ⊥BC ,∴ ∠BCD=90︒,∵ ∠ACB=120︒,∴ ∠ACD=30︒,如图,延长 CD 到 H 使 DH=CD ,∵ D 为 AB 的中点,∴ AD=BD ,在 ΔADH 与 ΔBCD 中,CD DH ADH BDC AD BD =⎧⎪∠=∠⎨⎪=⎩,∴ ΔADH ≅ΔBCD(SAS),∴ AH=BC=4,∠AHD=∠BCD=90°,∴点A 到CD 的距离为4,故答案为:4.【点睛】本题考察全等三角形的判定与性质,正确作出辅助线是解题的关键.16.12【分析】连接OA过O作OE⊥AB于EOF⊥AC于F根据角平分线的性质求出OE=OF=OD=3再根据三角形的面积公式求出即可【详解】解:连接OA过O作OE⊥AB于EOF⊥AC于F∵OBOC分别平分解析:12【分析】连接OA,过O作OE⊥AB于E,OF⊥AC于F,根据角平分线的性质求出OE=OF=OD=3,再根据三角形的面积公式求出即可.【详解】解:连接OA,过O作OE⊥AB于E,OF⊥AC于F,∵OB, OC分别平分∠ABC和∠ACB,OD⊥BC,OD=3,∴OE=OD=3,OF=OD=3,∵△ABC的周长是8,∴AB+BC+AC=8,∴△ABC的面积S=S△ABO+S△BCO+S△ACO=12×AB×OE+12×BC×OD+12×AC×OF=12×AB×3+12×BC×3+12×AC×3=12×3×(AB+BC+AC)=12×3×8=12,故答案为:12.【点睛】本题考查了三角形的面积和角平分线的性质,能根据角平分线的性质求出OE=OD=OF=3是解此题的关键.17.20【分析】根据△得到由此推出得到答案【详解】解:△∴;∵∴故答案为:20【点睛】此题考查全等三角形的性质:全等三角形的对应角相等熟记性质定理是解题的关键解析:20【分析】根据ABC ≅△AB C ''得到CAB C AB ∠=∠'',由此推出CAC C AB BAB C AB ''∠'+∠=∠'+∠得到答案.【详解】解:ABC ∆≅△AB C '',∴CAB C AB ∠=∠'';∵CAC C AB CAB '∠'+∠=∠,BAB C AB C AB '∠'+∠=∠'',∴CAC C AB BAB C AB ''∠'+∠=∠'+∠,20CAC BAB ∴∠'=∠'=︒.故答案为:20.【点睛】此题考查全等三角形的性质:全等三角形的对应角相等,熟记性质定理是解题的关键. 18.AB =AC 或∠B =∠C 或∠AEB =∠ADC (答案不唯一)【分析】根据全等三角形的判定定理(SASASAAASSSS )即可得出答案【详解】解:添加条件:AB =AC 在△ABE 和△ACD 中∴△ABE ≌△A解析:AB =AC 或∠B =∠C 或∠AEB =∠ADC (答案不唯一)【分析】根据全等三角形的判定定理(SAS ,ASA ,AAS ,SSS )即可得出答案.【详解】解:添加条件:AB =AC ,在△ABE 和△ACD 中,AB AC A A AE AD =⎧⎪∠=∠⎨⎪=⎩,∴△ABE ≌△ACD (SAS );添加条件:∠B =∠C ,在△ABE 和△ACD 中,B C A A AE AD ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABE ≌△ACD (AAS );添加条件:∠AEB =∠ADC ,在△ABE 和△ACD 中,AEB ADC AE ADA A ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△ABE ≌△ACD (ASA );故答案为:AB =AC 或∠B =∠C 或∠AEB =∠ADC (答案不唯一).【点睛】此题主要考查了全等三角形的判定,关键是掌握判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.19.【分析】连接OA过O作OE⊥AB于EOF⊥AC于F根据角平分线上的点到角的两边的距离相等可得点O到ABACBC的距离都相等(即OE=OD=OF)从而可得到△ABC的面积等于周长的一半乘以3代入求出即解析:33【分析】连接OA,过O作OE⊥AB于E,OF⊥AC于F,根据角平分线上的点到角的两边的距离相等可得点O到AB、AC、BC的距离都相等(即OE=OD=OF),从而可得到△ABC的面积等于周长的一半乘以3,代入求出即可.【详解】解:如图,连接OA,过O作OE⊥AB于E,OF⊥AC于F,∵OB、OC分别平分∠ABC和∠ACB,OD⊥BC于D∴OE=OF=OD=3,∵△ABC的周长是22,∴S△ABC=12×AB×OE+12×BC×OD+12×AC×OF=12×(AB+BC+AC)×3=12×22×3=33.故答案为:33.【点睛】本题考查了角平分线的性质和三角形的面积求法,熟知角平分线的性质,并根据题意合理添加辅助线是解题关键.20.22【分析】由三角形全等性质可得mn中有一边为5pq中有一边为3mn与pq中剩余两边相等再由三角形三边关系可知mn与pq中剩余两边最大为7如此即可得到m+n+p+q的最大值【详解】∵△ABC≌△DE解析:22【分析】由三角形全等性质可得m 、n 中有一边为5,p 、q 中有一边为3,m 、n 与p 、q 中剩余两边相等,再由三角形三边关系可知m 、n 与p 、q 中剩余两边最大为7,如此即可得到m+n+p+q 的最大值.【详解】∵△ABC ≌△DEF ,∴m 、n 中有一边为5,p 、q 中有一边为3,m 、n 与p 、q 中剩余两边相等,∵3+5=8,∴两三角形剩余两边最大为7,∴m+n+p+q 的最大值为:3+5+7+7=22.【点睛】本题考查三角形全等与三角形三边关系的综合运用,灵活运用三角形全等的性质及三角形三边关系的应用是解题关键 .三、解答题21.(1)见解析;(2)见解析【分析】(1)根据HL 定理可得Rt △ABC ≌ Rt △DEF ,从而得到∠CBA=∠FED ;(2)由(1)所得结论和已知条件可以证得△AEM ≌△DBM ,从而可得AM=DM .【详解】证明:(1)在Rt ABC △和Rt DEF △中,90C F ∠=∠=︒AC DF AB DE =⎧⎨=⎩∴()Rt Rt HL ABC DEF ≌△△∴CBA FED ∠=∠.(2)∵CBA FED ∠=∠∴ME MB =,且AEMDBM ∠=∠ 又∵AB DE =∴AB EB DE EB -=-即AE DB =在AEM △和DBM △中AE DB AEM DBM ME MB =⎧⎪∠=∠⎨⎪=⎩∴()AEM DBM SAS △≌△∴AM DM =.【点睛】本题考查三角形全等的判定和性质,熟练掌握三角形全等的判定定理HL 、SAS 及三角形全等的性质是解题关键.22.(1)AD BE =,60°;(2)AD BE =,90°,理由见解析;(3)AD BE =,β【分析】(1)设AF 交BD 于G ,证明AOD BOE ≌△△,推出AD BE =,OAD OBE ∠=∠,得到60AFB AOB ∠=∠=︒;(2)证明AOD BOE ≌△△,推出AD BE =,OAD OBE ∠=∠,根据OFA DFB ∠=∠及三角形内角和定理即可证得90AFB AOB ∠=∠=︒;(3)根据(1)与(2)直接得到结论.【详解】(1)证明:设AF 交BO 于G ,∵60AOB DOE ∠=∠=︒,∴AOB BOD DOE BOD ∠-∠=∠-∠,即AOD BOE ∠=∠,∵OA OB =,OD OE =,∴AOD BOE ≌△△,∴AD BE =,OAD OBE ∠=∠,∵OGA FGB ∠=∠,∴180180OGA OAD FGB OBE ∠-∠=∠--∠︒-︒,∴60AFB AOB ∠=∠=︒, 故答案为:AD BE =,60°;(2)AD BE =,90°证明:设AF 交BO 于G ,∵90AOB DOE ︒∠=∠=,∴AOB BOD DOE BOD ∠+∠=∠+∠,即AOD BOE ∠=∠,∵OA OB =,OD OE =,∴AOD BOE ≌△△,∴AD BE =,OAD OBE ∠=∠,∵OGA DGB ∠=∠,∴90AFB AOB ∠=∠=︒;故答案为:AD BE =,90°;(3)证明:由(1)与(2)可得AD BE =,AFB AOB β∠=∠=故答案为:AD BE =,β.【点睛】此题考查全等三角形的判定及性质,等腰三角形的性质,熟练掌握全等三角形的判定及性质是解题的关键.23.详见解析【分析】先利用SSS 证明△AB ≌和△ADE ,得到∠B=∠ADE ,根据AB=AD ,证得∠B=∠ADB ,再利用∠1+∠B+∠ADB=180︒,∠2+∠ADB+∠ADE=180︒,即可推出∠1=∠2.【详解】在△ABC 和△ADE 中,AB AD BC DE AC AE =⎧⎪=⎨⎪=⎩, ∴△ABC ≌△ADE(SSS),∴∠B=∠ADE ,∵AB=AD ,∴∠B=∠ADB ,∵∠1+∠B+∠ADB=180︒,∠2+∠ADB+∠ADE=180︒,∴∠1=∠2.【点睛】此题考查全等三角形的判定及性质,三角形的内角和定理,熟记三角形全等的判定定理是解题的关键.24.详见解析【分析】利用HL 证明Rt △ABD ≌Rt △BAC ,即可得到结论.【详解】∵BD ⊥AD ,AC ⊥BC ,∴∠D=∠C=90︒,在Rt △ABD 和Rt △BAC 中,AB BA BD AC =⎧⎨=⎩, ∴Rt △ABD ≌Rt △BAC (HL ),∴∠ABC =∠BAD .【点睛】此题考查全等三角形的判定及性质,根据题中的已知条件确定两个三角形的对应相等的条件,根据全等的判定定理证得这两个三角形全等是解题的关键.25.(1)∠BDE =105°;(2)见解析;(3)全等,理由见解析.【分析】(1)根据平行线的性质得出∠DEB=∠EBC=35°,再根据三角形的内角和定理即可得到结论;(2)根据三角形的外角性质得出∠EGH >∠ABC ,又根据平行线的性质得出∠ABC=∠ADE ,即可得出答案;(3)根据全等三角形判定的“SAS”定理即可得到结论.【详解】(1)解:∵DE//BC ,∠EBC =35°,∴∠DEB =∠EBC =35°,又∵∠BDE+∠DEB+∠DBE =180°,∠DBE =40°,∴∠BDE =105°;(2)证明:∵∠EGH 是△FBG 的外角,∴∠EGH >∠ABC ,又∵DE//BC ,∴∠ABC =∠ADE ,∴∠EGH >∠ADE ;(3)全等.证明:E 是AC 和FG 的中点,∴AE =CE ,FE =GE ,在△AFE 和△CEG 中,AE CE AEF CEG FE GE =⎧⎪∠=∠⎨⎪=⎩,∴△AFE ≌△CGE (SAS ).【点睛】本题考查了三角形的外角性质,平行线的性质的应用,全等三角形的判定,三角形内角和定理,能运用三角形外角性质进行推理是解此题的关键.26.见解析【分析】通过角平分线上点的性质、D 为BC 中点、DE ⊥AB 、DF ⊥AC 证明出BDE CDF ≌,从而证明∠B=∠C.【详解】∵AD是AD是∠BAC的角平分线,DE⊥AB,DF⊥AC,∴DE=DF,∵D是BC的中点,∴BD=CD∵△BDE与△CDF是直角三角形≌∴BDE CDF∴∠B=∠C.【点睛】本题考查了全等三角形的判定和性质以及角平分线上点的性质,正确证明全等三角形并得出各角之间的关系是本题的关键.。
八年级数学上册《第十二章 全等三角形》单元测试卷及答案(人教版)
![八年级数学上册《第十二章 全等三角形》单元测试卷及答案(人教版)](https://img.taocdn.com/s3/m/a768eb31f68a6529647d27284b73f242336c319f.png)
八年级数学上册《第十二章 全等三角形》单元测试卷及答案(人教版)学校:___________班级:___________姓名:___________考号:___________一、选择题:(本题共8小题,每小题5分,共40分.)1.下列可以判定两个直角三角形全等的条件是( )A .斜边相等B .面积相等C .两对锐角对应相等D .两对直角边对应相等2.到三角形三边的距离相等的点是( )A .三角形三内角平分线的交点;B .三角形三边中线的交点;C .三角形三边高的交点;D .三角形三边中垂线的交点。
3.如图,ABC ≌△DEC ,B 、C 、D 在同一直线上,且CE=5,AC=7,则BD 长( )A .12B .7C .2D .144.如图,在ABC 中,AD 平分BAC ∠,DE AB ⊥于点E ,再添加一个条件仍然不能证明△ADC ≌△ADE 的是( )A .90ACB ∠=︒ B .∠ADC =∠ADE C .AC AE =D .DC DE =5.如图,在△ABC 中,∠A=90°,AB=AC=6,点D 是BC 中点,点E 、F 分别在AB 、AC 上,且BE=AF ,则四边形AEDF 的面积为( )A .6B .7C .D .96.如图,在ABC 中90A ∠=︒,AB =2,BC =5,BD 是ABC ∠的平分线,设ABD 和BDC 的面积分别是1S 和2S ,则S 1:S 2的值为( )A .5:2B .2:5C .12:D .1:5 7.如图,∠A=∠B ,AE=BE ,点D 在AC 边上,∠1=∠2,AE 和BD 相交于点O ,若∠1=38°,则∠BDE 的度数为( )A .71°B .76°C .78°D .80°8.如图所示,点 ,A B 分别是 ,NOF MOF ∠∠ 平分线上的点, AB OF ⊥ 于点 E , BC ⊥MN 于点 C , AD ⊥MN 于点 D ,下列结论错误的是( )A .90AOB ∠= B .AD +BC =ABC .点 O 是 CD 的中点 D .图中与 ∠CBO 互余的角有两个二、填空题:(本题共5小题,每小题3分,共15分.)9.如图,在△ABC 和△DEF 中,已知CB =DF ,∠C =∠D ,要使△ABC ≌△EFD ,还需添加一个条件,那么这个条件可以是 .10.在Rt △ABC 中,∠ACB=90°,BC=2cm ,CD ⊥AB ,在AC 上取一点E ,使EC=BC ,过点E 作EF ⊥AC 交CD 的延长线于点F ,若EF=5cm ,则AE= cm.11.如图,AC 平分∠DCB ,CB =CD ,DA 的延长线交BC 于点E ,若∠BAE =80°,则∠EAC 的度数为 .12.如图,有一个直角三角形ABC ∠C =90° , AC=10 , BC=5 ,一条线段PQ=AB ,P 、Q 两点分别在线段AC 和过点A 且垂直于AC 的射线AX 上运动,动点P 从C 点以2个单位秒的速度出发,问P 点运动 秒时(不包括点C ),才能使△ABC ≌△QPA .13.如图,已知ABC ∆的周长是 21 ,OB ,OC 分别平分ABC ∠和ACB ∠,OD BC ⊥于D ,且OD =4,ABC ∆ 面积是 .三、解答题:(本题共5题,共45分)14.如图,△ABO ≌△CDO ,点B 在CD 上,AO ∥CD ,∠BOD=30°,求∠A 的度数.15.如图,在ABC 中,∠ACB =90°,AC =BC ,BE ⊥CE 于E ,AD CE ⊥于D ,AD =2.5cm ,DE =1.7cm ,求BE 的长.16.如图,DE AC ⊥于点E ,BFAC ⊥于点F .AB =CD ,AE =CF ,BD 交AC 于点M ,求证:MB =MD .17.如图所示,已知 AD//BC , 点 E 为 CD 上一点,AE 、BE 分别平分∠DAB 、∠CBA ,BE 交 AD 的延长线于点 F.求证:(1)△ABE ≌△AEF ;(2) AD+BC=AB18.如图,在△ABC 中,∠B =60°,AD 平分∠BAC ,CE 平分∠BCA ,AD 、CE 交于点F ,CD =CG ,连结FG.(1)求证:FD =FG ;(2)线段FG 与FE 之间有怎样的数量关系,请说明理由;(3)若∠B ≠60°,其他条件不变,则(1)和(2)中的结论是否仍然成立?请直接写出判断结果,不必说明理由参考答案:1.D 2.A 3.A 4.D 5.D 6.B 7.A 8.D9.AC =ED 或∠A =∠FED 或∠ABC =∠F .10.311.50°12.2.513.4214.解:∵△ABO ≌△CDO∴OB=OD ,∠ABO=∠D∴∠OBD=∠D=12(180°﹣∠BOD )=12×(180°﹣30)=75° ∴∠ABC=180°﹣75°×2=30°∴∠A=∠ABC=30°.15.解:∵90ACB ∠=︒∴90BCE ACD ∠+∠=︒∵AD CE BE CE ⊥⊥,∴9090ADC CEB CAD ACD ∠=∠=︒∠+∠=︒, ∴CAD BCE ∠∠=在ACD 与CBE 中{∠ADC =∠CEB∠BCE =∠CAD AC =BC∴()AAS ACD CBE ≌∴BE CD CE AD ==,∴ 2.5 1.70.8cm BE CD CE DE AD DE ==-=-=-=. 答:BE 的长为0.8cm .16.证明:∵AE =CF∴AE +EF =CF +EF ,即AF =CE∵DE ⊥AC 于点E ,BF AC ⊥于点F∴ABF 和CDE 是直角三角形在Rt ABF 和Rt CDE 中{AB =CD AF =CE∴Rt △ABF ≌Rt △CDE(HL),∴BF =DE ;在DEM 和△BFM 中{∠DEM =∠BFM =90°∠DME =∠BMF DE =BF∴△DEM ≌△BFM(AAS),∴MB =MD .17.(1)证明:如图,∵AE 、BE 分别平分∠DAB 、∠CBA∴∠1=∠2,∠3=∠4∵AD∥BC∴∠2=∠F,∠1=∠F在△ABE和△AFE中∴△ABE≌△AFE(AAS)(2)证明:∵△ABE≌△AFE∴BE=EF在△BCE和△FDE中∴△BCE≌△FDE(ASA)∴BC=DF∴AD+BC=AD+DF=AF=AB即AD+BC=AB.18.(1)证明:∵EC平分∠ACB ∴∠FCD=∠FCG∵CG=CD,CF=CF∴△CFD≌△CFG(SAS)∴FD=FG.(2)解:结论:FG=FE.理由:∵∠B=60°∴∠BAC+∠BCA=120°∵AD平分∠BAC,CE平分∠BCA∴∠ACF+∠FAC=12(∠BCA+∠BAC)=60°∴∠AFC=120°,∠CFD=∠AFE=60°∵△CFD≌△CFG∴∠CFD=∠CFG=60°∴∠AFG=∠AFE=60°∵AF=AF,∠FAG=∠FAE∴△AFG≌△AFE(ASA)∴FG=FE.(3)解:结论:(1)中结论成立.(2)中结论不成立. 理由:①同法可证△CFD≌△CFG(SAS)∴FD=FG.②∵∠B≠60°∴无法证明∠AFG=∠AFE∴不能判断△AFG≌△AFE∴(2)中结论不成立。
八年级数学上册第十二章《全等三角形》单元试卷含答案
![八年级数学上册第十二章《全等三角形》单元试卷含答案](https://img.taocdn.com/s3/m/217a9b3bf08583d049649b6648d7c1c708a10b26.png)
八年级数学上册第十二章《全等三角形》单元试卷一、选择题(每小题只有一个正确答案)1.小林同学一不小心将厨房里的一块三角形玻璃摔成了如图所示的三部分,他想到玻璃店配一块完全相同的玻璃,那么他应该选择带哪个部分去玻璃店才能最快配得需要的玻璃()A.B.C.D.选择哪块都行2.如图,AD=BC,要得到△ABD和△CDB全等,可以添加的条件是()A.AB△CDB. △ABC=△CDAC. △A=△CD.AD△BC3.如图,△ABC的三边AB,BC,CA长分别是20,30,40,其三条角平分线将△ABC分为三个三角形,则S△ABO:S△BCO:S△CAO等于()A. 1:1:1B. 1:2:3C. 2:3:4D. 3:4:54.如图,在△ABC和△DEF中,已知AB=DE,BC=EF,根据(SAS)判定△ABC△△DEF,还需的条件是()A. △A=△DB. △B=△EC. △C=△FD.以上三个均可以5.如图,△BAD=△BCD=90°,AB=CB,可以证明△BAD△△BCD的理由是()A. HLB. ASAC. SASD. AAS6.如图,在△ABC中,△ABC=50°,△ACB=60°,点E在BC的延长线上,△ABC的平分线BD与△ACE 的平分线CD相交于点D,连接AD,则下列结论中,正确的是()A. △BAC=60°B. △DOC=85°C.BC=CDD.AC=AB7.如图,△ABC△△DEF,则下列判断错误的是()A.AB=DEB.BE=CFC.AC△DFD. △ACB=△DEF8.如图,△ABC中,AB△BC,BE△AC,△1=△2,AD=AB,则下列结论不正确的是()A.BF=DFB. △1=△EFDC.BF>EFD.FD△BC9.如图,△ABC△△DCB,若△A=80°,△ACB=40°,则△BCD等于()A. 80°B. 60°C. 40°D. 20°10.如图,小牛利用全等三角形的知识测量池塘两端A、B的距离,如图△CDO△△BAO,则只需测出其长度的线段是()A.AOB.CBC.BOD.CD11.如图,已知AD是△ABC的BC边上的高,下列能使△ABD△△ACD的条件是()A.AB=ACB. △BAC=90°C.BD=ACD. △B=45°12.已知如图,△GBC,△BAC的平分线相交于点F,BE△CF于H,若△AFB=40°,△BCF的度数为()A. 40°B. 50°C. 55°D. 60°二、填空题13.如图,图中有6个条形方格图,图上由实线围成的图形是全等形的有__________对.14.已知:如图,AE△BC,DF△BC,垂足分别为E,F,AE=DF,AB=DC,则△_________△△_________.15.如图,AB=CD,BF=DE,E、F是AC上两点,且AE=CF.欲证△B=△D,可先用等式的性质证明AF=________,再用“SSS”证明______△_______得到结论.16.如图,在平面直角坐标系中,△AOB△△COD,则点D的坐标是____________.17.如图,已知AB=AD,△BAE=△DAC,要用SAS判定△ABC△△ADE,可补充的条件是.三、解答题18.如图,CA=CD,CE=CB,求证:AB=DE.19.如图,已知BD为△ABC的平分线,AB=BC,点P在BD上,PM△AD于M,PN△CD于N,求证:PM=PN.20.如图,AD△BC于D,AD=BD,AC=BE.(1)请说明△1=△C;(2)猜想并说明DE和DC有何特殊关系.21.如图所示,△ABC和△DCB有公共边BC,且AB=DC,作AE△BC,DF△BC,垂足分别为E、F,AE=DF,那么求证AC=BD时,需要证明三角形全等的是Rt△ABE△Rt△DCF,△AEC△△DFB.说明理由.答案解析1.【答案】C【解析】A块和B块只保留了原三角形的一个角和部分边,根据这两块中的任一块均不能配一块与原来完全一样的;C块不仅保留了原来三角形的两个角还保留了一边,则可以根据ASA来配一块一样的玻璃.则应带C去.故选C.2.【答案】D【解析】题中已有条件AD=BC,隐含公共边相等,那么就缺少这两边所夹的角相等,即△ADC=△BDC,选项中没有此条件,要想得到这个条件,需添加AD△BC.3.【答案】C【解析】利用同高不同底的三角形的面积之比就是底之比可知选C.4.【答案】B【解析】要使两三角形全等,且根据SAS已知AB=DE,BC=EF,还差夹角,即△B=△E;A、C都不满足要求,D也就不能选取.故选B.5.【答案】A【解析】△△BAD=△BCD=90°,AB=CB,DB=DB,△△BAD△△BCD(HL).故选A.6.【答案】B【解析】△△ABC=50°,△ACB=60°,△△BAC=180°-△ABC-△ACB=180°-50°-60°=70°,故A选项错误,△BD平分△ABC,△△ABO=△ABC=×50°=25°,在△ABO中,△AOB=180°-△BAC-△ABO=180°-70°-25°=85°,△△DOC=△AOB=85°,故B选项正确;△CD平分△ACE,△△CBD=△ABC=×50°=25°,△CD平分△ACE,△△ACD=(180°-60°)=60°,△△BDC=180°-85°-60°=35°,△BC≠CD,故C选项错误;△△ABC=50°,△ACB=60°,△AC≠AB,故D选项错误.故选B.7.【答案】D【解析】△△ABC△△DEF,△AB=DE,A正确;BE=CF,B正确;AC△DF,C正确,△ACB=△DFE,D 判断错误,故选D.8.【答案】B【解析】△AB△BC,BE△AC,△△C+△BAC=△ABE+△BAC=90°,△△C=△ABE,在△ABF与△ADF中,,△△ABF△△ADF,△BF=DF,故A正确,△△ABE=△ADF,△△ADF=△C,△DF△BC,故D正确;△△FED=90°,△DF>EF,△BF>EF;故C正确;△△EFD=△DBC=△BAC=2△1,故B错误.故选B.9.【答案】B【解析】△△ABC△△DCB,△△ACB=△DBC,△ABC=△DCB,△ABC中,△A=80°,△ACB=40°,△△ABC=180°-80°-40°=60°,△△BCD=△ABC=60°,故选B.10.【答案】D【解析】要想利用△CDO△△BAO求得AB的长,只需求得线段DC的长,故选D.11.【答案】A【解析】添加AB=AC,符合判定定理HL;添加BD=DC,符合判定定理SAS;添加△B=△C,符合判定定理AAS;添加△BAD=△CAD,符合判定定理ASA;选其中任何一个均可.故选A.12.【答案】B【解析】作FZ△AE于Z,FY△CB于Y,FW△AB于W,△AF平分△BAC,FZ△AE,FW△AB,△FZ=FW,同理FW=FY,△FZ=FY,FZ△AE,FY△CB,△△FCZ=△FCY,△△AFB=40°,△△ACB=80°,△△ZCY=100°,△△BCF=50°.故选B.13.【答案】(1)和(6),(2)(3)(5).【解析】根据全等形的概念:能够完全重合的两个图形叫做全等形可得答案14.【答案】ABE;DCF【解析】证明:△在△ABE和△DCF中,AE△BC,DF△BC,AE=DF,AB=DC,符合直角三角形全等条件HL,所以△ABE△△DCF,故填ABE;DCF.15.【答案】CE;△ABF;△CDE【解析】先运用等式的性质证明AF=CE,再用“SSS”证明△ABF△△CDE得到结论.故答案为CE,△ABF,△CDE.16.【答案】(-2,0)【解析】△△AOB△△COD,△OD=OB,△点D的坐标是(-2,0).故答案为(-2,0).17.【答案】AC=AE【解析】可补充的条件是:当AC=AE,△ABC△△ADE(SAS).18.【答案】证明:在△ACB和△DCE中,,△△ACB△△DCE(SAS),△AB=DE.【解析】直接利用SAS判定△ACB△△DCE,再根据全等三角形的性质可得AB=DE.19.【答案】证明:△BD为△ABC的平分线,△△ABD=△CBD,在△ABD和△CBD中,,△△ABD△△CBD(SAS),△△ADB=△CDB,△点P在BD上,PM△AD,PN△CD,△PM=PN.【解析】根据角平分线的定义可得△ABD=△CBD,然后利用“边角边”证明△ABD和△CBD全等,根据全等三角形对应角相等可得△ADB=△CDB,然后根据角平分线上的点到角的两边的距离相等证明即可.20.【答案】解:(1)△AD△BC于D,△△BDE=△ADC=90°.△AD=BD,AC=BE,△△BDE△△ADC (HL).△△1=△C.(2)由(1)知△BDE△△ADC.△DE=DC.【解析】欲证△1=△C;DE和DC的关系,只需证明△DBE△△DAC即可.21.【答案】证明:△AE△BC,DF△BC,垂足分别为E、F,△△AEB=△DFC=90°,而AB=DC,AE=DF,△Rt△ABE△Rt△DCF,△BE=CF,△EC=BF,而AE=DF,△△AEC△△DFB.【解析】需先根据HL判定Rt△ABE△Rt△DCF,从而得出BE=CF,则推出EC=BF,再根据SAS判定△AEC△△DFB,求出AC=BD.。
第13章 全等三角形 华东师大版八年级数学上册单元测试(含答案)
![第13章 全等三角形 华东师大版八年级数学上册单元测试(含答案)](https://img.taocdn.com/s3/m/6c9ef7367f21af45b307e87101f69e314232fa69.png)
第13章 全等三角形(90分钟 100分)一、选择题(每小题3分,共24分)1.△ABC中,AB=AC=2,∠B=60°,则BC=( )A.2B.3C.4D.52.(2024·泉州期末)下列命题的逆命题是真命题的是( )A.全等三角形的对应角相等B.对顶角相等C.若x>y,则x-y>0D.若C是线段AB的中点,则AC=BC3.(2024·南通质检)如图,已知△ABC≌△DEC,∠ACB=100°,∠D=35°,则∠E=( )A.35°B.45°C.55°D.无法计算4.如图,在Rt△ABC中,∠ACB=90°,∠B=30°,要求用圆规和直尺作图,把它分成两个三角形,其中一个三角形是等腰三角形.其作法错误的是( )5.(2023·台州中考)如图,锐角三角形ABC中,AB=AC,点D,E分别在边AB,AC上,连结BE,CD.下列命题中,假命题是( )A.若CD=BE,则∠DCB=∠EBCB.若∠DCB=∠EBC,则CD=BEC.若BD=CE,则∠DCB=∠EBCD.若∠DCB=∠EBC,则BD=CE6.如图,在Rt△ABC中,∠C=90°,AC=12 cm,BC=6 cm,线段PQ=AB,P,Q两点分别在线段AC和AC的垂线AX上移动,若以A,B,C为顶点的三角形与以A,P,Q为顶点的三角形全等,则AP的值为( )A.8 cmB.12 cmC.12 cm或6 cmD.12 cm或8 cm7.如图,OE是∠AOB的平分线,BD⊥OA,AC⊥OB,垂足分别为D,C,BD,AC都经过点E,则图中全等的三角形共有对( )A.3B.4C.5D.68.(2024·天津期中)如图,C为线段AE上一动点(不与点A,E重合),在AE同侧分别作正△ABC和正△CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连结PQ.以下五个结论:①AD=BE;②PQ∥AE;③AP=BQ;④连结OC,OC平分∠AOE;⑤∠AOB=60°.恒成立的结论有( )A.①⑤B.①②⑤C.①②③⑤D.①②③④⑤二、填空题(每小题4分,共24分)9.定理“直角三角形的两个锐角互余”的逆定理是.10.检测房梁是否水平,可以采用下面的方法:在等腰直角三角尺斜边中点拴一条线绳,线绳的另一端拴一个铅锤,把这块三角尺的斜边贴在房梁上,结果线绳经过三角尺的顶点,则可以判断房梁是水平的.这样做的根据是:.11.如图,D在BC边上,△ABC≌△ADE,∠EAC=44°,则∠B的度数为.12.如图,在△ABC中,∠B=30°,∠C=50°,通过观察尺规作图的痕迹,∠DEA的度数是.13.(2023·重庆中考A卷)如图,在Rt△ABC中,∠BAC=90°,AB=AC,点D为BC上一点,连结AD.过点B作BE⊥AD于点E,过点C作CF⊥AD交AD的延长线于点F.若BE=4,CF=1,则EF的长度为.14.如图,∠BOC=60°,A是BO的延长线上一点,OA=10 cm,动点P从点A出发,沿AB 以3 cm/s的速度移动,动点Q从点O出发沿OC以2 cm/s的速度移动,若点P,Q 同时出发,当△OPQ是等腰三角形时,移动的时间是.三、解答题(共52分)15.(6分)(2023·云南中考)如图,C是BD的中点,AB=ED,AC=EC.求证:△ABC≌△EDC.16.(8分)(2024·北京期中)下面是“过直线上一点作已知直线的垂线”的尺规作图过程:已知:如图,点P在直线l上.求作:直线PQ,使PQ⊥l.作法:①以点P为圆心,任意长为半径画弧,交直线l于A,B两点,AB长为半径画弧,两弧在直线l上方交于点Q,②分别以A,B为圆心,大于12③作直线PQ.直线PQ即为所求的垂线.(1)使用直尺和圆规,补全图形(保留作图痕迹);(2)完成下面的证明.证明:连结AQ,BQ,∵根据作法,有AQ=BQ,AP=BP,∴PQ⊥AB,即PQ⊥l.()(填推理的依据)17.(8分)如图,在长方形纸片ABCD中,点P在BC边上,将△CDP沿DP折叠,点C 落在点E处,PE,DE分别交AB于点G,F,且GF=GP.(1)求证:△GEF≌△GBP;(2)若PC=2,求BF的长.18.(8分)(2023·苏州中考)如图,在△ABC中,AB=AC,AD为△ABC的角平分线.以点A 为圆心,AD长为半径画弧,与AB,AC分别交于点E,F,连结DE,DF.(1)求证:△ADE≌△ADF;(2)若∠BAC=80°,求∠BDE的度数.19.(10分)已知,如图,AD为△ABC的角平分线,且AD=AC,E为AD延长线上的一点,AE=AB.(1)求证:△ABD≌△AEC;(2)求证:BE=EC.20.(12分)如图,△ABC是等边三角形,点D在AC上,点E在BC的延长线上,且BD=DE.(1)若点D是AC的中点,如图1,则线段AD与CE的数量关系是;(2)若点D不是AC的中点,如图2,试判断AD与CE的数量关系,并证明你的结论;(提示:过点D作DF∥BC,交AB于点F)(3)若点D在线段AC的延长线上,(2)中的结论是否仍成立?如果成立,请给予证明;如果不成立,请说明理由.【附加题】(10分)(1)已知△ABC中,∠BAC=60°,以AB和BC为边向外作等边△ABD和△BCE.①连结AE,CD,如图1,求证:∠BCD=∠AEB;②若AB⊥BC,延长AB交DE于点M,求证:点M为DE的中点;(2)如图3,HE⊥CE于点E,∠BEH=30°,点G在EH上运动,以BG为边作等边△BGF,当BF的长最小时,求∠FBE的度数.第13章 全等三角形(90分钟 100分)一、选择题(每小题3分,共24分)1.△ABC中,AB=AC=2,∠B=60°,则BC=(A)A.2B.3C.4D.52.(2024·泉州期末)下列命题的逆命题是真命题的是(C)A.全等三角形的对应角相等B.对顶角相等C.若x>y,则x-y>0D.若C是线段AB的中点,则AC=BC3.(2024·南通质检)如图,已知△ABC≌△DEC,∠ACB=100°,∠D=35°,则∠E=(B)A.35°B.45°C.55°D.无法计算4.如图,在Rt△ABC中,∠ACB=90°,∠B=30°,要求用圆规和直尺作图,把它分成两个三角形,其中一个三角形是等腰三角形.其作法错误的是(B)5.(2023·台州中考)如图,锐角三角形ABC中,AB=AC,点D,E分别在边AB,AC上,连结BE,CD.下列命题中,假命题是(A)A.若CD=BE,则∠DCB=∠EBCB.若∠DCB=∠EBC,则CD=BEC.若BD=CE,则∠DCB=∠EBCD.若∠DCB=∠EBC,则BD=CE6.如图,在Rt△ABC中,∠C=90°,AC=12 cm,BC=6 cm,线段PQ=AB,P,Q两点分别在线段AC和AC的垂线AX上移动,若以A,B,C为顶点的三角形与以A,P,Q为顶点的三角形全等,则AP的值为(C)A.8 cmB.12 cmC.12 cm或6 cmD.12 cm或8 cm7.如图,OE是∠AOB的平分线,BD⊥OA,AC⊥OB,垂足分别为D,C,BD,AC都经过点E,则图中全等的三角形共有 对(B)A.3B.4C.5D.68.(2024·天津期中)如图,C为线段AE上一动点(不与点A,E重合),在AE同侧分别作正△ABC和正△CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连结PQ.以下五个结论:①AD=BE;②PQ∥AE;③AP=BQ;④连结OC,OC平分∠AOE;⑤∠AOB=60°.恒成立的结论有(D)A.①⑤B.①②⑤C.①②③⑤D.①②③④⑤二、填空题(每小题4分,共24分)9.定理“直角三角形的两个锐角互余”的逆定理是 有两个角互余的三角形是直角三角形 .10.检测房梁是否水平,可以采用下面的方法:在等腰直角三角尺斜边中点拴一条线绳,线绳的另一端拴一个铅锤,把这块三角尺的斜边贴在房梁上,结果线绳经过三角尺的顶点,则可以判断房梁是水平的.这样做的根据是: 等腰三角形的底边上的中线、底边上的高重合 .11.如图,D在BC边上,△ABC≌△ADE,∠EAC=44°,则∠B的度数为 68° .12.如图,在△ABC中,∠B=30°,∠C=50°,通过观察尺规作图的痕迹,∠DEA的度数是 85° .13.(2023·重庆中考A卷)如图,在Rt△ABC中,∠BAC=90°,AB=AC,点D为BC上一点,连结AD.过点B作BE⊥AD于点E,过点C作CF⊥AD交AD的延长线于点F.若BE =4,CF =1,则EF 的长度为 3 .14.如图,∠BOC =60°,A 是BO 的延长线上一点,OA =10 cm,动点P 从点A 出发,沿AB 以3 cm/s 的速度移动,动点Q 从点O 出发沿OC 以2 cm/s 的速度移动,若点P ,Q 同时出发,当△OPQ 是等腰三角形时,移动的时间是 2 s 或10 s .三、解答题(共52分)15.(6分)(2023·云南中考)如图,C 是BD 的中点,AB =ED ,AC =EC.求证:△ABC ≌△EDC.【解析】∵C 是BD 的中点,∴BC =DC ,在△ABC 和△EDC 中,AB =ED AC =EC BC =DC,∴△ABC ≌△EDC (S.S.S.).16.(8分)(2024·北京期中)下面是“过直线上一点作已知直线的垂线”的尺规作图过程:已知:如图,点P 在直线l 上.求作:直线PQ ,使PQ ⊥l.作法:①以点P 为圆心,任意长为半径画弧,交直线l 于A ,B 两点,②分别以A ,B 为圆心,大于12AB 长为半径画弧,两弧在直线l 上方交于点Q ,③作直线PQ.直线PQ即为所求的垂线.(1)使用直尺和圆规,补全图形(保留作图痕迹);(2)完成下面的证明.证明:连结AQ,BQ,∵根据作法,有AQ=BQ,AP=BP,∴PQ⊥AB,即PQ⊥l.(等腰三角形底边上的中线与底边上的高重合)(填推理的依据)【解析】(1)补全的图形如图所示:【解析】(2)连结AQ,BQ,∵根据作法,有AQ=BQ,AP=BP,∴PQ⊥AB,即PQ⊥l.(等腰三角形底边上的中线与底边上的高重合)17.(8分)如图,在长方形纸片ABCD中,点P在BC边上,将△CDP沿DP折叠,点C 落在点E处,PE,DE分别交AB于点G,F,且GF=GP.(1)求证:△GEF≌△GBP;【解析】(1)∵纸片ABCD为长方形,∴∠B=∠C=90°,由折叠的性质得,∠E=∠C,∴∠E=∠B,在△GEF 和△GBP 中,∠E =∠B ∠EGF =∠BGP GF =GP,∴△GEF ≌△GBP (A.A.S.);(2)若PC =2,求BF 的长.【解析】(2)由△GEF ≌△GBP 得GE =GB ,∵GF =GP ,∴BF =GB +GF =GE +GP =PE ,由折叠的性质得,PE =PC =2,∴BF =2.18.(8分)(2023·苏州中考)如图,在△ABC 中,AB =AC ,AD 为△ABC 的角平分线.以点A 为圆心,AD 长为半径画弧,与AB ,AC 分别交于点E ,F ,连结DE ,DF.(1)求证:△ADE ≌△ADF ;【解析】(1)∵AD 是△ABC 的角平分线,∴∠BAD =∠CAD.由作图知:AE =AF.在△ADE 和△ADF 中,AE =AF ∠BAD =∠CAD AD =AD,∴△ADE ≌△ADF (S.A.S.);(2)若∠BAC =80°,求∠BDE 的度数.【解析】(2)∵∠BAC =80°,AD 为△ABC 的角平分线,∴∠EAD =12∠BAC =40°,由作图知:AE =AD ,∴∠AED =∠ADE ,∴∠ADE =12×(180°-40°)=70°,∵AB =AC ,AD 为△ABC 的角平分线,∴AD ⊥BC ,∴∠BDE =90°-∠ADE =20°.19.(10分)已知,如图,AD 为△ABC 的角平分线,且AD =AC ,E 为AD 延长线上的一点,AE =AB.(1)求证:△ABD≌△AEC;【证明】(1)∵AD平分∠BAC,∴∠BAD=∠DAC,在△ABD与△AEC中,AB=AE∠BAD=∠EAC AD=AC,∴△ABD≌△AEC(S.A.S.); (2)求证:BE=EC.【证明】(2)∵AD=AC,AE=AB,∴∠ACD=∠ADC=180°-∠DAC2,∠ABE=∠AEB=180°-∠BAD2,∴∠ACD=∠ADC=∠ABE=∠AEB,∵∠BDE=∠ADC,∴∠BDE=∠BED,∴BD=BE,∵△ABD≌△AEC,∴BD=EC,∴BE=EC.20.(12分)如图,△ABC是等边三角形,点D在AC上,点E在BC的延长线上,且BD=DE.(1)若点D是AC的中点,如图1,则线段AD与CE的数量关系是AD=CE;【解析】(1)AD=CE,理由如下:∵△ABC是等边三角形,∴∠ABC=∠ACB=60°,AB=AC=BC.∵点D为AC的中点,∴∠DBC=30°,AD=DC,∵BD=DE,∴∠E=∠DBC=30°,∵∠ACB=∠E+∠CDE,∴∠CDE=∠E=30°,∴CD=CE,又∵AD=DC,∴AD=CE.(2)若点D不是AC的中点,如图2,试判断AD与CE的数量关系,并证明你的结论;(提示:过点D作DF∥BC,交AB于点F)【解析】(2)AD=CE,理由如下:如图,过点D作DF∥BC,交AB于点F,则∠ADF=∠ACB=60°,∵∠A=60°,∴△AFD是等边三角形,∴AD=DF=AF,∠AFD=60°,∴∠BFD=∠DCE=180°-60°=120°,∵DF∥BC,∴∠FDB=∠DBE=∠E,在△BFD和△DCE中,∠FDB=∠E∠BFD=∠DCE BD=DE,∴△BFD≌△DCE(A.A.S.),∴DF=EC,又∵AD=DF,∴AD=CE;(3)若点D在线段AC的延长线上,(2)中的结论是否仍成立?如果成立,请给予证明;如果不成立,请说明理由.【解析】(3)结论仍成立,理由如下:如图,过点D作DP∥BC,交AB的延长线于点P,则∠ABC=∠APD=60°,∠ACB=∠ADP=60°,∵∠A=60°,∴△APD是等边三角形,∴AP=PD=AD,∴∠DCE=∠ACB=∠P,∵DP∥BC,∴∠PDB=∠CBD,∵DB=DE,∴∠DBC=∠DEC,∴∠PDB=∠DEC,在△BPD和△DCE中,∠PDB=∠CED ∠P=∠DCE BD=DE,∴△BPD≌△DCE(A.A.S.),∴PD=CE,又∵AD=PD,∴AD=CE.【附加题】(10分)(1)已知△ABC中,∠BAC=60°,以AB和BC为边向外作等边△ABD和△BCE.①连结AE,CD,如图1,求证:∠BCD=∠AEB;②若AB⊥BC,延长AB交DE于点M,求证:点M为DE的中点;【解析】(1)①∵△ABD和△BCE是等边三角形,∴BD=BA,BC=BE,∠DBA=∠EBC=60°,∴∠DBA+∠ABC=∠EBC+∠ABC,即∠DBC=∠ABE,在△DBC和△ABE中,BD=BA∠DBC=∠ABE BC=BE,∴△DBC≌△ABE(S.A.S.),∴∠BCD=∠AEB;②如图,过点E作AD的平行线,交AM的延长线于点F,∵AD∥EF,∴∠DAM=∠AFE=60°,∵AB⊥BC,∴∠EBF=180°-∠ABC-∠CBE=30°,∴∠BEF=90°,在△ABC与△FEB中,∠BAC=∠EFB ∠ABC=∠FEB BC=EB,∴△ABC≌△FEB(A.A.S.),∴AB=EF=AD,在△MAD与△MFE中,∠AMD=∠FME ∠DAM=∠EFM AD=FE,∴△MAD≌△MFE(A.A.S.),∴DM=EM,即点M为DE的中点;(2)如图3,HE⊥CE于点E,∠BEH=30°,点G在EH上运动,以BG为边作等边△BGF,当BF的长最小时,求∠FBE的度数.【解析】(2)当BF的长最小时,即BG最小,则BG⊥HE,当以BG为边在BG左侧作等边△BGF时,如图所示:可得∠GBE=180°-∠BEH-∠BGE=60°,∵△FBG为等边三角形,∴∠FBG=60°,∴∠FBE=∠FBG+∠GBE=120°;当以BG为边在BG右侧作等边△BGF时,如图所示:此时点F在BE上,∴∠FBE=0°,综上所述,∠FBE=0°或120°.。
八年级数学《全等三角形》试卷含答案)
![八年级数学《全等三角形》试卷含答案)](https://img.taocdn.com/s3/m/4ce315eebb4cf7ec4afed0fe.png)
八年级数学第十二章《全等三角形》单元试卷考试时间100分钟满分100分一、选择题(每题3分共30分)1、如图1,已知∠A=∠D,∠1=∠2,那么要得到△ABC≌△DEF,还应给出的条件是()A、∠E=∠BB、ED=BCC、AB=EFD、AF=CD2、如图2在△ABC中,D、E分别是边AC、BC上的点,若△ADB≌△EDB≌△EDC,则∠C的度数为()A、15°B、20°C、25°D、30°3、如图3所示,在△ABC中,∠B=∠C,AD为△ABC的中线,那么下列结论错误的是()A、△ABD≌△ACDB、AB=AC、AD是△ACD的高D、△ABC是等边三角形图1 图2 图34、如图4,已知△ABC的六个元素,则下面甲、乙、丙三个三角形中和△ABC 全等的图形是()A、甲和乙B、乙和丙C、只有乙D、只有丙图45、如图5,AO=BO,CO=DO,AD与BC交于E,则图中全等三角形的对数为()A、2对B、3对C、4对D、5对6、如图6,已知∠1=∠2,欲证△ABD≌△ACD,还必须从下列选项中补选一个,则错误的选项是()A、∠ADB=∠ADCB、∠B=∠CC、BD=CDD、AB=AC图5 图67、下列说法正确的有()①角平分线上任意一点到角两边的距离相等②到一个角两边的距离相等的点在这个角的平分线上③三角形三个角平分线的交点到三个顶点的距离相等④三角形三条角平分线的交点到三边的距离相等A、1个B、2个C、3个D、4个8、如果△ABC≌△DEF,△DEF的周长为13,DE=3,EF=4,则AC的长()A、13B、3C、4D、69、已知如图7,AC⊥BC,DE⊥AB,AD平分∠BAC,下面结论错误的是()A、BD+ED=BCB、DE平分∠ADBC、AD平分∠EDCD、ED+AC>AD10、如图8,某同学把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是()A、带①去B、带②去C、带③去D、带①②③去图7 图8二、填空(每题3分,共15分)11、如图9已知△OA`B`是△AOB 绕点O旋转60°得到的,那么△OA`B`与△OAB 的关系是 ,如果∠AOB=40°,∠B=50°,则∠A`OB`= ∠AOB`= 。
八年级数学上册《全等三角形》单元测试卷(含答案解析)
![八年级数学上册《全等三角形》单元测试卷(含答案解析)](https://img.taocdn.com/s3/m/a4441b4259fafab069dc5022aaea998fcc2240d7.png)
八年级数学上册《全等三角形》单元测试卷(含答案解析)一.选择题1.下列各说法一定成立的是()A.画直线AB=10厘米B.已知A、B、C三点,过这三点画一条直线C.画射线OB=10厘米D.过直线AB外一点画一条直线和直线AB平行2.尺规作图的画图工具是()A.刻度尺、量角器B.三角板、量角器C.直尺、量角器D.没有刻度的直尺和圆规3.如图,生活中都把自行车的几根梁做成三角形的支架,这是利用三角形的()A.全等形B.稳定性C.灵活性D.对称性4.如图,点A,D,C,F在同一条直线上,AD=CF,∠F=∠ACB,再补充下列一个条件,不能证明△ABC≌△DEF的是()A.BC=EF B.AB∥DE C.∠B=∠E D.AB=DE5.如图,某同学把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么,最省事的方法是()A.带①去 B.带②去 C.带③去 D.带①去和带②去6.已知△ABC≌△DEF,∠A=∠B=30°,则∠E的度数是()A.30°B.120°C.60°D.90°7.如图,AB=CD,∠ABC=∠DCB,AC与BD交于点E,在图中全等三角形有()A.2对B.3对C.4对D.5对8.下列说法正确的是()A.两个等边三角形一定是全等图形B.两个全等图形面积一定相等C.形状相同的两个图形一定全等D.两个正方形一定是全等图形9.如果两个图形全等,那么这两个图形必定是()A.形状大小均相同B.形状相同,但大小不同C.大小相同,但形状不同D.形状大小均不相同10.如图,在△ABC与△AEF中,AB=AE,BC=EF,∠ABC=∠AEF,∠EAB=40°,AB 交EF于点D,连接EB.下列结论:①∠FAC=40°;②AF=AC;③∠EBC=110°;④AD=AC;⑤∠EFB=40°,正确的个数为()个.A.1 B.2 C.3 D.4二.填空题11.下列语句表示的图形是(只填序号)①过点O的三条直线与另条一直线分别相交于点B、C、D三点:.②以直线AB上一点O为顶点,在直线AB的同侧画∠AOC和∠BOD:.③过O点的一条直线和以O为端点两条射线与另一条直线分别相交于点B、C、D三点:.12.如图,△ABC≌△ABD,∠C=30°,∠ABC=85°,则∠BAD的度数为13.下列说法:其中正确的是.(填序号)①用圆规在已知直线上截取一条线段等于已知线段属于尺规作图;②射线AB与射线BA表示同一条射线;③若AC=BC,则点C是线段AB的中点;④钟表在8:30时,时针与分针的夹角是60°.14.如图,四边形ABCD与四边形A′B′C′D′全等,则∠A′=°,∠A=°,B′C′=,AD=.15.如图,4个全等的长方形组成如图所示的图形,其中长方形的边长分别为a和b,且a>b,求出阴影部分的面积为.16.如图,在孔雀开屏般漂亮的4×4正方形网格中,∠1+∠2+∠3+∠4+∠5+∠6+∠7=.17.如图,在△ABC和△BAD中,BC=AD,请你再补充一个条件,使△ABC≌△BAD.你补充的条件是(只填一个).18.如图,在△ACD与△BCE中,AD与BE相交于点P,若AC=BC,AD=BE,CD =CE,∠DCE=55°,则∠APB的度数为.19.两组邻边分别相等的四边形叫做“筝形”,如图,四边形ABCD是一个筝形,其中AD=CD,AB=CB,晓明同学在探究筝形的性质时,得到如下结论:①△ABD≌△CBD;②AO=CO═AC;③AC⊥BD;其中,正确的结论有个.20.如图所示,已知AF=DC,BC∥EF,若要用“SAS”去证△ABC≌△DEF,则需添加的条件是.三.解答题21.如图,已知OA=OC,OB=OD,∠AOC=∠BOD.求证:△AOB≌△COD.22.如图,已知△ABC≌△DEB,点E在AB上,DE与AC相交于点F,若DE=10,BC=4,∠D=30°,∠C =70°.(1)求线段AE的长.(2)求∠DBC的度数.23.如图,已知BD平分∠ABC,∠A=∠C.求证:△ABD≌△CBD.24.已知:如图,AB∥DE,AC∥DF,AB=DE,AC=DF.求证:BC=EF.25.如图,△ACF≌△DBE,∠E=∠F,若AD=11,BC=7.(1)试说明AB=CD.(2)求线段AB的长.26.我们知道能完全重合的图形叫做全等图形,因此,如果两个四边形能完全重合,那么这两个四边形全等,也就是说,当两个四边形的四个内角、四条边都分别对应相等时,这两个四边形全等.请借助三角形全等的知识,解决有关四边形全等的问题.如图,已知,四边形ABCD和四边形A′B′C′D′中,AB=A′B′,BC=B′C′,∠B=∠B′,∠C=∠C′,现在只需补充一个条件,就可得四边形ABCD≌四边形A′B′C′D′.下列四个条件:①∠A=∠A′;②∠D=∠D′;③AD=A′D′;④CD=C′D′(1)其中,符合要求的条件是.(直接写出编号)(2)选择(1)中的一个条件,证明四边形ABCD≌四边形A′B′C′D′.参考答案与解析一.选择题1.解:A、直线无限长,错误;B、若A、B、C三点不共线,则无法画出一条直线,错误;C、射线无限长,错误;D、过直线AB外一点只能画一条直线与AB平行,正确.故选:D.2.解:尺规作图的画图工具是没有刻度的直尺和圆规.故选:D.3.解:生活中都把自行车的几根梁做成三角形的支架,这是因为三角形具有稳定性.故选:B.4.解:∵AD=CF,∴AC=DF,∵∠F=∠ACB,∴当添加BC=EF时,可根据”SAS“判断△ABC≌△DEF;当添加∠A=∠EDF(或AB∥DE)时,可根据”ASA“判断△ABC≌△DEF;当添加∠B=∠E时,可根据”AAS“判断△ABC≌△DEF.故选:D.5.解:第①块不仅保留了原来三角形的两个角还保留了一边,则可以根据ASA来配一块一样的玻璃.故选:A.6.解:∵△ABC≌△DEF,∠A=∠B=30°,∴∠D=∠E=∠A=∠B=30°,则∠E的度数是30°.故选:A.7.解:①△ABC≌△DCB;∵AB=CD,∠ABC=∠DCB,∵BC=CB,∴△ABC≌△DCB;②△ABE≌△DCE,∵△ABC≌△DCB,∴∠BAC=∠CDB,∵AB=CD,∠AEB=∠DEC,∴△ABE≌△CDE;③△ABD≌△DCA,∵∠BAC=∠CDB,∠AEB=∠DEC,∴∠ABD=∠DCA,∵AB=CD,BD=AC,∴△ABD≌△DCA;故选:B.8.解:A、两个等边三角形相似但不一定全等,故说法错误,不符合题意;B、两个全等图形的面积一定相等,正确,符合题意;C、形状相同的两个图形相似但不一定全等,故说法错误,不符合题意;D、两个正方形相似但不一定全等,故说法错误,不符合题意,故选:B.9.解:能够完全重合的两个图形叫做全等形,所以如果两个图形全等,那么这两个图形必定是形状大小均相同.故选:A.10.解:在△AEF和△ABC中,,∴△AEF≌△ABC(SAS),∴∠EAF=∠BAC,AF=AC,故②正确∴∠EAB=∠FAC=40°,故①正确,∴∠C=∠AFC=∠AFE=70°,∴∠EFB=180°﹣70°﹣70°=40°,故⑤正确,∵AE=AB,∠EAB=40°,∴∠AEB=∠ABE=70°,若∠EBC=110°,则∠ABC=40°=∠EAB,∴∠EAB=∠ABC,∴AE∥BC,显然与题目条件不符,故③错误,若AD=AC,则∠ADF=∠AFD=70°,∴∠DAF=40°,这个显然与条件不符,故④错误.故选:C.二.填空题11.解:①过点O的三条直线与另一条直线分别相交于点B、C、D三点的图形为(3);②以直线AB上一点O为顶点,在直线AB的同侧画∠AOC和∠BOD的图形为(2);③过O点的一条直线和以O为端点两条射线与另一条直线分别相交于点B、C、D三点的图形为(1).故答案为:(3),(2),(1).12.解:∵∠C=30°,∠ABC=85°.∴∠CAB=180°﹣∠C﹣∠ABC=65°,∵△ABC≌△ABD,∴∠BAD=∠CAB=65°.故答案为:65°.13.解:①用圆规在已知直线上截取一条线段等于已知线段属于尺规作图,所以本说法正确;②射线AB与射线BA表示同一条射线,射线有方向,所以本说法错误;③若AC=BC,则点C是线段AB的中点,A,B,C不一定在一条直线上,所以本说法错误;④钟表在8:30时,时针与分针的夹角是75°,所以本说法错误.故答案为:①.14.解:由题意得:∠A′=70°,∠A=∠A′=70°,B′C′=BC=12,AD=A′D′=6.故答案为:70°,70°,12,6.15.解:∵如图所示的图形是4个全等的长方形组成的图形,∴阴影部分的边长为a﹣b的正方形,∴阴影部分的面积=(a﹣b)2,故答案为:(a﹣b)2.16.解:在△AEF和△LBA中,∴△AEF≌△LBA(SAS),∴∠7=∠EAF,∴∠1+∠7=90°,同理可得∠2+∠6=90°,∠3+∠5=90°,而∠4=45°,∴∠1+∠2+∠3+∠4+∠5+∠6+∠7=90°+90°+90°+45°=315°.故答案为315°.17.解:欲证两三角形全等,已有条件:BC=AD,AB=AB,所以补充两边夹角∠CBA=∠DAB便可以根据SAS证明;补充AC=BD便可以根据SSS证明.故补充的条件是AC=BD(或∠CBA=∠DAB).故答案是:AC=BD(或∠CBA=∠DAB).18.解:在△ACD和△BCE中,,∴△ACD≌△BCE(SSS),∴∠D=∠E,∵∠DPE+∠1+∠E=∠DCE+∠2+∠D,而∠1=∠2,∴∠DPE=∠DCE=55°,∴∠APB=∠DPE=55°.故答案为55°.19.解:在△ABD与△CBD中,,∴△ABD≌△CBD(SSS),故①正确;∴∠ADB=∠CDB,在△AOD与△COD中,,∴△AOD≌△COD(SAS),∴∠AOD=∠COD=90°,AO=OC=AC,∴AC⊥DB,故②③正确.故答案是:3.20.解:需要添加条件为BC=EF,理由是:∵AF=DC,∴AF+FC=DC+FC,即AC=DF,∵BC∥EF,∴∠BCA=∠EFD,∵在△ABC和△DEF中∴△ABC≌△DEF(SAS),故答案为:BC=EF.三.解答题21.证明:∵∠AOC=∠BOD,∴∠AOC﹣∠AOD=∠BOD﹣∠AOD,即∠COD=∠AOB,在△AOB和△COD中,,∴△AOB≌△COD(SAS).22.解:(1)∵△ABC≌△DEB,DE=10,BC=4,∴AB=DE=10,BE=BC=4,∴AE=AB﹣BE=6;(2)∵△ABC≌△DEB,∠D=30°,∠C=70°,∴∠BAC=∠D=30°,∠DBE=∠C=70°,∴∠ABC=180°﹣30°﹣70°=80°,∴∠DBC=∠ABC﹣∠DBE=10°.23.证明:∵BD平分∠ABC,∴∠ABD=∠CBD,在△ABD与△CBD中,,∴△ABD≌△CBD(AAS).24.证明:如图,∵AB∥DE,AC∥DF,∴四边形AMDN是平行四边形,∴∠A=∠D,在△ABC和△DEF中,,∴△ABC≌△DEF(SAS),∴BC=EF.25.解:(1)∵△ACF≌△DBE,∴AC=DB,∴AC﹣BC=DB﹣BC,即AB=CD(2)∵AD=11,BC=7,∴AB=(AD﹣BC)=(11﹣7)=2即AB=226.解:(1)符合要求的条件是①②④,故答案为:①②④;(2)选④,证明:连接AC、A′C′,在△ABC与△A′B′C′中,,∴△ABC≌△A′B′C′(SAS),∴AC=A′C′,∠ACB=∠A′C′B′,∵∠BCD=∠B′C′D′,∴∠BCD﹣∠ACB=∠B′C′D′﹣∠A′C′B′,∴∠ACD=∠A′C′D′,在△ACD和△A′C′D中,,∴△ACD≌△A′C′D′(SAS),∴∠D=∠D,∠DAC=∠D′A′C′,DA=D′A′,∴∠BAC+∠DAC=∠B′A′C′+∠D′A′C′,即∠BAD=∠B′A′D′,∴四边形ABCD和四边形A′B′C′D′中,AB=A′B′,BC=B′C′,AD=A′D′,DC=D′C′,∠B=∠B′,∠BCD=∠B′C′D′,∠D=∠D′,∠BAD=∠B′A′D′,∴四边形ABCD≌四边形A′B′C′D′.。
人教版八年级数学上:第12章《全等三角形》单元测试(含答案)(含答案)
![人教版八年级数学上:第12章《全等三角形》单元测试(含答案)(含答案)](https://img.taocdn.com/s3/m/f6444821be23482fb5da4c12.png)
第12章全等三角形一、选择题1.如图,在△ABC中,∠ABC=45°,AC=8cm,F是高AD和BE的交点,则BF的长是()A.4cm B.6cm C.8cm D.9cm2.如图,将正方形OABC放在平面直角坐标系中,O是原点,A的坐标为(1,),则点C的坐标为()A.(﹣,1) B.(﹣1,) C.(,1)D.(﹣,﹣1)3.在连接A地与B地的线段上有四个不同的点D、G、K、Q,下列四幅图中的实线分别表示某人从A 地到B地的不同行进路线(箭头表示行进的方向),则路程最长的行进路线图是()A.B.C.D.4.如图,坐标平面上,△ABC与△DEF全等,其中A、B、C的对应顶点分别为D、E、F,且AB=BC=5.若A点的坐标为(﹣3,1),B、C两点在方程式y=﹣3的图形上,D、E两点在y轴上,则F点到y轴的距离为何?()A.2 B.3 C.4 D.55.平面上有△ACD与△BCE,其中AD与BE相交于P点,如图.若AC=BC,AD=BE,CD=CE,∠ACE=55°,∠BCD=155°,则∠BPD的度数为()A.110°B.125°C.130°D.155°6.如图,在△ABC和△BDE中,点C在边BD上,边AC交边BE于点F.若AC=BD,AB=ED,BC=BE,则∠ACB等于()A.∠EDB B.∠BED C.∠AFB D.2∠ABF7.如图,AB=4,射线BM和AB互相垂直,点D是AB上的一个动点,点E在射线BM上,BE=DB,作EF⊥DE并截取EF=DE,连结AF并延长交射线BM于点C.设BE=x,BC=y,则y关于x的函数解析式是()A.y=﹣B.y=﹣C.y=﹣D.y=﹣8.如图,在四边形ABCD中,AB=AD=6,AB⊥BC,AD⊥CD,∠BAD=60°,点M、N分别在AB、AD边上,若AM:MB=AN:ND=1:2,则tan∠MCN=()A.B.C.D.﹣29.如图,点E在正方形ABCD的对角线AC上,且EC=2AE,直角三角形FEG的两直角边EF、EG分别交BC、DC于点M、N.若正方形ABCD的边长为a,则重叠部分四边形EMCN的面积为()A. a2B. a2C. a2D. a2二、解答题(共21小题)10.如图,已知AB∥DE,AB=DE,AF=CD,∠CEF=90°.(1)若∠ECF=30°,CF=8,求CE的长;(2)求证:△ABF≌△DEC;(3)求证:四边形BCEF是矩形.11.已知△ABC为等边三角形,D为AB边所在的直线上的动点,连接DC,以DC为边在DC两侧作等边△DCE和等边△DCF(点E在DC的右侧或上侧,点F在DC左侧或下侧),连接AE、BF(1)如图1,若点D在AB边上,请你通过观察,测量,猜想线段AE、BF和AB有怎样的数量关系?并证明你的结论;(2)如图2,若点D在AB的延长线上,其他条件不变,线段AE、BF和AB有怎样的数量关系?请直接写出结论(不需要证明);(3)若点D在AB的反向延长线上,其他条件不变,请在图3中画出图形,探究线段AE、BF和AB 有怎样的数量关系,并直接写出结论(不需要证明)12.如图,△ABC与△DCB中,AC与BD交于点E,且∠A=∠D,AB=DC.(1)求证:△ABE≌DCE;(2)当∠AEB=50°,求∠EBC的度数?13.如图,在△ABC中,∠C=90°,AD平分∠CAB,交CB于点D,过点D作DE⊥AB于点E.(1)求证:△ACD≌△AED;(2)若∠B=30°,CD=1,求BD的长.14.如图,点D,E在△ABC的边BC上,AB=AC,BD=CE.求证:AD=AE.15.已知:如图,AD,BC相交于点O,OA=OD,AB∥CD.求证:AB=CD.16.如图,把一个直角三角形ACB(∠ACB=90°)绕着顶点B顺时针旋转60°,使得点C旋转到AB 边上的一点D,点A旋转到点E的位置.F,G分别是BD,BE上的点,BF=BG,延长CF与DG交于点H.(1)求证:CF=DG;(2)求出∠FHG的度数.17.如图,点B、F、C、E在一条直线上,FB=CE,AB∥ED,AC∥FD,求证:AC=DF.18.如图,△ABC和△ADE都是等腰三角形,且∠BAC=90°,∠DAE=90°,B,C,D在同一条直线上.求证:BD=CE.19.如图,已知点B、E、C、F在同一条直线上,BE=CF,AB∥DE,∠A=∠D.求证:AB=DE.20.已知△ABC为等腰直角三角形,∠ACB=90°,点P在BC边上(P不与B、C重合)或点P在△ABC 内部,连接CP、BP,将CP绕点C逆时针旋转90°,得到线段CE;将BP绕点B顺时针旋转90°,得到线段BD,连接ED交AB于点O.(1)如图a,当点P在BC边上时,求证:OA=OB;(2)如图b,当点P在△ABC内部时,①OA=OB是否成立?请说明理由;②直接写出∠BPC为多少度时,AB=DE.21.(1)如图1,在△ABC和△DCE中,AB∥DC,AB=DC,BC=CE,且点B,C,E在一条直线上.求证:∠A=∠D.(2)如图2,在矩形ABCD中,对角线AC,BD相交于点O,AB=4,∠AOD=120°,求AC的长.22.(1)如图,AB平分∠CAD,AC=AD,求证:BC=BD;(2)列方程解应用题把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本,这个班有多少学生?23.已知:如图,D是AC上一点,AB=DA,DE∥AB,∠B=∠DAE.求证:BC=AE.24.【问题提出】学习了三角形全等的判定方法(即“SAS”、“ASA”、“AAS”、“SSS”)和直角三角形全等的判定方法(即“HL”)后,我们继续对“两个三角形满足两边和其中一边的对角对应相等”的情形进行研究.【初步思考】我们不妨将问题用符号语言表示为:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,然后,对∠B 进行分类,可分为“∠B是直角、钝角、锐角”三种情况进行探究.【深入探究】第一种情况:当∠B是直角时,△ABC≌△DEF.(1)如图①,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E=90°,根据______,可以知道Rt△ABC≌Rt△DEF.第二种情况:当∠B是钝角时,△ABC≌△DEF.(2)如图②,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是钝角,求证:△ABC≌△DEF.第三种情况:当∠B是锐角时,△ABC和△DEF不一定全等.(3)在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是锐角,请你用尺规在图③中作出△DEF,使△DEF和△ABC不全等.(不写作法,保留作图痕迹)(4)∠B还要满足什么条件,就可以使△ABC≌△DEF?请直接写出结论:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是锐角,若______,则△ABC≌△DEF.25.问题背景:如图1:在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°.E,F分别是BC,CD上的点.且∠EAF=60°.探究图中线段BE,EF,FD之间的数量关系.小王同学探究此问题的方法是,延长FD到点G.使DG=BE.连结AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是______;探索延伸:如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°.E,F分别是BC,CD上的点,且∠EAF=∠BAD,上述结论是否仍然成立,并说明理由;实际应用:如图3,在某次军事演习中,舰艇甲在指挥中心(O处)北偏西30°的A处,舰艇乙在指挥中心南偏东70°的B处,并且两舰艇到指挥中心的距离相等,接到行动指令后,舰艇甲向正东方向以60海里/小时的速度前进,舰艇乙沿北偏东50°的方向以80海里/小时的速度前进.1.5小时后,指挥中心观测到甲、乙两舰艇分别到达E,F处,且两舰艇之间的夹角为70°,试求此时两舰艇之间的距离.26.如图,在四边形ABCD中,AB=AD,CB=CD,AC与BD相交于O点,OC=OA,若E是CD上任意一点,连接BE交AC于点F,连接DF.(1)证明:△CBF≌△CDF;(2)若AC=2,BD=2,求四边形ABCD的周长;(3)请你添加一个条件,使得∠EFD=∠BAD,并予以证明.27.如图,已知四边形ABCD是平行四边形,点E、B、D、F在同一直线上,且BE=DF.求证:AE=CF.28.(1)如图1,正方形ABCD中,点E,F分别在边BC,CD上,∠EAF=45°,延长CD到点G,使DG=BE,连结EF,AG.求证:EF=FG.(2)如图,等腰直角三角形ABC中,∠BAC=90°,AB=AC,点M,N在边BC上,且∠MAN=45°,若BM=1,CN=3,求MN的长.29.如图,在△ABC中,∠ACB=90°,AC=BC,E为AC边的中点,过点A作AD⊥AB交BE的延长线于点D,CG平分∠ACB交BD于点G,F为AB边上一点,连接CF,且∠ACF=∠CBG.求证:(1)AF=CG;(2)CF=2DE.30.如图,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC+∠EAD=180°,△ABC不动,△ADE绕点A旋转,连接BE、CD,F为BE的中点,连接AF.(1)如图①,当∠BAE=90°时,求证:CD=2AF;(2)当∠BAE≠90°时,(1)的结论是否成立?请结合图②说明理由.第12章全等三角形参考答案一、选择题(共9小题)1.如图,在△ABC中,∠ABC=45°,AC=8cm,F是高AD和BE的交点,则BF的长是()A.4cm B.6cm C.8cm D.9cm【解答】解:∵F是高AD和BE的交点,∴∠ADC=∠ADB=∠AEF=90°,∴∠CAD+∠AFE=90°,∠DBF+∠BFD=90°,∵∠AFE=∠BFD,∴∠CAD=∠FBD,∵∠ADB=90°,∠ABC=45°,∴∠BAD=45°=∠ABD,∴AD=BD,在△DBF和△DAC中∴△DBF≌△DAC(ASA),∴BF=AC=8cm,故选C.2.如图,将正方形OABC放在平面直角坐标系中,O是原点,A的坐标为(1,),则点C的坐标为()A.(﹣,1) B.(﹣1,) C.(,1)D.(﹣,﹣1)【解答】解:如图,过点A作AD⊥x轴于D,过点C作CE⊥x轴于E,∵四边形OABC是正方形,∴OA=OC,∠AOC=90°,∴∠COE+∠AOD=90°,又∵∠OAD+∠AOD=90°,∴∠OAD=∠COE,在△AOD和△OCE中,,∴△AOD≌△OCE(AAS),∴OE=AD=,CE=OD=1,∵点C在第二象限,∴点C的坐标为(﹣,1).故选:A.3.(2014•湖州)在连接A地与B地的线段上有四个不同的点D、G、K、Q,下列四幅图中的实线分别表示某人从A地到B地的不同行进路线(箭头表示行进的方向),则路程最长的行进路线图是()A.B.C.D.【解答】解:A、延长AC、BE交于S,∵∠CAB=∠EDB=45°,∴AS∥ED,则SC∥DE.同理SE∥CD,∴四边形SCDE是平行四边形,∴SE=CD,DE=CS,即走的路线长是:AC+CD+DE+EB=AC+CS+SE+EB=AS+BS;B、延长AF、BH交于S1,作FK∥GH与BH的延长线交于点K,∵∠SAB=∠S1AB=45°,∠SBA=∠S1BA=70°,AB=AB,∴△SAB≌△S1AB,∴AS=AS1,BS=BS1,∵∠FGH=180°﹣70°﹣43°=67°=∠GHB,∴FG∥KH,∵FK∥GH,∴四边形FGHK是平行四边形,∴FK=GH,FG=KH,∴AF+FG+GH+HB=AF+FK+KH+HB,∵FS1+S1K>FK,∴AS+BS>AF+FK+KH+HB,即AC+CD+DE+EB>AF+FG+GH+HB,C、D、同理可证得AI+IK+KM+MB<AS2+BS2<AN+NQ+QP+PB.综上所述,D选项的所走的线路最长.故选:D.4.如图,坐标平面上,△ABC与△DEF全等,其中A、B、C的对应顶点分别为D、E、F,且AB=BC=5.若A点的坐标为(﹣3,1),B、C两点在方程式y=﹣3的图形上,D、E两点在y轴上,则F点到y轴的距离为何?()A.2 B.3 C.4 D.5【解答】解:如图,作AH、CK、FP分别垂直BC、AB、DE于H、K、P.∴∠DPF=∠AKC=∠CHA=90°.∵AB=BC,∴∠BAC=∠BCA.在△AKC和△CHA中,∴△AKC≌△CHA(ASA),∴KC=HA.∵B、C两点在方程式y=﹣3的图形上,且A点的坐标为(﹣3,1),∴AH=4.∴KC=4.∵△ABC≌△DEF,∴∠BAC=∠EDF,AC=DF.在△AKC和△DPF中,,∴△AKC≌△DPF(AAS),∴KC=PF=4.故选:C.5.平面上有△ACD与△BCE,其中AD与BE相交于P点,如图.若AC=BC,AD=BE,CD=CE,∠ACE=55°,∠BCD=155°,则∠BPD的度数为()A.110°B.125°C.130°D.155°【解答】解:在△ACD和△BCE中,,∴△ACD≌△BCE(SSS),∴∠A=∠B,∠BCE=∠ACD,∴∠BCA=∠ECD,∵∠ACE=55°,∠BCD=155°,∴∠BCA+∠ECD=100°,∴∠BCA=∠ECD=50°,∵∠ACE=55°,∴∠ACD=105°∴∠A+∠D=75°,∴∠B+∠D=75°,∵∠BCD=155°,∴∠BPD=360°﹣75°﹣155°=130°,故选:C.6.如图,在△ABC和△BDE中,点C在边BD上,边AC交边BE于点F.若AC=BD,AB=ED,BC=BE,则∠ACB等于()A.∠EDB B.∠BED C.∠AFB D.2∠ABF【解答】解:在△ABC和△DEB中,,∴△ABC≌△DEB (SSS),∴∠ACB=∠DBE.∵∠AFB是△BFC的外角,∴∠ACB+∠DBE=∠AFB,∠ACB=∠AFB,故选:C.7.如图,AB=4,射线BM和AB互相垂直,点D是AB上的一个动点,点E在射线BM上,BE=DB,作EF⊥DE并截取EF=DE,连结AF并延长交射线BM于点C.设BE=x,BC=y,则y关于x的函数解析式是()A.y=﹣B.y=﹣C.y=﹣D.y=﹣【解答】解:作FG⊥BC于G,∵∠DEB+∠FEC=90°,∠DEB+∠BDE=90°;∴∠BDE=∠FEG,在△DBE与△EGF中∴△DBE≌△EGF,∴EG=DB,FG=BE=x,∴EG=DB=2BE=2x,∴GC=y﹣3x,∵FG⊥BC,AB⊥BC,∴FG∥AB,CG:BC=FG:AB,即=,∴y=﹣.故选:A.8.如图,在四边形ABCD中,AB=AD=6,AB⊥BC,AD⊥CD,∠BAD=60°,点M、N分别在AB、AD边上,若AM:MB=AN:ND=1:2,则tan∠MCN=()A.B.C.D.﹣2【解答】解:∵AB=AD=6,AM:MB=AN:ND=1:2,∴AM=AN=2,BM=DN=4,连接MN,连接AC,∵AB⊥BC,AD⊥CD,∠BAD=60°在Rt△ABC与Rt△ADC中,,∴Rt△ABC≌Rt△ADC(HL)∴∠BAC=∠DAC=∠BAD=30°,MC=NC,∴BC=AC,∴AC2=BC2+AB2,即(2BC)2=BC2+AB2,3BC2=AB2,∴BC=2,在Rt△BMC中,CM===2.∵AN=AM,∠MAN=60°,∴△MAN是等边三角形,∴MN=AM=AN=2,过M点作ME⊥CN于E,设NE=x,则CE=2﹣x,∴MN2﹣NE2=MC2﹣EC2,即4﹣x2=(2)2﹣(2﹣x)2,解得:x=,∴EC=2﹣=,∴ME==,∴tan∠MCN==故选:A.9.如图,点E在正方形ABCD的对角线AC上,且EC=2AE,直角三角形FEG的两直角边EF、EG分别交BC、DC于点M、N.若正方形ABCD的边长为a,则重叠部分四边形EMCN的面积为()A. a2B. a2C. a2D. a2【解答】解:过E作EP⊥BC于点P,EQ⊥CD于点Q,∵四边形ABCD 是正方形,∴∠BCD=90°,又∵∠EPM=∠EQN=90°,∴∠PEQ=90°,∴∠PEM+∠MEQ=90°,∵三角形FEG 是直角三角形,∴∠NEF=∠NEQ+∠MEQ=90°,∴∠PEM=∠NEQ ,∵AC 是∠BCD 的角平分线,∠EPC=∠EQC=90°, ∴EP=EQ ,四边形PCQE 是正方形,在△EPM 和△EQN 中,,∴△EPM ≌△EQN (ASA )∴S △EQN =S △EPM ,∴四边形EMCN 的面积等于正方形PCQE 的面积, ∵正方形ABCD 的边长为a ,∴AC=a ,∵EC=2AE ,∴EC=a ,∴EP=PC=a ,∴正方形PCQE 的面积=a ×a=a 2, ∴四边形EMCN 的面积=a 2,故选:D.二、解答题(共21小题)10.如图,已知AB∥DE,AB=DE,AF=CD,∠CEF=90°.(1)若∠ECF=30°,CF=8,求CE的长;(2)求证:△ABF≌△DEC;(3)求证:四边形BCEF是矩形.【解答】(1)解:∵∠CEF=90°.∴cos∠ECF=.∵∠E CF=30°,CF=8.∴CF=CF•cos30°=8×=4;(2)证明:∵AB∥DE,∴∠A=∠D,∵在△ABF和△DEC中∴△ABF≌△DEC (SAS);(3)证明:由(2)可知:△ABF≌△DEC,∴BF=CE,∠AFB=∠DCE,∵∠AFB+∠BFC=180°,∠DCE+∠ECF=180°,∴∠BFC=∠ECF,∴BF∥EC,∴四边形BCEF是平行四边形,∵∠CEF=90°,∴四边形BCEF是矩形.11.已知△ABC为等边三角形,D为AB边所在的直线上的动点,连接DC,以DC为边在DC两侧作等边△DCE和等边△DCF(点E在DC的右侧或上侧,点F在DC左侧或下侧),连接AE、BF(1)如图1,若点D在AB边上,请你通过观察,测量,猜想线段AE、BF和AB有怎样的数量关系?并证明你的结论;(2)如图2,若点D在AB的延长线上,其他条件不变,线段AE、BF和AB有怎样的数量关系?请直接写出结论(不需要证明);(3)若点D在AB的反向延长线上,其他条件不变,请在图3中画出图形,探究线段AE、BF和AB 有怎样的数量关系,并直接写出结论(不需要证明)【解答】解:(1)AE+BF=AB,如图1,∵△ABC和△DCF是等边三角形,∴CA=CB,CD=CF,∠ACB=∠DCF=60°.∴∠ACD=∠BCF,在△ACD和△BCF中∴△ACD≌△BCF(SAS)∴AD=BF同理:△CBD≌△CAE(SAS)∴BD=AE∴AE+BF=BD+AD=AB;(2)BF﹣AE=AB,如图2,易证△CBF≌△CAD和△CBD≌△CAE,∴AD=BF,BD=AE,∴BF﹣AE=AD﹣BD=AB;(3)AE﹣BF=AB,如图3,易证△CBF≌△CAD和△CBD≌△CAE,∴AD=BF,BD=AE,∴BF﹣AE=AD﹣BD=AB.12.(2013•舟山)如图,△ABC与△DCB中,AC与BD交于点E,且∠A=∠D,AB=DC.(1)求证:△ABE≌DCE;(2)当∠AEB=50°,求∠EBC的度数?【解答】(1)证明:∵在△ABE和△DCE中∴△ABE≌△DCE(AAS);(2)解:∵△ABE≌△DCE,∴BE=EC,∴∠EBC=∠ECB,∵∠EBC+∠ECB=∠AEB=50°,∴∠EBC=25°.13.如图,在△ABC中,∠C=90°,AD平分∠CAB,交CB于点D,过点D作DE⊥AB于点E.(1)求证:△ACD≌△AED;(2)若∠B=30°,CD=1,求BD的长.【解答】(1)证明:∵AD平分∠CAB,DE⊥AB,∠C=90°,∴CD=ED,∠DEA=∠C=90°,∵在Rt△ACD和Rt△AED中∴Rt△ACD≌Rt△AED(HL);(2)解:∵DC=DE=1,DE⊥AB,∴∠DEB=90°,∵∠B=30°,∴BD=2DE=2.14.如图,点D,E在△ABC的边BC上,AB=AC,BD=CE.求证:AD=AE.【解答】证明:∵AB=AC,∴∠B=∠C,在△ABD与△ACE中,∵,∴△ABD≌△ACE(SAS),∴AD=AE.15.已知:如图,AD,BC相交于点O,OA=OD,AB∥CD.求证:AB=CD.【解答】证明:∵AB∥CD,∴∠B=∠C,∠A=∠D,∵在△AOB和△DOC中,,∴△AOB≌△DOC(AAS),∴AB=CD.16.如图,把一个直角三角形ACB(∠ACB=90°)绕着顶点B顺时针旋转60°,使得点C旋转到AB 边上的一点D,点A旋转到点E的位置.F,G分别是BD,BE上的点,BF=BG,延长CF与DG交于点H.(1)求证:CF=DG;(2)求出∠FHG的度数.【解答】(1)证明:∵在△CBF和△DBG中,,∴△CBF≌△DBG(SAS),∴CF=DG;(2)解:∵△CBF≌△DBG,∴∠BCF=∠BDG,又∵∠CFB=∠DFH,又∵△BCF中,∠CBF=180°﹣∠BCF﹣∠CFB,△DHF中,∠DHF=180°﹣∠BDG﹣∠DFH,∴∠DHF=∠CBF=60°,∴∠FHG=180°﹣∠DHF=180°﹣60°=120°.17.如图,点B、F、C、E在一条直线上,FB=CE,AB∥ED,AC∥FD,求证:AC=DF.【解答】证明:∵FB=CE,∴FB+FC=CE+FC,∴BC=EF,∵AB∥ED,AC∥FD,∴∠B=∠E,∠ACB=∠DFE,∵在△ABC和△DEF中,,∴△ABC≌△DEF(ASA),∴AC=DF.18.如图,△ABC和△ADE都是等腰三角形,且∠BAC=90°,∠DAE=90°,B,C,D在同一条直线上.求证:BD=CE.【解答】证明:∵△ABC和△ADE都是等腰直角三角形∴AD=AE,AB=AC,又∵∠EAC=90°+∠CAD,∠DAB=90°+∠CAD,∴∠DAB=∠EAC,∵在△ADB和△AEC中∴△ADB≌△AEC(SAS),∴BD=CE.19.如图,已知点B、E、C、F在同一条直线上,BE=CF,AB∥DE,∠A=∠D.求证:AB=DE.【解答】证明:∵BE=CF,∴BC=EF.∵AB∥DE,∴∠B=∠DEF.在△ABC与△DEF中,,∴△ABC≌△DEF(AAS),∴AB=DE.20.已知△ABC为等腰直角三角形,∠ACB=90°,点P在BC边上(P不与B、C重合)或点P在△ABC 内部,连接CP、BP,将CP绕点C逆时针旋转90°,得到线段CE;将BP绕点B顺时针旋转90°,得到线段BD,连接ED交AB于点O.(1)如图a,当点P在BC边上时,求证:OA=OB;(2)如图b,当点P在△ABC内部时,①OA=OB是否成立?请说明理由;②直接写出∠BPC为多少度时,AB=DE.【解答】(1)证明:∵△ABC为等腰直角三角形,∴CA=CB,∠A=∠ABC=45°,由旋转可知:CP=CE,BP=BD,∴CA﹣CE=CB﹣CP,即AE=BP,∴AE=BD.又∵∠CBD=90°,∴∠OBD=45°,在△AEO和△BDO中,,∴△AEO≌△BDO(AAS),∴OA=OB;(2)成立,理由如下:连接AE,则△AEC≌△BCP,∴AE=BP,∠CAE=∠BPC,∵BP=BD,∴BD=AE,∵∠OAE=45°+∠CAE,∠OBD=90°﹣∠OBP=90°﹣(45°﹣∠BPC)=45°+∠PBC,∴∠OAE=∠OBD,在△AEO和△BDO中,,∴△AEO≌△BDO(AAS),∴OA=OB,②当∠BPC=135°时,AB=DE.理由如下:解法一:当AB=DE时,由①知OA=OB,∴OA=OB=OE=OD.设∠PCB=α,由旋转可知,∠ACE=α.连接OC,则OC=OA=OB,∴OC=OE,∴∠DEC=∠OCE=45°+α.设∠PBC=β,则∠ABP=45°﹣β,∠OBD=90°﹣∠ABP=45°+β.∵OB=OD,∴∠D=∠OBD=45°+β.在四边形BCED中,∠DEC+∠D+∠DBC+∠BCE=360°,即:(45°+α)+(45°+β)+(90°+β)+(90°+α)=360°,解得:α+β=45°,∴∠BPC=180°﹣(α+β)=135°.解法二(本溪赵老师提供,更为简洁):当AB=DE时,四边形AEBD为矩形则∠DBE=90°=∠DBP,∴点P落在线段BE上.∵△ECP为等腰直角三角形,∴∠EPC=45°,∴∠BPC=180°﹣∠EPC=135°.21.(1)如图1,在△ABC和△DCE中,AB∥DC,AB=DC,BC=CE,且点B,C,E在一条直线上.求证:∠A=∠D.(2)如图2,在矩形ABCD中,对角线AC,BD相交于点O,AB=4,∠AOD=120°,求AC的长.【解答】(1)证明:∵AB∥DC,∴∠B=∠DCE,在△ABC和△DCE中,∴△ABC≌△DCE(SAS),∴∠A=∠D;(2)解:∵四边形ABCD是矩形,∴AO=BO=CO=DO,∵∠AOD=120°,∴∠AOB=60°,∴△AOB是等边三角形,∴AO=AB=4,∴AC=2AO=8.22.(1)如图,AB平分∠CAD,AC=AD,求证:BC=BD;(2)列方程解应用题把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本,这个班有多少学生?【解答】(1)证明:∵AB平分∠CAD,∴∠CAB=∠DAB,在△ABC和△ABD中∴△ABC≌△ABD(SAS),∴BC=BD.(2)解:设这个班有x名学生,根据题意得:3x+20=4x﹣25,解得:x=45,答:这个班有45名学生.23.已知:如图,D是AC上一点,AB=DA,DE∥AB,∠B=∠DAE.求证:BC=AE.【解答】证明:∵DE∥AB,∴∠CAB=∠ADE,∵在△ABC和△DAE中,,∴△ABC≌△DAE(ASA),∴BC=AE.24.【问题提出】学习了三角形全等的判定方法(即“SAS”、“ASA”、“AAS”、“SSS”)和直角三角形全等的判定方法(即“HL”)后,我们继续对“两个三角形满足两边和其中一边的对角对应相等”的情形进行研究.【初步思考】我们不妨将问题用符号语言表示为:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,然后,对∠B 进行分类,可分为“∠B是直角、钝角、锐角”三种情况进行探究.【深入探究】第一种情况:当∠B是直角时,△ABC≌△DEF.(1)如图①,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E=90°,根据HL ,可以知道Rt△ABC≌Rt△DEF.第二种情况:当∠B是钝角时,△ABC≌△DEF.(2)如图②,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是钝角,求证:△ABC≌△DEF.第三种情况:当∠B是锐角时,△ABC和△DEF不一定全等.(3)在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是锐角,请你用尺规在图③中作出△DEF,使△DEF和△ABC不全等.(不写作法,保留作图痕迹)(4)∠B还要满足什么条件,就可以使△ABC≌△DEF?请直接写出结论:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是锐角,若∠B≥∠A ,则△ABC≌△DEF.【解答】(1)解:HL;(2)证明:如图,过点C作CG⊥AB交AB的延长线于G,过点F作FH⊥DE交DE的延长线于H,∵∠ABC=∠DEF,且∠ABC、∠DEF都是钝角,∴180°﹣∠ABC=180°﹣∠DEF,即∠CBG=∠FEH,在△CBG和△FEH中,,∴△CBG≌△FEH(AAS),∴CG=FH,在Rt△ACG和Rt△DFH中,,∴Rt△ACG≌Rt△DFH(HL),∴∠A=∠D,在△ABC和△DEF中,,∴△ABC≌△DEF(AAS);(3)解:如图,△DEF和△ABC不全等;(4)解:若∠B≥∠A,则△ABC≌△DEF.故答案为:(1)HL;(4)∠B≥∠A.25.(2014•德州)问题背景:如图1:在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°.E,F分别是BC,CD上的点.且∠EAF=60°.探究图中线段BE,EF,FD之间的数量关系.小王同学探究此问题的方法是,延长FD到点G.使DG=BE.连结AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是EF=BE+DF ;探索延伸:如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°.E,F分别是BC,CD上的点,且∠EAF=∠BAD,上述结论是否仍然成立,并说明理由;实际应用:如图3,在某次军事演习中,舰艇甲在指挥中心(O处)北偏西30°的A处,舰艇乙在指挥中心南偏东70°的B处,并且两舰艇到指挥中心的距离相等,接到行动指令后,舰艇甲向正东方向以60海里/小时的速度前进,舰艇乙沿北偏东50°的方向以80海里/小时的速度前进.1.5小时后,指挥中心观测到甲、乙两舰艇分别到达E,F处,且两舰艇之间的夹角为70°,试求此时两舰艇之间的距离.【解答】解:问题背景:EF=BE+DF;探索延伸:EF=BE+DF仍然成立.证明如下:如图,延长FD到G,使DG=BE,连接AG,∵∠B+∠ADC=180°,∠ADC+∠ADG=180°,∴∠B=∠ADG,在△ABE和△ADG中,,∴△ABE≌△ADG(SAS),∴AE=AG,∠BAE=∠DAG,∵∠EAF=∠BAD,∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD﹣∠EAF=∠EAF,∴∠EAF=∠GAF,在△AEF和△GAF中,,∴△AEF≌△GAF(SAS),∴EF=FG,∵FG=DG+DF=BE+DF,∴EF=BE+DF;实际应用:如图,连接EF,延长AE、BF相交于点C,∵∠AOB=30°+90°+(90°﹣70°)=140°,∠EOF=70°,∴∠EOF=∠AOB,又∵OA=OB,∠OAC+∠OBC=(90°﹣30°)+(70°+50°)=180°,∴符合探索延伸中的条件,∴结论EF=AE+BF成立,即EF=1.5×(60+80)=210海里.答:此时两舰艇之间的距离是210海里.26.如图,在四边形ABCD中,AB=AD,CB=CD,AC与BD相交于O点,OC=OA,若E是CD上任意一点,连接BE交AC于点F,连接DF.(1)证明:△CBF≌△CDF;(2)若AC=2,BD=2,求四边形ABCD的周长;(3)请你添加一个条件,使得∠EFD=∠BAD,并予以证明.【解答】(1)证明:在△ABC和△ADC中,,∴△ABC≌△ADC(SSS),∴∠BCA=∠DCA,在△CBF和△CDF中,,∴△CBF≌△CDF(SAS),(2)解:∵△ABC≌△ADC,∴△ABC和△ADC是轴对称图形,∴OB=OD,BD⊥AC,∵OA=OC,∴四边形ABCD是菱形,∴AB=BC=CD=DA,∵AC=2,BD=2,∴OA=,OB=1,∴AB===2,∴四边形ABCD的周长=4AB=4×2=8.(3)当EB⊥CD时,即E为过B且和CD垂直时垂线的垂足,∠EFD=∠BCD,理由:∵四边形ABCD为菱形,∴BC=CD,∠BCF=∠DCF,∠BCD=∠BAD,∵△BCF≌△DCF,∴∠CBF=∠CDF,∵BE⊥CD,∴∠BEC=∠DEF=90°,∴∠BCD+∠CBF=90°,∠EFD+∠CDF=90°,∴∠EFD=∠BAD.27.如图,已知四边形ABCD是平行四边形,点E、B、D、F在同一直线上,且BE=DF.求证:AE=CF.【解答】证明:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴∠ABD=∠CDB,∴180°﹣∠ABD=180°﹣∠CDB,即∠ABE=∠CDF,在△ABE和△CDF中,,∴△ABE≌△CDF(SAS),∴AE=CF.28.(1)如图1,正方形ABCD中,点E,F分别在边BC,CD上,∠EAF=45°,延长CD到点G,使DG=BE,连结EF,AG.求证:EF=FG.(2)如图,等腰直角三角形ABC中,∠BAC=90°,AB=AC,点M,N在边BC上,且∠MAN=45°,若BM=1,CN=3,求MN的长.【解答】(1)证明:在正方形ABCD中,∠ABE=∠ADG,AD=AB,在△ABE和△ADG中,∴△ABE≌△ADG(SAS),∴∠BAE=∠DAG,AE=AG,∴∠EAG=90°,在△FAE和△GAF中,,∴△FAE≌△GAF(SAS),∴EF=FG;(2)解:如图,过点C作CE⊥BC,垂足为点C,截取CE,使CE=BM.连接AE、EN.∵AB=AC,∠BAC=90°,∴∠B=∠ACB=45°.∵CE⊥BC,∴∠ACE=∠B=45°.在△ABM和△ACE中,∴△ABM≌△ACE(SAS).∴AM=AE,∠BAM=∠CAE.∵∠BAC=90°,∠MAN=45°,∴∠BAM+∠CAN=45°.于是,由∠BAM=∠CAE,得∠MAN=∠EAN=45°.在△MAN和△EAN中,∴△MAN≌△EAN(SAS).∴MN=EN.在Rt△ENC中,由勾股定理,得EN2=EC2+NC2.∴MN2=BM2+NC2.∵BM=1,CN=3,∴MN2=12+32,∴MN=29.如图,在△ABC中,∠ACB=90°,AC=BC,E为AC边的中点,过点A作AD⊥AB交BE的延长线于点D,CG平分∠ACB交BD于点G,F为AB边上一点,连接CF,且∠ACF=∠CBG.求证:(1)AF=CG;(2)CF=2DE.【解答】证明:(1)∵∠ACB=90°,CG平分∠ACB,∴∠ACG=∠BCG=45°,又∵∠ACB=90°,AC=BC,∴∠CAF=∠CBF=45°,∴∠CAF=∠BCG,在△AFC与△CGB中,,∴△AFC≌△CBG(ASA),∴AF=CG;(2)延长CG交AB于H,∵CG平分∠ACB,AC=BC,∴CH⊥AB,CH平分AB,∵AD⊥AB,∴AD∥CG,∴∠D=∠EGC,在△ADE与△CGE中,,∴△ADE≌△CGE(AAS),∴DE=GE,即DG=2DE,∵AD∥CG,CH平分AB,∴DG=BG,∵△AFC≌△CBG,∴CF=BG,∴CF=2DE.30.如图,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC+∠EAD=180°,△ABC不动,△ADE绕点A旋转,连接BE、CD,F为BE的中点,连接AF.(1)如图①,当∠BAE=90°时,求证:CD=2AF;(2)当∠BAE≠90°时,(1)的结论是否成立?请结合图②说明理由.【解答】(1)证明:如图①,∵∠BAC+∠EAD=180°,∠BAE=90°,∴∠DAC=90°,在△ABE与△ACD中∴△ABE≌△ACD(SAS),∴CD=BE,∵在Rt△ABE中,F为BE的中点,∴BE=2AF,∴CD=2AF.(2)成立,证明:如图②,延长EA交BC于G,在AG上截取AH=AD,∵∠BAC+∠EAD=180°,∴∠EAB+∠DAC=180°,∵∠EAB+∠BAH=180°,∴∠DAC=∠BAH,在△ABH与△ACD中,∴△ABH≌△ACD(SAS)∴BH=DC,∵AD=AE,AH=AD,∴AE=AH,∵EF=FB,∴BH=2AF,∴CD=2AF.。
八年级数学上册《第十二章 全等三角形》单元测试卷及答案(人教版)
![八年级数学上册《第十二章 全等三角形》单元测试卷及答案(人教版)](https://img.taocdn.com/s3/m/1f7e6e1d59fb770bf78a6529647d27284b73373b.png)
八年级数学上册《第十二章全等三角形》单元测试卷及答案(人教版)班级姓名学号一、单选题1.全等图形是指两个图形()A.大小相同B.形状相同C.能够完全重合D.相等2.如图,△ABC≌△ADE,若∠B=80°,∠C=30°,则∠EAD的度数为()A.70°B.75°C.60°D.80°3.如图,三条直线表示相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有( ) .A.一处B.两处C.三处D.四处4.长为l的一根绳,恰好可围成两个全等三角形,则其中一个三角形的最长边x的取值范围为()A.16≤x<14B.18≤x<14C.16<x<14D.18<x<145.如图,在△ABC中,点D在边BC上,点E在线段AD上,AB=AC,EB=EC.则依据SSS可以判定()A.△ABD≌△ACD B.△ABE≌△ACEC.△BED≌△CED D.以上都对6.如图,在△ABC中,∠B=∠C,BF=CD,BD=CE,∠FDE=α,则下列结论正确的是()A.2α+∠A=180°B.α+∠A=90°C.2α+∠A=90°D.α+∠A=180°7.如图,点O在△ABC内,且到三边的距离相等,∠A=64°,则∠BOC的度数为()A.58°B.64°C.122°D.124°8.如图,在△ABC中,P是BC上的点,作PQ∥AC交AB于点Q,分别作PR⊥AB,PS⊥AC,垂足分别是R,S,若PR=PS,则下面三个结论:①AS=AR;②AQ=PQ;③△PQR≌△CPS;④AC﹣AQ=2SC,其中正确的是()A.②③④B.①②C.①④D.①②③④二、填空题9.已知△ABC≌△DEF,若∠B=40°,∠D=30°,则∠F=10.如图,已知B、E、F、C在同一直线上,BE=CF,AF=DE,则添加条件,可以判断△ABF≌△DCE.11.如图,△ABD≌△ACE,点B和点C是对应顶点,AB=9cm,BD=7cm,AD=4cm,则DC= cm.12.如图,在四边形ABCD中,AB=AD,CB=CD,对角线AC,BD相交于点O,下列结论中:①∠ABC=∠ADC;②AC与BD相互平分;③AC,BD分别平分四边形ABCD的两组对角;④四边形ABCD的面AC•BD.正确的是(填写所有正确结论的序号)积S= 1213.如图,在△ABC中AC=BC,∠ACB=50°,AD⊥BC于点D,MC⊥BC于点C,MC=BC点E,点F分别在线段AD,AC上CF=AE,连接MF,BF,CE.(1)图中与MF相等的线段是;(2)当BF+CE取最小值时∠AFB=°三、解答题14.将Rt△ABC的直角顶点C置于直线l上AC=BC,分别过点A、B作直线l的垂线,垂足分别为点D、E连接AE若BE=3,DE=5求△ACE的面积.15.如图,点A,B,C,D在同一条直线上,CE∥DF,EC=BD,AC=FD.求证:AE=FB.16.如图,已知AC∥BD、EA、EB分别平分∠CAB和△DBA,CD过点E,则线段AB与AC、BD有什么数量关系?请说明理由.17.如图,已知B,C,E三点在同一条直线上AC//DE,AC=CE,∠ACD=∠B .求证:△ABC≌△EDC .18.如图,点D为锐角∠ABC的平分线上一点,点M在边BA上,点N在边BC上,∠BMD+∠BND=180°.试说明:DM=DN.19.已知:AD=BC,AC=BD.(1)如图1,求证:AE=BE;(2)如图2,若AB=AC,∠D=2∠BAC,在不添加任何辅助线的情况下,请直接写出图2中四个度数为36°的角.参考答案 1.C 2.A 3.D 4.A 5.D 6.A 7.C 8.B 9.110° 10.AB=DC 11.5 12.①④ 13.(1)EC (2)9514.解:∵AD ⊥CE ,BE ⊥CE ∴∠ADC =∠CEB =90° ∵∠ACB =90°∴∠ACD =∠CBE =90°−∠ECB 在 △ACD 与 △CBE 中{∠ADC =∠CEB∠ACD =∠CBE AC =BC∴△ACD ≌△CBE (AAS) ∴CD =BE =3 AD =CE ∵CE =CD +DE =3+5=8 ∴AD =8 .S △ACE =12CE ·AD =12×8×8=32 . 15.证明:∵CE ∥DF ∴∠ACE=∠D 在△ACE 和△FDB 中{AC=FD ∠ACE=∠D EC=BD∴△ACE≌△FDB(SAS)∴AE=FB.16.解:AB=AC+BD理由是:在AB上截取AC=AF,连接EF∵AE平分∠CAB∴∠CAE=∠BAE在△CAE和△FAE中{AC=AF∠CAE=∠BAE AE=AE∴△CAE≌△FAE(SAS)∴∠C=∠AFE∵AC∥BD∴∠C+∠D=180°∴∠AFE+∠D=180°∵∠EFB+∠AFE=180°∴∠D=∠EFB∵BE平分∠ABD∴∠DBE=∠FBE在△BEF和△BED中{∠D=∠EFB∠FBE=∠DBEBE=BE∴△BEF≌△BED(AAS)∴BF=BD∵AB=AF+BF,AC=AF,BF=BD ∴AB=AC+BD.17.证明:∵AC//DE∴∠BCA =∠E ∠ACD =∠D . 又∵∠ACD =∠B ∴∠B =∠D .在 △ABC 和 △EDC 中{∠B =∠D∠BCA =∠E AC =EC∴△ABC ≌△EDC .18.解:过点D 作DE ⊥AB 于点E ,DF ⊥BC 于点F . ∴∠DEB =∠DFB =90°. 又∵BD 平分∠ABC ∴DE =DF .∵∠BMD+∠DME =180°,∠BMD+∠BND =180° ∴∠DME =∠BND . 在△EMD 和△FND 中{∠DEM =∠DFN∠EMD =∠FND DE =DF∴△EMD ≌△FND (AAS ). ∴DM =DN .19.(1)证明:在△ABD 和△BAC 中:{AB =BAAD =BC BD =AC∴△ABD ≌△BAC (SSS ) ∴∠ABD=∠BAC ∴AE=BE ;(2)∠BAC ,∠ABD ,∠DAC ,∠DBC。
八年级上学期期末复习《全等三角形》单元试卷(含部分解析) 2024-2025学年人教版数学
![八年级上学期期末复习《全等三角形》单元试卷(含部分解析) 2024-2025学年人教版数学](https://img.taocdn.com/s3/m/4be9aa0759fafab069dc5022aaea998fcd224031.png)
期末复习《全等三角形》单元试卷2024-2025学年人教版数学八年级上册一、选择题1. 下列条件不能确定两个三角形全等的是( )A.三条边对应相等B.两条边及其中一边所对的角对应相等C.两边及其夹角对应相等D.两个角及其中一角所对的边对应相等2. 如图,∠C=∠B,能用ASA来判断△ABD≌△ACE,需要添加的条件是( )A.AE=AD B.AB=ACC.CE=BD D.∠ADB=∠AEC3. 如图在△ABC中,∠ACB=90∘,BE平分∠ABC,DE⊥AB于D,如果AC=3cm,那么AE+DE等于( )A.5cm B.4cm C.3cm D.2cm4. 如图所示,A,B在一水池两侧,若BE=DE,∠B=∠D=90∘,CD=10 m,则水池宽AB=( )m.A.8B.10C.12D.无法确定5. 如图,△ABC≌△BDE,若AB=12,ED=5,则CD的长为( )A.5B.6C.7D.86. 如图所示为打碎的一块三角形玻璃,现在要去玻璃店配一块完全一样的玻璃,最省事的方法是( )A.带①去B.带②去C.带③去D.带①和②去7. 如图,△ABC中,AB=AC,高BD,CE相交于点O,连接AO并延长交BC于点F,则图中全等的直角三角形共有( )A.4对B.5对C.6对D.7对8. 如图,四边形ABDC中,对角线AD平分∠BAC,∠ACD=136∘,∠BCD=44∘,则∠ADB的度数为( )A.54∘B.48∘C.46∘D.50∘二、填空题9. 如图,在△ABC和△DEF中,点B,F,C,E在同一直线上,BF=CE,AB∥DE,请添加一个条件,使△ABC≌△DEF,这个添加的条件可以是(只需写一个,不添加辅助线).10. 如图,在Rt△ACB中,∠C=90∘,AB=23,以点B为圆心,适当长为半径画弧,分别交边EF的长为半径画弧,两弧相交于点P,AB,BC于点E,F,再分别以点E,F为圆心,大于12作射线BP交AC于点D,若CD=1,则△ABD的面积为.11. 如图为6个边长相等的正方形的组合图形,则∠1+∠2+∠3=.12. 在平面直角坐标系xOy中,A(0,2),B(4,0),点P与A,B不重合.若以P,O,B三点为顶点的三角形与△ABO全等,则点P的坐标为.13. 如图,有两个长度相同的滑梯(即BC=EF),左边滑梯的高度AC与右边滑梯水平方向的长度DF相等,则∠B+∠F=.14. 如图,∠C=90∘,AC=20,BC=10,AX⊥AC,点P和点Q同时从点A出发,分别在线段AC和射线AX上运动,且AB=PQ,当AP=时,以点A,P,Q为顶点的三角形与△ABC全等.15. 如图,△ABC中,∠A=60∘,AB>AC,两内角的平分线CD,BE交于点O,OF平分∠BOC交BC于F,(1)∠BOC=120∘;(2)连AO,则AO平分∠BAC;(3)A,O,F三点在同一直线上,(4)OD=OE,(5)BD+CE=BC.其中正确的结论是(填序号).三、解答题16. 如图,D,E分别是AB,AC的中点,BE,CD相交于点O,∠B=∠C,BD=CE.求证:(1) OD=OE;(2) △ABE≌△ACD.17. 如图,AB=DC,AC=DB.求证:∠1=∠2.18. 如图,已知△CAB≌△EAD,且点C,A,D三点在同一直线上.(1) 写出这两个全等三角形的对应顶点、对应边及对应角(2) 若∠CAB=135∘,求∠EAC的度数.(3) 若CA=3 cm,AB=5 cm,求CD的长.19. 已知在△ABC和△CDE中,CA=CB,CD=CE,∠ACB=∠DCE=α,AE与BD交于点F.(1) 如图①,当α=90∘时,求证:①△ACE≌△BCD;②AE⊥BD.(2) 如图②,当α=60∘时,∠AFB的度数为.(3) 如图③,∠AFD的度数为(用含α的式子表示).20. 在四边形ABCD中,AB=AD,∠B+∠ADC=180∘,点E是线段BC上的点,∠EAF=1∠BAD.2(1) 如图①,当点F在线段CD上时,试探究线段BE,EF,FD之间的数量关系;(2) 如图②,旋转∠EAF到使得点F在CD的延长线上时,(1)中的结论是否依然成立?若成立说明理由;若不成立,试写出相应的结论并给出你的证明.21. 已知AB=12,AC=BD=8.点P在线段AB上以每秒2个单位长度的速度由点A向点B运动,同时,点Q在线段BD上由点B向点D运动.它们的运动时间为t s.(1) 如图①,AC⊥AB,BD⊥AB,若点Q的运动速度与点P的运动速度相等,当t=2时,△ACP与△BPQ是否全等,请说明理由,并判断此时线段PC和线段PQ的位置关系.(2) 如图②,∠CAB=∠DBA=60∘,设点Q的运动速度为每秒x个单位长度,是否存在实数x,使得△ACP与△BPQ全等?若存在,求出相应的x,t的值;若不存在,请说明理由.答案一、选择题1. B2. B3. C4. B5. C6. C7. C8. C二、填空题9. AB =ED 10. 311. 135∘12. (0,−2),(4,2),(4,−2)13. 9014. 10 或 2015. ①②④⑤三、解答题16.(1) 在 △BOD 和 △COE 中,{∠BOD =∠COE,∠B =∠C,BD =CE,∴△BOD ≌△COE (AAS),∴OD =OE .(2) ∵D ,E 分别是 AB ,AC 的中点,∴AD =BD =12AB ,AE =CE =12AC ,∵BD=CE,∴AD=AE,AB=AC,在△ABE和△ACD中,{AB=AC,∠A=∠A,AE=AD,∴△ABE≌△ACD(SAS).17. 在△ABC和△DCB中,AB=DC,AC=DB,BC=CB,∴△ABC≌△DCB(SSS).∴∠A=∠D,又∵∠AOB=∠DOC,∴∠1=∠2.18.(1) 对应顶点:点C对应点E,点A对应点A,点B对应点D.对应边:CA对应EA,CB对应ED,AB对应AD.对应角:∠CAB对应∠EAD,∠C对应∠E,∠B对应∠D.(2) ∵△CAB≌△EAD,∴∠CAB=∠EAD=135∘.∵点C,A,D三点在同一直线上,∴∠EAC=180∘−∠EAD=180∘−135∘=45∘.(3) ∵△CAB≌△EAD,∴AB=AD=5 cm,∴CD=CA+AD=3+5=8 cm.19.(1) ①∵∠ACB=∠DCE=90∘,∴∠ACB+∠BCE=∠DCE+∠BCE,即∠ACE=∠BCD.②在△ACE和△BCD中,{AC=BC,∠ACE=∠BCD,CE=CD,∴△ACE≌△BCD(SAS),∴∠CAE=∠CBD,∵∠CAE+∠EAB+∠ABC=90∘,∴∠CBD+∠EAB+∠ABC=90∘,∴∠AFB=90∘,∴AE⊥BD.(2) 60∘(3) 180∘−α20.(1) EF=BE+DF.如解图①,延长FD到点G,使DG=BE,连接AG.∵∠B+∠ADF=180∘,∠ADF+∠ADG=180∘,∴∠ADG=∠B.∵BE=DG,∠B=∠ADG,AB=AD,∴△ABE≌△ADG(SAS),∴AE=AG,∠BAE=∠DAG.∵∠BAD=2∠EAF,∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD−∠EAF=∠EAF,∴∠EAF=∠GAF.∵AE=AG,∠EAF=∠GAF,AF=AF,∴△AEF≌△AGF(SAS),∴EF=GF.∵FG=DG+DF=BE+DF,即EF=BE+DF.(2) 结论EF=BE+FD不成立,结论:EF=BE−FD.理由如下:如解图②,在BE上截取BG,使BG=DF,连接AG.∵∠B+∠ADC=180∘,∠ADF+∠ADC=180∘,∴∠B=∠ADF.∵AB=AD,∠ABG=∠ADF,BG=DF,∴△ABG≌△ADF(SAS).∴∠BAG=∠DAF,AG=AF.∴∠BAD=∠BAG+∠GAD=∠DAF+∠GAD=∠GAF.∵∠BAD=2∠EAF,∴∠GAF=2∠EAF,∴∠GAE=∠FAE.∵AE=AE,∴△AEG≌△AEF(SAS).∴EG=EF,∵EG=BE−BG,∴EF=BE−FD.21.(1) △ACP与△BPQ全等.理由如下:当t=2时,AP=BQ=2×2=4,则BP=AB−AP=12−4=8,∴BP=AC.又∵∠A=∠B=90∘,在△ACP和△BPQ中,{AP=BQ,∠A=∠B,CA=PB,∴△ACP≌△BPQ(SAS).此时PC⊥PQ.证明如下:∵△ACP≌△BPQ,∴∠ACP=∠BPQ,∴∠APC+∠BPQ=∠APC+∠AC=90∘.∴∠CPQ=90∘.即线段PC与线段PQ垂直.(2) ①若△ACP≌△BPQ,则AC=BP,AP=BQ,∴{8=12−2t,2t=tx,解得{t=2,x=2;②若△ACP≌△BQP,则AC=BQ,AP=BP,∴{8=xt,2t=12−2t,解得{t=3,x=83.综上所述,当{t=2,x=2或{t=3,x=83时,△ACP与△BPQ全等.。
八年级数学上册《全等三角形》单元测试含答案
![八年级数学上册《全等三角形》单元测试含答案](https://img.taocdn.com/s3/m/36b2f3d4580216fc710afd27.png)
八年级数学上册《全等三角形》单元测试含答案全等三角形单元测试一、单项选择题(共10 题;共 30 分)1.如图,已知AE=CF,∠ AFD=∠ CEB,那么增添以下一个条件后,仍没法判断△ADF≌△ CBE的是()A、∠ A=∠ CB、 AD=CBC、 BE='DF'D、 AD∥ BC2.如图, D 在AB 上, E 在AC 上,且∠B=∠ C,那么增补以下条件后,不可以判断△ABE≌△ ACD的是()A、 AD=AEB、 BE=CDC、∠ AEB=∠ADCD、 AB=AC3.以下图,△ABD≌△ CDB,下边四个结论中,不正确的选项是()A.△ ABD 和△ CDB的面积相等B.△ ABD 和△ CDB的周长相等C.∠ A+∠ ABD=∠ C+∠ CBD∥ BC,且AD=BC4.如图,在以下条件中,不可以证明△ABD≌△ ACD的是()A.BD=DC, AB=ACB.∠ ADB=∠ ADC, BD=DCC.∠ B=∠ C,∠ BAD=∠ CADD.∠ B=∠C, BD=DC5.已知图中的两个三角形全等,则∠ 1 等于()°° C.50 ° D.58 °6.两组邻边分别相等的四边形叫做“筝形”,如图,四边形ABCD是一个筝形,此中AD=CD,AB=CB,在研究筝形的性质时,获得以下结论:①△ABD≌△ CBD;② AC⊥ BD;③四边形ABCD的面积=12AC?BD,此中正确的结论有()A.0 个B.1 个C.2 个D.3 个7.如图,已知△ ABE≌△ ACD,∠ 1=∠ 2,∠ B=∠ C,不正确的等式是()A.AB=ACB.∠ BAE=∠ CADC.BE=DCD.AD=DE8.如图,已知MB=ND,∠ MBA=∠ NDC,以下条件中不可以判断△ABM≌△ CDN的是()A.∠ M=∠ NB.AM=CNC.AB=CDD.AM ∥ CN9.已知△ ABC≌△ DEF,∠ A=50°,∠ B=75°,则∠ F 的大小为()°° C.65 ° D.75 °10.如图,在△ ABC和△ DEF中,给出以下六个条件中,以此中三个作为已知条件,不可以判断△ABC和△ DEF 全等的是()①AB=DE ;② BC=EF;③ AC=DF;④∠ A=∠ D;⑤∠B=∠ E;⑥∠ C=∠ F.A、①⑤②B、①②③C、④⑥①D、②③④二、填空题(共8 题;共 27 分)11.如图,△ ABC≌△ ADE,∠ B=100 °,∠ BAC= 30°,那么∠ AED= ________ °.12.以下图,已知△ABC≌△ ADE,∠ C=∠ E,AB=AD,则此外两组对应边为________,此外两组对应角为________.13.如图,△ ACE≌△ DBF,点 A、 B、C、 D 共线,若 AC=5, BC=2,则 CD的长度等于 ________.14.如图, AB=AD,只需增添一个条件________,就能够判断△ABC≌△ ADE.B=∠ C, BC=8厘米,点 D 为AB 的中点.假如点P 在线段BC 上以 2 厘米15.△ ABC中, AB=AC=12厘米,∠/ 秒的速度由 B 点向 C 点运动,同时,点Q 在线段CA 上由 C 点向A 点运动.若点Q 的运动速度为v 厘米 /秒,则当△ BPD 与△ CQP全等时, v 的值为 ________.16.如图,已知△ABC≌△ DCB,∠ BDC=35°,∠ DBC=50°,则∠ ABD=________.17.如图,△ ABC≌△ DEF,点 F 在 BC边上, AB 与 EF订交于点P.若∠ DEF=40°, PB=PF,则∠APF=________ .°18.如图,在△ ABC与△ ADC 中,已知 AD=AB,在不增添任何协助线的前提下,要使△ABC≌△ ADC,只需再增添的一个条件能够是________.三、解答题(共 5 题;共 37 分)19.如图,已知△ABC≌△ BAD, AC 与 BD 订交于点O,求证: OC=OD.20.图中所示的是两个全等的五边形,∠β=115°,d=5,指出它们的对应极点?对应边与对应角,并说出图中标的 a,b ,c, e,α各字母所表示的值.21.如图, AB=CB, BE=BF,∠ 1=∠ 2,证明:△ ABE≌△ CBF.22.已知命题:如图,点A, D, B, E 在同一条直线上,且AD=BE,∠ A=∠ FDE,则△ ABC≌△ DEF.判断这个命题是真命题仍是假命题,假如是真命题,请给出证明;假如是假命题,请增添一个适合条件使它成为真命题,并加以证明.23.如图,已知点 C 是线段 AB 上一点,直线AM⊥ AB,射线 CN⊥ AB, AC=3, CB=2.分别在直线AM 上取一点 D,在射线CN上取一点 E,使得△ ABD 与△ BDE全等,求2的CE值.四、综合题(共 1 题;共 10 分)24.定义:我们把三角形被一边中线分红的两个三角形叫做“朋友三角形”.性质:“朋友三角形”的面积相等.如图 1,在△ ABC中, CD是 AB 边上的中线.那么△ ACD和△ BCD是“朋友三角形”,而且 S△ACD=S△BCD.应用:如图 2,在直角梯形 ABCD中,∠ ABC=90°, AD∥ BC, AB=AD=4, BC=6,点 E 在 BC 上,点 F 在AD 上, BE=AF, AE 与 BF交于点 O.(1)求证:△ AOB 和△ AOF是“朋友三角形”;(2)连结 OD,若△ AOF 和△ DOF是“朋友三角形”,求四边形CDOE的面积.拓展:如图3,在△ ABC中,∠ A=30°, AB=8,点 D 在线段 AB 上,连结 CD,△ ACD和△ BCD是“朋友三角形”,将△ ACD 沿 CD 所在直线翻折,获得△ A′CD,若△ A′CD与△ ABC重合部分的面积等于△ABC 面积的,则△ ABC的面积是 ________(请直接写出答案).答案分析一、单项选择题1、【答案】 B【考点】全等三角形的判断【分析】【剖析】由 AE=CF可得 AF=CE,再有∠ AFD=∠ CEB,依据全等三角形的判断方法挨次剖析各选项即可 .【解答】∵ AE=CF∴AE+EF=CF+EF,即 AF=CE,∵∠ A=∠ C, AF=CE,∠ AFD=∠ CEB,∴△ ADF≌△ CBE( ASA)∵BE=DF,∠ AFD=∠ CEB, AF=CE,∴△ ADF≌△ CBE(SAS)∵AD∥ BC,∴∠ A=∠ C,∵∠ A=∠ C, AF=CE,∠ AFD=∠ CEB,∴△ ADF≌△ CBE( ASA)故 A、 C、D 均能够判断△ ADF≌△ CBE,不切合题意B、 AF=CE, AD=CB,∠ AFD=∠ CEB没法判断△ ADF≌△ CBE,本选项切合题意.【评论】全等三角形的判断和性质是初中数学的要点,贯串于整个初中数学的学习,是中考取比较常有的知识点,一般难度不大,需娴熟掌握.2、【答案】 C【考点】全等三角形的判断【分析】【剖析】 A、依据 AAS(∠ A=∠ A,∠ C=∠B, AD=AE)能推出△ ABE≌△ ACD,正确,故本选项错误;B、依据 AAS(∠ A=∠ A,∠ B=∠ C, BE=CD)能推出△ ABE≌△ ACD,正确,故本选项错误;C、三角对应相等的两三角形不必定全等,错误,故本选项正确;D、依据 ASA(∠ A=∠ A, AB=AC,∠ B=∠ C)能推出△ ABE≌△ ACD,正确,故本选项错误;应选 C.3、【答案】 C【考点】全等三角形的性质【分析】【解答】解: A、∵△ ABD≌△ CDB,∴△ ABD 和△ CDB的面积相等,故本选项错误;B、∵△ ABD≌△ CDB,∴△ ABD 和△ CDB的周长相等,故本选项错误;C、∵△ ABD≌△ CDB,∴∠ A=∠ C,∠ ABD=∠ CDB,∴∠ A+∠ ABD=∠ C+∠ CDB≠∠ C+∠ CBD,故本选项正确;D、∵△ ABD≌△ CDB,∴AD=BC,∠ ADB=∠ CBD,∴AD∥BC,故本选项错误;应选 C.【剖析】依据全等三角形的性质得出对应角相等,对应边相等,推出两三角形面积相等,周长相等,再逐一判断即可.4、【答案】 D【考点】全等三角形的判断【分析】【解答】解: A、∵在△ ABD 和△ ACD中∴△ ABD≌△ ACD( SSS),故本选项错误;B、∵在△ ABD 和△ ACD 中∴△ ABD≌△ ACD( SAS),故本选项错误;C、∵在△ ABD 和△ ACD 中∴△ ABD≌△ ACD( AAS),故本选项错误;D、不切合全等三角形的判断定理,不可以推出△ABD≌△ ACD,故本选项正确;应选 D.【剖析】全等三角形的判断定理有SAS, ASA,AAS, SSS,依据全等三角形的判断定理逐一判断即可.5、【答案】 D【考点】全等三角形的性质【分析】【解答】解:如图,由三角形内角和定理获得:∠2=180°﹣ 50°﹣72°=58°.∵图中的两个三角形全等,∴∠ 1=∠ 2=58°.应选: D.【剖析】依据三角形内角和定理求得∠2=58°;而后由全等三角形是性质获得∠1=∠ 2=58°.6、【答案】 D【考点】全等三角形的判断【分析】【解答】解:在△ABD 与△ CBD中,AD=CDAB=BCDB=DB ,∴△ ABD≌△ CBD( SSS),故①正确;∴∠ ADB=∠ CDB,在△ AOD 与△ COD中,,∴△ AOD≌△ COD( SAS),∴∠ AOD=∠ COD=90°,AO=OC,∴AC⊥ DB,故②正确;四边形 ABCD的面积 =S△ ADB+S△ BDC=12DB×OA+12DB×OC=12AC· BD故③正确;应选 D.【剖析】先证明△ABD 与△ CBD 全等,再证明△AOD 与△ COD 全等即可判断.7、【答案】 D【考点】全等三角形的性质【分析】【解答】解:∵△ABE≌△ ACD,∠ 1=∠ 2,∠B=∠ C,∴ AB=AC,∠ BAE=∠ CAD,BE=DC,AD=AE,故 A、 B、C 正确;AD 的对应边是AE 而非 DE,因此 D 错误.应选 D.【剖析】依据全等三角形的性质,全等三角形的对应边相等,全等三角形的对应角相等,即可进行判断.8、【答案】 B【考点】全等三角形的判断【分析】【解答】解: A、∠ M= ∠ N,切合 ASA,能判断△ ABM≌△ CDN,故 A 选项不切合题意;B、根据条件 AM=CN, MB=ND,∠ MBA=∠ NDC,不可以判断△ ABM≌△ CDN,故 B 选项切合题意;C、 AB=CD,切合 SAS,能判断△ ABM≌△ CDN,故 C 选项不切合题意;D、 AM∥CN,得出∠ MAB=∠ NCD,切合 AAS,能判断△ ABM≌△ CDN,故 D 选项不切合题意.应选: B.【剖析】依据一般三角形全等的判断定理,有9、【答案】 B【考点】全等三角形的性质【分析】【解答】解:∵∠A=50°,∠ B=75°,∴∠ C=55°,AAS、 SSS、 ASA、 SAS四种.逐条考证.又∵∠ A+∠ B+C=180°,∵△ ABC≌△ DEF,∴∠ F=∠ C,即:∠ F=55°.应选 B.【剖析】由∠A=50°,∠ B=75°,依据三角形的内角和定理求出∠全等三角形的性质获得∠F=∠ C,即可获得答案.C的度数,依据已知△ABC≌△ DEF,利用10、【答案】 D【考点】全等三角形的判断【分析】【解答】解:在△ABC 和△ DEF中,,∴△ ABC≌△ DEF( SAS);∴A 不切合题意;在△ ABC和△ DEF中,,∴△ ABC≌△ DEF( SSS);∴ B 不切合题意;在△ ABC和△ DEF中,,∴△ ABC≌△ DEF( AAS),∴C 不切合题意;在△ ABC和△ DEF中,D②③④不可以判断△ ABC和△ DEF全等,应选 D.【剖析】依据全等三角形的判断方法对组合进行判断即可.二、填空题11、【答案】 50【考点】全等三角形的性质【分析】【解答】由于∠B= 100°,∠ BAC= 30°因此∠ ACB= 50°;又由于△ ABC≌△ ADE,因此∠ ACB=∠AED = 50°;【剖析】第一依据全等三角形性质可得对应角相等,再联合图形找到全等三角形的那两个角对应相等,根据题意达成填空.12、【答案】 BC=DE、 AC=AE;∠ B=∠ ADE、∠ BAC=∠DAE 【考点】全等三角形的性质【分析】【解答】∵△ ABC≌△ ADE,∠ C=∠ E, AB=AD,∴AC=AE, BC=DE;∴∠ BAC=∠ DAE,∠ B=∠ ADE.【剖析】由已知△ ABC≌△ ADE,∠ C=∠ E, AB=AD 得 C 点与点 E,点 B 与点 D 为对应点,而后依据全等三角形的性质可得答案.13、【答案】 3【考点】全等三角形的性质【分析】【解答】解:∵△ACE≌△ DBF,∴AC=BD=5,∴CD=BD﹣BC=5﹣ 2=3.故答案为: 3.【剖析】依据全等三角形对应边相等可得AC=BD,而后依据 CD=BD﹣ BC计算即可得解.14、【答案】∠ B=∠ D【考点】全等三角形的判断【分析】【解答】解:增添条件∠B=∠ D,∵在△ ABC和△ ADE 中,∴△ ABC≌△ ADE( ASA),故答案为:∠B=∠D.【剖析】增添条件∠B=∠ D,再由条件∠A=∠A,AB=AD,可利用ASA定理证明△ ABC≌△ ADE,答案不惟一.15、【答案】 2 或 3【考点】全等三角形的判断【分析】【解答】解:当BD=PC时,△ BPD 与△ CQP全等,∵点 D 为 AB 的中点,∴BD= 12 AB=6cm,∵ BD=PC,∴BP=8﹣ 6=2(cm),∵点 P 在线段 BC上以 2 厘米 / 秒的速度由 B 点向 C 点运动,∴运动时间时1s,∵△ DBP≌△ PCQ,∴BP=CQ=2cm,∴v=2÷1=2;当BD=CQ时,△BDP≌△QCP,∵ BD=6cm,PB=PC,∴QC=6cm,∵BC=8cm,∴ BP=4cm,∴运动时间为 4÷2=2( s),∴ v=6÷2=3( m/s ),故答案为: 2 或 3.【剖析】本题要分两种状况:①当BD=PC时,△ BPD 与△ CQP全等,计算出BP的长,从而可得运动时间,BDP≌△ QCP,计算出BP 的长,从而可得运动时间,而后再求v.而后再求v;②当BD=CQ时,△16、【答案】 45°【考点】全等三角形的性质【分析】【解答】解:∵∠ BDC=35°,∠ DBC=50°,∴∠ BCD=180°﹣∠ BDC﹣∠ DBC=180°﹣35°﹣50°=95°,∵△ ABC≌△ DCB,∴∠ ABC=∠ BCD=95°,∴∠ ABD=∠ ABC﹣∠ DBC=95°﹣50°=45°.故答案为: 45°.【剖析】依据三角形的内角和等于180°求出∠BCD,再依据全等三角形对应角相等可得∠ABC=∠ BCD,然后列式进行计算即可得解.17、【答案】 80【考点】全等三角形的性质【分析】【解答】解:∵△ ABC≌△ DEF,∴∠ B=∠DEF=40°,∵PB=PF,∴∠ PFB=∠ B=40°,∴∠ APF=∠ B+∠PFB=80°,故答案为: 80.【剖析】由全等三角形的性质可求得∠B,再利用等腰三角形和外角的性质可求得∠APF.18、【答案】 DC=BC或∠ DAC=∠BAC【考点】全等三角形的判断【分析】【解答】解:增添条件为DC=BC,在△ ABC和△ ADC中,,∴△ ABC≌△ ADC( SSS);若增添条件为∠DAC=∠ BAC,在△ ABC和△ ADC 中,,∴△ ABC≌△ ADC( SAS).故答案为: DC=BC或∠ DAC=∠BAC【剖析】增添 DC=BC,利用 SSS即可获得两三角形全等;增添∠ DAC=∠ BAC,利用 SAS即可获得两三角形全等.三、解答题19、【答案】证明:∵△ ABC≌△ BAD,∴∠ CAB=∠ DBA, AC=BD,∴OA=OB,∴AC﹣OA=BD﹣OB,即: OC=OD.【考点】全等三角形的性质【分析】【剖析】由△ ABC≌△ BAD,依据全等三角形的性质得出∠CAB=∠ DBA, AC=BD,利用等角平等边获得 OA=OB,那么 AC﹣ OA=BD﹣OB,即: OC=OD.20、【答案】解:对应极点: A 和 G, E 和 F,D 和 J,C 和 I, B 和 H,对应边: AB 和 GH,AE 和 GF, ED 和 FJ, CD 和 JI,BC 和 HI;对应角:∠ A 和∠ G,∠ B 和∠ H,∠ C 和∠ I,∠ D 和∠ J,∠ E和∠ F;∵两个五边形全等,∴a=12,c=8, b=10, e=11,α=90°.【考点】全等图形【分析】【剖析】依据能够完整重合的两个图形叫做全等形,重合的极点叫做对应极点;重合的边叫做对应边;重合的角叫做对应角可得对应极点,对应边与对应角,从而可得a,b,c,e,α各字母所表示的值.21、【答案】证明:∵∠ 1=∠ 2,∴∠ 1+∠ FBE=∠ 2+∠ FBE,即∠ ABE=∠ CBF,在△ ABE与△ CBF中,AB=CB∠ ABE=∠ CBFBE=BF,∴△ ABE≌△ CBF( SAS).【考点】全等三角形的判断【分析】【剖析】利用∠1=∠ 2,即可得出∠ABE=∠ CBF,再利用全等三角形的判断SAS得出即可.22、【答案】解:是假命题.以下任一方法均可:①增添条件:AC=DF.证明:∵ AD=BE,∴AD+BD=BE+BD,即 AB=DE.在△ ABC和△ DEF中,AB=DE,∠A=∠ FDE,AC=DF,∴△ ABC≌△ DEF( SAS);②增添条件:∠CBA=∠ E.证明:∵ AD=BE,∴AD+BD=BE+BD,即 AB=DE.在△ABC和△DEF中,∠ A=∠ FDE,AB=DE,∠CBA=∠ E,∴△ ABC≌△ DEF( ASA);③增添条件:∠C=∠ F.证明:∵ AD=BE,∴AD+BD=BE+BD,即 AB=DE.在△ ABC和△ DEF中,∠ A=∠ FDE,∠ C=∠F,AB=DE,∴△ ABC≌△ DEF( AAS)【考点】全等三角形的判断【分析】【剖析】本题中要证△ABC≌△ DEF,已知的条件有一组对应边AB=DE( AD=BE),一组对应角∠ASA),或许是一组A=∠FDE.要想证得全等,依据全等三角形的判断,缺乏的条件是一组对应角( AAS或对应边AC=EF( SAS).只需有这两种状况就能证得三角形全等.23、【答案】解:如图,当△ ABD≌△ EBD时,BE=AB=5,∴CE2=BE2﹣ BC2=25﹣ 4=21.【考点】全等三角形的判断【分析】【剖析】由题意可知只好是△ABD≌△ EBD,则可求得BE,再利用勾股定理可求得CE2四、综合题24、【答案】( 1)证明:∵ AD∥ BC,∴∠ OAF=∠ OEB,在△ AOF 和△ EOB 中,,∴△ AOF≌△ EOB( AAS),∴OF=OB,则 AO 是△ ABF 的中线.∴△ AOB 和△ AOF是“朋友三角形”(2) 8 或 8【考点】全等三角形的判断【分析】【解答】( 2)解:∵△ AOF 和△ DOF 是“朋友三角形”,∴S△AOF=S△DOF,∵△ AOF≌△ EOB,∴S△AOB=S△EOB,∵△ AOB 和△ AOF是“朋友三角形”∴S△AOB=S△AOF,=S =S =S, =× 4× 2=4,∴ S△AOF△DOF△AOB△EOB∴四边形CDOE 的面积 =S 梯形ABCD﹣ 2S△ABE=×(4+6)×4﹣2× 4=12;拓展:解:分为两种状况:①如图 1 所示:∵S△ACD=S△BCD.∴AD=BD= AB=4,∵沿 CD 折叠 A 和 A′重合,∴AD=A′D= AB= ×8=4,∵△ A′CD与△ ABC重合部分的面积等于△ABC面积的,=S =S =S =S,∴ S△DOC△ ABC△ BDC△ ADC△ A′DC∴ DO=OB, A′O=CO,∴四边形 A′DCB是平行四边形,∴ BC=A′D=4,过 B 作 BM⊥ AC 于 M,∵ AB=8,∠ BAC=30°,∴ BM=AB=4=BC,即 C 和 M 重合,∴∠ ACB=90°,由勾股定理得:AC==4,∴△ ABC的面积 =×BC×AC= ×4×4=8;②如图 2 所示:∵S△ACD=S△BCD.∴AD=BD= AB,∵沿 CD 折叠 A 和 A′重合,∴AD=A′D= AB= ×8=4,∵△ A′CD与△ ABC重合部分的面积等于△ABC 面积的,∴ S△DOC=△△△△ ′S ABC=S BDC=S ADC=S A DC,∴DO=OA′, BO=CO,∴四边形 A′BDC是平行四边形,∴A′C=BD=4,过 C 作 CQ⊥ A′D于 Q,∵A′C=4,∠ DA′C=∠BAC=30°,∴ CQ= A′C=2,=2S=2S=2×× A′ D× CQ=2× 4 × 2=8;∴ S△ABC△ADC△ A′DC即△ ABC的面积是8 或 8;故答案为:8 或 8.【剖析】应用:(1)由 AAS 证明△ AOF≌△ EOB,得出 OF=OB, AO 是△ ABF的中线,即可得出结论;( 2)△ AOE和△ DOE 是“友善三角形”,即可获得 E 是 AD 的中点,则能够求得△ ABE和梯形 ABCD的面积的面积,依据 S 四边形CDOF=S矩形ABCD﹣ 2S△ABF即可求解.拓展:画出切合条件的两种状况:①求出四边形A′DCB是平行四边形,求出BC和 A′D推出∠ ACB=90°,依据三角形面积公式求出即可;②求出高CQ,求出△ A′DC的面积.即可求出△ABC的面积。
2023-2024学年八年级数学上册《第十二章 全等三角形》单元测试卷题含答案(人教版)
![2023-2024学年八年级数学上册《第十二章 全等三角形》单元测试卷题含答案(人教版)](https://img.taocdn.com/s3/m/a40c290a42323968011ca300a6c30c225801f067.png)
2023-2024学年八年级数学上册《第十二章全等三角形》单元测试卷题含答案(人教版)学校:___________班级:___________姓名:___________考号:___________一、选择题1.如图,已知AB=AC,AD=AE,∠BAC=∠DAE.下列结论不正确的有( )A.∠BAD=∠CAEB.△ABD≌△ACEC.AB=BCD.BD=CE2.如图,小敏做了一个角平分仪ABCD,其中AB=AD,BC=DC.将仪器上的点A与∠PRQ的顶点R重合,调整AB和AD,使它们分别落在角的两边上,过点A,C画一条射线AE,AE就是∠PRQ 的平分线.此角平分仪的画图原理是:根据仪器结构,可得△ABC≌△ADC,这样就有∠QAE=∠PAE.则说明这两个三角形全等的依据是( )A.SASB.ASAC.AASD.SSS3.如图,下面4个正方形的边长都相等,其中阴影部分的面积相等的图形有( )A.0个B.2个C.3个D.4个4.如图,将长方形纸片ABCD折叠,使点D与点B重合,点C落在C'处,折痕为EF.若AB=1,BC=2,则△ABE和△BC'F的周长之和为( )A.3B.4C.6D.85.如图,在Rt△ABC的斜边BC上截取CD=CA,过点D作DE⊥BC交AB于点E,则有( )A.DE=DBB.DE=AEC.AE=BED.AE=BD6.如图,已知点P到AE、AD、BC的距离相等,下列说法:①点P在∠BAC的平分线上;②点P在∠CBE的平分线上;③点P在∠BCD的平分线上;④点P在∠BAC,∠CBE,∠BCD的平分线的交点上.其中正确的是( )A.①②③④B.①②③C.④D.②③7.小明把一副含45°,30°的直角三角板如图摆放,其中∠C=∠F=90°,∠A=45°,∠D=30°,则∠α+∠β等于( )A.180°B.210°C.360°D.270°8.如图,在△ABC中,AB=AC,点E,F是中线AD上两点,则图中可证明为全等三角形的有( )A.3对B.4对C.5对D.6对9.如图,△ABC中,P、Q分别是BC、AC上的点,作PR⊥AB,PS⊥AC,垂足分别是R、S,若AQ=PQ,PR=PS.下面三个结论:①AS=AR;②QP∥AR;③△BRP≌△QSP.其中正确的是( )A.①③B.②③C.①②D.①②③10.如图,已知在△ABC,△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C,D,E三点在同一条直线上,连接BD,BE.以下四个结论:①BD=CE;②∠ACE+∠DBC=45°;③BD⊥CE;④∠BAE+∠DAC=180°.其中结论正确的个数是( )A.1B.2C.3D.411.如图,已知,BD为△ABC的角平分线,且BD=BC,E为BD延长线上的一点,BE=BA.下列结论:①△ABD≌△EBC;②∠BCE+∠BCD=180°;③AD=AE=EC;④AC=2CD.其中正确的有( ) 个.A.1B.2C.3D.412.如图,已知∠BAC的平分线与BC的垂直平分线相交于点D,DE⊥AB,DF⊥AC,垂足分别为E,F,AB=6,AC=3,则BE=( )A. 6B. 3C. 2D. 1.5二、填空题13.已知△DEF≌△ABC,AB=AC,且△ABC的周长为22cm,BC=4cm,则DE= cm.14.小明将一块三角形的玻璃棒摔碎成如图所示的四块(即图中标有1,2,3,4的四块),若只带一块配成原来一样大小的三角形,则应该带第_______块.15.下面是“经过已知直线外一点作这条直线的平行线”的尺规作图过程.已知:如图1,直线l和直线l外一点P.求作:直线l的平行直线,使它经过点P.作法:如图2.(1)过点P作直线m与直线l交于点O;(2)在直线m上取一点A(OA<OP),以点O为圆心,OA长为半径画弧,与直线l交于点B;(3)以点P为圆心,OA长为半径画弧,交直线m于点C,以点C为圆心,AB长为半径画弧,两弧交于点D;(4)作直线PD.所以直线PD就是所求作的平行线.请回答:该作图的依据是.16.如图,△ABC是不等边三角形,DE=BC,以D,E为两个顶点作位置不同的三角形,使所作的三角形与△ABC全等,这样的三角形最多可以画出个.17.如图,旗杆AC与旗杆BD相距12 m,某人从点B沿BA走向点A,一段时间后他到达点M,此时他仰望旗杆的顶点C和D,两次视线的夹角为90°,且CM=DM.已知旗杆AC的高为3 m,该人的运动速度为1 m/s,则这个人运动到点M所用时间是 s.18.如图,DE⊥AB于E,DF⊥A于F,若BD=CD,BE=CF.则下列结论:①DE=DF;②AD平分∠BAC;③AE=AD;④AB+AC=2AE中正确的是 .三、解答题19.某段河流的两岸是平行的,数学兴趣小组在老师带领下不用涉水过河就测得河的宽度,他们是这样做的:①在河流的一条岸边B点,选对岸正对的一棵树A;②沿河岸直走20m有一树C,继续前行20m到达D处;③从D处沿河岸垂直的方向行走,当到达A树正好被C树遮挡住的E处停止行走;④测得DE的长为5米.求:(1)河的宽度是多少米?(2)请你证明他们做法的正确性.20.如图,在△ABC中,AD是BC边上的中线,E是AB边上一点,过点C作CF∥AB交ED的延长线于点F.(1)求证:△BDE≌△CDF.(2)当AD⊥BC,AE=1,CF=2时,求AC的长.21.如图,点O是线段AB的中点,OD∥BC且OD=BC.(1)求证:△AOD≌△OBC;(2)若∠ADO=35°,求∠DOC的度数.22.如图,∠BAD=∠CAE=90°,AB=AD,AE=AC.(1)证明:BC=DE;(2)若AC=12,CE经过点D,求四边形ABCD的面积.23.如图,在等腰Rt△ACB中,∠ACB是直角,AC=BC,把一个45°角的顶点放在C处,两边分别与AB交于E,F两点.(1)将所得△ACE以C为中心,按逆时针方向旋转到△BCG,试求证:△EFC≌△GFC;(2)若AB=10,AE∶BF=3∶4,求EF的长.24.如图,在△ABC中,∠ABC=60゜,AD、CE分别平分∠BAC、∠ACB,AD、CE交于O.(1)求∠AOC的度数;(2)求证:AC=AE+CD.25.已知点P为∠EAF平分线上一点,PB⊥AE于B,PC⊥AF于C,点M,N分别是射线AE,AF 上的点,且PM=PN.(1)如图1,当点M在线段AB上,点N在线段AC的延长线上时,求证:BM=CN;(2)在(1)的条件下,直接写出线段AM,AN与AC之间的数量关系________;(3)如图2,当点M在线段AB的延长线上,点N在线段AC上时,若AC:PC=2:1,且PC=4,求四边形ANPM的面积.答案1.C2.D3.C4.C5.B6.A7.B8.D.9.C.10.D11.C12.D.13.答案为:9.14.答案为:2.15.答案为:三边分别相等的两个三角形全等;全等三角形的对应角相等;同位角相等,两直线平行.16.答案为:4.17.答案为:3.18.答案为:①②④;19.解:(1)河的宽度是5m;(2)证明:由作法知,BC=DC,∠ABC=∠EDC=90°在Rt△ABC和Rt△EDC中∴Rt△ABC≌Rt△EDC(ASA)∴AB=ED即他们的做法是正确的.20.证明:(1)∵CF∥AB∴∠B=∠FCD,∠BED=∠F∵AD是BC边上的中线∴BD=CD∴△BDE≌△CDF(AAS);(2)解:∵△BDE≌△CDF∴BE=CF=2∴AB=AE+BE=1+2=3∵AD⊥BC,BD=CD∴AC=AB=3.21.证明:(1)∵点O是线段AB的中点∴AO=BO∵OD∥BC∴∠AOD=∠OBC在△AOD与△OBC中∴△AOD≌△OBC(SAS);(2)解:∵△AOD≌△OBC∴∠ADO=∠OCB=35°∵OD∥BC∴∠DOC=∠OCB=35°.22.解:(1)∵∠BAD=∠CAE=90°∴∠BAC+∠CAD=∠EAD+∠CAD∴∠BAC=∠EAD.在△ABC和△ADE中∴△ABC≌△ADE(SAS).∴BC=DE(2)∵△ABC≌△ADE∴S△ABC =S△ADE∴S 四边形ABCD =S △ABC +S △ACD =S △ADE +S △ACD =S △ACE =12×122=72.23.解:(1)由旋转知:△BCG ≌△ACE.∴CG =CE ,∠BCG =∠ACE.∵∠ACE +∠BCF =45°∴∠BCG +∠BCF =45°即∠GCF =∠ECF =45°而CF 为公共边∴△EFC ≌△GFC(SAS);(2)连接FG.由△BCG ≌△ACE 知:∠CBG =∠A =45°∴∠GBF =∠CBG +∠CBF =90°由△EFC ≌△GFC 知:EF =GF.设BG =AE =3x ,BF =4x则在Rt △GBF 中,GF =5x∴EF =GF =5x∴AB =3x +5x +4x =10∴AB =56∴EF =5x =256. 24.解:如图,在AC 上截取AF =AE ,连接OF∵AD 平分∠BAC∴∠BAD =∠CAD在△AOE和△AOF中∴△AOE≌△AOF(SAS)∴∠AOE=∠AOF∵∠ABC=60°,AD、CE分别平分∠BAC,∠ACB∴∠AOC=120°;(2)∵∠AOC=120°∴∠AOE=60°∴∠AOF=∠COD=60°=∠COF在△COF和△COD中∴△COF≌△COD(ASA)∴CF=CD∴AC=AF+CF=AE+CD.25.解:(1)如图1∵点P为∠EAF平分线上一点,PB⊥AE,PC⊥AF∴PB=PC,∠PBM=∠PCN=90°∵在Rt△PBM和Rt△PCN中,PBM=∠PCN=90°,PM=PN,PB=PC∴Rt△PBM≌Rt△PCN(HL)∴BM=CN(2)AM+AN=2AC(3)解:如图2,∵点P为∠EAF平分线上一点,PB⊥AE,PC⊥AF ∴PB=PC,∠PBM=∠PCN=90°∵在Rt △PBM 和Rt △PCN 中,PBM=∠PCN=90°,PM=PN,PB=PC ∴Rt △PBM ≌Rt △PCN (HL )∴BM=CN∴S △PBM =S △PCN∵AC :PC=2:1,PC=4∴AC=8∴由(2)可得,AB=AC=8,PB=PC=4∴S 四边形ANPM =S △APN +S △APB +S △PBM =S △APN +S △APB +S △PCN =S △APC +S △APB = 0.5AC •PC+ 0.5AB •PB= 0.5×8×4+ 0.5×8×4=32。
人教版八年级数学第十二章《全等三角形》单元测试题(含答案)
![人教版八年级数学第十二章《全等三角形》单元测试题(含答案)](https://img.taocdn.com/s3/m/c4f123c7cf2f0066f5335a8102d276a201296043.png)
人教版八年级数学第十二章《全等三角形》单元测试题(含答案)时间:120分钟满分:120分一、选择题(共10小题,满分30分,每小题3分)1.(3分)如图,△ABD和△ACD中,AB=AC,BD=CD,若∠B=20°,则∠C等于()A.10°B.20°C.30°D.40°2.(3分)如图所示,某同学把一块三角形的模具不小心打碎成了三块,现在要去商店配一块与原来一样的三角形模具,那么最省事的是带哪一块去()A.①B.②C.③D.①和②3.(3分)如图,已知△ABD≌△ACE,AD=3,AB=7,BD=9,则AC的长为()A.3B.7C.9D.无法确定4.(3分)如图,AC与BD相交于点O,OA=OD,OB=OC,不添加辅助线,判定△ABO ≌△DCO的依据是()A.SSS B.SAS C.AAS D.HL5.(3分)如图,在△ABC和△DEF中,点A,E,B,D在同一直线上,AC∥DF,AC=DF,只添加一个条件,能判定△ABC≌△DEF的是()A.BC=DE B.AE=DB C.∠A=∠DEF D.∠ABC=∠D 6.(3分)如图,点E、F、C、B在同一直线上,AB=DE,∠A=∠D,添加下列一个条件,不能判定△ABC≌△DEF的条件是()A.∠ACB=∠DFE B.AC=DF C.∠B=∠E D.BC=EF7.(3分)如图,∠AOB=150°,OP平分∠AOB,PD⊥OB于点D,PE⊥OA于点E,PC ∥OB交OA于点C,若PD=3,则OC的长为()A.6B.5C.4D.38.(3分)如图,AB,CD相交于O,△OCA≌△OBD,AO=6,BO=4,则CD的长为()A.9B.10C.11D.129.(3分)下列结论正确的是()A.两个等边三角形全等B.有一个锐角相等的两个直角三角形全等C.有两边及一个角对应相等的两个三角形全等D.斜边和一个锐角对应相等的两个直角三角形全等10.(3分)根据语句“直线a与直线b相交,点P在直线a上,直线b不经过点P.”画出的图形是()A.B.C.D.二、填空题(共5小题,满分15分,每小题3分)11.(3分)如图,P是∠AOB的平分线OC上一点,PD⊥OB,PE⊥OA,垂足分别为D,E,若PD=3,则PE的长是.12.(3分)已知△ABC的三边长为x,3,6,△DEF的三边长为5,6,y.若△ABC与△DEF全等,则x+y的值为.13.(3分)如图,AD是△ABC的角平分线,DF⊥AB于点F,点E,G分别是边AB,AC 上的点,且DE=DG,则∠AED+∠AGD=度.14.(3分)如图,OP平分∠MON,P A⊥ON于点A,若P A=3,则点P到射线OM的距离是.15.(3分)如图,BO平分∠ABC,OD⊥BC于点D,点E为射线BA上一动点,若OD=5,则OE的最小值为.三、解答题(共8小题,满分75分)16.(9分)如图,已知AD平分∠BAC,AB=AC.求证:△ABD≌△ACD.17.(9分)如图,已知△ABC和△ADC有公共边AC,且AB=AD,请你添加一个条件(不再添加其他线段,不再标注或使用其他字母),使∠B=∠D,并说明理由.18.(9分)如图,AB=AD,∠C=∠E,∠BAE=∠DAC.求证:AC=AE.19.(9分)如图,已知AB=AD,AE=AC,∠DAB=∠EAC.求证:△ACD≌△AEB.20.(9分)已知:如图,点E、F在BC上,AF与DE交于点G,AB=DC,GE=GF,∠B =∠C.求证:AG=DG.21.(10分)已知:如图,AC=BD,AD=BC,AD,BC相交于点O,过点O作OE⊥AB,垂足为E.求证:(1)△ABC≌△BAD.(2)AE=BE.22.(10分)如图,已知AD∥BC,AD=CB,AE=FC.(1)求证:∠D=∠B;(2)若∠A=20°,∠D=110°,求∠BEC的度数.23.(10分)如图,△ABC中,D是BC延长线上一点,满足CD=AB,过点C作CE∥AB 且CE=BC,连接DE并延长,分别交AC、AB于点F、G.(1)求证:△ABC≌△DCE;(2)若∠B=50°,∠D=22°,求∠AFG的度数.参考答案一、选择题(共10小题,满分30分,每小题3分)1.B;2.C;3.B;4.B;5.B;6.D;7.A;8.B;9.D;10.D;二、填空题(共5小题,满分15分,每小题3分)11.312.813.18014.315.5三、解答题(共8小题,满分75分)16.证明:∵AD平分∠BAC,∴∠BAD=∠CAD,在△ABD和△ACD中,,∴△ABD≌△ACD(SAS).17.解:添加条件:CB=CD,理由:在△ABC和△ADC中,,∴△ABC≌△ADC(SSS),∴∠B=∠D.(答案不唯一)18.证明:∵∠BAE=∠DAC,∴∠BAE+∠EAC=∠DAC+∠EAC,即∠BAC=∠DAE,在△BAC和△DAE中,,∴△BAC≌△DAE(AAS),∴AC=AE.19.证明:∵∠DAB=∠EAC,∴∠DAB+∠BAC=∠EAC+∠BAC,即∠DAC=∠BAE,在△ACD和△AEB中,,∴△ACD≌△AEB(SAS).20.证明:∵GE=GF,∴△GEF为等腰三角形,∴∠GEF=∠GFE,∵在△ABF和△DCE中,∠B=∠C,∴∠A=∠D,在△ABF和△DCE中,,∴△ABF≌△DCE(ASA),∴AF=DE,又∵GF=GE,∴AF﹣GF=DE﹣GE,即AG=DG.21.证明(1)在ABC和△BAD中,,∴△ABC≌△BAD(SSS);(2)∵△ABC≌△BAD,∴∠CBA=∠DAB,∴OA=OB,∵OE⊥AB,∴AE=BE.22.(1)证明:∵AD∥BC,∴∠A=∠C,∵AE=FC,∴AF=CE,在△ADF和△CBE中,,∴△ADF≌△CBE(SAS),∴∠D=∠B;(2)解:∵∠A=20°,∠D=110°,∴∠AFD=50°,∵△ADF≌△CBE,∴∠BEC=∠AFD=50°.23.(1)证明:∵CE∥AB,∴∠B=∠DCE,在△ABC与△DCE中,,∴△ABC≌△DCE(SAS);(2)解:∵△ABC≌△DCE,∠B=50°,∠D=22°,∴∠ECD=∠B=50°,∠A=∠D=22°,∵CE∥AB,∴∠ACE=∠A=22°,∵∠CED=180°﹣∠D﹣∠ECD=180°﹣22°﹣50°=108°,∴∠AFG=∠DFC=∠CED﹣∠ACE=108°﹣22°=86°。
八年级上册数学《全等三角形》单元测试题(含答案)
![八年级上册数学《全等三角形》单元测试题(含答案)](https://img.taocdn.com/s3/m/04c0a60c941ea76e59fa0428.png)
【解析】
试题分析:如图,能画4个,分别是:以D为圆心,AB为半径画圆;以C为圆心,CA为半径画圆.两圆相交于两点(DE上下各一个),分别于D、E连接后,可得到两个三角形;以D为圆心,AC为半径画圆;以E为圆心,AB为半径画圆.两圆相交于两点(DE上下各一个),分别于D、E连接后,可得到两个三角形.因此最多能画出4个
B.∠A=∠D,∠C=∠F,AC=EF
C.AB=DE,BC=EF,△ABC的周长=△DEF的周长
【解析】
【分析】
根据判定方法,结合图形和已知条件,寻找添加条件
【详解】解:我们可以先利用HL判定ΔABD≌ΔA'B'D'得出对应Байду номын сангаас相等,对应角相等.
此时若添加CD=C'D',可以利用SAS来判定其全等;
添加∠C=∠C',可以利用AAS判定其全等;还可添加AC=A'C',∠CAD=∠C'A'D'等.故答案为CD=C'D'(或AC=A'C,或∠C=∠C'或∠CAD=∠C'A'D')答案不唯一.
请你以其中两个为条件,另外三个中的一个为结论,推出一个正确的结论(只需写出一种情况),并加以证明.
已知:
求证:
证明:
21.如图22,在∠AOB 两边OA,OB上分别取OM=ON,OD=OE,DN和EM相交于点C.求证:点C在∠AOB的平分线上.
四、拓广探索(本题17分)
22.(1)如图,以△ABC的边AB、AC向外作正方形ABDE和正方形ACFG,试判断△ABC与△AEG面积之间的关系,并说明理由.
在Rt△ABG和Rt△DEH中,
人教版八年级数学上册试题 第12章 全等三角形 单元测试卷 (含解析)
![人教版八年级数学上册试题 第12章 全等三角形 单元测试卷 (含解析)](https://img.taocdn.com/s3/m/18f20380370cba1aa8114431b90d6c85ec3a8888.png)
第12章《全等三角形》单元测试卷一、单选题(本大题共10小题,每小题3分,共30分)1.老师布置了一份家庭作业:用三根小木棍首尾相连拼出一个三角形,三根小木棍的长度分别为5、9、10.5,并且只能对10.5的小木棍进行裁切(裁切后,参与拼图的小木棍的长度为整数),则同学们最多能拼出不同的三角形的个数为( )A .4B .5C .6D .72.如图,点B ,F ,C ,E 在同一条直线上,点A ,D 在直线BE 的两侧,AB ∥DE ,BF =CE ,添加一个适当的条件后,仍不能使得△ABC ≌△DEF ( )A .AC =DFB .AC ∥DF C .∠A =∠D D .AB =DE3.如图,的两条中线AD 、BE 交于点F ,若四边形CDFE 的面积为17,则的面积是( )A .54B .51C .42D .414.已知中,是边上的高,平分.若,,,则的度数等于( )A.B .C .D .5.如图,在四边形中,平分,,,,则面积的最大值为( )cm cm cm cm ABC ABC ABC CD AB CE ACB ∠A m ∠=︒B n ∠=︒m n ≠DCE ∠12m ︒12n ︒()12m n ︒-︒12m n ︒-︒ABDC AD BAC ∠AD DC ⊥2AC AB -=8BC =BDCA .B .C .D .6.如图,,,则下列结论错误的是( )A .≌B .≌C .D .7.如图,在正方形中,对角线相交于点O .E 、F 分别为上一点,且,连接.若,则的度数为( )A .B .C .D .8.如图,在△ABC 中,AB=BC ,,点D 是BC 的中点,BF ⊥AD ,垂足为E ,BF 交AC 于点F ,连接DF.下列结论正确的是()A .∠1=∠3B .∠2=∠3C .∠3=∠4D .∠4=∠59.如图,在四边形ABCD 中,AB =AD ,∠B +∠ADC =180°,E 、F 分别是边BC 、CD 延长线上的点,∠EAF=∠BAD ,若DF =1,BE =5,则线段EF 的长为( )6834BE CD =B D ∠=∠∆BEF DCF∆ABC ∆ADE ∆AB AD =DF AC=ABCD AC BD 、AC BD 、OE OF =AF BE EF ,,25AFE ∠=︒CBE ∠55︒65︒45︒70︒90ABC ∠=︒12A .3B .4C .5D .610.如图,∠DAC 与∠ACE 的平分线相交于点P ,且PC =AB +AC ,若,则∠B 的度数是( )A .100°B .105°C .110°D .120°二、填空题(本大题共8小题,每小题4分,共32分)11.已知三角形的两边的长分别为2cm 和8cm ,设第三边中线的长为cm ,则的取值范围是12.如图,在中,的平分线与的外角平分线交于点.(1)当与满足 的关系时,;(2)当时, .13.我们把两个不全等但面积相等的三角形叫做一对偏等积三角形.已知与是一对面积都等于的偏等积三角形,且,,那么的长等于 (结果用含和的代数式表示).14.如图,在中,,以为斜边作,,E 为上一点,连接、,且满足,若,,则 的长为.60PAD ∠=︒x x ABC ABC ∠ACB ∠P A ∠ABC ∠PC AB ∥72A ∠=︒P ∠=ABC DEF S AB AC DE DF ===BC a =EF a S ABC AB AC =AB Rt ADB 90ADB ∠=︒BD AE CE 2BAC DAE ∠=∠17CE =10BE =DE15.如图,和都为等腰直角三角形,,五边形面积为,求 .16.如图,已知等边△ABC ,AB=6,点D 在AB 上,点F 在AC 的延长线上,BD=CF ,DF 交BC 于点P ,作DE ⊥BC 与点E ,则EP 的长是 .17.如图,等腰中,,,为内一点,且,,则 .18.如图,在,中,,,,C ,D ,E 三点在同一直线上,连接,以下四个结论ABC AED △90ABC AED ∠=∠=︒ABCDE S 2BE S =ABC AB AC =70BAC ∠=︒O ABC 5OCB ∠=︒25ABO ∠=︒OAC ∠=ABC ADE V 90BAC DAE ∠=∠=︒AB AC =AD AE =BD BE ,①;②; ③; ④.其中结论正确的是 .(把正确结论的序号填在横线上).三、解答题(本大题共6小题,共58分)19.(8分)已知:,求作一个,使,且.20.(8分)如图,在Rt ∆ABC 中,∠BAC =90°,∠ABC =60°,AD ,CE 分别平分∠BAC ,∠ACB .(1) 求∠AOE 得度数; (2) 求证:AC=AE +CD .BD CE =90ACE DBC ∠+∠=︒BD CE ⊥180BAE DAC ∠+∠=︒ABC BCD △BCD ABC S S =V V AD AB =21.(10分)在四边形中,,,是上一点,是延长线上一点,且.(1)试说明:;(2)在图中,若,,在上且,试猜想、、之间的数量关系并证明所归纳结论;(3)若,,G 在上,满足什么条件时,(2)中结论仍然成立?(只写结果不要证明).22.(10分)已知线段直线于点,点在直线上,分别以,为边作等边和△ADE ,直线交直线于点.(1)当点F 在线段上时,如图1,试说明:(ⅰ).ABDC DC DB =180C ABD ∠+∠=︒E AC F AB CE BF =DE DF =60CAB ∠=︒120CDB ∠=︒G AB 60EDG ∠=︒CE EG BG CAB α∠=180CDB α∠=︒-AB EDG ∠AB ⊥l B D l AB AD ABC CE l F BD BD CE =(ⅱ).(2)当点F 在线段延长线上时,如图2,请写出线段,,之间的关系,并说明理由.23.(10分)在中,,分别过点A 、B 两点作过点C 的直线m 的垂线,垂足分别为点D 、E .(1)如图1,当,点A 、B 在直线m 的同侧时,求证:;(2)如图2,当,点A 、B 在直线m 的异侧时,请问(1)中有关于线段、和三条线段的数量关系的结论还成立吗?若成立,请你给出证明;若不成立,请给出正确结论,并说明理由;(3)如图3,当,,点A 、B 在直线m 的同侧时,一动点M 以每秒的速度从A 点出发沿A →C →B 路径向终点B 运动,同时另一动点N 以每秒的速度从B点出发DF CE CF =-BD DF CE CF ABC 90ACB ∠=︒AC CB =DE AD BE =+AC CB =DE AD BE 16cm AC =30cm CB =2cm 3cm沿B →C →A 路径向终点A 运动,两点都要到达相应的终点时才能停止运动.在运动过程中,分别过点M 和点N 作于P ,于Q .设运动时间为t 秒,当t 为何值时,与全等?24.(12分)在等边的顶点,处各有一只蜗牛,它们同时出发,分别以相同的速度由向和由向爬行,经过分钟后,它们分别爬行到,处,请问:MP m ⊥NQ m ⊥MPC NQC ABC A C A B C A t D E(1)如图1,爬行过程中,和的数量关系是________;(2)如图2,当蜗牛们分别爬行到线段,的延长线上的,处时,若的延长线与交于点,其他条件不变,蜗牛爬行过程中的大小将会保持不变,请你证明:;(3)如图3,如果将原题中“由向爬行”改为“沿着线段的延长线爬行,连接交于”,其他条件不变,求证:.CD BE AB CA D E EB CD Q CQE ∠60CQE ∠=︒C A BC DE AC F DF EF =答案:一、单选题1.C【分析】根据三角形的三边关系列出不等式组求解即可.【详解】解:设从10.5的小木棍上裁剪的线段长度为x ,则,即,∴整数x 的值为5、6 、7 、8、9、10,∴同学们最多能做出6个不同的三角形木架.故选:C .2.A【分析】根据AB ∥DE 证得∠B =∠E ,又已知BF =CE 证得BC =EF ,即已具备两个条件:一边一角,再依次添加选项中的条件即可判断.【详解】∵AB ∥DE ,∴∠B =∠E ,∵BF =CE ,∴BF +FC =CE +FC ,∴BC =EF ,若添加AC =DF ,则不能判定△ABC ≌△DEF ,故选项A 符合题意;若添加AC ∥DF ,则∠ACB =∠DFE ,可以判断△ABC ≌△DEF (ASA ),故选项B 不符合题意;若添加∠A =∠D ,可以判断△ABC ≌△DEF (AAS ),故选项C 不符合题意;若添加AB =DE ,可以判断△ABC ≌△DEF (SAS ),故选项D 不符合题意;故选:A .3.B【分析】连接CF ,依据中线的性质,推理可得 ,进而得出 ,据此可得结论.cm cm 9595x -<<+414x <<cm cm cm cm cm cm BCF BAF ACF S S S == 3ABC BAF S S =【详解】解:如图所示,连接CF ,∵△ABC 的两条中线AD 、BE 交于点F ,∴,∴,∵BE 是△ABC 的中线,FE 是△ACF 的中线,∴,,∴,同理可得,,∴,∴,故选:B .4.D【分析】题目由于在三角形中未确定大小,所以需要进行分类讨论:(1),作出符合题意的相应图形,由图可得:,根据角平分线的性质得:,在中,,故可得;(2)时,由图可得:,,在中,,故可得;综上可得:.【详解】解:(1)如图1所示:时,图1BCE ABD S S = 17ABF CDFE S S == 四边形BCE ABE S S = FCE FAE S S = 17BCF BAF S S == 17ACF BAF S S == 17BCF BAF ACF S S S === 331751ABC BAF S S ==⨯= A B ∠∠、A B ∠<∠DCE BCE BCD ∠=∠-∠()18022m n ACB BCE ︒-︒+︒∠∠==Rt BCD ∆9090BCD B n ∠=︒-∠=︒-︒()12DCE n m ∠=︒-︒A B ∠>∠DCE ACE ACD ∠=∠-∠()18022m n ACB ACE ︒-︒+︒∠∠==Rt ACD ∆9090ACD A m ∠=︒-∠=︒-︒()12DCE m n ∠=︒-︒12DCE m n ∠=︒-︒A B ∠<∠∵CD 是AB 边上的高,∴,,∵,,∴,∵CE 平分,∴,在中,,∴;(2)如图2所示:时,图2∵CD 是AB 边上的高,∴,,∵,,∴,∵CE 平分,∴,在中,,CD AB ⊥90CDB ∠=︒A m ∠=︒B n ∠=︒()180ACB m n ∠=︒-︒+︒ACB ∠()18022m n ACB ACE BCE ︒-︒+︒∠∠=∠==Rt BCD ∆9090BCD B n ∠=︒-∠=︒-︒()()()18019022m n DCE BCE BCD n n m ︒-︒+︒∠=∠-∠=-︒-︒=︒-︒A B ∠>∠CD AB ⊥90CDB ∠=︒A m ∠=︒B n ∠=︒()180ACB m n ∠=︒-︒+︒ACB ∠()18022m n ACB ACE BCE ︒-︒+︒∠∠=∠==Rt ACD ∆9090ACD A m ∠=︒-∠=︒-︒∴;综合(1)(2)两种情况可得:.故选:D .5.D【分析】本题考查了全等三角形的判定和性质,垂线段最短,分别延长与交于点,作交延长线于点,可证明,得到,求面积最大值转化成求线段的最大值即可,解题的关键是作出辅助线,构造出全等三角形.【详解】分别延长与 交于点, 作交 延长线于点 ,∵平分, ,∴,,又∵,∴,∴,,∵,∴,∴,∵,∴当点重合时,最大,最大值为,∴,故选:.6.D【分析】利用全等三角形的判定和性质逐一选项判断即可.【详解】解:在和中,()()()18019022m n DCE ACE ACD m m n ︒-︒+︒∠=∠-∠=-︒-︒=︒-︒12DCE m n ∠=︒-︒CD AB G GH CB ⊥CB H ()ASA ADG ADC ≌2BG =GH CD AB G GH CB ⊥CB H AD BAC ∠AD DC ⊥GAD CAD ∠=∠90ADG ADC ∠==︒AD AD =()ASA ADG ADC ≌AC AG =CD GD =2AC AB -=2BG =111·2222BDC BCG S S BC GH GH ==⨯= GH BC ⊥B H 、GH 224BDC S GH == D ∆BEF DCF ∆,∴≌(),故选项A 正确,不合题意;连接,∵≌(),∴,∴,∵,∴,∴,故选项C 正确,不合题意;∵,证不出,∴选项D 错误,符合题意;在和中,∴≌(),故选项B 正确,不合题意;故选:D7.B【分析】利用正方形的对角线互相垂直平分且相等,等腰直角三角形的性质,三角形的内角和定理和全等三角形的判定与性质解答即可.【详解】解:∵四边形是正方形,∴.∵,B D BFE DFC BE CD ∠=∠⎧⎪∠=∠⎨⎪=⎩∆BEF DCF ∆AAS BD ∆BEF DCF ∆AAS BF DF =FBD FDB ∠=∠ABC ADE ∠=∠ABD ADB ∠=∠AB AD =BF DF =DF AC =ABC ∆ADE ∆ABC ADE AB ADA A ∠=∠⎧⎪=⎨⎪∠=∠⎩ABC ∆ADE ∆ASA ABCD 90AOB AOD OA OB OD OC ∠=∠=︒===,OE OF =∴为等腰直角三角形,∴,∵,∴,∴.在和中,∴(SAS ).∴,∵,∴是等腰直角三角形,∴,∴.故选:B .8.A【分析】如图,过点C 作BC 的垂线,交BF 的延长线于点G ,则,先根据直角三角形两锐角互余可得,再根据三角形全等的判定定理与性质推出,又根据三角形全等的判定定理与性质推出,由此即可得出答案.【详解】如图,过点C 作BC 的垂线,交BF 的延长线于点G ,则,即在和中,OEF 45OEF OFE ∠=∠=︒25AFE ∠=︒70AFO AFE OFE ∠=∠+∠=︒20FAO ∠=︒AOF BOE △90OA OB AOF BOE OF OE =⎧⎪∠=∠=︒⎨⎪=⎩AOF BOE ≌△△20FAO EBO ∠=∠=︒OB OC =OBC △45OBC OCB ∠=∠=︒65CBE EBO OBC ∠=∠+∠=︒CG BC ⊥BAD CBG ∠=∠1G ∠=∠3G ∠=∠CG BC ⊥90BCG ∠=︒,90AB BC ABC =∠=︒45BAC ACB ∠∴∠==︒904545GCF BCG ACB ∴∠=∠-∠=︒-︒=︒BF AD⊥ 1190BAD CBG ∴∠+∠=∠+∠=︒BAD CBG∴∠=∠BAD ∆CBG ∆90BAD CBG AB BCABD BCG ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩点D 是BC 的中点在和中,故选:A .9.B【分析】在BE 上截取BG =DF ,先证△ADF ≌△ABG ,再证△AEG ≌△AEF 即可解答.【详解】在BE 上截取BG =DF ,∵∠B +∠ADC =180°,∠ADC +∠ADF =180°,∴∠B =∠ADF ,在△ADF 与△ABG 中,()BAD CBG ASA ∴∆≅∆,1BD CG G∴=∠=∠ CD BD CG∴==CDF ∆CGF ∆45CD CG DCF GCF CF CF =⎧⎪∠=∠=︒⎨⎪=⎩()CDF CGF SAS ∴∆≅∆3G∴∠=∠13∠∠∴=AB AD B ADF BG DF =⎧⎪∠=∠⎨⎪=⎩∴△ADF ≌△ABG (SAS ),∴AG =AF ,∠FAD =∠GAB ,∵∠EAF =∠BAD ,∴∠FAE =∠GAE ,在△AEG 与△AEF 中,∴△AEG ≌△AEF (SAS )∴EF =EG =BE ﹣BG =BE ﹣DF =4.故选:B .10.A【分析】在射线AD 上截取,连接PM ,证明,可得,,然后证明,利用相似三角形的性质进行求解可得到结论.【详解】解:如下图,在射线A D 上截取,连接PM ,∵PA 平分,∴ ,在和中,,∴,∴,.∵,∴,∴.∵PC 平分,∴.12AG AF FAE GAE AE AE =⎧⎪∠=∠⎨⎪=⎩AM AC =PAM PAC ≌PM PC =PMA PCA ∠=∠BC PM AM AC =DAC ∠60PAM PAC ∠=∠=︒PAM △PAC △PA PA PAM PAC AM AC =⎧⎪∠=∠⎨⎪=⎩PAM PAC SAS ≌()PM PC =PMA PCA ∠=∠PC AB AC =+PC AB MA MB =+=PC PM BM ==ACE ∠PCA PCE ∠=∠如下图,延长MB ,PC 交于点G ,∵,∴.∵,∴,∴,∴,∴,∴,∴,∴,∴.∵,,,∴,∴,∴,∴,∴,∴,∴,∴.GCB PCE ∠=∠PMA GCB ∠=∠BGC PGM ∠=∠BGC PGM ∽GB GC GP GM=··GB GM GC GP =GB GB BM GC GC CP ⋅+=⋅+()()22GB GB BM GC GC CP +⋅=+⋅220GB GC GB BM GC CP -+⋅-⋅=()()()0GB GC GB GC PC GB GC +-+-=()()0GB GC GB GC PC -++=)0GB >0GC >0PC >0GB GC PC ++>0GB GC -=GB GC =∠=∠GBC GCB GBC BMP ∠=∠BC PM 180BMP B ∠+∠=︒180180ABC BMP PCA ∠=︒-∠=︒-∠∵,∴.∵,∴180°-∠PCA=2∠PCA-60°,∴,∴.故选:A .二、填空题11.3<x <5【分析】延长AD 至M 使DM=AD ,连接CM ,先说明△ABD ≌△CDM ,得到CM=AB=8,再求出2AD 的范围,最后求出AD 的范围.【详解】解:如图:AB=8,AC=2,延长AD 至M 使DM=AD ,连接CM在△ABD 和△CDM 中,∴△ABD ≌△MCD (SAS ),∴CM=AB=8.在△ACM 中:8-2<2x <8+2,解得:3<x <5.故答案为3<x <5.12.60PAM PAC ∠=∠=︒60BAC ∠=︒260ABC ACE BAC PCA ∠=∠-∠=∠-︒80PCA ∠=︒180********ABC PAC ∠=︒-∠=︒-︒=∠︒AD MD ADB MDCBD CD =⎧⎪∠=∠⎨⎪=⎩A ABC ∠=∠36︒【分析】(1)根据角平分线的性质平分,可得,再由两直线平行线同位角相等,内错角相等可得即可解答;(2)利用角平分线的性质和三角形的外角定理即可求解【详解】(1)解:平分,,,当时,,故答案为:;(2)解:平分,平分,,又,当时,,故答案为:13.【分析】本题考查全等三角形的判定和性质、等腰三角形的性质、三角形的面积等知识,由面积相等可得相应等式,作出三角形的高,作出辅助线构造三角形全等,证明三角形全等是是解题的关键.【详解】解:如图:,过作于,过作 交延长线于,延长到使,PC ACM ∠ACP PCM ∠=∠ABC PCM A ACP ∠=∠∠=∠,PC ACM ∠ACP PCM ∴∠=∠ PC AB ∥ABC PCM A ACP∴∠=∠∠=∠,ABC A∠=∠∴∴ABC A ∠=∠PC AB ∥ABC A ∠=∠ BP ABC ∠PC ACM ∠12ABP PBC ABC ∴∠=∠=∠,12ACP PCM ACM ∠=∠=∠ACM ABC A ∠=∠+∠ ,22PCM PBC A∴∠=∠+∠ PCM PBC P ∠=∠+∠222PBC P PBC A∴∠+∠=∠+∠2P A ∴∠=∠72A ∠=︒36P ∴∠=︒36︒4saAB AC DE DF ===C C M A B ⊥M F FN ED ⊥ED N BA K AK AB=12ABC S AB CM S == 12DEF S DE FN S ==,,,.故答案为:.14.【分析】延长至O 点,使得,连接,先证明,再证明CM FN∴=AC DF= Rt Rt (HL)AMC DNF ∴≌ MAC NDF∴∠=∠180CAK MAC ︒∠=-∠ 180EDF NDF︒∠=-∠CAK EDF∴∠=∠AK AC DE DF=== (SAS)ACK DFE ∴≌ EF CK ∴=2KBC S S= AK AC DE DF=== ABC ACB ∴∠=∠K ACK∠=∠1180902ACB ACK ABC K ︒︒∴∠+∠=∠+∠=⨯=90BCK ︒∴∠=122KBC S BC CK S ∴== BC a= 4S CK a ∴=4S EF a∴=4S a72ED OD DE =AO ≌ADO ADE V V,问题随之得解.【详解】延长至O 点,使得,连接,如图,∵,∴,∵,,∴△ADO ≌△ADE ,∴,,∴,∵,∴,∴,∵,,∴,∴,∵,,∴,∴,∵,∴,故答案为:.15.【分析】过点作,且,连接、,交于点,则是等腰直角三角形,证明,则,,则,根据EAC OAB ≌△△ED OD DE =AO 90ADB ∠=︒18090ADO ADB ∠=︒-∠=︒AD AD =OD DE =OAD EAD ∠=∠OA AE =2OAE EAD ∠=∠2BAC DAE ∠=∠BAC OAE ∠=∠EAC OAB ∠=∠OA AE =AB AC =EAC OAB ≌△△OB EC =17CE =10BE =17OB EC ==7OE OB EB =-=OD DE =1722DE OE ==722B BF BE ⊥BF BE =CF EF ,EF CD G BFE △ABE CBF △≌△ABE CBF S S =△△CGF DGE ≌CGF DGE S S =,即可求解.【详解】解:如图所示,过点作,且,连接、,交于点,则是等腰直角三角形,∵和都为等腰直角三角形,,∴∵,∴∴∴∴,则∴,∴,∵∴又∴∴∴五边形面积∴故答案为:2.212BEF S S BE == B BF BE ⊥BF BE =CF EF ,EF CD G BFE △ABC AED △90ABC AED ∠=∠=︒,BA BC AE AD==BF BE ⊥90FBE ∠=︒ABE EBC FBC EBC∠+∠=∠+∠ABE CBF∠=∠ABE CBF △≌△ABE CBFS S =△△AE CF =AEB CFB∠=∠DE CF =45,45AEB GED CFB CFG∠=︒-∠∠=︒-∠CFG DEG∠=∠CGF DGE∠=∠CGF DGE≌CGF DGES S = ABCDE 212BEF S S BE == 2BE S =216.3【详解】如图,过点D 作DH ∥AC 交BC 于H ,∵△ABC 是等边三角形,∴△BDH 也是等边三角形,∴BD=HD ,∵BD=CF ,∴HD=CF ,∵DH ∥AC ,∴∠PCF=∠PHD ,在△PCF 和△PHD 中,∴△PCF ≌△PHD (AAS ),∴PC=PH ,∵△BDH 是等边三角形,DE ⊥BC ,∴BE=EH ,∴EP=EH+HP= BC ,∵等边△ABC ,AB=6,∴EP=╳6=3.故答案是:3.17.【分析】此题考查了全等三角形的判定与性质、等腰三角形的性质,延长交 的角平PCF PHD CPF HPD HD CF ∠∠⎧⎪∠∠⎨⎪⎩===121265︒BO BAC ∠分线于点,连结,根据等腰三角形的性质及角平分线定义求出,,进而得出,利用证明,根据全等三角形的性质求出,,根据角的和差及三角形内角和定理求出,结合平角定义求出,利用证明,根据全等三角形的性质得出,再根据等腰三角形的性质及角的和差求解即可.【详解】如图,延长交 的角平分线于点,连接.平分,,,,,,,,在和中,,,,,,,,,,,在和中,P CP 55ABC ACB ∠=∠=︒35BAP CAP ∠=∠=︒30OBC ∠=︒SAS APB ACP ≌△△25ABP ACP ∠=∠=︒APB APC ∠=∠120BPC ∠=︒120APC BPC ∠=︒=∠ASA APC OPC ≌△△AP OP =BO BAC ∠P CP AP BAC ∠70BAC ∠=︒35BAP CAP ∴∠=∠=︒AB AC = 70BAC ∠=︒55ABC ACB ∴∠=∠=︒25ABO ∠=︒ 30OBC ABC ABO ∴∠=∠-∠=︒APB △ACP △AB AC BAP CAP AP AP =⎧⎪∠=∠⎨⎪=⎩(SAS)APB ACP ∴ ≌25ABP ACP ∴∠=∠=︒APB APC ∠=∠30BCP ACB ACP ∴∠=∠-∠=︒180120BPC PBC BCP ∴∠=︒-∠-∠=︒360120240APB APC ∴∠+∠=︒-︒=︒120APB APC BPC ∴∠=∠=︒=∠5OCB ∠=︒ 25OCP BCP OCB ACP ∴∠=∠-∠=︒=∠APC △OPC,,,,,故答案为:.18.①③④【分析】由 ,利用等式的性质得到夹角相等,从而得出三角形 与三角形全等,由全等三角形的对应边相等得到,本选项正确;由三角形与三角形全等,得到一对角相等,由等腰直角三角形的性质得到,进而得到 ,本选项不正确;再利用等腰直角三角形的性质及等量代换得到,本选项正确;利用周角减去两个直角可得答案;【详解】解: ,即:在 和 中,本选项正确;为等腰直角三角形,,本选项不正确;ACP OCP CP CPAPC OPC ∠=∠⎧⎪=⎨⎪∠=∠⎩(ASA)APC OPC ∴ ≌AP OP ∴=1(180)302OAP AOP APO ∴∠=∠=⨯︒-∠=︒65OAC OAP CAP ∴∠=∠+∠=︒65︒①AB AC =AD AE =ABD ACE BD CE =②ABD ACE 45ABD DBC ∠+∠=︒45ACE DBC ∠+∠=︒③BD CE ⊥④90BAC DAE ∠=∠=︒① BAC CAD DAE CAD∴∠+∠=∠+∠BAD CAE∠=∠BAD CAE V AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩()SAS BAD CAE ∴≌ BD CE ∴=ABC ②45ABC ACB ∴∠=∠=︒45ABD DBC ∴∠+∠=︒BAD CAE ≌ ABD ACE ∴∠=∠45ACE DBC ∴∠+∠=︒即,∴,本选项正确;,本此选项正确;故答案为:①③④.三、解答题19.解:如图过点A 作BC 的平行线AE ,再在AE 上截取,交AE 于点D ,连接BD ,CD 即可得到△BCD .20.(1)解:∵,∴,∵平分,平分,∴,,∵是的外角,∴;(2)证明:在上截取,连接,45ABD DBC ∠+∠=︒③ 45ACE DBC ∴∠+∠=︒90DBC DCB DBC ACE ACB ∴∠+∠=∠+∠+∠=︒90BDC ∠=︒BD CE ⊥90BAC DAE ∠=∠=︒④ 3609090180BAE DAC ∴∠+∠=︒-︒-︒=︒AD AB =9060BAC ABC ∠=︒∠=︒,30ACB ∠=︒AD BAC ∠CE BAC ∠CAD ∠=1245BAC ∠=︒ACE ∠=1215ACB ∠=︒AOE ∠AOC 60AOE CAD ACE ∠=∠+∠=︒AC CF CD =OF∵平分,∴,在和中,,∴ ,∴,∵,∴,∴,∴,∵平分,∴,在和中, ∴ ,∴,∵,∴.21.(1),,(2)猜想:CE ACB ∠DCO FCO ∠=∠DCO FCO CD CF DCO FCO OC OC =⎧⎪∠=∠⎨⎪=⎩()DCO FCO SAS ≌COD COF ∠=∠60AOE =︒∠60COD COF ∠=∠=︒18060AOF AOE COF ∠=︒-∠-∠==︒AOE AOF ∠=∠AD BAC ∠EAO FAO ∠=∠EAO FAO EAO FAO AO AOAOE AOF ∠=∠⎧⎪=⎨⎪∠=∠⎩()EAO FAO ASA ≌AE AF =AC AF CF =+=+AC AE CD 180ABD DBF ∠+∠= 180C ABD ∠+∠= C DBF∴∠=∠CE BF = DC DB=CED BFD∴ ≌DE DF∴=CE BG EG+=由(1)可知,,,,得证;(3)当成立由(1)可知,,,,得证.22.(1)(ⅰ)证明:和都是等边三角形,,,,CED BFD≌CDE BDF ∴∠=∠ED FD =CE BF=120CDB ∠= 60EDG ∠=1206060CED BDG CDB EDG ∴∠+∠=∠-∠=-=60BDG BDF ∴∠+∠=60GDF EDG∴∠==∠ DG DG= EDG FDG∴ ≌EG GF∴=GF BG BF=+ EG BG CE∴=+1902EDG α∠=- CED BFD≌CDE BDF ∴∠=∠ED FD =CE BF=180CDB α∠=- 90EDG α∠=-o 11(180)(90)9022CED BDG CDB EDG ααα∴∠+∠=∠-∠=---=- 1902BDG BDF α∴∠+∠=- 1902GDF EDG α∴∠=-=∠ DG DG= EDG FDG∴ ≌EG GF∴=GF BG BF=+ EG BG CE∴=+ABC ADE V AB AC ∴=AD AE =60BAC DAE ACB ABC ∠=∠=∠=∠=︒.在和中,,.(ⅱ),,.直线,,,.点,,在一条线上,,,,.,,即;(2)解:同理证明,,,,,,,即.23.(1)证明:∵,∴,∵于D ,于E ,∴,,∴,在和中,BAD CAE ∴∠=∠ABD △ACE △,,,AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩ABD ACE ∴ ≌BD CE ∴=ABD ACE ≌BD CE ∴=ABD ACE ∠=∠AB ⊥Q l 90ABD ∴∠=︒90ACE ∠=︒30CBF ∠=︒ E C F 60ACB ∠=︒30BCF ∴∠=︒CBF BCF ∴∠=∠BF CF ∴=BD DF BF =+ BD DF CF CE ∴=+=DF CE CF=-ABD ACE ≌△△90ABD ACE ∴∠=∠=︒30FBC FCB ∠=∠=︒BD CE =BF CF ∴=BF BD DF ∴=+CF BD DF ∴=+DF CF CE =-90ACB ∠=︒90ACD BCE ∠∠+=︒AD m ⊥BE m ⊥90ADC CEB ∠∠==︒90BCE CBE ∠∠+=︒ACD CBE ∠∠=ADC CEB,∴,∴,,∴;(2)解:结论:;理由:∵,,∴,∵,∴,∴,在和中,,∴,∴,,∴;(3)解:①当时,点M 在上,点N 在上,如图,∵,∴,解得:,不合题意;②当时,点M 在上,点N 也在上,如图,ADC CEB ACD CBE AC CB ∠=∠⎧⎪∠=∠⎨⎪=⎩()AAS ADC CEB ≌AD CE =DC BE =DE DC CE BE AD =+=+DE AD BE =-AD m ⊥BE m ⊥90ADC CEB ∠∠==︒90ACB ∠=︒90ACD CAD ACD BCE ∠∠∠∠+=+=︒CAD BCE ∠∠=ACD CBE ADC CEB CAD BCE AC CB ∠=∠⎧⎪∠=∠⎨⎪=⎩()AAS ACD CBE ≌AD CE =CD BE =DE CE CD AD BE =-=-08t ≤<AC BC MC NC =162303t t -=-14t =810t ≤<BC BC∵,∴点M 与点N 重合,∴,解得:;③当时,点M 在上,点N 在上,如图,∵,∴,解得:;④当时,点N 停在点A 处,点M 在上,如图,∵,∴,解得:;综上所述:当或14或16秒时,与全等.24.(1)解:,理由如下:为等边三角形,MC NC =216303t t =﹣﹣9.2t =46103t ≤<BC AC MC NC =216330t t -=-14t =46233t ≤<BC MC NC =21616t -=16t =9.2t =MPC NQC CD BE = ABC,,由题意得:,在和中,,,;(2)证明如下:由(1)可知,,,,;(3)证明:过点作交于,,为等边三角形,为等边三角形,,,,在和中,,,.∴60A ACB ∠=∠=︒AC BC =AD CE =ADC △CEB AD CE A ACB AC CB =⎧⎪∠=∠⎨⎪=⎩∴()SAS ADC CEB ≌∴CD BE =()SAS ADC CEB ≌∴ADC E ∠=∠ 60E ABE BAC ∠+∠=∠=︒DBQ ABE ∠=∠∴60CQE ADC DBQ ∠=∠+∠=︒D DH BC ∥AC H ∴HDF CEF ∠=∠ ABC ∴ADH ∴HD AD = AD CE =∴DH CE =DFH EFC HDF CEF DFH EFC DH CE ∠=∠⎧⎪∠=∠⎨⎪=⎩∴()AAS DFH EFC ≌∴DF EF =。
人教版八年级数学上册 第12章 全等三角形 单元综合测试(配套练习附答案)
![人教版八年级数学上册 第12章 全等三角形 单元综合测试(配套练习附答案)](https://img.taocdn.com/s3/m/c8996a0b700abb68a882fb96.png)
故答案为:70°.
【点睛】本题主要考查全等三角形的性质和三角形内角和和外角性质,解决本题的关键是要熟练掌握全等三角形的性质和三角形的内角和和外角性质.
12.如图,在△ABC中,∠C=90°,∠B=20°,以A为圆心,任意长为半径画弧分别交AB、AC于点M和N,再分别以M、N为圆心,大于MN的长为半径画弧,两弧交于P,连接AP并延长交BC于点D,则∠ADB=________.
【答案】7
【解析】
分析】
先过点P作PF⊥AB于G,由于∠ABC和∠ACB的外角平分线BP,CP交于P,根据角平分线的性质可得PF=PG=PE=2,根据 ,可得 ,解得BC=2,再根据△ABC的周长为11,可得AC+AB=11-2=9,继而可得 = =7.
【详解】如图,
过点P作PF⊥AB于G,
因为∠ABC和∠ACB的外角平分线BP,CP交于P,
【点睛】本题主要考查全等图形的定义,解决本题的关键是要熟练掌握全等图形的定义.
2.如图,在直角坐标系中,AD是Rt△OAB的角平分线,点D的坐标是(0,-3),那么点D到AB的距离是( )
A. 3B. -3C. 2D. -2
【答案】A
【解析】
【分析】
过点D作DE⊥AB于E,由于AD是∠OAB的平分线,根据角平分线上的点到角两边的距离相等可得:DE=OD=3,即点D到AB的距离是3.
【答案】16
【解析】
四边形FBCD周长=BC+AC+DF;当 时,四边形FBCD周长最小为5+6+5=16
三、解答题(共52分)
17.如图,已知 ,用尺规过点 作直线 ,使得 .(保留作图痕迹,不写做法)
【答案】见解析
人教版八年级数学上册《第十二章 全等三角形》单元测试卷(附答案)
![人教版八年级数学上册《第十二章 全等三角形》单元测试卷(附答案)](https://img.taocdn.com/s3/m/b3a63a287f21af45b307e87101f69e314232fa70.png)
人教版八年级数学上册《第十二章全等三角形》单元测试卷(附答案)一、选择题1.下列说法正确的是( )A. 两个等边三角形一定全等B. 形状相同的两个三角形全等C. 面积相等的两个三角形全等D. 全等三角形的面积一定相等2.根据下列已知条件,能唯一画出△ABC的是( )A. AB=5,BC=3,AC=8B. AB=4,BC=3C. ∠C=90°,AB=6D. ∠A=60°,∠B=45°3.如图,已知∠C=∠D=90°,AC=AD那么△ABC与△ABD全等的理由是( )A. HLB. SASC. ASAD. AAS4.如图∠CAB=∠DBA,再添加一个条件,不一定能判定△ABC≌△BAD的是( )A. AC=BDB. ∠1=∠2C. AD=BCD. ∠C=∠D5.如图,若△ABC≌△ADE,则下列结论中一定成立的是( )A. AC=DEB. ∠BAD=∠CAEC. AB=AED. ∠ABC=∠AED6.在△ABC中AC=6则BC边上的中线AD的取值范围是( )A. 3<AD<11B. 3<AD<9C. 1<AD<7D. 5<AD<117.如图,AD是△ABC中∠BAC的平分线,DE⊥AB交AB于点E,DF⊥AC交AC于点F,若S△ABC=7,DE= 2,AB=4则AC的长为( )A. 3B. 4C. 5D. 68.平面上有△ACD与△BCE,其中AD与BE相交于P点,如图.若AC=BC,AD=BE,CD=CE,∠ACE= 55°,∠BCD=155°,则∠BPD的度数为( )A. 130°B. 155°C. 125°D. 110°9.在△ABC中AC=6则BC边上的中线AD的取值范围是( )A. 6<AD<8B. 2<AD<14C. 1<AD<7D. 无法确定10.如图AC=CE,∠ACE=90°,AB⊥BD,ED⊥BD,AB=5cm,DE=3cm,则BD等于( )A. 6cmB. 8cmC. 10cmD. 4cm二、填空题11.一个三角形的三边为3、5、x,另一个三角形的三边为y、3、6,若这两个三角形全等,则x−y=__________.12.如图为6个边长相等的正方形的组合图形,则∠1+∠3=______ .13.如图△ABC≌△A′B′C′,其中∠C′=24°则∠B=°.14.如图,已知△ABC≌△ADE,若AB=7,AC=3则BE的值为_____.15.如图,已知在△ABC和△DEF中BF=CE点B、F、C、E在同一条直线上,若使△ABC≌△DEF,则还需添加的一个条件是(只填一个即可).16.如图△ABC中AD⊥BC于D,BE⊥AC于E,AD与BE相交于点F,若BF=AC,则∠ABC=_______度.17.如图△ABC≌△DCB,若AC=7,BE=5则DE的长为.18.如图,Rt△ABC中AD为的∠BAC角平分线,与BC相交于点D,若CD=3,AB=10则△ABD的面积是______.19.如图,在△ABC中∠C=90°,AC=BC,AD平分∠CAB交BC于D,DE⊥AB于E,且AB=8cm,则△BED的周长是______.20.如图,AD是△ABC的角平分线,DE⊥AC,垂足为E,BF//AC交ED的延长线于点F,若BC恰好平分∠ABF,AE=2BF给出下列四个结论:①DE=DF②DB=DC③AD⊥BC④AC=3BF其中正确的结论是______ .三、解答题21.如图,在直线MN上求作一点P,使点P到射线OA和OB的距离相等.(要求用尺规作图,保留作图痕迹,不必写作法和证明过程)22.如图AB//CD,AB=CD,CE=BF请写出DF与AE的数量关系,并证明你的结论.23.已知:如图AB//DE,点C、F在AD上AF=DC,AB=DE.求证:△ABC≌△DEF.24.如图,点A,E,F,B在直线l上AE=BF,AC//BD且AC=BD,求证:CF=DE.25.如图,在△ABC中∠C=90∘,AD平分∠BAC,DE⊥AB于点E,点F在AC上,且BD=DF.(1)求证:CF=EB;(2)请你判断AE、AF与BE之间的数量关系,并说明理由.答案和解析1.【答案】D【解析】【分析】本题考查的是全等图形,熟知全等三角形的判定与性质是解答此题的关键,根据全等图形的性质对各选项进行逐一分析即可.【解答】解:A.两个边长不相等的等边三角形不全等,故本选项错误;B.形状相同,边长不对应相等的两个三角形不全等,故本选项错误;C.面积相等的两个三角形不一定全等,故本选项错误;D.全等三角形的面积一定相等,故本选项正确.故选D.2.【答案】D【解析】【分析】本题考查了三角形的三边关系定理和全等三角形的判定定理,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,HL.根据三角形的三边关系定理,先看看能否组成三角形,再根据全等三角形的判定定理判断即可.【解答】解:A∵3+5=8∴根据三角形三边关系AB=5BC=3AC=8不能画出三角形故本选项错误;B已知AB BC和BC的对角AB=4BC=3∠A=30°不能画出唯一三角形故本选项错误;C根据∠C=90°AB=6已知一个角和一条边不能画出唯一三角形故本选项错误;D根据∠A=60°∠B=45°AB=4已知两角和夹边符合全等三角形的判定定理ASA即能画出唯一三角形故本选项正确;故选D.3.【答案】A【解析】【分析】本题考查全等三角形的判定解题的关键是注意AB是两个三角形的公共边本题属于基础题型.已知∠C=∠D=90°AC=AD且公共边AB=AB故△ABC与△ABD全等.【解答】解:在Rt△ABC与Rt△ABD中{AB=ABAC=AD∴Rt△ABC≌Rt△ABD(HL)故选A.4.【答案】C【解析】【分析】本题主要考查全等三角形的判定.熟记5种判定并灵活运用是解决本题的关键.【解答】解:A.添加AC=BD则可以通过(SAS)判定△ABC≌△BAD故本选项不符合题意;B.添加∠1=∠2则可以通过(ASA)判定△ABC≌△BAD故本选项不符合题意;C.添加AD=BC不能判定△ABC≌△BAD故本选项符合题意;D.添加∠C=∠D则可以通过(AAS)判定△ABC≌△BAD故本选项不符合题意;故选C.5.【答案】B【解析】【分析】本题考查了全等三角形的性质熟练掌握全等三角形的性质是解题的关键.根据全等三角形的性质即可得到结论.【解答】解:∵△ABC≌△ADE∴AC=AE AB=AD∠ABC=∠ADE∠BAC=∠DAE∴∠BAC−∠DAC=∠DAE−∠DAC即∠BAD=∠CAE.故A C D选项错误B选项正确故选:B.6.【答案】C【解析】【分析】这是一道考查全等三角形的判定和三角形的三边关系的题目解题关键在于构造三角形延长AD至E使DE=AD连接CE证明△ABD≌△ECD再利用三边关系即可得到答案.【解答】解:延长AD至E使DE=AD连接CE在△ABD和△ECD中{AD=ED∠ADB=∠EDC DB=DC,∴△ABD≌△ECD∴CE=AB=8在△ACE中CE−AC<AE<CE+AC即2<2AD<14故1<AD<7故选C.7.【答案】A【解析】【分析】本题主要考查了角平分线的性质;利用三角形的面积求线段的大小是一种很好的方法要注意掌握应用.先由角平分线的性质可知DF=DE=2然后由S△ABC=S△ABD+S△ACD及三角形的面积公式得出结果.【解答】解:∵AD是△ABC中∠BAC的平分线DE⊥AB于点E DF⊥AC交AC于点F∴DF=DE=2又∵S△ABC=S△ABD+S△ACD AB=4∴7=12×4×2+12·AC·2∴AC=3.故选A.8.【答案】A【解析】【分析】本题考查了全等三角形的判定和性质三角形的内角和定理以及四边形的内角和定理易证△ACD≌△BCE由全等三角形的性质可知:∠A=∠B再根据已知条件和四边形的内角和为360°即可求出∠BPD的度数.【解答】解:在△ACD 和△BCE 中{AC =BC CD =CE AD =BE∴△ACD≌△BCE(SSS)∴∠A =∠B ∠BCE =∠ACD∴∠BCA =∠ECD∵∠ACE =55° ∠BCD =155°∴∠BCA +∠ECD =100°∴∠BCA =∠ECD =50°∵∠ACE =55°∴∠ACD =105°∴∠A +∠D =75°∴∠B +∠D =75°∵∠BCD =155°∴∠BPD =360°−75°−155°=130°.故选A .9.【答案】C【解析】【分析】此题主要考查了全等三角形的判定和性质 三角形的三边关系.注意:倍长中线是常见的辅助线之一. 延长AD 至E 使DE =AD 连接CE.根据SAS 证明△ABD≌△ECD 得CE =AB 再根据三角形的三边关系即可求解.【解答】解:延长AD 至E 使DE =AD 连接CE .在△ABD和△ECD中{DE=AD∠ADB=∠CDE DB=DC∴△ABD≌△ECD(SAS)∴CE=AB.在△ACE中CE−AC<AE<CE+AC即2<2AD<141<AD<7.故选:C.10.【答案】B【解析】【分析】由题意可证△ABC≌△CDE即可得CD=AB=5cm DE=BC=3cm进而可求BD的长。
2024-2025学年八年级数学上册 第十二章 全等三角形 单元测试题(含答案)
![2024-2025学年八年级数学上册 第十二章 全等三角形 单元测试题(含答案)](https://img.taocdn.com/s3/m/f1f07ea5760bf78a6529647d27284b73f3423663.png)
第十二章全等三角形考试范围:全章的内容;考试时间:120分钟;总分:120分一、选择题(本大题共10小题,每小题3分,共30分)1.下列说法中,正确的有( )①形状相同的两个图形是全等形;②面积相等的两个图形是全等形;③全等三角形的周长相等,面积相等;④若△ABC≌△DEF,则∠A=∠D.A.1个B.2个C.3个D.4个2.下列各组图形中,是全等形的是()A.B.C.D.3.如图,点B在线段AD上,△ABC≌△EBD,AB=2cm,BD=5cm,则CE的长度为()A.2cm B.2.5cm C.3cm D.5cm4.小红用如图所示的方法测量小河的宽度.她利用适当的工具,使AB⊥BC,CD⊥BC,BO=OC,点A、O、D在同一直线上,就能保证△ABO≌△DCO,可作为证明△ABO≌△DCO的依据的是( )A.SSS B.ASA C.SAS D.HL5.如图,在△ABC和△DEF中,点A,E,B,D在同一直线上,AC∥DF,AC=DF,只添加一个条件,能判定△ABC≌△DEF的是()A.BC=DE B.AE=DB C.∠A=∠DEF D.∠ABC=∠D6.如图,OP平分∠MON,PE⊥OM于点E,PF⊥ON于点F,OA=OB,则图中全等三角形有()A.1对B.2对C.3对D.4对7.现要在一块三角形形状的草坪上安装一个洒水龙头,要使洒水龙头到草坪三条边的距离相等,洒水龙头的位置应选在()处A.三角形三边的垂直平分线的交点B.三角形的三条角平分线的交点C.三角形的三条高所在直线的交点D.三角形的三条中线的交点8.如图,在△ABC中,CD平分∠ACB,DE⊥BC于点E,S△ABC=30,DE=4,BC=10,则AC 的长是( )A.5B.6C.7D.89.如图,AD是△ABC的角平分线,DE⊥AC,垂足为E,BF∥AC交ED的延长线于点F,若BC恰好平分∠ABF,AE=2BF,给出下列五个结论:①DE=DF;②BC=2DB;③AD⊥BC;④AB=3BF;⑤S△ADB=2S△BDF;其中正确的结论共有()A.4个B.3个C.2个D.1个10.新定义:已知三条平行直线,相邻两条平行线间的距离相等,我们把三个顶点分别在这样的三条平行线上的三角形称为“格线三角形”.如图,a∥b∥c,相邻两条平行线间的距离为m,等腰Rt△ABC为“格线三角形”,且∠BAC=90°,则△ABC的面积为()m2B.2m2C.5m2D.4m2A.52二、填空题(本大题共6小题,每小题3分,共18分)11.如图,AD=AB,∠C=∠E,∠CDE=50°,则∠ABE=.12.如图,四边形ABCD≌四边形A′B′C′D′.若∠B=90°,∠C=60°,∠D′=105°,则∠A的大小为度.13.如图,D,E是边BC上的两点,BD=CE,∠ADB=∠AEC,现要直接用“AAS”定理来证明△ABD≌△ACE,请你再添加一个条件:.14.已知△ABC面积为24,将△ABC沿BC的方向平移到△A′B′C′的位置,使B′和C重合,连接AC′交A′C于D,则△C′DC的面积为.15.如图,△ABC中∠A=66°,点M、N是∠ABC与∠ACB三等分线的交点,则∠BMN的度数是.16.如图,CA⊥AB,垂足为点A,射线BM⊥AB,垂足为点B,AB=15cm,AC=6cm.动点E从A点出发以3cm/s的速度沿射线AN运动,动点D在射线BM上,随着E点运动而运动,始终保持ED=CB.若点E的运动时间为t秒(t>0),则当t=秒时,△DEB与△BCA全等.三、(本大题共4小题,每小题6分,共24分)17.已知:如图,AB=AE,∠1=∠2,∠C=∠D.求证:BC=ED.18.如图,已知AB∥CD,AB=CD.(1)求证:△ABC≌△CDA;(2)判断BC与AD的位置关系,并说明理由.19.如图,已知AB=CD,AD=BC,O为AC的中点,过O作一条直线分别与AB,CD交于点M,N,点E,F在直线MN上,且OE=OF.(1)图中共有几对全等三角形?请把它们都写出来;(2)求证:∠MAE=∠NCF.20.如图,B、C、E三点在同一条直线上,AC∥DE,AC=CE,∠ACD=∠B(1)求证:△ABC≌△CDE(2)若∠A=55°,求∠BCD的度数.四、(本大题共3小题,每小题8分,共24分)21.如图,△ABC中,点D在边BC延长线上,∠ACB=106°,∠ABC的平分线交AD于点E,过点E作EH⊥BD,垂足为H,且∠CEH=53°.(1)求∠ACE的度数;(2)求证:AE平分∠CAF;(3)若AC+CD=16,AB=10,且S△ACD=24,则△ABE的面积.22.问题提出:如图1,在四边形ABCD中,∠BAD与∠BCD互补,∠B与∠D互补,AB=AD,∠BAD=x°(0<x<180),∠ACB=y°,数学兴趣小组在探究y与x的数量关系时,经历了如下过程:实验操作:(1)数学兴趣小组通过电脑软件“几何画板”进行探究,测量出部分结果如下表所示:x…304050607080β130y757065α555040θ这里α= ,β= ,θ= .猜想证明:(2)根据表格,猜想:y与x之间的关系式为;数学兴趣小组发现证明此猜想的一种方法:如图2,延长CB到E,使BE=DC,连接AE,…,请你根据其思路将证明过程补充完整,并验证(1)中结论的正确性.应用拓广:(3)如图3,若x+y=135,AC=10,求四边形ABCD的面积.23.(1)【问题解决】如图①,∠AOB=∠DFE=90°,OC平分∠AOB,点F在OC上,∠DFE的两边分别与OA,OB交于点D,E.当FE⊥OB,FD⊥OA时,则FD与FE的数量关系为;(2)【问题探究】如图②,在(1)的条件下,过点F作两条相互垂直的射线FM,FN,分别交OA,OB于点M,N,判断FM与FN的数量关系,说明理由;(3)【迁移应用】某学校有一块四边形的空地ABCD,如图③所示,∠DAB=∠DCB=90°,AC是∠DAB的平分线,AB=50m,AD=30m,直接写出该空地的面积.五、(本大题共2小题,每小题12分,共24分)24.综合探究:如题图1是一种用刻度尺画角平分线的方法,在OA、OB上分别取点C、E、D、F,使得OC=OD,OE=OF,连接CF、DE,交点为P,则射线OP为∠AOB的角平分线.【验证】(1)试说明OP平分∠AOB,且PE=PF;【应用】(2)如题图2,若C、E、D、F分别为OA、OB上的点,且OC=OD,CF⊥OA,DE⊥OB,试用(1)中的原理说明OP平分∠AOB;【猜想】(3)如题图3,P是∠AOB角平分线上一点,C、D分别为OA、OB上的点,且PC=PD,请补全图形,并直接写出∠PCO与∠PDO的数量关系.25.【模型呈现】(1)如图1,∠BAD=90°,AB=AD,BC⊥CA于点C,DE⊥AE于点E.求证:BC=AE.【模型应用】(2)如图2,EA ⊥AB 且AE =AB ,BC ⊥CD 且BC =CD ,请按照图中所标注的数据,计算图中实线所围成的图形ABCDE 的面积.【深入探究】(3)如图3,∠BAD =∠CAE =90°,AB =AD ,AC =AE ,连接BC 、DE ,且BC ⊥AF 于点F ,DE 与直线AF 交于点G .①求证DG =GE ;②若BC =21,AF =12,求△ADG 的面积.参考答案:1.B2.B3.C4.B5.B6.C7.B8.A9.A10.A11.130°12.10513.∠BAD=∠CAE14.1215.52°16.3或7或1017.证明:∵∠1=∠2,∴∠1+∠BAD=∠2+∠BAD,即∠EAD=∠BAC,在△EAD和△BAC中,{∠C=∠D∠BAC=∠EAD,AB=AE∴△ABC≌△AED(AAS),∴BC=ED.18.(1)证明:∵AB∥CD,∴∠BAC=∠ACD,在△ABC与△CDA中,{AB=CD∠BAC=∠ACD,AC=CA∴△ABC≌△CDA(SAS);(2)解:BC∥AD,理由如下:∵△ABC≌△CDA,∴∠BCA=∠CAD,∴BC∥AD.19.(1)解:有4对全等三角形,分别为:△ABC≌△CDA,△AMO≌△CNO,△OAE≌△OCF,△AME≌△CNF,(2)证明:∵AB=CD,BC=AD=DA,AC=CA,∴△ABC≌△CDA(SSS),∴∠BAC=∠DCA,即∠MAO=∠NCO,∵O为AC的中点,∴OA=OC,又∵∠AOM=∠CON,∴△AMO≌△CNO(ASA),∴AM=CN,OM=ON,∵OA=OC,∠AOE=∠COF,OE=OF,∴△OAE≌△OCF(SAS),∴AE=CF,∵OE=OF,OM=ON,∴OE−OM=OF−ON,即ME=NF,又∵AM=CN,∴△AME≌△CNF(SSS),∴∠MAE=∠NCF.20.(1)证明∶∵AC∥DE,∴∠ACD=∠CDE,∠ACB=∠CED,∵∠ACD=∠B,∴∠B=∠CDE,∵AC=CE,∴△ABC≌△CDE (AAS).(2)解:∵ ∠A =55°,∵△ABC≌△CDE ,∴∠A =∠ECD =55°,∴ ∠BCD =180°−∠ECD =180°−55°=125°.21.(1)解:∵∠ACB =106°,∴∠ACD =180°−106°=74°,∵EH ⊥BD ,∴∠CHE =90°,∵∠CEH =53°,∴∠ECH =90°−53°=37°,∴∠ACE =∠ACD−∠ECH =74°−37°=37°.(2)证明:如图:过E 点分别作EM ⊥BF 于M ,EN ⊥AC 与N ,∵BE 平分∠ABC ,∴EM =EH ,∵∠ACE =∠ECH =37°,∴CE 平分∠ACD ,∴EN =EH ,∴EM =EN ,∴AE 平分∠CAF .(3)解:∵AC +CD =16,S △ACD =24,EM =EN =EH ,∴ S △ACD =S △ACE +S △CED =12AC ⋅EN +12CD ⋅EH =12(AC +CD)⋅EM =24,即12×16⋅EM =24,解得EM =3,∵AB =10,∴ S △ABE =12AB ⋅EM =15.22.(1)观察表格发现:x每增加10,y减小5,∴α=65−5=60,β=80+2×10=100,θ=40−3×5=15.故答案为:60,100,15,x.(2)根据表格猜想:y=90−12证明:如图2,延长CB到E,使BE=DC,连接AE,则∠ABC+∠ABE=180°,又∵∠ABC+∠D=180°,∴∠ABE=∠D,又∵AB=AD,∴△ABE≌△ADE(SAS),∴AE=AC,∠EAB=∠CAD,∴∠E=∠ACB=y°,∠EAC=∠EAB+∠BAC=∠CAD+∠BAC=∠BAD=x°.在△AEC中,∠EAC+∠E+∠ACE=180°,∴x°+2y°=180°,x.y=90−12(3)如图,延长CB到E,使BE=DC,连接AE.由(2)得△ABE≌△ADE,∴S△ABE=S△ADE,∴S四边形ABCD=S△ACD+S△ABC=S△ABE+S△ABC=S△AEC,x,∵x+y=135,y=90−12∴x +90−12x =135,解得x =90,y =45,∴∠EAC =90°,∠AEC =∠ACE =45°,∴AE =AC =10,∴S △AEC =12×10×10=50,∴S 四边形ABCD =50.23.(1)解:∵OC 平分∠AOB , 点 F 在OC 上,且FE ⊥OB , FD ⊥OA ,∴FD =FE .(2)解:FD =FE ,理由如下:∵FD ⊥OA ,FE ⊥OB ,∴∠FDO =∠FEO =∠FEN =90°,∵四边形DOEF 中,∠FDO =∠FEO =∠AOB =90°,∴∠DFE =360°−∠FDO−∠FEO−∠AOB =90°,∴∠DMF +∠MFE =90°,又∵FM ⊥FN ,∴∠FMN =90°,∴∠DFM =∠EFN ,在△DFM 和△EFN 中,{∠FDM =∠FEN FD =FE ∠DFM =∠EFN,∴△DFM≌△EFN(ASA),∴FM =FN .(3)解:如图,过C 点作CE ⊥AB 于E 点,CF ⊥AD 的延长线于F 点,由(2)得△CFD≌△CEB ,∴FD =EB ,S △CFD =S △CEB ,∴S 四边形ABCD =S 四边形AECF,∵AC是∠DAB的平分线,∴∠DAC=∠CAB,又∵∠CFB=∠CEA=90°,AC=AC,∴△ACF≌△ACE(AAS),∴AF=AE,又∵AE=AB−BE,AF=AD+DF,∴AB−BE=AD+DF,∴50−BE=30+BE,解得BE=10,∴AF=AE=40,∴S四边形AECF=40×40=1600m2,∴S四边形ABCD=1600m2,答:该空地的面积为1600m2.24.解:(1)∵OC=OD,∠DOE=∠COF,OE=OF,∴CE=DF,△DOE≌△COF(SAS),∴∠PEC=∠PFD,∵∠CPE=∠DPF,CE=DF,∴△CPE≌△DPF(AAS),∴PE=PF,∵OE=OF,PE=PF,OP=OP,∴△OPE≌△OPF(SSS),∴∠POE=∠POF,即∠POA=∠POB,∴射线OP平分∠AOB;(2)∵CF⊥OA,DE⊥OB,∴∠OCF=∠ODE=90°,∴∠COF=∠DOE,OC=OD,∴△OCF≌△ODE(ASA),∴OF=OE,由(1)可得OP平分∠AOB;(3)补全图形如下,过点P 分别作PM ⊥OA 于M ,PN ⊥OB 于N ,∵OP 是∠AOB 的平分线,∴PM =PN ,∠PMC =∠PND =90°,当PC =PD 1时,在Rt △PMC 和Rt △PND 1中,{PC =PD 1PM =PN ,∴Rt △PMC≌Rt △PND 1(HL),∴∠PCO =∠PD 1O ;当PC =PD 2时,同理得Rt △PMC≌Rt △PND 2(HL),∴∠PCM =∠PD 2N ;∵∠PD 2N +∠PD 2O =180°,∴∠PCO +∠PD 2O =180°,综上所述,∠PCO 与∠PDO 的数量关系为∠PCO =∠PDO 或∠PCO +∠PDO =180°;25.解:(1)证明:∵∠BAD =90°,∴∠BAC +∠DAE =90°,∵BC ⊥CA ,DE ⊥AE ,∴∠ACB =∠DEA =90°,∴∠BAC +∠ABC =90°,∴∠ABC =∠DAE ,在△ABC 和△DAE 中,{∠ACB =∠DEA ∠ABC =∠DAE BA =AD∴△ABC≌△DAE (AAS),∴BC =AE .(2)由模型呈现可知,△AEP≌△BAG ,△CBG≌△DCH ,∴AP =BG =3,AG =EP =6,CG =DH =4,CH =BG =3,则S 实线围成的图形=12×(4+6)×(3+6+4+3)−12×3×6−12×3×6−12×3×4−12×3×4=50.(3)①过点D 作DP ⊥AG 于P ,过点E 作EQ ⊥AG 交AG 的延长线于Q .图3由【模型呈现】可知,△AFB≌△DPA ,△AFC≌△EQA ,∴DP =AF ,EQ =AF∴DP =EQ ,∵DP ⊥AG ,EQ ⊥AG∴∠DPG =∠EQG =90°,在△DPG 和△EQG 中,{∠DPG =∠EQG ∠DGP =∠EGQ DP =EQ∴△DPG≌△EQG (AAS),∴DG =GE .②由①可知,BF =AP ,FC =AQ ,∴BC =BF +FC =AP +AQ ,∵BC =21,∴AP +AQ =21,∴AP +AP +PG +GQ =21,由①△DPG≌△EQG 得∴PG =GQ ,∴AP +AP +PG +PG =21,∴AP+PG=10.5,∴AG=10.5,×10.5×12=63.∴S△ADG=12。
八年级全等三角形单元测试卷(解析版)
![八年级全等三角形单元测试卷(解析版)](https://img.taocdn.com/s3/m/b549759125c52cc58ad6be28.png)
八年级全等三角形单元测试卷(解析版)一、八年级数学轴对称三角形填空题(难)1.在等腰△疤中,初鬼交直线鬼于点"若AD^-BC.则△物7的顶角的度数为【答案】30°或150。
或90°【解析】试题分析:分两种情况:①8C为腰,②8C为底,根据直角三角形30。
角所对的直角边等于斜边的一半判断出ZACD=3O°,然后分AD在内部和外部两种情况求解即可.解:①8C为腰,9:AD±BC于点D , AD= - BC ,2ZACD=3O° ,如图1 , AD在△A8C内部时,顶角ZC=3O° f如图 2 , AD在AABC外部时,顶角ZACB=180° - 30°=150° ,②8C为底,如图3,\9AD±B C 于点D , AD=-BC ,2:.AD=BD=CD ,:,ZB=ZBAD , ZC=ZCAD , :,ZBAD+ZCAD=-xl30°=90° ,2...顶角ZBAC=90° ,综上所述,等腰三角形ABC的顶角度数为30。
或150。
或90。
.故答案为30。
或150。
或90° .点睛:本题考查了含30。
交点直角三角形的性质,等腰三角形的性质,分类讨论是解题的关键.2. ________________________________________________ 在直角坐标系中,O为坐标原点,已知点A (1, 2),点P是y轴正半轴上的一点,且△AOP、为等腰三角形,则点P的坐标为.【答案】(0,方),(0,4),(0,|J【解析】【分析】有三种情况:①以。
为圆心,以OA为半径画弧交y轴于D,求出OA即可:②以A为圆心,以OA为半径画弧交v轴于P,求出OP即可;③作OA的垂直平分线交y轴于C,则AC=OC,根据勾股定理求出OC即可. 【详解】有三种情况:①以。
数学八年级上学期《全等三角形》单元测试卷(含答案)
![数学八年级上学期《全等三角形》单元测试卷(含答案)](https://img.taocdn.com/s3/m/ae6200e6a216147916112855.png)
9.如图,在△A B C中,A B=A C,∠A B C、∠A C B的平分线B D,CE相交于O点,且B D交A C于点D,CE交A B于点E.某同学分析图形后得出以下结论:① B C D≌ C BE;② B A D≌ B C D;③ B D A≌ CEA;④ BOE≌ COD;⑤ A CE≌ B CE;上述结论一定正确的是
A.①②③B.②解析]
根据等腰三角形的性质及角平分线定义可得有关角之间的相等关系.运用三角形全等的判定方法A AS或ASA判定全等的三角形.
解:∵A B=A C,∴∠A B C=∠A C B.
∵B D平分∠A B C,CE平分∠A C B,
∴∠A B D=∠C B D=∠A CE=∠B CE.
A B的对应边应是FD,
根据三角形全等的判定,当A C=FD时,有△A B C≌△FED.
故选C.
考点:本题考查的是全等三角形的判定
点评:判定两个三角形全等的一般方法有:SSS、SAS、SSA、HL.注意:A A A、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.
人教版八年级上册《全等三角形》单元测试卷
时间:90分钟 总分: 100
一、选择题(每小题3分,共30分)
1.下列说法正确 是( )
A.形状相同的两个三角形全等
B.面积相等的两个三角形全等
C.完全重合的两个三角形全等
D.所有的等边三角形全等
2.如图2, 、 、 分别表示△A B C的三边长,则下面与△A B C一定全等的三角形是
即
在△B C D和△A CE中
△B C D≌△A CE
第12章 全等三角形 人教版数学八年级上册单元测试卷(含答案)
![第12章 全等三角形 人教版数学八年级上册单元测试卷(含答案)](https://img.taocdn.com/s3/m/8f71a9ec64ce0508763231126edb6f1aff007132.png)
第十二章 全等三角形时间:60分钟 满分:100分一、选择题(本大题共10小题,每小题3分,满分30分.每小题有四个选项,其中只有一个选项符合题意)1.(2022·浙江杭州余杭区期末)下列各组图形中,是全等三角形的是( ) A B C D2.(2022·山西运城盐湖区期中)如图,△ABC≌△DEC,点B,C,D在同一直线上.若CE=4,AC=7,则BD=( ) A.3B.8C.11 D.10(第2题)(第3题)3.如图是由边长为1的小正方形组成的网格,若△MNP≌△MEQ,则点Q(与点P不重合)可能是图中的( ) A.点A B.点B C.点C D.点D4.已知∠AOB,用尺规作∠A'O'B'等于∠AOB的作图痕迹如图所示,则判断∠AOB=∠A'O'B'所用到的三角形全等的判断方法是( )A.SSSB.SASC.ASAD.AAS5.(2022·北京东城区期末)下列已知条件,不能唯一确定△ABC的是( )A.∠A=60°,∠B=45°,AB=4B.∠A=30°,AB=5,BC=3C.∠B=60°,AB=6,BC=10D.∠C=90°,AB=5,BC=36.(2022·河南许昌期中)已知△ABC的三边长分别为3,5,7,△DEF的三边长分别为3,3x-2,2x-1,若这两个三角形全等,则x的值为( )B.4C.3D.无法确定A.737.(2022·甘肃武威凉州区期末改编)如图,在△ABC中,∠C=90°,AD平分∠CAB交BC 于点D,DE⊥AB于点E,且AB=5cm,AC=3cm,BC=4cm,则△DEB的周长为( ) A.5cm B.6cm C.7cm D.8cm(第7题)(第8题)8.如图,在△ABC中,∠B=∠C,BF=CD,BD=CE,∠FDE=65°,则∠A=( )A.50°B.55°C.60°D.65°9.(2022·湖南衡阳期末改编)如图,OA平分∠NOP,OB平分∠MOP,AB⊥OP于点E,BC⊥MN于点C,AD⊥MN于点D,下列结论错误的是( )A.AD+BC=ABB.点O是CD的中点C.∠AOB=90°D.∠CBO=∠BAO10.如图,在△ACD和△BCE中,AC=BC,AD=BE,CD=CE,∠ACE=55°,∠BCD=155°,AD与BE相交于点P,则∠BPD=( )A.110°B.125°C.130°D.155°二、填空题(共6小题,每小题3分,共18分)11.(2022·广东广州越秀区期中)如图为打碎的一块三角形玻璃,现在要去玻璃店配一块完全相同的玻璃,如果带了两块玻璃,其中有一块是②,那么另一块是 .(第11题)(第12题)12.(2022·北京东城区期末)如图,点B,D,E,C在同一直线上,若△ABD≌△ACE,BC=12,BD=3,则DE的长为 .13.(2022·安徽合肥蜀山区期末)如图,在△ABC中,点D,E分别为边AC,BC上的点,若AD=DE,AB=BE,∠A=70°,则∠CED= .(第13题)(第14题)14.(2022·广东珠海香洲区期末)如图,AD是△ABC的角平分线,DE⊥AB于点E,DF ⊥AC于点F.若S△ABC=21,DE=3,AB=9,则AC的长为 .15.(2022·湖北黄冈期中改编)已知在△ABC中,AB=4,中线AD=4,则AC的取值范围是 .16.(2022·江苏盐城段考改编)如图,已知四边形ABCD中,AB=12cm,BC=8cm,CD=14cm,∠B=∠C,点E为线段AB的中点.如果点P在线段BC上以3cm/s的速度由点B向点C运动,同时,点Q在线段CD上由点C向点三、解答题(共6小题,共52分)17.(6分)(2021·江苏扬州邗江区期末)如图,点C,F在线段BE上,∠ABC=∠DEF= 90°,BC=EF,请添加一个合适的条件使△ABC≌△DEF.(1)根据“ASA”进行判定,需添加的条件是 ;根据“HL”进行判定,需添加的条件是 ;(2)请从(1)中选择一种,加以证明.18.(7分)(2021·重庆綦江区期末)如图,AD=CB,AB=CD,BE⊥AC于点E,DF⊥AC于点F.求证:(1)△ABC≌△CDA;(2)BE=DF.19.(9分)(2022·天津红桥区期末)如图,在△ABC中,AD是△ABC的中线,DE⊥AB, DF⊥AC,垂足分别为E,F.(1)若BE=CF,求证:AD是△ABC的角平分线.(2)若AD是△ABC的角平分线,求证:BE=CF.20.(9分)(2022·山东聊城期末)课间,小明拿着老师的等腰直角三角板(AC=CB,AC⊥BC)玩,不小心掉到两墙之间(墙与地面垂直),三角板的直角顶点恰好着地,且D,C,E三点在同一直线上,如图所示.(A,B,C,D,E五点在同一平面内)(1)求证:△ADC≌△CEB.(2)已知DE=35cm,且图中每块砖的厚度为a cm,请你帮小明求出每块砌墙砖块的厚度.21.(10分)(2022·重庆巴南区期中)(1)教材回顾:在人教版八年级上册数学教材P53的数学活动2中有这样一段描述:我们把两组邻边分别相等的四边形叫做“筝形”.如图(1),四边形ABCD是一个筝形,其中AD=CD,AB=CB,猜想筝形的对角线有什么性质(写出一条即可).并用全等三角形的知识证明你的猜想.(2)知识拓展:如图(2),如果D为△ABC内一点,BD平分∠ABC,AD=CD,证明:∠BAD=∠BCD. 图(1) 图(2)22.(11分)(2022·湖北天门期中)在△ABC中,AB=AC,点D是线段CB上的一动点(不与点B,C重合),以AD为一边在AD的右侧作△ADE,使AD=AE,∠DAE=∠BAC,连接CE.(1)如图(1),当点D在线段CB上,∠BAC=90°时,∠DCE= °;(2)设∠BAC=α,∠DCE=β.①如图(2),当点D在线段CB上,∠BAC≠90°时,请你探究α与β之间的数量关系,并证明你的结论;②如图(3),当点D在线段CB的延长线上,∠BAC≠90°时,请将图(3)补充完整,并直接写出此时α与β之间的数量关系(不需要证明).图(1) 图(2)图(3)第十二章 全等三角形选择填空题答案速查12345678910B C D A B C B A D C11.①12.613.110°14.515.4<AC<1216.3或921.B B选项可根据“SAS”判定两三角形全等.2.C ∵△ABC≌△DEC,CE=4,AC=7,∴BC=CE=4,CD=AC=7,∴BD=BC+CD=4+7=11.3.D 图示速解4.A 如图,连接CD,C'D',因为在△COD和△C'O'D'中,CO=C'O',DO=D'O',CD=C'D',所以△COD≌△C'O'D'(SSS),所以∠AOB=∠A'O'B'.故选A.5.B 逐项分析如下.选项已知条件判定方法正误A∠A,∠B,AB 两角及其夹边“ASA”√B∠A,AB,BC 两边及其一边的对角✕C∠B,AB,BC 两边及其夹角“SAS”√D∠C=90°,AB,BC斜边和直角边“HL”√6.C ∵△ABC与△DEF全等,∴3+5+7=3+3x-2+2x-1,解得x=3.【题眼】若两个三角形全等,则这两个三角形的周长相等一题多解(分类讨论思想)△ABC 与△DEF 全等,可分以下两种情况讨论.(1)当边长为5的边的对应边长为3x-2时,则3x -2=5,2x -1=7,无解,不符合题意舍去.(2)当边长为5的边的对应边长为2x-1时,则2x -1=5,3x -2=7,解得x=3,符合题意.综上所述,x 的值为3.7.B ∵AD 平分∠CAB 交BC 于点D ,DE ⊥AB ,DC ⊥AC ,∴DC=DE.在Rt △ADC和Rt △ADE 中,AD =AD ,DC =DE ,∴Rt △ADC ≌Rt △ADE (HL),∴AE=AC=3cm,∴BE=AB-AE=5-3=2(cm),∴△DEB 的周长=BE+BD+DE=BE+BD+CD=BE+BC=2+4=6(cm).8.A 在△BDF 和△CED 中,BF =CD ,∠B =∠C ,BD =CE ,∴△BDF ≌△CED (SAS),∴∠BFD=∠CDE.∵∠FDE+∠EDC=∠B+∠BFD ,∴∠B=∠FDE=65°,∴∠A=180°-∠B-∠C=180°-65°-65°=50°.9.D (排除法)∵OA 平分∠NOP ,OB 平分∠MOP ,∴∠AOD=∠AOP=12∠DOE ,∠COB=∠EOB=12∠COE ,∴∠AOB=12(∠COE+∠DOE )=90°,故选项C 不合题意.在△AOD 和△AOE 中,∠AOD =∠AOE ,∠ADO =∠AEO ,AO =AO ,∴△AOD ≌△AOE (AAS),∴AE=AD ,OE=OD ,∠OAE=∠OAD.同理可得BC=BE ,CO=OE ,∴AB=AE+BE=AD+BC ,CO=OE=OD ,∴点O 是CD 的中点,故选项A,B 不合题意.故选D .10.C 在△ACD 和△BCE 中,AC =BC ,AD =BE ,CD =CE ,∴△ACD ≌△BCE (SSS),∴∠ACD=∠BCE ,∠A=∠B ,∴∠BCA+∠ACE=∠ACE+∠ECD ,∴∠ACB=∠ECD=12(∠BCD-∠ACE )=12×(155°-55°)=50°.∵∠B+∠ACB=∠A+∠APB ,∴∠APB=∠ACB=50°,∴∠BPD=180°-50°=130°.11.① 带①②去,符合全等三角形的“ASA”判定方法.带②③去,仅保留了原三角形的一个角和部分边,带②④去,仅保留了原三角形的两个角和部分边,均不符合全等三角形的判定方法.故另一块是①.12.6 ∵△ABD ≌△ACE ,BD=3,∴CE=BD=3.∵BC=12,∴DE=BC-BD-CE=6.13.110° 在△ADB 与△EDB 中,AD =DE ,AB =BE ,DB =DB ,∴△ADB ≌△EDB (SSS),∴∠DEB=∠A=70°,∴∠CED=180°-∠DEB=110°.14.5 ∵AD 是△ABC 的角平分线,DE ⊥AB ,DF ⊥AC ,∴DF=DE=3.∵S △ABD +S △ACD =S △ABC ,∴12·AB ·DE+12·AC ·DF=21,即12×9×3+12×AC×3=21,∴AC=5.【注意】角平分线的性质15.4<AC<12 图示速解(“倍长中线”模型)如图,延长AD 到点E ,使DE=AD=4,连接CE.∵AD 是BC 边上的中线,∴BD=CD.在△ABD 和△ECD 中,BD =CD ,∠ADB =∠EDC ,AD =ED ,∴△ABD ≌△ECD (SAS),∴CE=AB=4.在△AEC 中,AE-CE<AC<AE+EC ,即8-4<AC<8+4,∴4<AC<12.16.3或92 (分类讨论思想)设点P 运动的时间为t s,则BP=3t cm,CP=(8-3t )cm,由∠B=∠C ,可分以下两种情况讨论.①当BE=CP=6cm,BP=CQ 时,△BPE ≌△CQP ,此时6=8-3t ,解得t=23,所以BP=CQ=2cm,此时点Q 的运动速度为2÷23=3(cm/s).②当BE=CQ=6cm,BP=CP 时,△BPE ≌△CPQ ,此时3t=8-3t ,解得t=43,此时点Q 的运动速度为6÷43=92(cm/s).17.【参考答案】(1)∠ACB=∠DFE AC=DF (4分)(2)选择添加条件AC=DF.证明:∵∠ABC=∠DEF=90°,∴在Rt△ABC和Rt△DEF中,AC=DF,BC=EF,∴Rt△ABC≌Rt△DEF(HL).(6分)一题多解(2)选择添加条件∠ACB=∠DFE.证明:在△ABC和△DEF中,∠ABC=∠DEF,BC=EF,∠ACB=∠DFE,∴△ABC≌△DEF(ASA).(6分) 18.【参考答案】证明:(1)在△ABC和△CDA中,CB=AD,AB=CD,AC=CA,∴△ABC≌△CDA(SSS).(3分) (2)∵△ABC≌△CDA,∴∠ACB=∠DAC.∵BE⊥AC,DF⊥AC,∴∠BEC=∠DFA=90°.(4分)在△AFD和△CEB中,∠DFA=∠BEC,∠DAF=∠BCE,DA=BC,∴△AFD≌△CEB(AAS),∴BE=DF.(7分) 19.(1)BD=CD,BE=CF Rt△BDE≌Rt△CDF→DE=DF→证得结论(2)Rt△BDE≌ Rt△CDF→BE= CF【参考答案】证明:(1)∵AD是△ABC的中线,∴BD=CD.∵DE⊥AB,DF⊥AC,∴△BDE,△CDF都是直角三角形.在Rt△BDE与Rt△CDF中,BD=CD,BE=CF,∴Rt△BDE≌Rt△CDF(HL),∴DE=DF.(2分)∵DE⊥AB,DF⊥AC,∴AD是△ABC的角平分线.(4分)【关键】角的内部到角的两边的距离相等的点在角的平分线上(2)∵AD是△ABC的角平分线,DE⊥AB,DF⊥AC,∴DE=DF.【关键】角平分线的性质∵AD是△ABC的中线,∴BD=CD.(6分)在Rt△BDE和Rt△CDF中,BD=CD,DE=DF,∴Rt△BDE≌Rt△CDF(HL),∴BE=CF.(9分) 20.【参考答案】(1)证明:由题意得AC=BC,∠ACB=90°,∠ADC=∠CEB=90°,∴∠ACD+∠BCE=90°,∠ACD+∠DAC=90°,∴∠BCE=∠DAC. 【关键】同角的余角相等在△ADC和△CEB中,∠ADC=∠CEB,∠DAC=∠BCE,AC=CB,∴△ADC≌△CEB(AAS).(5分)(2)由题意知,一块砌墙砖块的厚度为a cm,∴AD=4a,BE=3a.由(1)得△ADC≌△CEB,∴DC=BE=3a,CE=AD=4a,∴DC+CE=7a=35,解得a=5.答:每块砌墙砖块的厚度为5cm.(9分) 21.思路导图(1) △ADB≌△CDB(SSS)→∠ADO=∠CDO(2)过点D作DE⊥AB,DF⊥BC DE=DF Rt△ADE≌Rt△CDF→∠BAD=∠BCD【参考答案】(1)猜想:BD⊥AC,AO=OC.(写出一个即可)(2分)证明:在△ADB和△CDB中,AB=CB, AD=CD, BD=BD,∴△ADB≌△CDB(SSS),∴∠ADO=∠CDO.(3分)在△AOD和△COD中,AD=CD,∠ADO=∠CDO, OD=OD,∴△AOD≌△COD(SAS),(4分)∴∠AOD=∠COD,OA=OC,∴∠COD=90°,∴BD⊥AC.(5分) (2)证明:如图,分别过点D作DE⊥AB,DF⊥BC,垂足分别为E,F.(6分)∵BD平分∠ABC,∴DE=DF.(7分)在Rt△ADE和Rt△CDF中,DE=DF, AD=CD,∴Rt△ADE≌Rt△CDF(HL),∴∠BAD=∠BCD.(10分)22.思路导图【参考答案】(1)90(2分)解法提示:∵∠BAD+∠DAC=90°,∠DAC+∠CAE=90°,∴∠BAD=∠CAE,在△BAD和△CAE中,AB=AC,∠BAD=∠CAE,AD=AE,∴△BAD≌△CAE(SAS),∴∠ACE=∠B.∵∠B+∠ACB=90°,∴∠DCE=∠ACE+∠ACB=90°.(2)①α+β=180°.证明:∵∠BAC=∠DAE,∴∠BAC-∠DAC=∠DAE-∠DAC,∴∠BAD=∠CAE,(3分)在△BAD和△CAE中,AB=AC,∠BAD=∠CAE,AD=AE,∴△BAD≌△CAE(SAS),(5分)∴∠B=∠ACE.∵∠B+∠ACB=180°-α,∴∠DCE=∠ACE+∠ACB=∠B+∠ACB=180°-α=β,∴α+β=180°.(7分)②如图所示.(9分)α=β.(11分)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、八年级数学全等三角形解答题压轴题(难)1.取一副三角板按图()1拼接,固定三角板60,()30ADC D ACD ∠=∠=,将三角板45()ABC BAC BCA ∠=∠=绕点A 依顺时针方向旋转一个大小为a 的角00)45(a ≤≤得到ABM ,图()2所示.试问:()1当a 为多少时,能使得图()2中//AB CD ?说出理由,()2连接BD ,假设AM 与CD 交于,E BM 与CD 交于F ,当00)45(a ≤≤时,探索DBM CAM BDC ∠+∠+∠值的大小变化情况,并给出你的证明.【答案】(1)15°;(2)DBM CAM BDC ∠+∠+∠的大小不变,是105,证明见解析.【解析】【分析】(1)由//AB CD 得到30BAC C ∠=∠=,即可求出a ;(2)DBM CAM BDC ∠+∠+∠的大小不变,是105︒,由FEM CAM C ∠=∠+∠,30C ∠=︒, EFM BDC DBM ∠=∠+∠, 45M ∠=︒,即可利用三角形内角和求出答案.【详解】 ()1当a 为15时,//AB CD ,理由:由图()2,若//AB CD ,则30BAC C ∠=∠=, 453015a CAM BAM BAC ∴=∠=∠-∠=-︒=︒,所以,当a 为15时,//AB CD .注意:学生可能会出现两种解法:第一种:把//AB CD 当做条件求出a 为15,第二种:把a 为15当做条件证出//AB CD ,这两种解法都是正确的.()2DBM CAM BDC ∠+∠+∠的大小不变,是105︒证明: ,30FEM CAM C C ∠=∠+∠∠=︒,30FEM CAM ∴∠=∠+︒,EFM BDC DBM ∠=∠+∠,DBM CAM BDC EFM CAM ∴∠+∠+∠=∠+∠,180,45EFM FEM M M ∠+∠+∠=∠=︒,3045180BDC DBM CAM ∴∠+∠+∠+︒+︒=︒,1803045105DBM CAM BDC ∴∠+∠+∠=︒--=︒,所以,DBM CAM BDC ∠+∠+∠的大小不变,是105.【点睛】此题考查旋转的性质,平行线的性质,三角形的外角定理,三角形的内角和,(2)中将角度和表示为三角形的外角是解题的关键.2.已知,如图A 在x 轴负半轴上,B (0,-4),点E (-6,4)在射线BA 上,(1) 求证:点A 为BE 的中点(2) 在y 轴正半轴上有一点F, 使 ∠FEA=45°,求点F 的坐标.(3) 如图,点M 、N 分别在x 轴正半轴、y 轴正半轴上,MN=NB=MA ,点I 为△MON 的内角平分线的交点,AI 、BI 分别交y 轴正半轴、x 轴正半轴于P 、Q 两点, IH⊥ON 于H, 记△POQ 的周长为C△POQ.求证:C△POQ=2 HI.【答案】(1)证明见解析;(2)22(0,)7F;(3)证明见解析.【解析】试题分析:(1)过E点作EG⊥x轴于G,根据B、E点的坐标,可证明△AEG≌△ABO,从而根据全等三角形的性质得证;(2)过A作AD⊥AE交EF延长线于D,过D作DK⊥x轴于K,然后根据全等三角形的判定得到△AEG≌△DAK,进而求出D点的坐标,然后设F坐标为(0,y),根据S梯形EGKD=S梯形EGOF+S梯形FOKD可求出F的坐标;(3)连接MI、NI,根据全等三角形的判定SAS证得△MIN≌△MIA,从而得到∠MIN=∠MIA和∠MIN=∠NIB,由角平分线的性质,求得∠AIB=135°×3-360°=45°再连接OI,作IS⊥OM于S, 再次证明△HIP≌△SIC和△QIP≌△QIC,得到C△POQ周长.试题解析:(1)过E点作EG⊥x轴于G,∵B(0,-4),E(-6,4),∴OB=EG=4,在△AEG和△ABO中,∵90EGA BOAEAG BAOEG BO∠=∠=︒⎧⎪∠=∠⎨⎪=⎩∴△AEG≌△ABO(AAS),∴AE=AB∴A为BE中点(2)过A作AD⊥AE交EF延长线于D,过D作DK⊥x轴于K,∵∠FEA=45°,∴AE=AD ,∴可证△AEG≌△DAK,∴D(1,3),设F (0,y ),∵S 梯形EGKD =S 梯形EGOF +S 梯形FOKD ,∴()()()111347463222y y +⨯=+⨯++ ∴227y = ∴220,7F ⎛⎫ ⎪⎝⎭(3)连接MI 、NI∵I 为△MON 内角平分线交点,∴NI 平分∠MNO,MI 平分∠OMN,在△MIN 和△MIA 中,∵MN MA NMI AMI MI MI =⎧⎪∠=∠⎨⎪=⎩∴△MIN ≌△MIA (SAS ),∴∠MIN=∠MIA ,同理可得∠MIN=∠NIB,∵NI 平分∠MNO,MI 平分∠OMN,∠MON=90°,∴∠MIN=135°∴∠MIN=∠MIA =∠NIB=135°,∴∠AIB=135°×3-360°=45°,连接OI ,作IS⊥OM 于S, ∵IH⊥ON,OI 平分∠MON,∴IH=IS=OH=OS ,∠HIS=90°,∠HIP+∠QIS=45°,在SM 上截取SC=HP ,可证△HIP≌△SIC,∴IP=IC,∠HIP=∠SIC ,∴∠QIC=45°,可证△QIP≌△QIC,∴PQ=QC=QS+HP ,∴C △POQ =OP+PQ+OQ=OP+PH+OQ+OS=OH+OS=2HI.3.如图1,等腰△ABC 中,AC =BC =42, ∠ACB=45˚,AO 是BC 边上的高,D 为线段AO 上一动点,以CD 为一边在CD 下方作等腰△CDE ,使CD =CE 且∠DCE=45˚,连结BE . (1) 求证:△ACD ≌△BCE ;(2) 如图2,在图1的基础上,延长BE 至Q , P 为BQ 上一点,连结CP 、CQ,若CP =CQ =5,求PQ 的长.(3) 连接OE ,直接写出线段OE 的最小值.【答案】(1)证明见解析;(2)PQ=6;(3)OE=422-【解析】试题分析:()1根据SAS 即可证得ACD BCE ≌;()2首先过点C 作CH BQ ⊥于H ,由等腰三角形的性质,即可求得45DAC ∠=︒,则根据等腰三角形与直角三角形中的勾股定理即可求得PQ 的长.()3OE BQ ⊥时,OE 取得最小值.试题解析:()1 证明:∵△ABC 与△DCE 是等腰三角形,∴AC =BC ,DC =EC ,45ACB DCE ∠=∠=,45ACD DCB ECB DCB ∴∠+∠=∠+∠=,∴∠ACD =∠BCE ;在△ACD和△BCE中,,AC BCACD BCEDC EC=⎧⎪∠=∠⎨⎪=⎩(SAS)ACD BCE∴≌;()2首先过点C作CH BQ⊥于H,(2)过点C作CH⊥BQ于H,∵△ABC是等腰三角形,∠ACB=45˚,AO是BC边上的高,45DAC∴∠=,ACD BCE≌,45PBC DAC∴∠=∠=,∴在Rt BHC中,2242422CH BC=⨯==,54PC CQ CH===,,3PH QH∴==,6.PQ∴=()3OE BQ⊥时,OE取得最小值.最小值为:42 2.OE=-4.(1)已知△ABC是等腰三角形,其底边是BC,点D在线段AB上,E是直线BC上一点,且∠DEC=∠DCE,若∠A等于60°(如图①).求证:EB=AD;(2)若将(1)中的“点D在线段AB上”改为“点D在线段AB的延长线上”,其他条件不变(如图②),(1)的结论是否成立,并说明理由.【答案】(1)证明见解析(2)证明见解析【解析】试题分析:(1)作DF∥BC 交AC 于F ,由平行线的性质得出∠ADF=∠ABC,∠AFD=∠ACB,∠FDC=∠DCE,证明△ABC 是等边三角形,得出∠ABC=∠ACB=60°,证出△ADF 是等边三角形,∠DFC=120°,得出AD=DF ,由已知条件得出∠FDC=∠DEC,ED=CD ,由AAS 证明△DBE≌△CFD,得出EB=DF ,即可得出结论;(2)作DF∥BC 交AC 的延长线于F ,同(1)证出△DBE≌△CFD,得出EB=DF ,即可得出结论.试题解析:(1)证明:如图,作DF ∥BC 交AC 于F ,则△ADF 为等边三角形∴AD=DF ,又∵ ∠DEC=∠DCB ,∠DEC+∠EDB=60°,∠DCB+∠DCF=60° ,∴ ∠EDB=∠DCA ,DE=CD ,在△DEB 和△CDF 中,120EBD DFC EDB DCF DE CD ,,∠=∠=︒⎧⎪∠=∠⎨⎪=⎩∴△DEB ≌△CDF ,∴BD=DF ,∴BE=AD .(2). EB=AD 成立;理由如下:作DF ∥BC 交AC 的延长线于F ,如图所示:同(1)得:AD=DF ,∠FDC=∠ECD ,∠FDC=∠DEC ,ED=CD ,又∵∠DBE=∠DFC=60°,∴△DBE ≌△CFD (AAS ),∴EB=DF ,∴EB=AD.点睛:此题主要考查了三角形的综合,考查等边三角形的判定与性质,全等三角形的判定与性质,等腰三角形的判定与性质,等腰直角三角形的判定与性质,平行线的性质等知识,综合性强,有一定的难度,证明三角形全等是解决问题的关键.5.(1)如图1,在Rt △ABC 中,AB AC =,D 、E 是斜边BC 上两动点,且∠DAE=45°,将△ABE 绕点A 逆时针旋转90后,得到△AFC ,连接DF .(1)试说明:△AED ≌△AFD ;(2)当BE=3,CE=9时,求∠BCF 的度数和DE 的长;(3)如图2,△ABC 和△ADE 都是等腰直角三角形,∠BAC=∠DAE=90°,D 是斜边BC 所在直线上一点,BD=3,BC=8,求DE 2的长.【答案】(1)略(2)∠BCF=90° DE=5 (3)34或130【解析】试题分析:()1由ABE AFC ≌, 得到AE AF =,BAE CAF ∠=∠,45,EAD ∠=45,BAE CAD ∴∠+∠=45,CAF CAD ∴∠+∠=即45.DAF ∠=EAD DAF ∠=∠,从而得到.AED AFD ≌ ()2 由△AED AFD ≌得到ED FD =,再证明90DCF ∠=︒,利用勾股定理即可得出结论. ()3过点A 作AH BC ⊥于H ,根据等腰三角形三线合一得,1 4.2AH BH BC === 1DH BH BD =-=或7,DH BH BD =+=求出AD 的长,即可求得2DE .试题解析:()1ABE AFC ≌,AE AF =,BAE CAF ∠=∠,45,EAD ∠=90,BAC ∠=45,BAE CAD ∴∠+∠=45,CAF CAD∴∠+∠=即45.DAF∠=在AED和AFD中,{AF AEEAF DAEAD AD,=∠=∠=.AED AFD∴≌()2AED AFD≌,ED FD∴=,,90.AB AC BAC=∠=︒45B ACB∴∠=∠=︒,45ACF,∠=︒90.BCF∴∠=︒设.DE x=,9.DF DE x CD x===- 3.FC BE==222,FC DC DF+=()22239.x x∴+-=解得: 5.x=故 5.DE=()3过点A作AH BC⊥于H,根据等腰三角形三线合一得,14.2AH BH BC===1DH BH BD=-=或7,DH BH BD=+=22217AD AH DH=+=或65.22234DE AD==或130.点睛:D是斜边BC所在直线上一点,注意分类讨论.6.如图1,在正方形ABCD中,P是对角线BD上的一点,点E在AD的延长线上,且PA=PE ,PE 交CD 于F(1)证明:PC=PE ;(2)求∠CPE 的度数;(3)如图2,把正方形ABCD 改为菱形ABCD ,其他条件不变,当∠ABC=120°时,连接CE ,试探究线段AP 与线段CE 的数量关系,并说明理由.【答案】(1)证明见解析(2)90°(3)AP=CE【解析】【分析】(1)、根据正方形得出AB=BC ,∠ABP=∠CBP=45°,结合PB=PB 得出△ABP ≌△CBP ,从而得出结论;(2)、根据全等得出∠BAP=∠BCP ,∠DAP=∠DCP ,根据PA=PE 得出∠DAP=∠E ,即∠DCP=∠E ,易得答案;(3)、首先证明△ABP 和△CBP 全等,然后得出PA=PC ,∠BAP=∠BCP ,然后得出∠DCP=∠E ,从而得出∠CPF=∠EDF=60°,然后得出△EPC 是等边三角形,从而得出AP=CE.【详解】(1)、在正方形ABCD 中,AB=BC ,∠ABP=∠CBP=45°,在△ABP 和△CBP 中,又∵ PB=PB ∴△ABP ≌△CBP (SAS ), ∴PA=PC ,∵PA=PE ,∴PC=PE ;(2)、由(1)知,△ABP ≌△CBP ,∴∠BAP=∠BCP ,∴∠DAP=∠DCP ,∵PA=PE , ∴∠DAP=∠E , ∴∠DCP=∠E , ∵∠CFP=∠EFD (对顶角相等),∴180°﹣∠PFC ﹣∠PCF=180°﹣∠DFE ﹣∠E , 即∠CPF=∠EDF=90°;(3)、AP =CE理由是:在菱形ABCD 中,AB=BC ,∠ABP=∠CBP ,在△ABP 和△CBP 中, 又∵ PB=PB ∴△ABP ≌△CBP (SAS ),∴PA=PC ,∠BAP=∠DCP ,∵PA=PE ,∴PC=PE ,∴∠DAP=∠DCP , ∵PA=PC ∴∠DAP=∠E , ∴∠DCP=∠E∵∠CFP=∠EFD (对顶角相等), ∴180°﹣∠PFC ﹣∠PCF=180°﹣∠DFE ﹣∠E ,即∠CPF=∠EDF=180°﹣∠ADC=180°﹣120°=60°, ∴△EPC 是等边三角形,∴PC=CE ,∴AP=CE考点:三角形全等的证明7.如图(1),在ABC 中,90A ∠=︒,AB AC =,点D 是斜边BC 的中点,点E ,F 分别在线段AB ,AC 上, 且90EDF ∠=︒.(1)求证:DEF为等腰直角三角形;(2)若ABC的面积为7,求四边形AEDF的面积;(3)如图(2),如果点E运动到AB的延长线上时,点F在射线CA上且保持∠=︒,DEF还是等腰直角三角形吗.请说明理由.90EDF【答案】(1)证明见解析;(2)3.5;(3)是,理由见解析.【解析】【分析】(1)由题意连接AD,并利用全等三角形的判定判定△BDE≌△ADF(ASA),进而分析证得DEF为等腰直角三角形;(2)由题意分析可得S四边形AEDF=S∆ADF+S∆ADE=S∆BDE+S∆CDF,以此进行分析计算求出四边形AEDF的面积即可;(3)根据题意连接AD,运用全等三角形的判定判定△BDE≌△ADF(ASA),进而分析证得DEF为等腰直角三角形.【详解】解:(1)证明:如图①,连接AD.∵∠BAC=90˚,AB=AC,点D是斜边BC的中点,∴AD⊥BC,AD=BD,∴∠1=∠B=45°,∵∠EDF=90°,∠2+∠3=90°,又∵∠3+∠4=90°,∴∠2=∠4,在△BDE 和△ADF中,∠1=∠B,AD=BD,∠2=∠4,∴△BDE≌△ADF(ASA),∴DE=DF,又∵∠EDF=90°,∴ΔDEF为等腰直角三角形.(2)由(1)可知DE=DF,∠C=∠6=45°,又∵∠2+∠3=90°,∠2+∠5=90°,∴∠3=∠5,∴△ADE ≌△CDF ,∴S 四边形AEDF =S ∆ADF +S ∆ADE =S ∆BDE +S ∆CDF ,∴ S ∆ABC =2 S 四边形AEDF ,∴S 四边形AEDF =3.5 .(3)是.如图②,连接AD.∵∠BAC=90°,AB=AC ,D 是斜边BC 的中点,∴AD ⊥BC,AD=BD ,∴∠1=45°,∵∠DAF=180°-∠1=180°—45°=135°,∠DBE=180°-∠ABC=180°-45°=135°,∴∠DAF=∠DBE ,∵∠EDF=90°,∴∠3+∠4=90°,又∵∠2+∠3=90°,∴∠2=∠4,在△BDE 和△ADF 中,∠DAF=∠DBE ,AD=BD,∠2=∠4,∴△BDE ≌△ADF(ASA),∴DE=DF,又∵∠EDF=90°,∴△DEF 为等腰直角三角形.【点睛】本题考查等腰直角三角形的性质以及全等三角形的判定与性质,根据题意作辅助线构造出全等三角形是解题的关键.8.如图,ABC ∆是等腰直角三角形,090BAC ∠=,点D 是直线BC 上的一个动点(点D 与点B C 、不重合),以AD 为腰作等腰直角ADE ∆,连接CE .(1)如图①,当点D 在线段BC 上时,直接写出,BC CE 的位置关系,线段,BC CD ,CE 之间的数量关系;(2)如图②,当点D 在线段BC 的延长线上时,试判断线段BC ,CE 的位置关系,线段,,BC CD CE 之间的数量关系,并说明理由;(3)如图③,当点D 在线段CB 的延长线上时,试判断线段,BC CE 的位置关系,线段,,BC CD CE 之间的数量关系,并说明理由.【答案】(1)见解析;(2)BC CE ⊥,CE BC CD =+,理由见解析;(3),BC CE CD BC CE ⊥=+,理由见解析【解析】【分析】(1)根据条件AB=AC ,∠BAC=90°,AD=AE ,∠DAE=90°,判定△ABD ≌△ACE (SAS ),利用两角的和即可得出BC CE ⊥;利用线段的和差即可得出BC CE CD =+;(2)同(1)的方法根据SAS 证明△ABD ≌△ACE ,得出BD=CE ,∠ACE=∠ABD ,从而得出结论;(3)先根据SAS 证明△ABD ≌△ACE ,得出ADB AEC ∠=∠,BD CE =,从而得出结论.【详解】(1)∵△ABC 、△ADE 是等腰直角三角形,∴AB=AC ,AE =AD ,在△△ABD 和△ACE 中90AB AC BAC DAE AD AE ⎧⎪∠∠=︒⎨⎪⎩=== , ∴△ABD ≌△ACE (SAS ),∴∠B =∠ACE ,BD=CE,又∵△ABC 是等腰直角三角形,∴∠B+∠ACB=90︒,∴∠ACE +∠ACB=90︒,即BC CE ⊥,∵BC=BD+CD, BD=CE ,∴BC CE CD =+;(2)BC CE ⊥,CE BC CD =+,理由如下:∵ABC ∆、ADE ∆是等腰直角三角形,∴0,,90AB AC AD AE BAC DAE ==∠=∠=,∴BAC DAC DAE DAC ∠+∠=∠+∠即BAD CAE ∠=∠,在ABD ∆和ACE ∆中 AB AC BAD CAE AD AE ⎧⎪∠=∠⎨⎪⎩== ∴()ABD ACE SAS ∆≅∆∴BD CE =∵BD BC CD =+∴CE BC CD =+,∴ABD ACE ∠=∠,∵090ABD ACE ∠+∠=∴090ACE ACB ∠+∠=∴BC CE ⊥.(3),BC CE CD BC CE ⊥=+,理由如下:∵ABC ADE ∆∆、是等腰直角三角形,∴0,,90AB AC AD AE BAC DAE ==∠=∠=,∴BAC BAE DAE BAE ∠-∠=∠-∠,即BAD CAE ∠=∠,在ABD ∆和ACE ∆中 AB AC BAD CAE AD AE ⎧⎪∠=∠⎨⎪⎩== ∴()ABD ACE SAS ∆≅∆,∴ADB AEC ∠=∠,BD CE =,∵CD BD BC =+,∴CD CE BC =+,∵090ADE AED ∠+∠=,即090ADB CDE AED ∠+∠+∠=∴090AEC CDE AED ∠+∠+∠=,∴090DCE ∠=,即BC CE ⊥.【点睛】考查了全等三角形的判定与性质以及等腰直角三角形的性质的运用,解题关键是根据利用两边及其夹角分别对应相等的两个三角形全等判定三角形全等.9.已知点P 是线段MN 上一动点,分别以PM ,PN 为一边,在MN 的同侧作△APM ,△BPN ,并连接BM ,AN .(Ⅰ)如图1,当PM =AP ,PN =BP 且∠APM =∠BPN =90°时,试猜想BM ,AN 之间的数量关系与位置关系,并证明你的猜想;(Ⅱ)如图2,当△APM,△BPN都是等边三角形时,(Ⅰ)中BM,AN之间的数量关系是否仍然成立?若成立,请证明你的结论;若不成立,试说明理由.(Ⅲ)在(Ⅱ)的条件下,连接AB得到图3,当PN=2PM时,求∠PAB度数.【答案】(1)BM=AN,BM⊥AN.(2)结论成立.(3)90°.【解析】【分析】(1)根据已知条件可证△MBP≌△ANP,得出MB=AN,∠PAN=∠PMB,再延长MB交∠=︒,因此有BM⊥AN;AN于点C,得出MCN90(2)根据所给条件可证△MPB≌△APN,得出结论BM=AN;(3)取PB的中点C,连接AC,AB,通过已知条件推出△APC为等边三角形,∠PAC=∠PCA=60°,再由CA=CB,进一步得出∠PAB的度数.【详解】解:(Ⅰ)结论:BM=AN,BM⊥AN.理由:如图1中,∵MP=AP,∠APM=∠BPN=90°,PB=PN,∴△MBP≌△ANP(SAS),∴MB=AN.延长MB交AN于点C.∵△MBP≌△ANP,∴∠PAN=∠PMB,∵∠PAN+∠PNA=90°,∴∠PMB+∠PNA=90°,∴∠MCN=180°﹣∠PMB﹣∠PNA=90°,∴BM⊥AN.(Ⅱ)结论成立理由:如图2中,∵△APM,△BPN,都是等边三角形∴∠APM=∠BPN=60°∴∠MPB=∠APN=120°,又∵PM=PA,PB=PN,∴△MPB≌△APN(SAS)∴MB=AN.(Ⅲ)如图3中,取PB的中点C,连接AC,AB.∵△APM,△PBN都是等边三角形∴∠APM=∠BPN=60°,PB=PN∵点C是PB的中点,且PN=2PM,∴2PC=2PA=2PM=PB=PN,∵∠APC=60°,∴△APC为等边三角形,∴∠PAC=∠PCA=60°,又∵CA=CB,∴∠CAB=∠ABC=30°,∴∠PAB=∠PAC+∠CAB=90°.【点睛】本题是一道关于全等三角形的综合性题目,充分考查了学生对全等三角形的判定定理及其性质的应用的能力,此类题目常常需要数形结合,借助辅助线才得以解决,因此,作出合理正确的辅助线是解题的关键.∆是等边三角形,点D在边AC上(“点D不与,A C重合),点E是射10.如图,ABC线BC上的一个动点(点E不与点,B C重合),连接DE,以DE为边作作等边三角形∆,连接CF.DEF(1)如图1,当DE 的延长线与AB 的延长线相交,且,C F 在直线DE 的同侧时,过点D 作//DG AB ,DG 交BC 于点G ,求证:CF EG =;(2)如图2,当DE 反向延长线与AB 的反向延长线相交,且,C F 在直线DE 的同侧时,求证:CD CE CF =+;(3)如图3, 当DE 反向延长线与线段AB 相交,且,C F 在直线DE 的异侧时,猜想CD 、CE 、CF 之间的等量关系,并说明理由.【答案】(1)证明见详解;(2)证明见详解;(3)CF =CD +CE ,理由见详解.【解析】【分析】(1)由ABC ∆是等边三角形,//DG AB ,得∠CDG=∠A=60°,∠ACB=60°,CDG ∆是等边三角形,易证∆ GDE ≅ ∆ CDF(SAS),即可得到结论;(2)过点D 作DG ∥AB 交BC 于点G ,易证∆ GDE ≅ ∆ CDF(SAS),即可得到结论;(3)过点D 作DG ∥AB 交BC 于点G ,易证∆ GDE ≅ ∆ CDF(SAS),即可得到结论.【详解】(1)∵ABC ∆是等边三角形,//DG AB ,∴∠CDG=∠A=60°,∠ACB=60°,∴CDG ∆是等边三角形,∴DG=DC.∵DEF ∆是等边三角形,∴DE=DF ,∠EDF=60°,∴∠CDG-∠GDF=∠EDF-∠GDF ,即:∠GDE=∠CDF ,在∆ GDE 和∆ CDF 中,∵DE DF GDE CDF DG DC =⎧⎪∠=∠⎨⎪=⎩,∴∆ GDE ≅ ∆ CDF(SAS),∴CF EG =;(2)过点D 作DG ∥AB 交BC 于点G ,如图2,∵ABC ∆是等边三角形,//DG AB ,∴∠CDG=∠A=60°,∠ACB=60°,∴CDG ∆是等边三角形,∴DG=DC.∵DEF ∆是等边三角形,∴DE=DF ,∠EDF=60°,∴∠CDG-∠CDE=∠EDF-∠CDE ,即:∠GDE=∠CDF ,在∆ GDE 和∆ CDF 中,∵DE DF GDE CDF DG DC =⎧⎪∠=∠⎨⎪=⎩,∴∆ GDE ≅ ∆ CDF(SAS),∴CF GE =,∴CD CG CE GE CE CF ==+=+(3)CF =CD +CE ,理由如下:过点D 作DG ∥AB 交BC 于点G ,如图3,∵ABC ∆是等边三角形,//DG AB ,∴∠CDG=∠A=60°,∠ACB=60°,∴CDG ∆是等边三角形,∴DG=DC=GC.∵DEF ∆是等边三角形,∴DE=DF ,∠EDF=60°,∴∠CDG+∠CDE=∠EDF+∠CDE ,即:∠GDE=∠CDF ,在∆ GDE 和∆ CDF 中,∵DE DF GDE CDF DG DC =⎧⎪∠=∠⎨⎪=⎩,∴∆ GDE ≅ ∆ CDF(SAS),∴CF GE ==GC+CE=CD+CE.【点睛】本题主要考查等边三角形的性质和三角形全等的判定和性质定理,添加辅助线,构造全等三角形,是解题的关键.。