一次函数与正比例函数【公开课教案】【公开课教案】

合集下载

一次函数与正比例函数教案

一次函数与正比例函数教案

一次函数与正比例函数教案教案标题:一次函数与正比例函数教案教案目标:1. 学生能够理解一次函数与正比例函数的概念和特征。

2. 学生能够区分一次函数与正比例函数的区别。

3. 学生能够应用一次函数与正比例函数解决实际问题。

教学资源:1. 教材:包含一次函数与正比例函数的相关知识点和例题。

2. 教具:白板、马克笔、计算器。

3. 实例:一次函数与正比例函数的实际应用例子。

教学步骤:引入:1. 引导学生回顾函数的基本概念,并提问是否了解一次函数和正比例函数的定义和特征。

2. 引导学生思考一次函数和正比例函数的区别,并鼓励他们提出自己的观点。

探究:1. 通过一个具体的例子,引导学生理解一次函数的定义和特征。

例如:y = 2x + 3。

- 解释其中的斜率和截距的含义。

- 让学生画出函数图像,并观察斜率和截距对图像的影响。

2. 通过另一个具体的例子,引导学生理解正比例函数的定义和特征。

例如:y = 3x。

- 解释比例系数的含义。

- 让学生画出函数图像,并观察比例系数对图像的影响。

巩固:1. 让学生自主完成一些练习题,巩固对一次函数和正比例函数的理解和应用能力。

2. 提供一些实际问题,让学生运用一次函数和正比例函数解决问题。

例如:根据某商品的价格与数量的关系,求解不同数量下的价格。

拓展:1. 引导学生思考一次函数和正比例函数在实际生活中的应用,并让他们找出更多的例子。

2. 鼓励学生探索其他类型的函数,并比较它们与一次函数和正比例函数的区别。

总结:1. 总结一次函数和正比例函数的定义和特征。

2. 强调一次函数和正比例函数在解决实际问题中的应用。

3. 鼓励学生继续探索函数的更多知识和应用。

评估:1. 设计一些评估题目,检查学生对一次函数和正比例函数的理解和应用能力。

2. 观察学生在课堂练习和实际问题解决中的表现。

一次函数与正比例函数教案

一次函数与正比例函数教案

一次函数与正比例函数教案一、教学目标1. 理解正比例函数的定义及其图像特征。

2. 掌握一次函数的定义及其图像特征。

3. 能够区分正比例函数和一次函数,并正确应用。

4. 培养学生的数学思维能力和问题解决能力。

二、教学重点与难点1. 教学重点:正比例函数和一次函数的定义及其图像特征。

2. 教学难点:一次函数的图像特征和应用。

三、教学准备1. 教学材料:教材、黑板、投影仪、教学卡片、练习题。

2. 教学工具:直尺、圆规、彩笔。

四、教学过程1. 导入:通过生活中的实例,如购物时商品的价格与数量的关系,引入正比例函数和一次函数的概念。

2. 讲解:讲解正比例函数的定义及其图像特征,一次函数的定义及其图像特征。

通过示例和图形的展示,让学生直观地理解正比例函数和一次函数的图像特征。

3. 练习:让学生通过练习题,运用所学的正比例函数和一次函数的知识,解决问题。

五、教学评价1. 课堂参与度:观察学生在课堂上的积极参与程度,提问和回答问题的积极性。

2. 练习题的正确率:检查学生完成练习题的正确率,评估学生对正比例函数和一次函数的理解程度。

3. 学生作品:评估学生在课堂活动中的作品,如绘图和解决问题的能力。

六、教学拓展1. 引入实际问题:通过展示一些实际问题,如物体运动的速度与时间的关系,让学生运用一次函数和正比例函数的知识解决问题。

2. 函数图像的变换:讲解一次函数图像的平移和缩放变换,让学生理解函数图像的变换规律。

七、课堂活动1. 分组讨论:将学生分成小组,让他们讨论一次函数和正比例函数在实际生活中的应用,并展示给全班同学。

2. 游戏:设计一个有关一次函数和正比例函数的游戏,让学生在游戏中加深对函数的理解和应用。

八、课后作业1. 完成教材中的相关练习题。

2. 选择一个实际问题,运用一次函数和正比例函数的知识解决,并将解题过程和答案写在作业本上。

九、教学反馈1. 课后与学生交流:通过与学生的交流,了解学生在课堂上的学习情况,以及对一次函数和正比例函数的理解程度。

最新北师大版八年级数学上册《一次函数与正比例函数》教学设计(精品教案)

最新北师大版八年级数学上册《一次函数与正比例函数》教学设计(精品教案)

最新北师大版八年级数学上册《一次函数与正比例函数》教学设计(精品教案)1.探究:引导学生观察生活中的实例,探究变量之间的关系,初步感受函数的概念。

2.归纳:通过多个实例,引导学生总结一次函数和正比例函数的概念和特点。

3.巩固和反馈:通过练和讨论,巩固学生的知识点,及时反馈学生的问题和疑惑。

2.研究方法:学生需要积极参与探究和讨论,注重归纳总结,勤于练和思考,及时反馈自己的问题和困惑。

五、教学内容分析本节课的主要内容是一次函数和正比例函数的概念和特点,以及如何根据已知条件写出简单的一次函数表达式。

教学重点是理解一次函数和正比例函数的概念,教学难点是能根据所给条件写出简单的一次函数表达式,需要发展学生的抽象思维能力。

六、教学过程设计1.引入新知识:通过一些实例引导学生思考变量之间的关系,初步感受函数的概念。

2.讲解一次函数和正比例函数的概念和特点,引导学生总结归纳。

3.演示如何根据已知条件写出简单的一次函数表达式,让学生进行练。

4.讨论和解决学生的问题和疑惑,及时给予反馈。

5.巩固练:让学生通过实例练,巩固所学知识。

6.总结归纳:让学生总结一次函数和正比例函数的概念和特点,及如何根据已知条件写出简单的一次函数表达式。

七、教学资源准备教师需要准备课件、实例、练题等教学资源,以及黑板、白板、笔等教学工具。

八、教学评估方法教师可以通过学生的课堂表现、练成绩、小组讨论等方式进行评估,及时发现学生的问题和困惑,做好及时反馈和指导。

同时,教师可以通过课后作业和考试等方式进行综合评估。

教学过程设计本节课设计了七个环节:复引入、新课讲述、巩固练、知识提高、反馈练、课堂小结和布置作业。

复引入在这个环节,教师提出了三个问题,分别是什么是函数、函数有哪些表示方式和在现实生活中有哪些问题可以归结为函数问题。

这个环节的意图是为了激发学生的求知欲望,吸引同学们的注意力,采用了“复旧知识,诱导新内容”的引入方法。

问题(1)(2)复上节课的内容,问题(3)是让学生把所学知识运用于实际生活,提高学生的运用意识。

《一次函数与正比例函数》示范公开课教学设计【北师大版八年级数学上册】

《一次函数与正比例函数》示范公开课教学设计【北师大版八年级数学上册】

第四章一次函数4.2 一次函数与正比例函数教学设计一、教学目标1.经历一次函数概念的抽象过程,体会模型思想,发展符号意识。

2.理解正比例函数和一次函数的概念,能根据所给条件写出正比例函数和简单的一次函数表达式。

二、教学重点及难点重点:1.一次函数、正比例函数的概念.2.一次函数、正比例函数的关系.3.会根据已知信息写出一次函数的表达式.难点:一次函数知识的运用.三、教学用具多媒体课件四、相关资源《弹簧》动画,《汽车行驶耗油》动画.五、教学过程【情境导入】【探究新知】身边的数学:你会选择哪种收费方式呢?移动通信公司推出两种收费标准:A类收费标准:不管通话时间多长,每部手机每月必须缴月租费12元,另外,通话费按0.2元/min计算.B类收费标准:没有月租费,但通话费按0.25元/min计算.1.写出每月应缴费用y(元)与通话时间x(min)之间的解析式.2.如果每月平均通话时间为300 min,你会选择哪类收费方式?[说明与建议] 说明:为了激发学生的求知欲望,吸引同学们的注意力,这里采用了学生熟悉的情景,既复习旧知识,又为学习新知识作好铺垫.建议:提示学生应分别写出A、B两类收费标准下应缴费用与通话时间之间的解析式.对于问题2,学生现在完成还有些难度,教师可只提出问题不做解释,从而引出本节课内容.一次函数,正比例函数的概念上面的两个函数关系式为y =0.2x +12,y =0.25x ,都是左边是因变量y ,右边是含自变量x 的代数式.并且自变量和因变量的指数都是一次.一般地,如果2个变量x 与y 之间的函数关系式,可以表示为y =kx +b (k ,b 为常数,且k ≠0)的形式,那么称y 是x 的一次函数(x 为自变量,y 为因变量).特别地,当b =0时,称y 是x 的正比例函数.注意:1.自变量的指数为一次.2.含自变量的式子为整式.3.k ≠ 0【典例精讲】例1 下列函数中,y 是x 的一次函数的是( )①y =x -6;②y =2x ;③y =8x ;④y =7-x A ①②③ B ①③④ C ①②③④ D ②③④分析:考察一次函数的定义:答案:B例2 写出下列各题中x 与y 之间的关系式,并判断,y 是否为x 的一次函数?是否为正比例函数?①汽车以60千米/时的速度匀速行驶,行驶路程中y (千米)与行驶时间x (时)之间的关系式;②圆的面积y (cm 2)与它的半径x (cm )之间的关系;③一棵树现在高50厘米,每个月长高2厘米,x 月后这棵树的高度为y (厘米)解:①y =60x ,是一次函数,也是正比例函数.②2πy r ,既不是一次函数,也不是正比例函数.③y =50+2x , 是一次函数,也是正比例函数.例3 我国自2011年9月1日起,个人工资、薪金所得税征收办法规定:月收入低于3500元的部分不收税;月收入超过3500元但低于5000元的部分征收3%的所得税……如某人某月收入3860元,他应缴个人工资薪金所得税为(3860-3500)×3%=10.8(元)①当月收入大于3500元而又小于5000元时,写出应缴个人工资、薪金所得税y (元)与月收入x (元)之间的关系式.②某人某月收入为4160元,他应缴个人工资、薪金所得税多少元?③如果某人本月缴个人工资、薪金所得税19.2元,那么此人本月工资、薪金是多少元? 解:①当月收入大于3500元而小于5000元时,y =(x -3500)×3%,即y =0.03x -105②当x =4160时,y =0.03×4160-105=19.8(元)③因为(5000-3500)×3%=45(元),19.2<45,所以此人本月工资、薪金收入低于5000元,设此人本月工资、薪金收入是x 元,则19.2=0.03x -105,所以解得x =4140(元)即此人本月工资、薪金收入是4140元。

一次函数与正比例函数1【公开课教案】(含反思)

 一次函数与正比例函数1【公开课教案】(含反思)
解:(1)因为y=(m-5)xm2-24+m+1是一次函数,所以m2-24=1且m-5≠0,所以m=±5且m≠5,所以m=-5.所以当m=-5时,函数y=(m-5)xm2-24+m+1是一次函数.
(2)因为y=(m-5)xm2-24+m+1是一次函数,所以m2-24=1且m-5≠0且m+1=0.所以m=±5且m≠5且m=-1,则这样的m不存在,所以函数y=(m-5)xm2-24+m+1不可能为正比例函数.
4
1.掌握一次函数的概念,能根据条件写出一次函数的关系式;(重点)
2.掌握正比例函数的概念.(重点)
一、情境导入
生活中,我们常常见到各式各样的钟表.时钟的秒针每旋转一圈,表示时间过了1min;旋转两圈,表示时间过了2min……
那么,秒针走过的圈数与经过的时间之间的关系如何表示呢?
二、合作探究
探究点一:一次函数与正比例函数
生2:由此可以得到:“如果两条直线都和第三条直线垂直,那么这两条直线平行”的结论.
师:同学们讨论得真棒.下面我们通过练习来熟悉掌握直线平行的判定定理.
活动目的:
通过对学生熟悉的平行线判定的证明,使学生掌握平行线判定公理推导出的另两个判定定理,并逐步掌握规范的推理格式.
教学效果:
由于学生有了以前学习过的相关知识,对几何证明题的格式有所了解,今天的学习只不过是将原来的零散的知识点以及学生片面的认识进行归纳,学生的认识更提高一步.
师:很好.这些判定方法都是我们经过观察、操作、推理、交流等活动得到的.
上节课我们谈到了要证实一个命题是真命题.除公理、定义外,其他真命题都需要通过推理的方法证实.
我们知道:“在同一平面内,不相交的两条直线叫做平行线”是定义.“两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行”是公理.那其他的三个真命题如何证实呢?这节课我们就来探讨.

《一次函数与正比例函数》教案

《一次函数与正比例函数》教案

《一次函数与正比例函数》教案2020-10-11《一次函数与正比例函数》教案教学目标:1、知道一次函数与正比例函数的意义.2、能写出实际问题中正比例关系与一次函数关系的解析式.3、渗透数学建模的思想,使学生体会到数学的抽象性和广泛的应用性.4、激发学生学习数学的兴趣,培养学生分析问题、解决问题的能力.教学重点:对于一次函数与正比例函数概念的理解.教学难点:根据具体条件求一次函数与正比例函数的解析式.教学方法:结构教学法、以学生“再创造”为主的教学方法教学过程:1、复习旧课前面我们学习了函数的相关知识,(教师在黑板上画出本章结构并让学生说出前三节的内容)2、引入新课就象以前我们学习方程、一元一次方程;不等式、一元一次不等式的内容时一样,我们在学习了函数这个概念以后,要学习一些具体的函数,今天我们要学习的是一次函数.顾名思义,谁能根据一次函数这个名字,类比一元一次方程、一元一次不等式的概念能举出一些一次函数的例子?(学生完全具备这种类比的能力,所以要快、不要耽误太多时间叫几个同学回答就可以了.教师将学生的正确的例子写在黑板上)这些函数有什么共同特点呢?(注意根据学生情况适当引导,看能否归纳出一般结果.)不难看出函数都是用自变量的一次式表示的,可以写成()的形式.一般地,如果(是常数,)(括号内用红字强调)那么y叫做x的一次函数.特别地,当b=0时,一次函数就成为(是常数,)3、例题讲解例1、某油管因地震破裂,导致每分钟漏出原油30公升(1)如果x 分钟共漏出y 公升,写出y与x之间的函数关系式(2)破裂3.5小時后,共漏出原油多少公升分析:y与x成正比例解:(1)(2)(升)例2、小丸子的存折上已经有500元存款了,从现在开始她每个月可以得到150元的零用钱,小丸子计划每月将零用钱的60%存入银行,用以购买她期盼已久的CD随身听(价值1680元)(1)列出小丸子的银行存款(不计利息)y与月数x 的.函数关系式;(2)多长时间以后,小丸子的银行存款才能买随身听?分析:银行存款数由两部分构成:原有的存款500元,后存入的零用钱解:(1)(2)1680=500+90x解得x=13.…所以还需要14个月,小丸子才能买随身听例3、已知函数是正比例函数,求的值分析:本题考察的是正比例函数的概念解:说明:第一题让学生上黑板来完成,二、三题学生分组讨论每个组讨论出一个结果,写在黑板上4、小结由学生对本节课知识进行总结,教师板书即可.5、布置作业书面作业:1、书后习题2、自己写出一个实际中的一次函数的例子并进行讨论探究活动某居民小区按照分期付款的福利售房方式购房,政府给予一定的贴息.小明家购得一套现款价值120000元的房子,购房时首期(第一年)付款30000元,从第二年起,以后每年应付房款为5000元与上一年剩余欠款利息的和.(剩余欠款年利率为0.4%)(1)若第x( 年小明家交付房款y元,求y与x的函数关系式;(2)求第三、第十年的应付房款值.参考答案:(1); (2) 5340元、5200元.~。

北师大版八年级上册数学教案:4.2一次函数与正比例函数

北师大版八年级上册数学教案:4.2一次函数与正比例函数
举例:如速度与时间的关系,路程=速度×时间,可表示为一次函数y=kx+b的形式。
(2)一次函数的图像与性质:学生需要学会如何绘制一次函数的图像,并能够通过图像分析一次函数的性质,如斜率k的正负与函数的单调性,截距b与图像与y轴的交点。
举例:当k>0时,函数图像呈现上升趋势;当k<0时,函数图像呈现下降趋势。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“一次函数与正比例函数在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考,如“你还能想到哪些一次函数的例子?”
4.增强学生的问题解决能力,掌握一次函数和正比例函数在实际问题中的应用,学会运用数学知识解决生活中的问题。
5.培养学生的数学抽象数学模型。
三、教学难点与重点
1.教学重点
(1)一次函数的定义:学生需要掌握一次函数y=kx+b(k≠0,k、b是常数)的概念,理解函数表达式中k和b的含义,并能够识别实际问题中的一次函数模型。
(2)一次函数性质的应用:如何将一次函数的性质应用于实际问题,对于学生来说是一个难点。
举例:在分析速度与时间的关系时,学生需要能够根据一次函数的性质判断速度的增加或减少。
(3)正比例函数与一次函数的关系:理解正比例函数是一次函数的特殊情况,学生需要能够从一次函数中识别出正比例函数,并了解其特殊的性质。
2.案例分析:接下来,我们来看一个具体的案例。假设你每做一件家务可以获得5元零花钱,那么你做的家务数量与获得的零花钱之间就是一个正比例函数关系。通过这个案例,我们可以看到一次函数和正比例函数在实际中的应用。

一次函数与正比例函数教案

一次函数与正比例函数教案

一次函数与正比例函数教案【教案】一次函数与正比例函数教学目标:1. 理解一次函数和正比例函数的概念和特点;2. 能够根据给定的问题建立一次函数或正比例函数的数学模型;3. 掌握一次函数和正比例函数的图像特点和性质。

教学重点:1. 一次函数和正比例函数的定义和特点;2. 一次函数和正比例函数的图像特点;3. 理解数学模型的建立过程。

教学难点:1. 能够能够根据给定的问题建立一次函数或正比例函数的数学模型;2. 理解数学模型的建立过程。

教学准备:1. 教师准备课件和黑板;2. 学生准备笔记本和学习资料。

教学过程:Step 1 引入:1. 在黑板上写出以下问题:a) 如果一辆汽车以每小时 60 公里的速度行驶,4 小时能行驶多远?b) 如果一辆汽车以每小时 50 公里的速度行驶,几小时能够到达 500 公里的目标地?2. 提问:你能找到这两个问题的相似之处吗?Step 2 导入概念:1. 向学生介绍一次函数和正比例函数的概念。

2. 在黑板上写出一次函数和正比例函数的定义。

Step 3 一次函数的图像特点:1. 讲解一次函数的图像特点:表示一次函数 y=kx+b 的图像为一条直线。

2. 展示一次函数图像特点的例子,并进行解释。

3. 在黑板上绘制一条一次函数的图像,并强调对应关系。

Step 4 正比例函数的图像特点:1. 讲解正比例函数的图像特点:表示正比例函数 y=kx 的图像为通过原点的直线。

2. 展示正比例函数图像特点的例子,并进行解释。

3. 在黑板上绘制一条正比例函数的图像,并强调对应关系。

Step 5 建立数学模型:1. 给出一些需求或问题,让学生根据给定的条件建立一次函数或正比例函数的数学模型。

2. 学生根据问题进行分组讨论,其中一名组员写在黑板上。

Step 6 练习:1. 号召全班一起讨论并解决一些实际问题,让学生运用所学的知识建立数学模型并求解。

2. 选择一些学生上台进行演示,并进行点评和讲解。

八年级数学北师大版上册 第4章《4.2 一次函数与正比例函数》教学设计 教案

八年级数学北师大版上册 第4章《4.2 一次函数与正比例函数》教学设计 教案

《一次函数与正比例函数》教案一、教材分析(一)教材的地位和作用《一次函数与正比例函数》八年级上册第四章第二节的内容,一次函数是初中阶段研究的较为简单、应用较为广泛的函数,它的研究方法具有一般性和代表性,为后面的二次函数、反比例函数的学习都奠定了基础。

同时,在整个初中阶段,一元一次方程、一元一次不等式都存在于一次函数中。

三者相互依存,紧密联系,也为方程、不等式、函数解法的补充提供了新的途径。

(二)教学目标知识与技能目标:(1)理解一次函数和正比例函数的概念;(2)能根据所给条件写出简单的一次函数表达式.过程与方法目标:(1)经历一次函数概念的抽象过程,体会模型思想,从实际问题中得到函数关系式,并感受它们之间的一种依存关系。

(2)能根据所给的实际生活背景,列出简单的一次函数关系式。

情感态度与价值观目标:通过具体问题的解决,感受数学与人类生活的密切联系,激发学生学数学、用数学的兴趣.在探索过程中体验成功的喜悦,树立学习的自信心.教学重点、难点:重点:从具体情境中列出相应的一次函数表达式,从而抽象出一次函数的概念。

难点:根据具体情境所给的信息确定一次函数的表达式二、教法与学法:在本节课的教学中我准备采用的教学方法主要是引导——自学交流的方式。

根据学生的理解能力和生理特征,一方面运用现实生活实例,引发学生的兴趣,使他们的注意力集中到解决现实生活问题上,另一方面通过学生小组合作交流、展示,尽可能充分发挥学生的主动性。

通过本节课的学习,使学生学会在独立思考的基础上与同伴进行交流、讨论,培养学生的合作意识,感受数学源于生活有应用于生活。

三、教学过程设计下面是我说课的重点,也就是教学过程的设计,整节课我共设为六个环节:第一个环节是复习回顾:1、什么叫函数:在某个变化过程中,有两个 x和y,如果给定一个x值,相应地就确定一个y值,那么我们称y是x的函数,其中x是 ,y是 .2、函数的三种表达方式有:、、。

3、已知一个长方形的面积为y,长为5,宽为x,则长方形的面积表示为y= . 设计意图:复习函数的概念及其表达方式。

关于初中数学的优质公开课获奖教案设计5篇

关于初中数学的优质公开课获奖教案设计5篇

关于初中数学的优质公开课获奖教案设计5篇关于初中数学的教案篇1一、教学目标:1、知道一次函数与正比例函数的定义。

2、理解掌握一次函数的图象的特征和相关的性质。

3、弄清一次函数与正比例函数的区别与联系。

4、掌握直线的平移法则简单应用。

5、能应用本章的基础知识熟练地解决数学问题。

二、教学重、难点:重点:初步构建比较系统的函数知识体系。

难点:对直线的平移法则的理解,体会数形结合思想。

三、教学过程:1、一次函数与正比例函数的定义:一次函数:一般地,若y=kx+b(其中k,b为常数且k≠0),那么y是一次函数。

正比例函数:对于y=kx+b,当b=0,k≠0时,有y=kx,此时称y是x的正比例函数,k为正比例系数。

2、一次函数与正比例函数的区别与联系:(1)从解析式看:y=kx+b(k≠0,b是常数)是一次函数;而y=kx(k≠0,b=0)是正比例函数,显然正比例函数是一次函数的特例,一次函数是正比例函数的推广。

(2)从图象看:正比例函数y=kx(k≠0)的图象是过原点(0,0)的一条直线;而一次函数y=kx+b(k≠0)的图象是过点(0,b)且与y=kx平行的一条直线。

基础训练:1、写出一个图象经过点(1,—3)的函数解析式为:2、直线y=—2X—2不经过第象限,y随x的增大而。

3、如果P(2,k)在直线y=2x+2上,那么点P到x轴的距离是:4、已知正比例函数y=(3k—1)x,,若y随x的增大而增大,则k是:5、过点(0,2)且与直线y=3x平行的直线是:6、若正比例函数y=(1—2m)x的图像过点A(x1,y1)和点B(x2,y2)当x1y2,则m的取值范围是:7、若y—2与x—2成正比例,当x=—2时,y=4,则x=时,y=—4。

8、直线y=—5x+b与直线y=x—3都交y轴上同一点,则b的值为。

9、已知圆O的半径为1,过点A(2,0)的直线切圆O于点B,交y轴于点C。

(1)求线段AB的长。

(2)求直线AC的解析式。

《一次函数与正比例函数》示范课教学设计【数学八年级上册北师大】

《一次函数与正比例函数》示范课教学设计【数学八年级上册北师大】

第四章一次函数2 一次函数与正比例函数一、教学目标1.经历一次函数概念的抽象过程,理解正比例函数和一次函数的概念,体会模型思想,发展符号意识.2.能辨别正比例函数与一次函数的区别与联系.3.能根据所给条件写出正比例函数和简单的一次函数表达式.4.能利用一次函数解决简单的实际问题.通过实例让学生经历思考,分析问题中量与量之间的关系,提高学生的归纳概括能力和辨别能力.二、教学重难点重点:掌握正比例函数和一次函数的概念.难点:能根据所给条件写出正比例函数和简单的一次函数表达式.三、教学用具电脑、多媒体、课件、教学用具等四、教学过程设计问题1:什么是函数?预设答案:一般地,如果在一个变化过程中有两个变量x和y,并且对于变量x的每一个值,变量y都有唯一的值与它对应,那么我们称y是x的函数,其中x是自变量.追问:表示函数的方法一般有哪些呢?预设答案:表示函数的一般方法有:图象法、列表法和关系式法.教师活动:三种函数表示法可以互相转化.问题2:购买一些签字笔,单价3元,总价为y元,签字笔为x支,根据题意填表:(1)y随x变化的关系y= ,是自变量,是的函数;【探究】情景一:某弹簧的自然长度为3 cm,在弹性限度内,所挂物体的质量x每增加1kg,弹簧长度y增加0.5 cm.(1) 计算所挂物体的质量分别为1 kg,2 kg,3 kg,4 kg,5 kg时弹簧的长度,并填入下表:预设答案:3;3.5;4;4.5;5;5.5(2)你能写出y与x之间的关系吗?当x=0时,y=3;当x=1时,y=3+1×0.5=3.5;当x=2时,y=3+2×0.5=4;当x=3时,y=3+3×0.5=4.5;...它们之间的数量关系是:弹簧长度=原长+增加的长度,因此,x与y之间的关系式为:y=3+0.5x 情景二:某辆汽车油箱中原有油60 L,汽车每行驶50 km耗油6 L.(1)填写下表:预设答案:0;6;12;18;24;36(2) 你能写出耗油量y(L)与汽车行驶路程x(km)之间的关系式吗?预设答案:y=0.12x(3) 你能写出油箱剩余油量z(L)与汽车行驶路程x(km)之间的关系式吗?预设答案:z=60–0.12x教师活动:上面的三个函数关系式,有什么共同点?y=3+0.5x y=0.12x z=60–0.12x共同特点:(1)都是含有两个变量x,y的等式;(2)x和y的指数都是一次;(3)自变量x的系数都不为0.【归纳】若两个变量x、y间的对应关系可以表示成y=kx+b(k,b为常数,k≠0)的形式,则称y是x的一次函数.特别地,当b=0时,称y是x的正比例函数.一次函数的结构特征:(1)k≠0;(2)x的次数是1;(3)常数项b可以为一切实数.一次函数与正比函数的关系:正比例函数是一种特殊的一次函数.(即当常数b=0时)【做一做】下列关系式中,哪些是一次函数,哪些是正比例函数?(1)y=3πx;(2)y=8x–6;(3)y=1;x(4)y=2–8x;(5)y=5x2–4x+1;(6)y=8x2+x(1–8x).解:(1)是一次函数,也是正比例函数;(2)是一次函数,不是正比例函数;(3)不是一次函数,也不是正比例函数;(4)是一次函数,不是正比例函数;(5)不是一次函数,也不是正比例函数;(6)是一次函数,也是正比例函数;已知y–2与x成正比例,且当x=1时,y=7,求y与x之间的函数关系式,并求出当x=–2时,y的值.解:由y–2与x成正比例,设y–2=kx(k≠0),因为当x=1时,y=7,所以7–2=k,得k=5,所以y与x之间的函数关系式为y=5x+2.当x=–2时,y=5×(–2)+2=–8,所以当x=–2时,y的值是–8.。

初中数学北师大八年级上册(2023年修订) 一次函数一次函数与正比例函数教案

初中数学北师大八年级上册(2023年修订) 一次函数一次函数与正比例函数教案

一次函数与正比例函数一、教材分析《一次函数与正比例函数》是北师大版八年级上册第四章第二节的内容,在学生掌握了变量之间的关系、函数概念的基础上继续学习本节内容。

一次函数的研究方法具有一般性和代表性,为学习后面的反比例函数、二次函数奠定了基础,起着承上启下的作用。

二、学情分析认知基础:学生刚刚学习了函数的概念,在应用与理解时并不是很熟练、透彻,需要通过本节内容进一步加深巩固,对于规律性的问题,需进一步加强训练。

活动经验基础:在第一节函数的学习中,学生已经接触了较为丰富的生活实例,他们的参与意识和活动能力都很强,有一定的生活经验,因此在教学时,教师应结合学生的生活实际和认知状况,选择丰富的生活素材,启发学生从实例中归纳出一次函数的概念,加深理解,体会数学的广泛应用。

三、教学任务分析知识与技能目标(1)掌握一次函数和正比例函数的概念。

(2)能根据所给条件写出正比例函数和简单的一次函数表达式。

过程与方法目标(1)经历一次函数概念的抽象过程。

(2)体会模型思想,发展符号意识与数学应用能力。

情感与态度价值观目标(1)感受数学与人类生活的密切联系,激发学生学数学、用数学的兴趣。

(2)在探索过程中体验成功的喜悦,树立学生学习的自信心。

教学重点:掌握一次函数、正比例函数的概念;教学难点:能根据条件求出一次函数的关系式。

四、教法与学法分析说教学方法:针对八年级学生的年龄特点和本班的实际情况,遵循学生的认知规律,采用分组讨论法、引导发现法、讲练结合法为主的教法,让学生充分经历抽象一次函数模型的过程。

同时借助多媒体为辅进行演示、以增加课堂容量和教学的直观性。

学法指导:结合本节课的内容以及学生的心理特点,在学法上,引导学生采用自主探究与合作交流相结合的方法,让学生经历观察思考,交流讨论,归纳总结,以及将结论推广应用的过程。

五、教学过程分析(一)测1、下列关系式中,哪个不是表示y是x的函数()A. y=2xB. y=x2C. y2 =xD. y=-2x+11、什么是函数?2、函数有哪些表达方式?(二)探情景1、某弹簧的自然长度为3cm,在弹簧限度内,所挂物体的质量x 每增加1kg,弹簧长度y 增加.(1)计算所挂物体的质量分别为1kg 、2kg 、3kg 、4kg 、5kg 时的弹簧长度,并填入下表:(2)你能写出x 与y 之间的关系式吗?(2)你能写出x 与y 之间的关系式吗?(3)你能写出油箱剩余油量z(L)与汽车行驶路程x(km)之间的关系式吗?(三)得学生观察三个函数关系式30.5y x ,y = ,z=60 的共同特征?①等式左右两边为整式②自变量前的系数k 是常数且不为0③x 的次数为1④常数项b 可以为一切实数总结:一般地,若两个变量x,y 间的关系式可以表示成y=kx+b (k,b 为常数, k ≠0)的形式,则称y 是x 的一次函数(x 是自变量,y 为因变量).特别地,当b=0时,则y 是x 的正比例函数. 思考:一次函数与正比例函数的关系是什么?(四)辨练习:判断下列函数关系式中,一次函数是 ,正比例函数是 。

一次函数与正比例函数 公开课获奖【一等奖教案】 公开课获奖【一等奖教案】

一次函数与正比例函数  公开课获奖【一等奖教案】  公开课获奖【一等奖教案】

4.2 一次函数与正比例函数1.掌握一次函数的概念,能根据条件写出一次函数的关系式;(重点) 2.掌握正比例函数的概念.(重点)一、情境导入生活中,我们常常见到各式各样的钟表.时钟的秒针每旋转一圈,表示时间过了1min ;旋转两圈,表示时间过了2min ……那么,秒针走过的圈数与经过的时间之间的关系如何表示呢?二、合作探究探究点一:一次函数与正比例函数【类型一】 一次函数与正比例函数的识别下列函数关系式中,哪些是一次函数,哪些是正比例函数?(1)y =-x -4; (2)y =5x 2-6;(3)y =2πx; (4)y =-x2;(5)y =1x; (6)y =8x 2+x(1-8x).解析:首先看每个函数的表达式能否变形转化为y =kx +b(k≠0,k 、b 是常数)的形式,如果x 的次数是1,则是一次函数,否则不是一次函数;在一次函数中,如果常数项b =0,那么它是正比例函数.解:(1)是一次函数,不是正比例函数; (2)不是一次函数,也不是正比例函数; (3)是一次函数,也是正比例函数; (4)是一次函数,也是正比例函数; (5)不是一次函数,也不是正比例函数; (6)是一次函数,也是正比例函数.方法总结:一个函数是一次函数的条件:自变量是一次整式,一次项系数不为零; 判断一个函数是正比例函数的条件:自变量是一次整式,一次项系数不为零,常数项为零.【类型二】 根据一次函数与正比例函数的定义求字母的值已知函数y =(m -5)xm 2-24+m +1. (1)若它是一次函数,求m 的值;(2)若它是正比例函数,求m 的值.解析:(1)要使函数是一次函数,根据一次函数的定义x 的指数m 2-24=1,且一次项系数m -5≠0;(2)要使函数是正比例函数,除了满足上述条件外,还需加上m +1=0这个条件.解:(1)因为y =(m -5)xm 2-24+m +1是一次函数,所以m 2-24=1且m -5≠0,所以m=±5且m≠5,所以m =-5.所以当m =-5时,函数y =(m -5)xm 2-24+m +1是一次函数.(2)因为y =(m -5)xm 2-24+m +1是一次函数,所以m 2-24=1且m -5≠0且m +1=0.所以m =±5且m≠5且m =-1,则这样的m 不存在,所以函数y =(m -5)xm 2-24+m +1不可能为正比例函数.方法总结:函数是一次函数,则k≠0,且自变量的次数为1.当b =0时,一次函数为正比例函数.探究点二:一次函数关系式的确定某公司以每吨200元的价格购进某种矿石原料300吨,用以生产甲、乙两种产品,生产1吨甲产品或1吨乙产品所需该矿石和煤原料的吨数如下表:产品 资源/吨 )甲 乙 矿石 10 4 煤48煤的价格为400元/吨,生产1吨甲产品除需原料费用外,还需其他费用400元,甲产品每吨售价4600元;生产1吨乙产品除原料费用外,还需其他费用500元,乙产品每吨售价5500元.现将该矿石原料全部用完,设生产甲产品x 吨,乙产品m 吨,公司获得的总利润为y 元.(1)写出m 与x 的关系式;(2)写出y 与x 的函数关系式.(不要求写自变量的取值范围)解析:(1)因为矿石的总量一定,当生产的甲产品的数量x 变化时,那么乙产品的产量m 将随之变化,m 和x 是动态变化的两个量;(2)题目中的等量关系为总利润y =甲产品的利润+乙产品的利润.解:(1)因为4m +10x =300,所以m =150-5x2.(2)生产1吨甲产品获利为4600-10×200-4×400-400=600(元);生产1吨乙产品获利为5500-4×200-8×400-500=1000(元).所以y =600x +1000m.将m =150-5x2代入,得y =600x +1000×150-5x2,即y =-1900x +75000.方法总结:根据条件求一次函数的关系式时,要找准题中所给的等量关系,然后求解.三、板书设计一次函数⎩⎪⎨⎪⎧一次函数的概念正比例函数的概念函数关系式的确定经历一般规律的探索过程,培养学生的抽象思维能力,经历从实际问题中得到函数关系式这一过程,提升学生的数学应用能力.体验生活中数学的应用价值,感受数学与人类生活的密切联系,激发学生学数学、用数学的兴趣.使学生在探索过程中体验成功的喜悦,树立学习的自信心.4.4一次函数的应用第1课时确定一次函数的表达式1.会确定正比例函数的表达式;(重点)2.会确定一次函数的表达式.(重点)一、情境导入某农场租用播种机播种小麦,在甲播种机播种2天后,又调来乙播种机参与播种,直至完成800亩的播种任务,播种亩数与天数之间的函数关系如图.你能通过图象提供的信息求出y与x之间的关系式吗?你知道乙播种机参与播种的天数是多少呢?学习了本节的内容,你就知道了.二、合作探究探究点一:确定正比例函数的表达式求正比例函数y=(m-4)m2-15的表达式.解析:本题是利用正比例函数的定义来确定表达式的,即自变量的指数为1,系数不为0,这种类型简称为定义式.解:由正比例函数的定义知m2-15=1且m-4≠0,∴m=-4,∴y=-8x.方法总结:利用正比例函数的定义确定表达式:自变量的指数为1,系数不为0.探究点二:确定一次函数的表达式【类型一】根据给定的点确定一次函数的表达式已知一次函数的图象经过(0,5)、(2,-5)两点,求一次函数的表达式.解析:先设一次函数的表达式为y=kx+b,因为它的图象经过(0,5)、(2,-5)两点,所以当x=0时,y=5;当x=2时,y=-5.由此可以得到两个关于k、b的方程,通过解方程即可求出待定系数k和b的值,再代回原设即可.解:设一次函数的表达式为y=kx+b,根据题意得,∴⎩⎪⎨⎪⎧5=b ,-5=2k +b.解得⎩⎪⎨⎪⎧k =-5,b =5.∴一次函数的表达式为y =-5x +5. 方法总结:“两点式”是求一次函数表达式的基本题型.二次函数y =kx +b 中有两个待定系数k 、b ,因而需要知道两个点的坐标才能确定函数的关系式.【类型二】 根据图象确定一次函数的表达式正比例函数与一次函数的图象如图所示,它们的交点为A(4,3),B 为一次函数的图象与y 轴的交点,且OA =2OB.求正比例函数与一次函数的表达式.解析:根据A(4,3)可以求出正比例函数表达式,利用勾股定理可以求出OA 的长,从而可以求出点B 的坐标,根据A 、B 两点的坐标可以求出一次函数的表达式.解:设正比例函数的表达式为y 1=k 1x ,一次函数的表达式为y 2=k 2x +b.∵点A(4,3)是它们的交点,∴代入上述表达式中,得3=4k 1,3=4k 2+b.∴k 1=34,即正比例函数的表达式为y =34x.∵OA =32+42=5,且OA =2OB ,∴OB =52.∵点B 在y 轴的负半轴上,∴B 点的坐标为(0,-52).又∵点B 在一次函数y 2=k 2x +b 的图象上,∴-52=b ,代入3=4k 2+b 中,得k 2=118.∴一次函数的表达式为y 2=118x -52.方法总结:根据图象确定一次函数的表达式的方法:从图象上选取两个已知点的坐标,然后运用待定系数法将两点的横、纵坐标代入所设表达式中求出待定系数,从而求出函数的表达式.【类型三】 根据实际问题确定一次函数的表达式某商店售货时,在进价的基础上加一定利润,其数量x 与售价y 的关系如下表所示,请你根据表中所提供的信息,列出售价y(元)与数量x(千克)的函数关系式,并求出当数量是2.5千克时的售价.数量x/千克售价y/元 1 8+0.4 2 16+0.8 3 24+1.2 4 32+1.6 5 40+2.0 ……解析:从图表中可以看出售价由8+0.4依次向下扩大到2倍、3倍、…… 解:由表中信息,得y =(8+0.4)x =8.4x ,即售价y 与数量x 的函数关系式为y =8.4x.当x =2.5时,y =8.4×2.5=21.所以数量是2.5千克时的售价是21元.方法总结:解此类题要根据所给的条件建立数学模型,得出变化关系,并求出函数的表达式,根据函数的表达式作答.三、板书设计确定一次函数表达式⎩⎪⎨⎪⎧正比例函数y =kx (k≠0)一次函数y =kx +b (k≠0)经历对正比例函数及一次函数表达式的探求过程,掌握用待定系数法求一次函数的表达式,进一步使用数形结合的思想方法;经历从不同信息中获取一次函数表达式的过程,体会到解决问题的多样性,拓展学生的思维.2.2 平方根 第1课时 算术平方根1.了解算术平方根的概念,会用根号表示一个数的算术平方根;(重点) 2.根据算术平方根的概念求出非负数的算术平方根;(重点) 3.了解算术平方根的性质.(难点)一、情境导入上一节课我们做过:由两个边长为1的小正方形,通过剪一剪,拼一拼,得到一个边长为a 的大正方形,那么有a 2=2,a =________,2是有理数,而a 是无理数.在前面我们学过若x 2=a ,则a 叫做x 的平方,反过来x 叫做a 的什么呢?二、合作探究探究点一:算术平方根的概念【类型一】 求一个数的算术平方根求下列各数的算术平方根:(1)64;(2)214;(3)0.36;(4)412-402.解析:根据算术平方根的定义求非负数的算术平方根,只要找到一个非负数的平方等于这个非负数即可.解:(1)∵82=64,∴64的算术平方根是8;(2)∵(32)2=94=214,∴214的算术平方根是32;(3)∵0.62=0.36,∴0.36的算术平方根是0.6;(4)∵412-402=81,又92=81,∴81=9,而32=9,∴412-402的算术平方根是3.方法总结:(1)求一个数的算术平方根时,首先要弄清是求哪个数的算术平方根,分清求81与81的算术平方根的不同意义,不要被表面现象迷惑.(2)求一个非负数的算术平方根常借助平方运算,因此熟记常用平方数对求一个数的算术平方根十分有用.【类型二】 利用算术平方根的定义求值3+a 的算术平方根是5,求a 的值.解析:先根据算术平方根的定义,求出3+a 的值,再求a.解:因为52=25,所以25的算术平方根是5,即3+a =25,所以a =22. 方法总结:已知一个数的算术平方根,可以根据平方运算来解题.探究点二:算术平方根的性质【类型一】 含算术平方根式子的运算计算:49+9+16-225.解析:首先根据算术平方根的定义进行开方运算,再进行加减运算. 解:49+9+16-225=7+5-15=-3.方法总结:解题时容易出现如9+16=9+16的错误.【类型二】 算术平方根的非负性已知x ,y 为有理数,且x -1+3(y -2)2=0,求x -y 的值.解析:算术平方根和完全平方式都具有非负性,即a ≥0,a 2≥0,由几个非负数相加和为0,可得每一个非负数都为0,由此可求出x 和y 的值,进而求得答案.解:由题意可得x -1=0,y -2=0,所以x =1,y =2.所以x -y =1-2=-1. 方法总结:算术平方根、绝对值和完全平方式都具有非负性,即a ≥0,|a|≥0,a 2≥0,当几个非负数的和为0时,各数均为0.三、板书设计算术平方根⎩⎨⎧概念:非负数a 的算术平方根记作a 性质:双重非负性⎩⎨⎧a≥0,a ≥0让学生正确、深刻地理解算术平方根的概念,需要由浅入深、不断深化.概念的形成过程也是思维过程,加强概念形成过程的教学,对提高学生的思维水平是很有帮助的.概念教学过程中要做到:讲清概念,加强训练,逐步深化.4.4 一次函数的应用 第1课时 确定一次函数的表达式1.会确定正比例函数的表达式;(重点) 2.会确定一次函数的表达式.(重点)一、情境导入某农场租用播种机播种小麦,在甲播种机播种2天后,又调来乙播种机参与播种,直至完成800亩的播种任务,播种亩数与天数之间的函数关系如图.你能通过图象提供的信息求出y 与x 之间的关系式吗?你知道乙播种机参与播种的天数是多少呢?学习了本节的内容,你就知道了.二、合作探究探究点一:确定正比例函数的表达式求正比例函数y =(m -4)m 2-15的表达式.解析:本题是利用正比例函数的定义来确定表达式的,即自变量的指数为1,系数不为0,这种类型简称为定义式.解:由正比例函数的定义知m 2-15=1且m -4≠0,∴m =-4,∴y =-8x.方法总结:利用正比例函数的定义确定表达式:自变量的指数为1,系数不为0. 探究点二:确定一次函数的表达式【类型一】 根据给定的点确定一次函数的表达式已知一次函数的图象经过(0,5)、(2,-5)两点,求一次函数的表达式.解析:先设一次函数的表达式为y =kx +b ,因为它的图象经过(0,5)、(2,-5)两点,所以当x =0时,y =5;当x =2时,y =-5.由此可以得到两个关于k 、b 的方程,通过解方程即可求出待定系数k 和b 的值,再代回原设即可.解:设一次函数的表达式为y =kx +b ,根据题意得,∴⎩⎪⎨⎪⎧5=b ,-5=2k +b.解得⎩⎪⎨⎪⎧k =-5,b =5.∴一次函数的表达式为y =-5x +5.方法总结:“两点式”是求一次函数表达式的基本题型.二次函数y =kx +b 中有两个待定系数k 、b ,因而需要知道两个点的坐标才能确定函数的关系式.【类型二】 根据图象确定一次函数的表达式正比例函数与一次函数的图象如图所示,它们的交点为A(4,3),B 为一次函数的图象与y 轴的交点,且OA =2OB.求正比例函数与一次函数的表达式.解析:根据A(4,3)可以求出正比例函数表达式,利用勾股定理可以求出OA 的长,从而可以求出点B 的坐标,根据A 、B 两点的坐标可以求出一次函数的表达式.解:设正比例函数的表达式为y 1=k 1x ,一次函数的表达式为y 2=k 2x +b.∵点A(4,3)是它们的交点,∴代入上述表达式中,得3=4k 1,3=4k 2+b.∴k 1=34,即正比例函数的表达式为y =34x.∵OA =32+42=5,且OA =2OB ,∴OB =52.∵点B 在y 轴的负半轴上,∴B 点的坐标为(0,-52).又∵点B 在一次函数y 2=k 2x +b 的图象上,∴-52=b ,代入3=4k 2+b 中,得k 2=118.∴一次函数的表达式为y 2=118x -52.方法总结:根据图象确定一次函数的表达式的方法:从图象上选取两个已知点的坐标,然后运用待定系数法将两点的横、纵坐标代入所设表达式中求出待定系数,从而求出函数的表达式.【类型三】 根据实际问题确定一次函数的表达式某商店售货时,在进价的基础上加一定利润,其数量x 与售价y 的关系如下表所示,请你根据表中所提供的信息,列出售价y(元)与数量x(千克)的函数关系式,并求出当数量是2.5千克时的售价.数量x/千克售价y/元 1 8+0.4 2 16+0.8 3 24+1.2 4 32+1.6 5 40+2.0 ……解析:从图表中可以看出售价由8+0.4依次向下扩大到2倍、3倍、…… 解:由表中信息,得y =(8+0.4)x =8.4x ,即售价y 与数量x 的函数关系式为y =8.4x.当x =2.5时,y =8.4×2.5=21.所以数量是2.5千克时的售价是21元.方法总结:解此类题要根据所给的条件建立数学模型,得出变化关系,并求出函数的表达式,根据函数的表达式作答.三、板书设计确定一次函数表达式⎩⎪⎨⎪⎧正比例函数y =kx (k≠0)一次函数y =kx +b (k≠0)经历对正比例函数及一次函数表达式的探求过程,掌握用待定系数法求一次函数的表达式,进一步使用数形结合的思想方法;经历从不同信息中获取一次函数表达式的过程,体会到解决问题的多样性,拓展学生的思维.。

一次函数与正比例函数教案

一次函数与正比例函数教案

一次函数与正比例函数教案第一章:一次函数的概念与性质1.1 一次函数的定义引导学生了解一次函数的定义,即函数表达式为y=kx+b(k、b为常数,k≠0)的形式。

通过实际例子,让学生理解一次函数的图像是一条直线。

1.2 一次函数的斜率与截距解释斜率k和截距b的概念,并引导学生通过函数表达式理解它们的含义。

利用实际例子,展示斜率和截距如何影响函数图像的位置和斜率。

1.3 一次函数的图像利用图形工具,展示不同斜率和截距的一次函数图像。

引导学生观察图像的特性,如斜率和截距对图像的影响。

第二章:正比例函数的概念与性质2.1 正比例函数的定义引导学生了解正比例函数的定义,即函数表达式为y=kx(k为常数)的形式。

解释正比例函数是一种特殊的一次函数,其截距b为0。

2.2 正比例函数的斜率与图像解释正比例函数的斜率代表比例常数k,并展示不同k值的图像。

引导学生观察正比例函数图像的特点,如通过原点、斜率为正或负等。

2.3 正比例函数的应用通过实际例子,展示正比例函数在实际生活中的应用,如购物时商品的价格与数量的关系。

引导学生理解正比例函数的局限性,即仅限于变量间成正比的情况。

第三章:一次函数与正比例函数的关系3.1 一次函数与正比例函数的转化解释一次函数可以通过移项转化为正比例函数的形式。

引导学生掌握如何将一次函数y=kx+b转化为正比例函数y=kx。

3.2 一次函数与正比例函数的图像关系利用图形工具,展示一次函数和正比例函数图像之间的关系。

引导学生观察当截距b为0时,一次函数图像与正比例函数图像的相似性。

3.3 一次函数与正比例函数的交点解释一次函数与正比例函数的交点是两个函数图像的交点。

引导学生利用图形工具,找出一次函数与正比例函数的交点,并分析其含义。

第四章:一次函数与正比例函数的应用4.1 线性方程的解法引导学生掌握线性方程的解法,包括代入法、消元法等。

通过实际例子,展示如何利用一次函数和正比例函数解决实际问题。

一次函数与正比例函数 公开课获奖【一等奖教案】

一次函数与正比例函数  公开课获奖【一等奖教案】

4.2 一次函数与正比例函数一、学生起点分析在七年级下期学生已经探索了变量之间关系,在此基础上,本章前一节继续通过对变量关系的考察,让学生初步体会函数的概念,能判断两变量之间的关系是否可看作函数。

本节课进一步研究其中最简单的一种函数——一次函数.由于有前面内容的铺垫,学生已经会建立变量之间的关系,可能有部分学生表述上还不太规范,在教学中,教师要注意纠正学生的一些错误习惯,如将解析式写成1,1x y x y +=-=-等,培养学生良好的书写习惯.二、教学任务分析《一次函数》是义务教育课程标准北师大版实验教科书 八年级 (上) 第四章 《一次函数》的第二节.本节内容安排了1个课时:让学生理解一次函数和正比例函数的概念,能根据已知信息写出简单的一次函数表达式,并初步形成利用函数的观点认识现实世界的意识和能力. 与原传统教材相比,新教材更注重借助生活中的实际背景,让学生经历一般规律的探究过程来理解一次函数和正比例函数的概念;同时,新教材调整了知识的安排顺序,原来教材正比例函数在一次函数前面,而新教材是将正比例函数作为一次函数特殊情况给出来的.本节课教学目标分析是:(1)理解一次函数和正比例函数的概念;(2)能根据所给条件写出简单的一次函数表达式.(3)经历一般规律的探索过程,发展学生的抽象思维能力;(4)经历从实际问题中得到函数关系式这一过程,发展学生的数学应用能力.(5)体验生活中的数学的应用价值,感受数学与人类生活的密切联系,激发学生学数学、用数学的兴趣.(6)在探索过程中体验成功的喜悦,树立学习的自信心.本节课教学重点是:理解一次函数和正比例函数的概念.本节课教学难点是:能根据所给条件写出简单的一次函数表达式,发展学生的抽象思维能力.三、教学过程设计本节课设计了七个环节: 第一环节:复习引入;第二环节:新课讲述;第三环节:巩固练习;第四环节:知识提高;第五环节:反馈练习;第六环节:课堂小结;第七环节:布置作业.第一环节:复习引入内容:复习上节课学习的函数,教师提出问题:(1)什么是函数?(2)函数有哪些表示方式?(3)在现实生活中有许多问题都可以归结为函数问题,大家能不能举一些例子呢?意图:为了激发学生的求知欲望,吸引同学们的注意力,这里采用了“复习旧知识,诱导新内容”的引入方法.问题(1)(2)复习上节课的内容,问题(3)是让学生把所学知识运用于实际生活,提高学生的运用意识.效果:问题(1)(2)学生都能快而准的回答,问题(3)是在一个开放的环境中回答,学生不能很准确的表述出来,可让学生互相补充,也可教师进行补充、完善.通过学生亲身经历了感受函数在生活中的运用过程,初步形成数学建模的思想,感受成功的喜悦,充分体现了本节课的情感、态度目标.若课堂气氛比较沉闷,也可由教师先举例,让学生来列函数表达式,激发学生的学习激情,再让学生举例:(如可补充如下习题)①假设某学生骑自行车的速度为10km/h,则他骑自行车用的时间t(h)和所走过的路程s之间的关系是什么?②上网费用是2元/小时,则上网t(小时),费用y(元)的关系式是什么?第二环节:新课讲述例1 某弹簧的自然长度为3cm,在弹簧限度内,所挂物体的质量x每增加1kg,弹簧长度y增加0.5cm.(1)计算所挂物体的质量分别为1kg、2kg、3kg、4kg、5kg时的弹簧长度,并填入下表:x/kg 0 1 2 3 4 5 y/cm(2)你能写出x与y之间的关系式吗?答案 (1) 3、3.5、4、4.5、5、5.5 ;(2) 30.5y x.例2 某辆汽车油箱有汽油100L,汽车每行驶50km耗油9L.(1)完成下表:0 50 100 150 200 300 汽车行驶路程x/km油箱剩余汽油量y/L(2)你能写出x与y之间的关系式吗?(3)汽车行驶的路程x可以无限增大吗?有没有一个取值范围?剩余油量y呢?答案 (1) 100、91、82、73、64、46;(2) x与y之间的关系式为1000.18y x;(3) 汽车行驶路程x不可能无限增大,因为汽油只有100L,每行驶50km 耗油9L,行驶560km后,油箱就没有油了,所以x不会超过560km.y代表油箱剩余油量,所以y应该小于100但不能小于零.通过观察、探索、总结,归纳出一次函数与正比例函数的概念:一般地,若两个变量x,y间的关系式可以表示成y kx b(,k b为常数,k≠0)的形式,则称y是x的一次函数(x是自变量,y为因变量).特别地,当0b时,则y是x的正比例函数.意图:从生动有趣的问题情景(弹簧的长度、汽车油箱中的余油量)出发,通过对一般规律的探索过程,从实际问题中抽象出一次函数和正比例函数的概念.从两个具体问题的函数表达式出发,互相讨论,教师在教学上恰当地设疑立障,引导学生大胆猜想,勇于探索,鼓励学生积极思维,总结出一次函数的定义,提高学生的分析问题、解决问题、总结归纳的能力.主要从函数解析式这一角度去研究一次函数,这是学生第一次正式接触函数的表达式,教学中可根据学生状况多加一些例子,让学生逐步学会从函数表达式去认识函数,进一步掌握一次函数的定义.第三环节:巩固练习内容:1.在函数(1)3y x ,(2)5y x ,(3)4y x ,(4)223y x x , (5)2y x (6)12y x 中是一次函数的是 ,是正比例函数的是 .2.若函数(63)44y m x n 是一次函数,则,m n 应满足的条件是 ;若是正比例函数,则,m n 应满足的条件是 .3.当k = 时,函数28(3)5k y k x 是关于x 的一次函数.意图:对本节知识进行巩固练习.效果:学生基本能交好的独立完成练习题,收到了较好的教学效果.在第3题中,学生易忘记3k≠0的条件,而错误的将答案写成±3.第四环节:知识提高内容:例 3 写出下列各题中x 与y 之间的关系式,并判断:y 是否为x 的一次函数?是否为正比例函数?(1)汽车以60千米/时的速度匀速行驶,行驶路程y (千米)与行驶时间x (时)之间的关系;(2)圆的面积y (厘米2)与它的半径x (厘米)之间的关系;(3)一棵树现在高50厘米,每个月长高2厘米,x个月后这棵树的高度为y(厘米),则y与x的关系.答案: (1)由路程=速度×时间,得60y x,y是x的一次函数,也是x的正比例函数;(2)由圆的面积公式,得2y x,y不是x的一次函数,也不是x的正比例函数;(3)这棵树每月长高2厘米,x个月长高了2x厘米,因而5020y x,y是x的一次函数,但不是x的正比例函数.例4 某地区电话的月租费为25元,在此基础上,可免费打50次市话(每次3分钟),超过50次后,每次0.2元.(1)写出每月电话费y(元)与通话次数x(x>50)的函数关系式;(2)求出月通话150次的电话费;(3)如果某月通话费为53.6元,求该月通话的次数.分析:解决此类问题首先要理解题意,然后找出相等关系.此题相等关系为:每月通话费=月租费+超过50次后电话费.答案: (1)根据题意得: 25(50)y x;y x×0.2,即0.215(2)当150y×1501545;x时,0.2(3)因为53.6>25,可知通话次数大于50次,即当53.6y时,求x的值.53.60.215x,解得193x.意图:通过丰富的现实背景的例题,进一步理解一次函数和正比例函数的概念,根据所给的条件写出简单的一次函数的表达式,让学生体会数学的广泛应用,发展学生的抽象思维能力.充分加强数学与现实的联系,促进学生新的认知结构的建立和数学应用能力的发展.效果:根据已知条件写出简单的一次函数的表达式,教学时,学生会出现一定的差异,此时,要给予学生足够的思考时间,必要的时候可组织学生交流讨论,而不能是简单的“告诉”.另外,在教学上还必须注意培养学生的书面表达能力,这些都是逻辑思维训练的一部分.在例4中的(1)中,易错解为250.2y x.应让学生仔细审题,找准等量关系;(2)、(3)两问是给定自变量的值,求函数数值,这类问题的实质就是解方程. 第五环节:反馈练习内容:1.下列语句中,具有正比例函数关系的是( )(A) 长方形花坛的面积不变,长y与宽x之间的关系;(B) 正方形的周长不变,边长x与面积S之间的关系;(C) 三角形的一条边不变,这条边上的高h与面积S之间的关系;(D) 圆的面积为S,半径为r,S与r之间的关系.2.我国现行个人工资、薪金所得税征收办法规定:月收入低于1600元的部分不收税;月收入超过1600元但低于2100元的部分征收5%的所得税……如果某人月收入1960元.他应缴纳个人工资、薪金所得税为(19601600)×5%=18(元).(1)当月收入大于1600元而又小于2100元时,写出应缴纳所得税y(元)与月收入x(元)之间的关系式.(2)某人月收入为1760元,他应该缴纳所得税多少元?(3)如果某人本月缴所得税19.2元,那么此人本月工资、薪金是多少以元?意图:对本节知识进行巩固练习.效果:学生基本能较好地独立完成练习题,收到了较好的教学效果.在第2题,学生容易遗忘几何的相关内容,在此教师可作适当的提醒,让学生更顺利地完成习题.第六环节: 课堂小结内容:这节课我们学习了一类很有用的函数——一次函数,只要解析式可以表示成y kx b(,k b为常数,k≠0)的形式的函数则称为一次函数.正比例函数是一次函数当0b时的特殊情形.(方式:师生互相交流总结.)目的:鼓励学生结合本节课的学习内容,谈谈自己的收获和感想,进一步巩固本节课的知识.实际效果:学生畅所欲言自己对本节课的感受与收获,都能准确的说出一次函数与正比例函数的概念.但学生容易忽略一次函数与实际生活的联系,教师应做适当补充.第七环节:布置作业1.根据下表写出,x y之间的一个关系式.x10123y2. 某电信公司手机的A类收费标准如下:不管通话时间多长,每部手机每月必须缴月租费50元,另外,每通话1分钟交费0.4元.(1)写出每月应缴费用y(元)与通话时间x(分)之间的关系式;(2)某手机用户这个月通话时间为152分,他应缴费多少元?(3)如果该手机用户本月预交了200元的话费,那么该用户本月可通话多长时间?3.某电信公司手机的B类收费标准如下:没有月租费,但每通话1分钟收费0.6元.按照此类收费标准,分别完成第2题中的各小题.4.根据上面第2,3题中的条件,完成下列各题:(1)若每月平均通话时间为300分,你选择哪类收费方式?(2)每月通话多长时间时,按A,B两类收费标准缴费,所交话费相等?四、教学设计反思1.本课时在初中数学学习中的重要性函数是初中阶段数学学习的一个重要内容,学生又是第一次接触函数,充分考虑学生的接受能力,本节从生动有趣的问题情景出发,通过对一般规律的探索过程,从实际问题中抽象出一次函数和正比例函数的概念.又通过具有丰富的现实背景的例题,进一步理解一次函数和正比例函数的概念,为下一步学习《一次函数图象》奠定基础,并形成用函数观点认识现实世界的能力与意识.2.怎样对学生进行引导本节课的教学对象是初二学生,他们的参与意识较强,思维活跃,对研究常量的计算问题已掌握了一定的方法,但对函数、变量的变化规律的学习刚刚开始,抽象概括概念的能力尚显不足,为此,我力求以下三个方面对学生进行引导:(1)从创设问题情景入手,通过知识再现,孕育教学过程;(2)从学生活动出发,通过以旧引新,顺势教学过程;(3)借助探索,通过思维深入,领悟教学过程.3.注意改进的方面在讨论之前,应该留给学生充分的独立思考的时间,不要让一些思维活跃的学生的回答代替了其他学生的思考,掩盖了其他学生的疑问。

一次函数与正比例函数教案

一次函数与正比例函数教案

一次函数与正比例函数教案第一章:一次函数的概念与性质1.1 一次函数的定义引导学生了解一次函数的定义,即形如y = kx + b (k、b 为常数,k 不等于0)的函数。

通过实际例子,让学生理解一次函数的组成和意义。

1.2 一次函数的图像引导学生了解一次函数图像是一条直线,并掌握直线的斜率和截距的概念。

1.3 一次函数的性质引导学生掌握一次函数的增减性和过原点性质。

举例说明一次函数在实际生活中的应用,如成本与数量的关系等。

第二章:正比例函数的概念与性质2.1 正比例函数的定义引导学生了解正比例函数的定义,即形如y = kx (k 为常数)的函数。

通过实际例子,让学生理解正比例函数的组成和意义。

2.2 正比例函数的图像引导学生了解正比例函数图像是一条通过原点的直线。

2.3 正比例函数的性质引导学生掌握正比例函数的单调性和过原点性质。

举例说明正比例函数在实际生活中的应用,如速度与时间的关系等。

第三章:一次函数与正比例函数的关系3.1 一次函数与正比例函数的联系引导学生了解一次函数和正比例函数之间的关系,即一次函数可以看作是正比例函数的一种特殊形式。

3.2 一次函数与正比例函数的转化引导学生掌握如何将一次函数转化为正比例函数,以及如何将正比例函数转化为一次函数。

3.3 一次函数与正比例函数的应用通过实际例子,让学生了解一次函数和正比例函数在实际生活中的应用,如商品价格与数量的关系等。

第四章:一次函数与正比例函数的图像解析4.1 一次函数图像的解析引导学生掌握如何从一次函数的图像中获得斜率和截距的信息。

4.2 正比例函数图像的解析引导学生掌握如何从正比例函数的图像中获得斜率的信息。

4.3 一次函数与正比例函数图像的比较引导学生了解一次函数图像和正比例函数图像的异同,并掌握如何判断一个函数是一次函数还是正比例函数。

第五章:一次函数与正比例函数的综合应用5.1 实际问题转化为一次函数与正比例函数的问题引导学生学会将实际问题转化为一次函数与正比例函数的问题,并利用相关性质解决。

北师大版八年级上册第4.2一次函数与正比例函数(教案)

北师大版八年级上册第4.2一次函数与正比例函数(教案)
另外,教学过程中,我对学生们的鼓励和表扬还不够,导致部分学生在面对困难时显得不够自信。在以后的教学中,我要更加关注学生们的情感需求,多给予鼓励和支持,帮助他们建立自信心。
最后,课后我会对今天的课堂教学进行总结,找出不足之处,不断优化教学方法,以提高教学效果。同时,我也会关注学生们的反馈,了解他们在学习过程中的需求和困难,以便更好地调整教学内容和进度。
5.情感与价值观:通过数学知识在实际生活中的应用,让学生体会数学的价值,增强学习数学的兴趣和信心,培养积极向上的学习态度。
三、教学难点与重点
1.教学重点
-函数概念的理解:强调一次函数y=kx+b(k≠0)中,k和b的含义及其对图像的影响,确保学生理解函数表达式中每个参数的核心作用。
-图像与性质的关联:通过分析一次函数的图像,让学生掌握斜率k的正负与图像走势的关系,以及截距b在图像上的表现。
-正比例函数的特殊性:明确正比例函数是一次函数的特殊情况,即b=0的情况,理解其图像始终通过原点的特点。
-函数应用能力的培养:通过实际问题的引入,让学生学会将现实问题抽象为一次函数模型,并运用函数性质解决问题。
举例:讲解一次函数的应用时,可以引用实际案例,如“小明骑自行车旅行,速度恒定,时间为t小时,行程为s公里,建立s与t的函数关系”。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。比如,用尺子和直角坐标系,让学生们手动绘制一次函数的图像。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“一次函数在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
3.重点难点解析:在讲授过程中,我会特别强调一次函数的斜率k和截距b这两个重点。对于难点部分,我会通过案例和图像来帮助大家理解,比如斜率k如何影响图像的斜率和y值的变化。

北师大版八年级数学上册:4.2《一次函数与正比例函数》教案

北师大版八年级数学上册:4.2《一次函数与正比例函数》教案

北师大版八年级数学上册:4.2《一次函数与正比例函数》教案一. 教材分析《一次函数与正比例函数》是北师大版八年级数学上册第4章的内容,主要包括一次函数和正比例函数的定义、性质和图象。

这一部分内容是学生学习函数的基础,对于培养学生的数学思维和解决问题的能力具有重要意义。

二. 学情分析八年级的学生已经学习了初中数学的一些基本概念和运算,对于图象和方程有一定的认识。

但是一次函数和正比例函数的概念和性质可能对学生来说较为抽象,需要通过具体例子和实际问题来帮助学生理解和掌握。

三. 教学目标1.理解一次函数和正比例函数的定义和性质。

2.学会绘制一次函数和正比例函数的图象。

3.能够运用一次函数和正比例函数解决实际问题。

四. 教学重难点1.一次函数和正比例函数的定义和性质。

2.绘制一次函数和正比例函数的图象。

3.运用一次函数和正比例函数解决实际问题。

五. 教学方法采用问题驱动法和案例教学法,通过实际问题和具体例子引导学生理解和掌握一次函数和正比例函数的概念和性质,通过绘制图象和解决实际问题来巩固知识。

六. 教学准备1.教学PPT或者黑板。

2.教学案例和实际问题。

3.绘图工具,如直尺、圆规等。

七. 教学过程1.导入(5分钟)通过一个实际问题引入一次函数和正比例函数的概念,例如:某商品的原价是100元,打8折后的价格是多少?引导学生思考如何用数学模型来解决这个问题。

2.呈现(15分钟)通过PPT或者黑板,呈现一次函数和正比例函数的定义和性质,结合实际例子进行解释和说明。

引导学生积极参与,提出问题和困惑。

3.操练(15分钟)让学生分组合作,通过绘制一次函数和正比例函数的图象来加深对概念和性质的理解。

可以给出一些具体的函数表达式,让学生根据性质来判断图象的形状和位置。

4.巩固(10分钟)通过解决一些实际问题,让学生运用一次函数和正比例函数的知识。

可以设置一些选择题、填空题或者解答题,检查学生对知识的掌握情况。

5.拓展(10分钟)引导学生思考一次函数和正比例函数的应用场景,例如:经济学中的成本和收益模型、物理学中的速度和时间模型等。

2 一次函数与正比例函数【优质一等奖创新教案】

2  一次函数与正比例函数【优质一等奖创新教案】

2 一次函数与正比例函数【优质一等奖创新教案】班海数学精批——一本可精细批改的教辅一次函数与正比例函数【教材与学情分析】这节课主要学习正比例函数的概念,同时为后续一次函数的学习打下基础。

学生在小学已经学习了正比例的定义,并通过第二十章的学习,对函数的概念有了初步的认识,了解研究函数中两个变量关系的一般方法,具备学习本课的理论基础和相应的学习经验。

【教学目标】1.知识与技能目标:理解正比例函数的概念,能根据所给的条件写出正比例函数的表达式.2.过程与方法目标:经历正比例函数概念的抽象过程,体会模型思想,发展符号意识;3.情感与态度目标:(1)通过经历概念的建立、印证和拓展全过程,培养学生良好的数学思维品质;(2)在探索交流的过程中获得成功的体验,增强自信心;【重点难点】教学重点:经历正比例函数概念的抽象过程,建立正比例函数的概念。

教学难点:正比例函数概念的形成。

【教法设计】在教学中结合学生的认知基础,设计合理的学习活动,为学生抽取函数模型形成概念搭建支架.【教学过程】教学环节教师活动学生活动设计意图一、复习导入小刚骑自行车去上学,行驶时间和路程的关系如下表:时间t/min5…17.5路程s/km0.20.40.60.81…3.5(1)当t=2min时,s=_____,_____;当t=5min时,s=_____,_____;(2)小刚行驶的时间和路程成正比吗?为什么?(3)s与t之间的函数关系式为________.学生独立解答并展示。

在学习活动中学生回忆正比例和函数的相关知识,并为正比例函数的学习做好准备.二、概念形成活动一:1.小亮每小时读20页书,若读书时间用字母t(h)表示,读过书的页数用字母m(页)表示,则用t表示m的函数表达式为;2.小米去给学校运动会买奖品,每支铅笔0.5元。

若购买铅笔的数量用n(支)表示,花钱的总数用w(元)表示,则用n表示w 的函数表达式为;3.拧不紧的水龙头每分钟滴100滴水,每滴水约0.05ml,设tmin 后,水龙头滴水Vml,则用t表示V的函数表达式为__________;在实际背景下建立函数模型.提供有代表性的典型事例,为概念的形成提供素材.活动二:观察在前面活动中所获得的函数关系式:①,②,③,④这些函数都叫做正比例函数.下面这些不是正比例函数:⑤,⑥,⑦(1)①~④函数关系式有哪些共同之处?(2)如果用表示自变量,用表示因变量,表示自变量的系数,正比例函数关系式可以写成什么形式?学生独立思考后交流讨论。

4.2《一次函数与正比例函数》公开课-北师大教学设计精品

4.2《一次函数与正比例函数》公开课-北师大教学设计精品

4.2 一次函数与正比例函数一、教学目标知识与技能目标:1、理解一次函数和正比例函数的概念,以及它们之间的关系。

2、能根据所给条件写出简单的一次函数表达式。

过程与方法目标:1、经历一般规律的探索过程、发展学生的抽象思维能力。

2、通过由已知信息写一次函数表达式的过程,发展学生的数学应用能力。

情感态度与价值观目标:1、通过函数与变量之间的关系的联系,一次函数与一次方程的联系,发展学生的数学思维。

2、让学生感受一份耕耘,一份收获,培养学生学习数学的兴趣。

二、课型:新授课三、课时:1课时四、教学重点1、一次函数、正比例函数的概念及关系。

2、会根据已知信息写出一次函数的表达式。

五、教学难点:会根据已知条件写出一次函数的关系式。

六、教学过程:第一环节:情境引入数学源于生活,现实生活中有许多问题都可以归结为函数问题。

你在学业上的收获与你平时的付出其实也是一种函数关系。

今天我们一起来学习一种函数——一次函数与正比例函数。

请同学们在教材79页找出一次函数与正比例函数的概念。

第二环节:明晰概念一次函数:若两个变量x,y间的关系式可以表示成y=kx+b (k,b为常数,k≠0)的形式,则称y是x的一次函数(x是自变量,y为因变量).b=时,则y是x的正比例函数.特别地,当0练习1.判断下列函数关系式是一次函数吗?是正比例函数吗?(1)y=2x+3 (2)y=x(3)y=-2x+5 (4) y=-5x+1(5) y=7+4x (6) y=3-2x练习2.判断下列各式中y 与x 之间的函数关系(1)y= - 4-x(2)2x y =(3)y=2πx(4)xy 1= 练习31.在函数(1) y=x-6 (2)322+=x y (3) x y 2= (4) 8x y =(5) y=5 (6) 2x y =中y 是x 的一次函数的有( )2.若函数y=(m-2)x+5 是一次函数,则m 满足的条件是3.若y=x+2-b 是关于x 的正比例函数,则b=环节三:列简单的一次函数表达式例1: 写出下列各题中y 与 x 之间的关系式,并判断:y 是否为x 的一次函数?是否为正比例函数?(1)汽车以60千米/时的速度匀速行驶,行驶路程为y(千米)与行驶时间x(时)之间的关系;(2)圆的面积y (c m2)与它的半径x ( cm)之间的关系;(3)一棵树现在高5 0 厘米,每个月长高2 厘米,x 月后这棵树的高度为y 厘米。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

4.2 一次函数与正比例函数1.掌握一次函数的概念,能根据条件写出一次函数的关系式;(重点) 2.掌握正比例函数的概念.(重点)一、情境导入生活中,我们常常见到各式各样的钟表.时钟的秒针每旋转一圈,表示时间过了1min ;旋转两圈,表示时间过了2min ……那么,秒针走过的圈数与经过的时间之间的关系如何表示呢?二、合作探究探究点一:一次函数与正比例函数【类型一】 一次函数与正比例函数的识别下列函数关系式中,哪些是一次函数,哪些是正比例函数?(1)y =-x -4; (2)y =5x 2-6;(3)y =2πx; (4)y =-x2;(5)y =1x; (6)y =8x 2+x(1-8x).解析:首先看每个函数的表达式能否变形转化为y =kx +b(k≠0,k 、b 是常数)的形式,如果x 的次数是1,则是一次函数,否则不是一次函数;在一次函数中,如果常数项b =0,那么它是正比例函数.解:(1)是一次函数,不是正比例函数; (2)不是一次函数,也不是正比例函数; (3)是一次函数,也是正比例函数; (4)是一次函数,也是正比例函数; (5)不是一次函数,也不是正比例函数; (6)是一次函数,也是正比例函数.方法总结:一个函数是一次函数的条件:自变量是一次整式,一次项系数不为零; 判断一个函数是正比例函数的条件:自变量是一次整式,一次项系数不为零,常数项为零.【类型二】 根据一次函数与正比例函数的定义求字母的值已知函数y =(m -5)xm 2-24+m +1. (1)若它是一次函数,求m 的值;(2)若它是正比例函数,求m 的值.解析:(1)要使函数是一次函数,根据一次函数的定义x 的指数m 2-24=1,且一次项系数m -5≠0;(2)要使函数是正比例函数,除了满足上述条件外,还需加上m +1=0这个条件.解:(1)因为y =(m -5)xm 2-24+m +1是一次函数,所以m 2-24=1且m -5≠0,所以m=±5且m≠5,所以m =-5.所以当m =-5时,函数y =(m -5)xm 2-24+m +1是一次函数.(2)因为y =(m -5)xm 2-24+m +1是一次函数,所以m 2-24=1且m -5≠0且m +1=0.所以m =±5且m≠5且m =-1,则这样的m 不存在,所以函数y =(m -5)xm 2-24+m +1不可能为正比例函数.方法总结:函数是一次函数,则k≠0,且自变量的次数为1.当b =0时,一次函数为正比例函数.探究点二:一次函数关系式的确定某公司以每吨200元的价格购进某种矿石原料300吨,用以生产甲、乙两种产品,生产1吨甲产品或1吨乙产品所需该矿石和煤原料的吨数如下表:产品 资源/吨 )甲 乙 矿石 10 4 煤48煤的价格为400元/吨,生产1吨甲产品除需原料费用外,还需其他费用400元,甲产品每吨售价4600元;生产1吨乙产品除原料费用外,还需其他费用500元,乙产品每吨售价5500元.现将该矿石原料全部用完,设生产甲产品x 吨,乙产品m 吨,公司获得的总利润为y 元.(1)写出m 与x 的关系式;(2)写出y 与x 的函数关系式.(不要求写自变量的取值范围)解析:(1)因为矿石的总量一定,当生产的甲产品的数量x 变化时,那么乙产品的产量m 将随之变化,m 和x 是动态变化的两个量;(2)题目中的等量关系为总利润y =甲产品的利润+乙产品的利润.解:(1)因为4m +10x =300,所以m =150-5x2.(2)生产1吨甲产品获利为4600-10×200-4×400-400=600(元);生产1吨乙产品获利为5500-4×200-8×400-500=1000(元).所以y =600x +1000m.将m =150-5x2代入,得y =600x +1000×150-5x2,即y =-1900x +75000.方法总结:根据条件求一次函数的关系式时,要找准题中所给的等量关系,然后求解.三、板书设计一次函数⎩⎪⎨⎪⎧一次函数的概念正比例函数的概念函数关系式的确定经历一般规律的探索过程,培养学生的抽象思维能力,经历从实际问题中得到函数关系式这一过程,提升学生的数学应用能力.体验生活中数学的应用价值,感受数学与人类生活的密切联系,激发学生学数学、用数学的兴趣.使学生在探索过程中体验成功的喜悦,树立学习的自信心.4.4一次函数的应用第1课时确定一次函数的表达式1.会确定正比例函数的表达式;(重点)2.会确定一次函数的表达式.(重点)一、情境导入某农场租用播种机播种小麦,在甲播种机播种2天后,又调来乙播种机参与播种,直至完成800亩的播种任务,播种亩数与天数之间的函数关系如图.你能通过图象提供的信息求出y与x之间的关系式吗?你知道乙播种机参与播种的天数是多少呢?学习了本节的内容,你就知道了.二、合作探究探究点一:确定正比例函数的表达式求正比例函数y=(m-4)m2-15的表达式.解析:本题是利用正比例函数的定义来确定表达式的,即自变量的指数为1,系数不为0,这种类型简称为定义式.解:由正比例函数的定义知m2-15=1且m-4≠0,∴m=-4,∴y=-8x.方法总结:利用正比例函数的定义确定表达式:自变量的指数为1,系数不为0.探究点二:确定一次函数的表达式【类型一】根据给定的点确定一次函数的表达式已知一次函数的图象经过(0,5)、(2,-5)两点,求一次函数的表达式.解析:先设一次函数的表达式为y=kx+b,因为它的图象经过(0,5)、(2,-5)两点,所以当x=0时,y=5;当x=2时,y=-5.由此可以得到两个关于k、b的方程,通过解方程即可求出待定系数k和b的值,再代回原设即可.解:设一次函数的表达式为y=kx+b,根据题意得,∴⎩⎪⎨⎪⎧5=b ,-5=2k +b.解得⎩⎪⎨⎪⎧k =-5,b =5.∴一次函数的表达式为y =-5x +5. 方法总结:“两点式”是求一次函数表达式的基本题型.二次函数y =kx +b 中有两个待定系数k 、b ,因而需要知道两个点的坐标才能确定函数的关系式.【类型二】 根据图象确定一次函数的表达式正比例函数与一次函数的图象如图所示,它们的交点为A(4,3),B 为一次函数的图象与y 轴的交点,且OA =2OB.求正比例函数与一次函数的表达式.解析:根据A(4,3)可以求出正比例函数表达式,利用勾股定理可以求出OA 的长,从而可以求出点B 的坐标,根据A 、B 两点的坐标可以求出一次函数的表达式.解:设正比例函数的表达式为y 1=k 1x ,一次函数的表达式为y 2=k 2x +b.∵点A(4,3)是它们的交点,∴代入上述表达式中,得3=4k 1,3=4k 2+b.∴k 1=34,即正比例函数的表达式为y =34x.∵OA =32+42=5,且OA =2OB ,∴OB =52.∵点B 在y 轴的负半轴上,∴B 点的坐标为(0,-52).又∵点B 在一次函数y 2=k 2x +b 的图象上,∴-52=b ,代入3=4k 2+b 中,得k 2=118.∴一次函数的表达式为y 2=118x -52.方法总结:根据图象确定一次函数的表达式的方法:从图象上选取两个已知点的坐标,然后运用待定系数法将两点的横、纵坐标代入所设表达式中求出待定系数,从而求出函数的表达式.【类型三】 根据实际问题确定一次函数的表达式某商店售货时,在进价的基础上加一定利润,其数量x 与售价y 的关系如下表所示,请你根据表中所提供的信息,列出售价y(元)与数量x(千克)的函数关系式,并求出当数量是2.5千克时的售价.数量x/千克售价y/元 1 8+0.4 2 16+0.8 3 24+1.2 4 32+1.6 5 40+2.0 ……解析:从图表中可以看出售价由8+0.4依次向下扩大到2倍、3倍、…… 解:由表中信息,得y =(8+0.4)x =8.4x ,即售价y 与数量x 的函数关系式为y =8.4x.当x =2.5时,y =8.4×2.5=21.所以数量是2.5千克时的售价是21元.方法总结:解此类题要根据所给的条件建立数学模型,得出变化关系,并求出函数的表达式,根据函数的表达式作答.三、板书设计确定一次函数表达式⎩⎪⎨⎪⎧正比例函数y =kx (k≠0)一次函数y =kx +b (k≠0)经历对正比例函数及一次函数表达式的探求过程,掌握用待定系数法求一次函数的表达式,进一步使用数形结合的思想方法;经历从不同信息中获取一次函数表达式的过程,体会到解决问题的多样性,拓展学生的思维.2.2 平方根 第1课时 算术平方根1.了解算术平方根的概念,会用根号表示一个数的算术平方根;(重点) 2.根据算术平方根的概念求出非负数的算术平方根;(重点) 3.了解算术平方根的性质.(难点)一、情境导入上一节课我们做过:由两个边长为1的小正方形,通过剪一剪,拼一拼,得到一个边长为a 的大正方形,那么有a 2=2,a =________,2是有理数,而a 是无理数.在前面我们学过若x 2=a ,则a 叫做x 的平方,反过来x 叫做a 的什么呢?二、合作探究探究点一:算术平方根的概念【类型一】 求一个数的算术平方根求下列各数的算术平方根:(1)64;(2)214;(3)0.36;(4)412-402.解析:根据算术平方根的定义求非负数的算术平方根,只要找到一个非负数的平方等于这个非负数即可.解:(1)∵82=64,∴64的算术平方根是8;(2)∵(32)2=94=214,∴214的算术平方根是32;(3)∵0.62=0.36,∴0.36的算术平方根是0.6;(4)∵412-402=81,又92=81,∴81=9,而32=9,∴412-402的算术平方根是3.方法总结:(1)求一个数的算术平方根时,首先要弄清是求哪个数的算术平方根,分清求81与81的算术平方根的不同意义,不要被表面现象迷惑.(2)求一个非负数的算术平方根常借助平方运算,因此熟记常用平方数对求一个数的算术平方根十分有用.【类型二】 利用算术平方根的定义求值3+a 的算术平方根是5,求a 的值.解析:先根据算术平方根的定义,求出3+a 的值,再求a.解:因为52=25,所以25的算术平方根是5,即3+a =25,所以a =22. 方法总结:已知一个数的算术平方根,可以根据平方运算来解题.探究点二:算术平方根的性质【类型一】 含算术平方根式子的运算计算:49+9+16-225.解析:首先根据算术平方根的定义进行开方运算,再进行加减运算. 解:49+9+16-225=7+5-15=-3.方法总结:解题时容易出现如9+16=9+16的错误.【类型二】 算术平方根的非负性已知x ,y 为有理数,且x -1+3(y -2)2=0,求x -y 的值.解析:算术平方根和完全平方式都具有非负性,即a ≥0,a 2≥0,由几个非负数相加和为0,可得每一个非负数都为0,由此可求出x 和y 的值,进而求得答案.解:由题意可得x -1=0,y -2=0,所以x =1,y =2.所以x -y =1-2=-1. 方法总结:算术平方根、绝对值和完全平方式都具有非负性,即a ≥0,|a|≥0,a 2≥0,当几个非负数的和为0时,各数均为0.三、板书设计算术平方根⎩⎨⎧概念:非负数a 的算术平方根记作a 性质:双重非负性⎩⎨⎧a≥0,a ≥0让学生正确、深刻地理解算术平方根的概念,需要由浅入深、不断深化.概念的形成过程也是思维过程,加强概念形成过程的教学,对提高学生的思维水平是很有帮助的.概念教学过程中要做到:讲清概念,加强训练,逐步深化.4.4 一次函数的应用 第1课时 确定一次函数的表达式1.会确定正比例函数的表达式;(重点) 2.会确定一次函数的表达式.(重点)一、情境导入某农场租用播种机播种小麦,在甲播种机播种2天后,又调来乙播种机参与播种,直至完成800亩的播种任务,播种亩数与天数之间的函数关系如图.你能通过图象提供的信息求出y 与x 之间的关系式吗?你知道乙播种机参与播种的天数是多少呢?学习了本节的内容,你就知道了.二、合作探究探究点一:确定正比例函数的表达式求正比例函数y =(m -4)m 2-15的表达式.解析:本题是利用正比例函数的定义来确定表达式的,即自变量的指数为1,系数不为0,这种类型简称为定义式.解:由正比例函数的定义知m 2-15=1且m -4≠0,∴m =-4,∴y =-8x.方法总结:利用正比例函数的定义确定表达式:自变量的指数为1,系数不为0. 探究点二:确定一次函数的表达式【类型一】 根据给定的点确定一次函数的表达式已知一次函数的图象经过(0,5)、(2,-5)两点,求一次函数的表达式.解析:先设一次函数的表达式为y =kx +b ,因为它的图象经过(0,5)、(2,-5)两点,所以当x =0时,y =5;当x =2时,y =-5.由此可以得到两个关于k 、b 的方程,通过解方程即可求出待定系数k 和b 的值,再代回原设即可.解:设一次函数的表达式为y =kx +b ,根据题意得,∴⎩⎪⎨⎪⎧5=b ,-5=2k +b.解得⎩⎪⎨⎪⎧k =-5,b =5.∴一次函数的表达式为y =-5x +5.方法总结:“两点式”是求一次函数表达式的基本题型.二次函数y =kx +b 中有两个待定系数k 、b ,因而需要知道两个点的坐标才能确定函数的关系式.【类型二】 根据图象确定一次函数的表达式正比例函数与一次函数的图象如图所示,它们的交点为A(4,3),B 为一次函数的图象与y 轴的交点,且OA =2OB.求正比例函数与一次函数的表达式.解析:根据A(4,3)可以求出正比例函数表达式,利用勾股定理可以求出OA 的长,从而可以求出点B 的坐标,根据A 、B 两点的坐标可以求出一次函数的表达式.解:设正比例函数的表达式为y 1=k 1x ,一次函数的表达式为y 2=k 2x +b.∵点A(4,3)是它们的交点,∴代入上述表达式中,得3=4k 1,3=4k 2+b.∴k 1=34,即正比例函数的表达式为y =34x.∵OA =32+42=5,且OA =2OB ,∴OB =52.∵点B 在y 轴的负半轴上,∴B 点的坐标为(0,-52).又∵点B 在一次函数y 2=k 2x +b 的图象上,∴-52=b ,代入3=4k 2+b 中,得k 2=118.∴一次函数的表达式为y 2=118x -52.方法总结:根据图象确定一次函数的表达式的方法:从图象上选取两个已知点的坐标,然后运用待定系数法将两点的横、纵坐标代入所设表达式中求出待定系数,从而求出函数的表达式.【类型三】 根据实际问题确定一次函数的表达式某商店售货时,在进价的基础上加一定利润,其数量x 与售价y 的关系如下表所示,请你根据表中所提供的信息,列出售价y(元)与数量x(千克)的函数关系式,并求出当数量是2.5千克时的售价.数量x/千克售价y/元 1 8+0.4 2 16+0.8 3 24+1.2 4 32+1.6 5 40+2.0 ……解析:从图表中可以看出售价由8+0.4依次向下扩大到2倍、3倍、…… 解:由表中信息,得y =(8+0.4)x =8.4x ,即售价y 与数量x 的函数关系式为y =8.4x.当x =2.5时,y =8.4×2.5=21.所以数量是2.5千克时的售价是21元.方法总结:解此类题要根据所给的条件建立数学模型,得出变化关系,并求出函数的表达式,根据函数的表达式作答.三、板书设计确定一次函数表达式⎩⎪⎨⎪⎧正比例函数y =kx (k≠0)一次函数y =kx +b (k≠0)经历对正比例函数及一次函数表达式的探求过程,掌握用待定系数法求一次函数的表达式,进一步使用数形结合的思想方法;经历从不同信息中获取一次函数表达式的过程,体会到解决问题的多样性,拓展学生的思维.。

相关文档
最新文档