新能源转换与控制技术(1).ppt

合集下载

新能源电气技术培训ppt课件(30张)

新能源电气技术培训ppt课件(30张)

保护装置相当于一台计算机
充电保护装置背板
充电保护装置
运行 报警 跳闸
跳位 合位
复位 取消
+
确认
-
金智科技股份有限公司
充电保护投入 电流解列保护投入
复合电压退出
打印RXA 打印TXB
打印地
打印
电流速断、限时电流速断、和过流保护等。
数据监控后台系统
中心交换机将站内数据采集至交换,逆变器数据由光 纤接入是中心交换机,通过协议转换装置将数据传送 至可识别数据传送后台人机界面。
光功率预测系统及AGC/AVC系统
光功率预测系统及AGC/AVC系统
光功率预测系统及AGC/AVC系统
图片说明: 图中所示为AGC/AVC系统网络图,智能通讯终端通过远动装置与主站通讯,向
主站发送AGC信息,同时,接受主站下发的遥调目标指令。同时,通过光功率 预测系统,接受调度下发的目标计划曲线。智能通讯终端通过综自系统采集逆 变器、SVG、母线电压等信息,并通过综自系统向逆变器、SVG等设备下发负荷 目标指令。 什么是AGC/AVC系统?它的作用是什么?它是怎么运作的? 简而言之:AGC控功,AVC控压。AGC自动发电控制的英文缩写,就是调度可远 程调节发电机的有功功率,AVC是自动电压控制调度远程调节发电机的电压(无 功功率)。 光伏AVC(光伏电压无功自动调节):当前光伏电站高压侧母线电压实际值和调度 下发的目标值进行比较,如果差值太大,AVC将自动调节逆变器的无功功率限 值,实时补偿无功或者吸收无功,实现将电压追平到目标值附近。AVC控制对 象为逆变器和SVG/SVC。
光伏区光纤环网组网方式
组网可以10MW或20MW组网,依据现场地形选择。
环网交换机加通讯管理机

(内部培训)新能源充换电技术 (1)全

(内部培训)新能源充换电技术 (1)全

2.2 直流快充系统工作原理
02充电桩对车电压供给及充电桩的自检过程 在完成上面操作,非车载充电机控制系统收 到完成插枪信号,这时控制系统就控制接通对电 动车低压供电系统进行供电,以保证对车辆充电 顺利完成,以防车辆因蓄电池电压不够而导致充 电操作中断或失败(因为充电过程需要较长的时 间,一般需要4-6小时);在对车辆低压供电之 后,充电桩进行对充电电路进行自检,如图6所 示;并输出绝缘监控电压,如图7所示;和泄压 过程,如图8所示。
2.1 交流慢充系统工作原理
状态 A 状态 B 状态 C 状态ห้องสมุดไป่ตู้D
PWM 调制 CP 信号 开路
R1 = 2700 ohms R1+R2 = 880 ohms R1+R2+R3 = 240 ohms
2.1 交流慢充系统工作原理
5分钟视频
2.1 交流慢充系统工作原理
2.2 直流快充系统工作原理
1.1 充电系统定义及分类
2)充电模式2
模式2充电系统使用标准插座,能量传输过程中应采用单相交流供电。 电源侧使用符合GB 2099.1 和GB1002 要求的16 A插头插座时输出不能超过13 A;电源侧使用符合GB 2099. l和GB1002要求的10A插头插座时输出 不能超过8 A. 在电源侧使用了相线 中性线和保护接地导体,并且采用缆上控制与保护装置(IC-CPD)连接电 源与电动车辆。[GB/T 18487.1 之 5.1.2] 注意:从标准插座到电动汽车应提供保护接地导体,且应具备剩余电流保护和过流保护功能. 充电模式2的连接方式B是我们最常见得便携式充电装置的基准,如图1-2-1所示,为国标GB/T 18487.1 -2015 最基础的控制导引原理图,所有车企在设计纯电动汽车充电时均应在此基础上进行设计,在该模式下,仅可 使用单相交流模式进行供电

新材料新能源技术-PPT精品文档36页

新材料新能源技术-PPT精品文档36页
• 1972年在产量上超过尼龙、棉纶的合成纤维新品种聚 脂纤维问世,其中涤纶制品热稳定性高、强度大、褶 皱性好,是—·种深受欢迎的合成纤维,各国都在积极 发展。
• 14.1.3 新型无机非金属材料 常见的新型无机非金属材料有工业陶瓷、光导纤维和 光导体材料。 光导纤维是可有效地远距离传导光信号的玻璃或塑料 纤维。它的优点是:重量轻,通信容量大,传输损耗 低,在很宽的频带内频率能保持稳定。
由光导纤维构成的光缆
半导体材料还可用来制作晶体管、集成电路、固态激光器 和探测器等器件。
半导体材料
• 当前半导体硅是制作集成电路和大规模集成电路的材 料。虽然在硅片上可以取得很大的集成度,但是硅在 处理信息的速度上是有限度的。作为下一代半导体材 料的砷化镓,在存贮信息的能力上与硅一样,处理信 息的能力则可比半导体硅快10倍。
• 新材料主要包括新型金属材料、高分子合成材料、复合 材料、新型无机非金属材料、光电子材料和纳米材料等。
• 14.1.1 新型金属材料
重要的新型金属材料有铝、镁、钛合金以及稀有金属。 新型铝合金品种繁多、重量轻、导电性好,可代替铜 用作导电材料。 新型镁合金既轻又强,是制造直升机某些零件的理想 材料。新型高强度钛合金不仅可用来制造超音速飞机 和宇宙飞船,而且广泛应用于化学工业、电解工业和 电力工业,被誉为“未来的钢铁”。
• 14.1.4 复合材料 复合材料是有机高分子、无机非金属和金属等材料复 合而成的一种多相材料,特点是不仅能保持其原组分 的部分特点,而且还具有原组分所不具有的性能。
复合材料制成 的座椅和长条 凳,不仅重量 减轻,其外观 设计上也明显 与众不同了。
复合材料可分结构复合材料与功能复合材料两大类。
• 煤炭与石油资源是有限的,因此新能源技术只要指对 各种新能源的开发与利用。

新能源驱动电机课件ppt

新能源驱动电机课件ppt

高效能
提高电机的效率,降低能耗,是未来发展的主要方向。
轻量化
减轻电机重量,使其更适应电动汽车等移动设备的需要。
智能化
结合先进的控制算法,实现电机的智能化控制,提高其性 能和稳定性。
技术创新点
材料创新
新型材料如碳纤维、稀土永磁体的应用,可以提高电机的性能。
பைடு நூலகம்设计创新
优化电机结构设计,降低制造成本,提高生产效率。
集成化
电机与电力电子、控制系统的集成化程度越来越高,实现更高效 、紧凑的解决方案。
智能化
利用人工智能和大数据技术优化电机性能,实现预测性维护和智 能控制。
政策环境分析
1 2 3
政府支持
各国政府对新能源汽车产业给予政策支持,如补 贴、税收优惠等,促进新能源驱动电机市场的快 速发展。
排放法规
日益严格的排放法规推动汽车制造商加快新能源 汽车的研发和推广,对新能源驱动电机市场产生 积极影响。
分类
根据能源类型,新能源驱动电机 可分为直流电机、交流电机、永 磁同步电机、开关磁阻电机等。
工作原理与特性
工作原理
新能源驱动电机基于电磁感应原理, 通过磁场和电流的作用力产生旋转力 矩,从而驱动车辆或设备运动。
特性
高效、节能、环保、高扭矩、高可靠 性等。
新能源驱动电机的应用场景
新能源汽车
电动自行车
集成化设计
实现电机与其他动力系统的集 成化设计,提高整体效率。
成本问题
降低制造成本
通过优化生产工艺和降低材料成本,降低新 能源驱动电机的制造成本。
维护成本
提高电机的可靠性和耐久性,降低后期的维 护成本。
研发成本
加大研发投入,推动新能源驱动电机的技术 进步和产品升级。

新能源转换与控制技术

新能源转换与控制技术

机械工业出版社
第1章 新能源转换与控制技术导论
3
2.1 电力电子器件及应用
◆电力电子器件的概念和特征 ◆电力电子器件的分类 ◆ 不可控器件——电力二极管 ◆半控型器件——晶闸管 ◆电力场效应晶体管——电力MOSFET ◆绝缘栅双极型晶体管——IGBT
机械工业出版社
第1章 新能源转换与控制技术导论
4
26
四大基本变化电路
• AC-DC变换电路 • DC-DC变换电路 • DC-AC变换电路 • AC-AC变换电路
机械工业出版社
第1章 新能源转换与控制技术导论
27
2.2 AC—DC变换电路
交流――直流变换器(AC ―DC Converter)的功能是将交流电变换成直流电, 又称为整流器。
机械工业出版社
◆电力电子及其特性 ◆电力电子器件的分类 ◆几种典型的电力电子器件
机械工业出版社
第1章 新能源转换与控制技术导论
7
电力电子及其特性
• 电力电子器件被广泛用于处理电能的主电路中,是实现电能的传输、变换或控制的电子器
件。
• 电力电子器件所具有的主要特征为:
①电力电子器件处理的电功率的大小是其主要的特征参数。 ②电力电子器件往往工作在开关状态; ③在实际应用中因此需要驱动电路对控制信号进行放大。
2.1.1电力电子器件的概念和特征
◆电力技术(电力设备、电力网络) ◆ 电子技术(电子器件、电子电路) ◆ 控制技术(连续、离散)
机械工业出版社
第1章 新能源转换与控制技术导论
5
1974年美国学者W.Newell用于表征电力电子技术的倒三角
机械工业出版社
第1章 新能源转换与控制技术导论
6

新电控技术第一章

新电控技术第一章

多路集中控制系统不仅是汽车电路线束分布方式和电子控制 系统控制技术的发展,而且也是火车、船舶、机器人、机器 制造、医疗器械以及电力自动化等领域控制技术的发展方向 三、汽车电控技术的发展趋势 1.新能源汽车 是指具有新型动力系统或燃用新燃料的汽车。具有新型 动力系统的汽车包括纯电动汽车、混合动力汽车、燃料电池 汽车等;燃用新型燃料的汽车包括天然气汽车、液化石油气 汽车、 醇醚类燃料汽车、生物燃料汽车与合成燃料汽车等。 2.汽车轻量化技术 是指在使用要求和成本控制的前提条件约束下,能够减轻 汽车自身质量的材料、设计和技术。 3.智能化和网络化 汽车电子控制技术的发展趋势是智能化和网络化。主要研 究与开发智能传感器技术、微处理器技术、光导纤维技术、 模块化设计技术、主动安全技术和网络通信技术等。
电子控制技术在提高汽车综合性能、推进汽车及交 通智能化等方面发挥着不可替代的作用。
• 汽车电子控制技术简称汽车电控技术,是指以电器技术、 微电子技术、液压传动技术、新材料和新工艺为基础,以解 决能源紧缺、环境保护和交通安全等社会问题为目的,旨在 提高汽车整车性能(包括动力性、经济性、排放性、安全性 舒适性、操纵性、通过性等)的新技术。 第一节汽车电控技术的应用 汽车技术、建筑技术与环境保护技术是衡量一个国家工 业化水平高低的三大标志。汽车技术不仅代表着社会物质生 活水平发展,而且代表着科学技术发展水平。 20世纪80年代以来,提高汽车性能、节约能源和保护环 境,主要取决于电子控制技术。汽车电子控制技术已广泛应
第二节
汽车电控技术的发展
• 近半个世纪以来,汽车技术的发展主要是汽车电器技术、 电子控制技术和车身技术的发展,汽车电子化(即自动化、 智能化和网络化)是汽车发展的必由之路。 随着电子工业的发展,电子控制技术在汽车上的应用越 来越广泛,特别是大规模集成电路和微电子技术的应用,在 解决汽车油耗、排放和安全等问题方面,汽车电子控制技术 具有举足轻重的作用。例如采用电控燃油喷射技术和微机控 制点火技术,不仅能够节油5%~10%,而且还能大大提高动 力性和排放净化性能;采用电子防抱死制动技术,不仅可使 汽车在泥泞路面上安全行驶,而且可以在紧急制动时防止车 轮抱死滑移,保证汽车安全制动;采用安全气囊,每年可以 挽救成千上万人的生命。在实现汽车操纵自动化、提高舒适 性和通过性等方面,电子控制技术也起着统、车辆防盗门锁系统 自动除霜系统、通信与导航协调系统、安全驾驶检测与警告 系统和故障自诊断系统等。 第三阶段(2000年以后):车载局域网控制阶段,即采 用车载局域网(Locl Area Network, LAN)对汽车电器与 电子控制系统进行控制。国内外中高档轿车目前都已开始采 用车载局域网LAN技术。采用LAN技术的国外轿车有奔驰、 宝马、大众、保时捷、美洲豹、劳斯莱斯等系列汽车。例如 在BMW AG(宝马公司)2004年推出的BMW 7系列轿车上 就装备了70多个微处理器(电控单元),利用了8种车载局 域网分别按这些电控单元的作用连接起来。其中,连接多媒 体装臵的网络就选用了多媒体定向系统传输网(MOST)。 MOST协议是21世纪车载多媒体设备不可缺少的高速网络协 议。国内采用LAN技术的有一汽大众奥迪A6L、上海帕萨特 BS、广州本田、东风雪铁龙等轿车。电子控制器网络化的

新能源课件教学教材

新能源课件教学教材

潮汐能、波浪能发电技术
潮汐能发电技术
包括潮汐水库、潮汐水轮机等, 可将潮汐能转化为机械能或电能。
波浪能发电技术
包括振荡水柱式、浮子式、越浪 式等,可将波浪能转化为机械能
或电能。
技术发展趋势
提高转换效率、降低成本、增强 设备耐久性和可靠性。
海水温差能、盐差能利用
海水温差能利用
通过热力循环或热电转换等方式,将海水温差能 转化为电能或其他形式的能源。
06 海洋能开发利用技术探讨
海洋能资源种类及特点
潮汐能
由月球和太阳引力作用产生,具有可预测性 和稳定性。
海水温差能
利用海洋表层和深层水温差异,可再生且清 洁环保。
波浪能
由风力作用产生,能量密度高,但具有间歇 性和随机性。
盐差能
利用海水和淡水之间或不同盐度海水之间的 化学电位差,具有较大的开发潜力。
太阳能电池板类型选择
单晶硅太阳能电池板
转换效率高,但制造成本也较 高。
多晶硅太阳能电池板
成本相对较低,但转换效率略 低于单晶硅。
薄膜太阳能电池板
柔性好,可弯曲,但转换效率 较低。
新型太阳能电池板
如染料敏化太阳能电池、有机 太阳能电池等,具有潜在的应
用前景。
光伏发电系统设计与安装
系统设计
根据用电需求和安装条件,设计 合理的光伏发电系统,包括太阳 能电池板、逆变器、蓄电池等组
3
漂浮式海上风力发电机组
适用于深海海域,通过漂浮平台支撑风电机组。
风电场规划、选址与建设
风电场规划
根据风能资源、地形地貌、 电网接入条件等因素进行 风电场整体布局规划。
风电场选址
选择风能资源丰富、地形 地貌适宜、交通便利的地 点作为风电场建设地点。

能源转换与控制技术导论

能源转换与控制技术导论
化学能转换为电能
通过原电池,将化学能转换为电能。原电池的工作原理是氧化还原反应和电化学反应。
03
能源控制技术概述
能源控制技术的定义与分类
能源控制技术的定义
能源控制技术是指通过特定的方法、设备或系统,对能源的生成、转换、输配和使用进行监测、调节和控制的技 术。
能源控制技术的分类
能源控制技术可以根据不同的分类标准进行划分,如按照能源类型可分为化石能源控制技术和可再生能源控制技 术;按照控制方式可分为直接控制技术和间接控制技术等。
05
能源转换与控制技术的应用案例
热能转换与控制技术的应用案例
热能转换
利用热能转换为机械能,如蒸汽轮机、内燃机等。
热能控制
通过控制热能流动,实现温度、压力等参数的调节, 如热力发电厂中的锅炉控制。
机械能转换与控制技术的应用案例
机械能转换
将其他形式的能量转换为机械能,如水轮机、风力发电 机等。
机械能控制
电能转换原理
电能转换为机械能
通过电动机,将电能转换为机械能。电动机的工作原理是电磁感应定律和安培定 律。
电能转换为热能
通过电阻加热等方式,将电能转换为热能。例如,电炉就是利用这一原理将电能 转换为热能。
化学能转换原理
化学能转换为热能
通过燃烧等方式,将化学能转换为热能。例如,燃料电池就是利用这一原理将化学能转换为热能和电 能。
分类
能源转换技术可以根据转换的能源类 型、转换原理和应用领域进行分类, 如热能转换、电能转换、光能转换等 。
能源转换技术的发展历程
早期阶段
01
早期的能源转换技术主要基于自然现象,如燃烧、水力发电等。
工业革命时期
02
随着工业革命的发展,能源转换技术得到了广泛应用,如蒸汽

新能源汽车技术PPT模板

新能源汽车技术PPT模板
新能源汽车技术
新能源汽车技术
时间:11月26日
讲述人:XX
CONTENT
CONTENT
新能源汽车的定义与分类
新能源汽车的定义与分类
新能源汽车的定义与分类
新能源汽车英文为New Energy Vehicles。
新能源汽车的定义:新能源汽车是指采用非常规的车用燃料作为动力采源(或使用常规的车用燃料,但采用新型车载动力装置),综合车辆的动力控制和驱动方面的先进技术,形成的技术原理先进,具有新技术、新结构的汽车。
新能源汽车的分类
气体燃料汽车一般有3种,即专用气体燃料汽车、两用燃料汽车和双燃料汽车。
是以液化石油气、天然气或煤气等气体为发动机燃料的汽车。如天然气汽车、液化石油气汽车等。
是指具有两套相对独立的供给统系,一套供给天然气或液化石油气,另一套供给天然气或液化石油气之外的燃料,两套燃料供给系统可分别但不可共同向气缸供给燃料的汽车。如汽油/压缩天然气两用燃料汽车、汽油/液化石油气两用燃料汽车等;
纯氢内燃机纯氢内燃机只产生NOx排放,但中、高负荷时存在爆震,且NOx生成量远大于汽油机,发动机功率受限且氢气消耗量大,续驶里程短,这些问题需要进一步研究解决。
氢—汽油双燃料内燃机它可将少量氢气作为汽油添加剂混人空气中,氢气扩散速率大,能够促进汽油的蒸发、雾化和与空气的混合;氢燃烧过程中产生活性自由基,能使汽油火焰传播速度明显加快,得到较大的热效率,并产生较低的排放。
是指具有两套燃料供给系统,一套供给天然气或液化石油气,另一套供给天然气或液化石油气之外的燃料,两套燃料供给系统按预定的配比向气缸供给燃料,在气缸混合燃烧的汽车。如柴油—压缩天然气双燃料汽车、柴油—液化石油气双燃料汽车等。
新能源汽车的分类
新能源汽车的分类

新能源发电与控制技术

新能源发电与控制技术

要点二
详细描述
最大功率跟踪技术用于在新能源发电系统的运行过程中, 实时跟踪其最大功率点,并保持系统在最大功率点运行, 从而提高能源利用率。功率转换技术用于将新能源发电系 统产生的电能转换为适合电网的电能形式,如直流、交流 等。功率调节技术用于根据实际需求和电网调度指令,调 节新能源发电系统的输出功率,确保其稳定运行。
04
新能源发电与控制技术 的挑战与解决方案
技术挑战
发电稳定性
新能源发电受天气、地理位置等因素影响, 发电稳定性难以保证。
并网技术
新能源发电并网技术尚不成熟,对电网的冲 击较大。
储能技术
新能源发电储能技术发展滞后,难以满足需 求。
成本问题
新能源发电与控制技术的成本较高,难以普 及。
解决方案
研发新技术
垂直轴风力发电机
利用风力驱动风轮旋转, 通过变速器和发电机将机 械能转换为电能。
海上风力发电
在海上建立风力发电场, 利用风能资源丰富的优势 进行发电。
水能发电技术
水轮机发电
利用水流驱动水轮机旋转,通过 变速器和发电机将机械能转换为
电能。
潮汐能发电
利用潮汐能驱动水轮机或涡轮机旋 转,将潮汐能转换为电能。
新能源发电储能控制技术
总结词
新能源发电储能控制技术是实现新能源 高效利用的关键技术之一,主要涉及储 能装置、能量管理、充放电控制等多个 方面。
VS
详细描述
储能装置是新能源发电储能控制技术的核 心,用于储存新能源发电系统产生的电能 。能量管理技术用于优化储能装置的充放 电过程,提高储能装置的能量利用率和寿 命。充放电控制技术用于根据实际需求和 电网调度指令,智能控制储能装置的充放 电过程,确保其安全、稳定、高效地运行 。

新能源汽车ppt教学课件完整版

新能源汽车ppt教学课件完整版
洗牌阶段
市场竞争加剧导致部分实力较弱的企业被 淘汰出局,优势企业逐渐凸显,市场份额
向头部企业集中。
快速发展阶段
随着技术进步和政策扶持力度加大,越来 越多企业涌入新能源汽车市场,产品种类 不断丰富,市场竞争日益激烈。
成熟阶段
市场进入成熟阶段后,竞争格局趋于稳定, 企业之间的竞争转向品牌、技术、服务等 方面。
能源安全
减少石油依赖,提高国家能源安全。
环境保护
产业升级
推动汽车产业向智能化、电动化、网 联化方向发展。
降低汽车尾气排放,改善空气质量。
地方政府推广举措
推广应用
在城市公交、出租车、共享汽车 等领域推广新能源汽车。
充电设施建设
加快充电基础设施建设,提高充电 便利性。
宣传引导
开展新能源汽车知识普及和宣传活 动,提高公众认知度。
场快速发展。
技术创新期待
消费者对新能源汽车技术创新、 性能提升、续航里程等方面有更 高期待,对智能驾驶、车联网等
智能化技术关注度持续提高。
多元化需求
消费者对新能源汽车类型、品牌、 价格等需求呈现多元化趋势,对 个性化定制和差异化服务的需求
也日益明显。
竞争格局演变过程
初期阶段
新能源汽车市场初期以政策驱动为主,少 数企业率先进入市场,竞争格局尚未形成。
功能模块
车联网平台包括数据采集与处理模块、远程监控与诊断模块、智能导航与出行服务模块、车 载娱乐与信息服务模块等。
在新能源汽车中的应用案例
例如,通过车联网平台实现远程监控和诊断,及时发现和解决新能源汽车故障问题;提供智 能导航和出行服务,为新能源汽车用户提供更加便捷的出行体验。
信息安全防护措施
01
02

新能源发电控制技术

新能源发电控制技术
全球能源消费呈现总量和人均能源消费量持 续“双增”态势.1965~2013年,受世界人口增长、 工业化、城镇化等诸多因素拉动,全球壹次能源 年消费总量从53.8亿吨标准煤增长到181.9亿吨 标准煤(考虑非商品能源,(大)约为195亿吨标准 煤),近50年全球能源互联网时间增长了2.4倍, 年均增长2.6%;年人均能源消费量从2.1吨标准 煤增长到2.6吨标准煤,增长了23.8%,年均增长 0.4%.
世界能源消费结构长期以化石能源为主,但其所占比 重正在逐步下降.1965~2013年,全球化石能源年消费总 量从50.5亿吨标准煤增长到157.5亿吨标准煤,增长了2.1 倍,年均增长2.3%;化石能源占壹次能源消费比重由 94.3%下降到86.7%,下降约7.6个百分点.
11
1973~2012年,煤炭、石油在世界终端 能源消费中的比重分别下降了3.6个、7.5个 百分点,而电能所占比重从9.4%增长到18.1%, 仅次于石油占比,位居第二位.
46
2)中国人均能耗
1980年,能耗总量为6.03亿吨标准煤,1990 年为9.87亿吨,2000年为15.55亿吨,2010年为 32.49亿吨.
1980年,中国每耗用千克石油当量能源对 应的GDP(PPP)是0.41美元,当年的世界平均水 平是1.97美元,中国的能耗产出效率仅为世界 平均水平的21%;2010年,中国每耗用千克石油 当量能源对应的GDP(PPP)是4.05美元,而世界 平均水平是6.16美元,中国的能耗产出效率已 达到世界平均水平的66%,差距(大)(大)缩小.
3
1、能源现状
(壹)世界能源现状
1)能源储量
截至2013年,全球煤炭、石油、天然气剩余探明 可采储量分别为8915亿吨、2382亿吨和186万亿m3,折 合标准煤共计1.2万亿吨,其中煤炭占52.0%、石油占 27.8%、天然气占20.2%.按照目前世界平均开采强度, 全球煤炭、石油和天然气分别可开采113年、53年和 55年.这些化石能源在全球分布很不均衡,煤炭资源 95%分布在欧洲及欧亚(大)陆、亚太、北美等地区, 石油资源80%分布在中东、北美和中南美,天然气资 源70%以上分布在欧洲及欧亚(大)陆、中东地区.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
◆电力电子及其特性 ◆电力电子器件的分类 ◆几种典型的电力电子器件
机械工业出版社
第1章 新能源转换与控制技术导论
7
电力电子及其特性
• 电力电子器件被广泛用于处理电能的主电路中,是实现电能的传输、变换或控制的电子器
件。
• 电力电子器件所具有的主要特征为:
①电力电子器件处理的电功率的大小是其主要的特征参数。 ②电力电子器件往往工作在开关状态; ③在实际应用中因此需要驱动电路对控制信号进行放大。
机械工业出版社
第1章 新能源转换与控制技术导论
16
2、半控型器件――晶闸管
KG
IA
电路符号
A
U U RSM RRM
IH
IG1 IG2 IG=0
0
U U DRM
bo
UDSM
UA
优点:晶闸管可以承受的 电压、电流在功率半导体 中均为最高,具有价格便 宜、工作可靠的优点,尽 管其开关频率较低,但在 大功率、低频电力电子装 置中仍占主导地位。
2.1.1电力电子器件的概念和特征
◆电力技术(电力设备、电力网络) ◆ 电子技术(电子器件、电子电路) ◆ 控制技术(连续、离散)
机械工业出版社
第1章 新能源转换与控制技术导论
5
1974年美国学者W.Newell用于表征电力电子技术的倒三角
机械工业出版社
第1章 新能源转换与控制技术导论
6
2.1.2电力电子器件的分类
机械工业出版社
第1章 新能源转换与控制技术导论
12
几种典型的电力电子器件
• 不可控器件――电力二极管 • 半控型器件――晶闸管 • 电力场效应晶体管――电力MOSFET • 绝缘栅双极型晶体管――IGBT
机械工业出版社
第1章 新能源转换与控制技术导论
13
1、不可控器件――电力二极管
(1)电力二极管的基本特性:电力二极管(Power Diode)承受的反向电压耐力与阳极通流能力均比普通二极管大得多, 但它的工作原理和伏安(V-A)特性与普通二极管基本相同,都具有正向导电性和反向阻断性。电力二极管的电路 符号和静态特性(即伏安特性)如下图所示。
11
2、按驱动信号类型分类
(1) 电流驱动型:通过对控制极注入或抽出电流,实现其开通或关断的电力电子器件称为电流驱 动型器件,如Thyrister,GTR,GTO等。
(2) 电压驱动型:通过对控制极和另一主电极之间施加控制电压信号,实现其开通或关断的电力 电子器件称为电压驱动型器件,如P-MOSFET,IGBT等。
K
A
电路符号
URBO
I IF
0
UTO
UF U
图2-1 电力二极管电路符号及伏安(V-A)特性
机械工业出版社
第1章 新能源转换与控制技术导论
14
(2)电力二极管的主要参数
• 正向平均电流IF(AV) :电力二极管在连续运行条件时,器件在额定结温和规定的散热条
件下,允许流过的最大工频正弦半波电流的平均值。
新能源转换与控制技术
江南大学 惠 晶主编
机械工业出版社
第1章 新能源转换与控制技术导论
1
第2章 电源变换和控制技术基础知识
机械工业出版社
第1章 新能源转换与控制技术导论
2
本章主要内容
2.1 电力电子器件及应用 2.2 AC-DC变换电路 2.3 DC-DC变换电路 2.4 DC-AC变换电路 2.5 AC-AC变换电路 2.6 多级复合形式的变换电路 2.7 半导体功率器件的驱动与保护电路
• 反向重复峰值电压URRM :指对电力二极管所能重复施加的反向最高峰值电压,通常是
雪崩击穿电压URBO的2/3。
机械工业出版社
第1章 新能源转换与控制技术导论
15
• 正向通态压降UF :在额定结温下,电力二极管在导通状态流过某一稳态正向电流(IF)
所对应的正向压降。正向压降越低,表明其导通损耗越小。
图2-2 晶闸管电路符号及伏安(V-A)特性
机械工业出版社
第1章 新能源转换与控制技术导论
17
(1)基本特性:
• 电流触发特性:当晶闸管A-K极间承受正向电压时,如果G-K极间流过正向触发电流,
就会使晶闸管导通。
• 单向导电特性:当承受反向电压时,此时无论门极有无触发电流,晶闸管都不会导通。 • 半控型特性:晶闸管一旦导通,门极就失去作用;此时,不论门极电流是否存在、触
• 反向恢复电流IRP及反向恢复时间trr :反向恢复时间trr通常定义为从电流下降为零至反向
电流衰减至反向恢复电流峰值25%的时间。反向恢复电流IRP及恢复时间trr与正向导通 时的正向电流IF及电流下降率diF/dt密切相关。
反向恢复过程:受二极管PN结中空间电荷区存储电荷的影响,向正向导通的二极管施加反向电压时,二极管不能立即 转为截止状态,只有存储电荷完全复合后,二极管才呈现高阻状态。
发电流极性如何,晶闸管都维持导通。要使导通的晶闸管恢复关断,可对其A-K极间 施加反向电压或使其流过的电流小于维持电流(IH)。
机械工业出版社
第1章 新能源转换与控制技术导论
18
(2)主要参数
机械工业出版社
第1章 新能源转换与控制技术导论
3
2.1 电力电子器件及应用
◆电力电子器件的概念和特征 ◆电力电子器件的分类 ◆ 不可控器件——电力二极管 ◆半控型器件——晶闸管 ◆电力场效应晶体管——电力MOSFET ◆绝缘栅双极型晶体管——IGBT
机械工业出版社
第1章 新能源转换与控制技术导论
4
机械工业出版社
第1章 新能源转换与控制技术导论
8
电力电子器件的分类
1、按可控性分类
(1)不控型器件:不能用控制信号控制其导通和关断的电力电子器件 。如:功率二极管 (Power Diode)。
机械工业出版社
第1章 新能源转换与控制技术导论
9
(2)半控型器件:可以通过控制极(门极)控制器件导通,但不能控制其关断的电力电子 器件。晶闸管(Thyristor)及其大部分派生器件(除GTO及MCT—MOSFET控制晶闸管等 复合器件外),器件的关断一般依靠其在电路中承受反向电压或减小通态电流使其恢复 阻断。
机械工业出版社
第1章 新能源转换与控制技术导论
10
(3)全控型器件:既可以通过器件的控制极(门极)控制其导通,又可控制其关断的器件。主要 有:功率晶体管(GTR)、绝缘栅双极型晶体管(IGBT)、门极可关断晶闸管(GTO)和电力场效 应晶体管(P-MOS)等。
机械工业出版社
Hale Waihona Puke 第1章 新能源转换与控制技术导论
相关文档
最新文档