高考数学大招:三角函数最值问题的十种常见解法
三角函数最值问题常见的求解策略
三角函数最值问题常见的求解策略三角函数最值问题是三角函数学习中的难点之一.求三角函数的最值,往往要涉及二次函数、不等式等其他重要知识,是历年高考考查的热点之一.本文试对常见三角函数最值问题作归纳、梳理.1.y=asinx+b型应对策略:令t=sinx,化为求一次函数y=at+b在闭区间上的最值.例1 求函数y=-3sinx+2的最值.解 令t=sinx,则原式化为y=-3t+2,t∈[-1,1],得-1≤y≤5.故ymin=-1,ymax=5.2.y=asinx+bcosx+c型应对策略:引进辅助角φtanφ=b()a,化为y=a2+b槡2sin(x+φ)+c,再利用正弦、余弦函数的有界性.例2 已知x∈-π2,π[]2,求函数f(x)=5sinx+槡53cosx的最值.解 f(x)=5sinx+槡53cosx=10sinx+π()3,令t=x+π3,则y=10sint,t∈-π6,5π[]6.故当t=-π6时,sint有最小值-12,f(x)min=-5;当t=π2时,sint有最大值1,f(x)max=10.3.y=asin2x+bsinx+c型应对策略:令t=sinx,化为求二次函数y=at2+bt+c在闭区间上的最值.例3 求y=2sin2x+sinx+3-π2≤x≤π()6的最值.解 令t=sinx,则由-π2≤x≤π6,得t[∈-1,]12.于是y=2t2+t+3=2t+()142+238.当t=-14时,ymin=238;当t=-1或12时,ymax=4.4.y=asin2x+bsinxcosx+cos2x型应对策略:降次,整理化为类型2,求y=Asin2x+Bcos2x+c的最大值、最小值.例4 函数f(x)=6sinxcosx+8cos2x,求f(x)的周期与最大值.解 f(x)=3sin2x+4cos2x+4=5sin(2x+φ)+4.故周期T=π,f(x)最大值为9.5.y=asinxcosx+b(sinx±cosx)+c型应对策略:令t=sinx±cosx,化为求二次函数y=±a2(t2-1)+bt+c在t∈[-槡2,槡2]上的最值.例5 求函数y=(1+sinx)(1+cosx)的最值.解 y=1+sinxcosx+(sinx+cosx),令t=sinx+cosx,则y=1+t+t2-12=12(t+1)2,t∈[-槡2,槡2].当t=槡2时,ymax=3+槡222;当t=-1时,ymin=0.6.y=asinx+bcsinx+d型应对策略:反解出sinx,利用正弦函数的有界性或用分析法来求解.例6 求函数y=sinx-3sinx+3的最值.解法一:解出sinx=3(y+1)1-y,由|sinx|≤1,得-2≤y≤-12.解法二:(“部分分式”分析法)原式=1-6sinx+3,再由|sinx|≤1,解得-2≤y≤-12.故ymin=-2,ymax=-12.7.y=asinx+bccosx+d型 十种特殊条件下的 三角恒等变换□韩玉宝 三角变换的关键在于发现题目中条件与结论之间在角、函数名称、次数这三方面的差异及联系,然后通过角变换、函数名称变换、升降幂变换等方法找到已知式与所求式之间的联系.三角变换的方法很多,本文将课本中出现的特殊条件下的一些变换方法归纳如下:一、条件或所求中出现“sinα+cosα”,将其平方.例1 设α∈(0,π),sinα+cosα=713,求tanα的值.解 将sinα+cosα=713两边平方,得sinαcosα=-60169,两式联立解得sinα=1213,cosα=-513,从而tanα=-125.二、已知tanα,求asin2α+bsinαcosα+ccos2α的值,先将asin2α+bsinαcosα+ccos2α除以(sin2α+cos2α)(即1),然后分子、分母同除以cos2α.例2 已知tanα=2,求sin2α+3sinαcosα+4的值.解 sin2α+3sinαcosα+4=sin2α+3sinαcosα+4sin2α+cos2α=tan2α+3tanα+4tan2α+1=145.三、化简1+sin槡α,1-sin槡α,1+cos槡α,1-cos槡α,引用倍角公式或将1用平方代换.应对策略:化归为y′=Asinx+Bcosx型求解或用数形结合法(常用到直线斜率的几何意义).例7 求函数y=sinxcosx+2的最大值及最小值.解法一:将原式ycosx-sinx+2y=0化为y2+槡1sin(x+φ)=-2y,即sin(x+φ)=-2yy2+槡1,由|sin(x+φ)|≤1,得-2yy2+槡1≤1,解得-槡33≤y≤槡33.故ymin=-槡33,ymax=槡33.解法二:函数y=sinxcosx+2的几何意义为点P(-2,0)与点Q(cosx,sinx)连线的斜率k,而点Q的轨迹为单位圆,如右图,可知-槡33≤k≤槡33.故ymin=-槡33,ymax=槡33.8.y=asinx+bsinx型应对策略:转化为利用函数y=ax+bx的单调性求最值.例8 求函数y=sinx+4sinxx∈0,π(]()2的最小值.解 令t=sinx,x∈0,π(]2,则y=t+4t,t∈(0,1].利用函数y=ax+bx的单调性得,函数y=t+4t在t∈(0,1]上为单调递减函数.故当t=1时,ymin=5.巩固练习1.若函数y=2sinx+槡acosx+4的最小值为1,求a的值.2.求函数y=-2cos2x+2sinx+3的值域.3.求函数y=(sinx+槡3)(cosx+槡3)的最值.(参考答案见第41页)由π4-α=π12-()α+π6,可得cosα-π()4=-槡3+4310.故所求值为:槡-33+20350.《常见三角函数最值问题的求解策略》1.a=5. 2.y∈12,[]5. 3.ymax=72槡+6,ymin=72槡-6.《十种特殊条件下的三角恒等变换》1.略. 2.116.《“整体思维”巧解三角恒等变换题》1.5972. 2.±712. 3.5665. 4.14. 5.1.《例谈构造法在三角问题中的妙用》1.提示:解析式看作是动点P(cosx,sinx)与定点Q(3,0)连线的斜率,为此构造直线斜率这一几何模型处理.y=sinxcosx-3最小值为-槡24,最大值为槡24.2.提示:已知条件可视为关于sinα2的一元二次方程模型去证明.3.提示:构造几何模型将条件化为(1-cosβ)cosα-sinβsinα+cosβ-32=0.因为点(cosα,sinα)在直线(1-cosβ)x-sinβy+cosβ-32=0上,同时也在圆x2+y2=1上,所以直线和圆有公共点,故d≤r,即cosβ-32(1-cosβ)2+sin2槡β≤1,整理得cosβ-()122≤0,即cosβ=12.又β为锐角,所以β=π3.同理α=π3.《向量问题的几何解法》1.a21+a22=b21+b22. 2.120°. 3.槡6.《一道课本向量题的探究与应用》1.设→AG=→ mGC,→ FG=→ nGE,则→ BG=→ BA+→mBC1+m.又→BG=→ BF+→ nBE1+n=→ BA+→ AF+→nBE1+n=→BA+13→ AD+n2→ BC1+n=→ BA+13+n()2→BC1+n.故11+m=11+n,m1+m=13+n21+烅烄烆n m=n=23.从而→AG=23→ GC,→ AG=25→ AC.单元测试参考答案1.1 2.5665 3.③ 4.槡459 5.116 6.[槡-3,槡3] 7.2 8.π2 9.槡2-12 10.d1d211.因为sinC=sin(A+B)=sinAcosB+cosAsinB,所以sinAcosB=cosAsinB,即sin(A-B)=0.所以三角形是等腰三角形.12.原式=2sin50°+2sin80°cos10°12cos10°+槡32()sin10°槡2cos5°=2sin50°+2sin80°cos10°cos(60°-10°)槡2cos5°=2槡22sin50°+槡22()cos50°cos5°=2cos(50°-45°)cos5°=2.13.因为tanα+β2=槡62,所以cos(α+β)=1-tan2α+β21+tan2α+β2=-15,即cosαcosβ-sinαsinβ=-15.①又因为tanαtanβ=137,所以sinαsinβcosαcosβ=137,即13cosαcosβ-7sinαsinβ=0②联立①、②,解得cosαcosβ=730,sinαsinβ=1330.。
三角函数最值求解常用“十策”
当 s x= 一 i n 1时 , = . Yi 6
评 注 : 果所 给 的 函数是 同名 不 同次或 可化 为 如
同名 不 同次及 其 它能够 进行 配方 的 形 式 , 可采 用 此
方法. 此种 方法在 求 三 角 函数 的值 域 或 最值 问题 中 较 为 常见 , 在 最后 讨论 值域 时 , 但 往往 容 易忽略 自变 量 ( l中以 s x为 自变量 ) 例 i n 的取 值 范 围 而 出现 错
・ . .
/
_ ; + 。 + cs 。i bo
COS + j X
, 一l OX . 且 ≤CS ≤1
= b+ ̄ a 口+ , b+( / 4 Ⅱ一b i 2 . ) s x n
・
.
当 CS OX=一l时 ,一 =1 Y , 当 CS OX=1 , : . 时 Y| 0 n
的最大 值.
>. 0解得÷≤ ≤ (≠ ) y 3y 1.
I
将 Y=1 人原方 程 解得 t 0= 代 a n 0∈R, 以 Y= 所
解由 = 1c 2 导 c 詈 :)s0 +s s ・s , ,i ( 。 i 。 n = n 2
再 拆项 变形 得
1 函数值. 是
所以 ) 3 =,i . 寺≤, , ≤ 故Y 3 = Y 1
+ ,
题, 分子、 分母的三角函数 同角、 同名 , 类三角 函数一 这
般 先化为部分分式 , 用三 角函数 的有 }去解 . 再利 生
4 换 元法
例 4 试 求 函数 Y=s x+CS i n OX+2i cs s xox+2 n 的最大 值 和最小值 .
评 注 : 用 三 角 函 数 的 有 界 性 如 IixI 1 利 n ≤ , s
三角函数最值的求法
三角函数最值的求法摘要: 本文主要讨论三角函数的最值的求法,总结归纳出六种常用的方法:上下界法、二次函数法、几何法、不等式法、判别法和用导数法。
关键词:三角函数;最值;求法。
三角函数是当今高考必考的内容之一,而三角函数的最值是函数最值的重要内容,同时也是三角函数的重要分支,故重视和加强这部分内容对于学习三角函数的恒等变换,求解最值,掌握三角函数最值与二次函数、二次方程及不等式性质的关系的应用有着重要的意义。
下面就求三角函数最值问题谈谈我的若干解决方法。
一.上下界法。
根据1sin ≤x 或1cos ≤x 把给定的三角函数或通过适当的恒等变形化成k x A ++)sin(ϕω或k x A ++)cos(ϕω(其中、k 、A 、ϕω均为常数)的形式,然后求出最大值和最小值的方法称为上下界法。
例1:求函数x x y 2sin cos 2-=的最值。
分析:先把原函数变形,然后根据1cos ≤x 直接求出最值。
解:x x y 2sin 22cos 1-+=x x 2sin 2cos 2121-+= 21)2cos(25++=ϕx 帮所求2125max +=y ,2125min +-=y例2:已知函数.,2cos 32sin R x x x y ∈+=求y 的最大值、最小值及相应的x 的集合;解:sin 2sin()2223x x x y π==+ ∴当2232x k πππ+=+,即4,3x k k Z ππ=+∈时,y 取得最大值2,此时x 的取值范围为 |4,3x x k k Z ππ⎧⎫=+∈⎨⎬⎩⎭; 当2232πππ-=+k x ,即Z k k x ∈-=,354ππ时,y 取得最小值2-,此时x 的取值范围为⎭⎬⎫⎩⎨⎧∈-=Z k k x x ,354|ππ。
点评:(1)这种基本题型非常重要,在高考考题中出现的频率较高;(2)当自变量x 的取值范围有限制时,我们在转化时往往要注意变量x 的取值范围,否则容易造成结果错误。
高中数学如何求解三角函数的极值和最值
高中数学如何求解三角函数的极值和最值一、引言三角函数是高中数学中的重要内容,求解三角函数的极值和最值是数学分析的基本技能之一。
本文将介绍如何通过分析和计算来求解三角函数的极值和最值,以及一些常见的解题技巧。
二、求解三角函数的极值1. 极值的定义在数学中,极值是指函数在某个区间内取得的最大值或最小值。
对于三角函数而言,极值点就是函数图像上的顶点或谷底。
2. 求解极值的方法(1)利用导数法求解对于一元函数,可以通过求导数来确定其极值点。
对于三角函数而言,可以先求出函数的导数,然后令导数等于零,解方程得到极值点。
例如,考虑函数f(x) = sin(x),其导数f'(x) = cos(x)。
令f'(x) = 0,解得x = π/2 + kπ,其中k为整数。
因此,函数sin(x)在x = π/2 + kπ处取得极值。
(2)利用周期性求解由于三角函数具有周期性,可以利用周期性来求解极值。
例如,考虑函数f(x)= sin(2x),它的周期为π。
因此,只需求解f(x)在一个周期内的极值即可。
在区间[0, π]上,函数f(x)在x = π/4处取得最大值1,而在x = 3π/4处取得最小值-1。
三、求解三角函数的最值1. 最值的定义在数学中,最值是指函数在某个区间内取得的最大值或最小值。
对于三角函数而言,最值点就是函数图像上的最高点或最低点。
2. 求解最值的方法(1)利用周期性求解与求解极值类似,由于三角函数具有周期性,可以利用周期性来求解最值。
例如,考虑函数f(x) = sin(x),它的周期为2π。
因此,只需求解f(x)在一个周期内的最值即可。
在区间[0, 2π]上,函数f(x)在x = π/2处取得最大值1,而在x = 3π/2处取得最小值-1。
(2)利用函数图像求解通过观察函数的图像,可以直观地确定函数的最值点。
例如,考虑函数f(x) = cos(x),它的图像是一条波浪线。
从图像上可以看出,函数f(x)在x = 0处取得最大值1,而在x = π处取得最小值-1。
求三角函数最值的四种常用解题方法
.实用文档.
求三角函数最值的常用解题方法
一.使用配方法求解三角函数的最值
例1.函数的最大值为1,求的值
解:
结论:将三角函数转化为二次函数也是求最值的通法之一,应当注意,整理成
时,要考虑的取值及的条件,才能正确求出最值。
二.使用化一法求解三角函数的最值
例2.求函数的值域。
分析:降幂后发现式中出现了和,这时再化成一个角的三角函数便可求得。
.
精品文档
解:
结论:化一法由“化一次〞、“化一名〞、“化一角〞三局部组成,其中“化一次〞使用到降幂公式、“化一名〞使用到推导公式、“化一角〞使用到倍角公式及三角函数的和差公式等,因此需要大家熟练掌握相关公式并灵活运用。
三.使用根本不等式法求解三角函数的最值
例3.求函数的值域
.
.实用文档.
解:
解:
四.使用换元法求解三角函数的最值
例4.求函数的最值。
分析:解此题的途径是用逆求将函数式变形,用y表示与x有关的三角函数,利用三角函数的有界性求最值。
解:
.。
求三角函数最值的八种方法归纳总结学生版
求三角函数最值的八种方法归纳总结 三角函数的最值问题是三角函数中的高频考点之一,考查知识点多,综合性强,灵活性也比较大。
三角函数最值问题不仅仅用到了其函数图像与性质,还用到三角恒等变换;并且常常会涉及到二次函数、不等式、方程、向量等等。
下面就介绍常考题型的解题方法。
题型一、利用三角函数有界性转化成b x cos a y b x sin a y +=+=或形式例1.求函数12-=x cos y 的值域.变式训练 求函数⎪⎭⎫ ⎝⎛∈⎪⎭⎫ ⎝⎛-=346πππ,x ,x cos x sin y 的值域. 小结:①必须注意字母a 的符号和自变量x 的范围对最值的影响题型二、 x cos b x sin a y +=形式此类型的函数形式要通过辅助角公式化为(),x sin b a y φ++=22利用函数()1≤+φx sin 即可求解。
例2.求函数()x sin x cos x f +=2的最大值为____________变式训练 求函数()x sin x cos x sin x cos x f 442--=在⎥⎦⎤⎢⎣⎡20π,上的最值.题型三、 转化为二次函数若函数表达式中的正弦或者余弦函数次数最高为2时,一般就需要通过换元法或者配方法化成二次函数的最值问题来处理.即c x sin b x sin a y ++=2型,一般来说可令[]11,t ,x sin t -∈=,化为闭区间上二次函数最值问题。
例3.求函数332+--=x cos x sin y 的最小值.变式训练 已知向量()()13-==,,A cos ,A sin ,1=⋅,且A 为锐角.(1)求角A 的大小;(2)求函数()()R x x sin A cos x cos x f ∈+=42的值域.题型四、 引入参数转化(换元法) 对于表达式中同时含有,x cos x sin ±与x cos x sin 的函数,可以利用()x cos x sin x cos x sin 212±=±建立x cos x sin ±与x cos x sin 之间的关系式,通过换元将换函数转化,但要注意前后定义域的关系.例4. 求函数x cos x sin x cos x sin y ++=的最大值变式训练 已知22=+y sin x sin ,求y cos x cos +的值域.题型五、 基本不等式法在运用均值不等式时,必须注意函数式中各项的正负,需要各项满足正值时方可使用,在解题时应加以论述说明;此外,还要注意不等式中等号成立的条件,需要合理的拆添项,凑系数,及其不等式中和的最值与积的最值.例5. 已知()π,x 0∈,求函数xsin x sin y 1+=的最小值.变式训练 若()π,x 0∈,求()21x sinx cos y +=的最大值.题型六、 利用导数求单调性例6. 已知函数()x sin x sin x f 22+=,求()x f 的最小值.变式训练 求函数()()xsin x sin x sin y +++=231的最值.题型七、 转化成分式型 ①d x sin c b x sin a y ++=(或dx cos c b x cos a y ++=)型,反解出x sin 或x cos ,在利用其有界性,可得到最值. ②d x cos c b x sin a y ++=(或dx cos c b x sin a y ++=)型,可化为()()y g x sin =+ϕ去处理. 例7.求函数1212-+=x cos x cos y 的值域.变式训练:求函数21--=x cos x sin y 的最大值和最小值题型八、 数形结合由于122=+x cos x sin ,所以从几何方面考虑,点()x sin ,x cos 在单位圆上, 这样可以利用其几何意义求解.例8.求函数()π<<--=x x cos xsin y 02的最小值.。
三角函数与解三角形中的最值(范围)问题
sin
2
2
(sin+cos)
sin
=
π
4
)
sin
2
1
(1+
),
2
tan
π
π
因为 B ∈[ , ),所以tan
6
4
因为函数 y =
sin(+
B ∈[
3
,1),
3
2
1
3
(1+ )在[ ,1)上单调递减,
2
3
所以 的取值范围为(
2,
6+ 2
].
2
=
高中总复习·数学
2. (2024·湖北三校联考)记△ ABC 的内角 A , B , C 的对边分别为
π
≤ )的图象离原点最近的对称轴为 x = x 0,若满足| x 0|≤
2
π
,则称 f ( x )为“近轴函数”.若函数 y =2
6
“近轴函数”,则φ的取值范围是(
)
sin (2 x -φ)是
高中总复习·数学
解析: y =2 sin
π
(2 x -φ),令2 x -φ= + k π, k ∈Z,∴图象
6
6
π
[0, ]上的值域为[-1,2].故选D.
2
高中总复习·数学
2.
4
3
sin+5
函数 y =
的最大值是
2−sin
6 ,最小值是
解析:法一
2−5
sin x =
,而-1≤
+1
原函数可化为
.
sin x ≤1,所以
2−5
4
-1≤
≤1,所以 ≤ y ≤6,因此原函数的最大值是6,最小值
如何解答三角函数最值问题
解题宝典三角函数最值问题的类型很多.要提高解答三角函数最值问题的效率,需要掌握不同类型三角函数最值问题的特点,对三角函数式进行合理的化简或转化,充分利用三角函数的性质与图象来解题.本文重点探讨一下几类常见三角函数最值问题的解法.一、f ()x =A sin ()ωx +φ+k 型对于形如f ()x =A sin ()ωx +φ+k 、f ()x =A cos(ωx +φ)+k 、f ()x =A tan ()ωx +φ+k 的三角函数最值问题,一般要利用三角函数y =sin x 、y =cos x 、y =tan x 的性质和图象来求其最值.例1.求函数y =12sin æèöø2x +π3在区间[-π4,π6]上的最值.解:∵x ∈[-π4,π6],∴-π6≤2x +π3≤2π3,由正弦函数y =sin x 的图象可知-12≤sin æèöø2x +π3≤1,-14≤12sin æèöø2x +π3≤12,∴函数y =12sin æèöø2x +π3在区间[-π4,π6]上的最大值是12,最小值是-14.解答形如f ()x =A sin ()ωx +φ+k 、f ()x =A cos(ωx +φ)+k 、f ()x =A tan ()ωx +φ+k 的三角函数最值问题,要首先从y =sin x 、y =cos x 、y =tan x 的性质和图象入手,在y =sin x 、y =cos x 、y =tan x 图象的基础上作相应的变换,找出对应的最值点、与坐标轴的交点、对称轴等,从而快速确定函数在定义域内的最值.二、f ()x =λsin x +μcos x +t 型对于f ()x =λsin x +μcos x +t (λ、μ不全为0,t ∈R)型三角函数的最值问题,应先把函数式进行恒等变换,利用辅助角公式,将其转化为f ()x =λ2+μ2⋅sin(x +φ)+t (其中cos φ=λλ2+μ2,sin φ=μλ2+μ2,tan φ=μλ)的形式,或转化为f ()x =μ2+λ2cos(x +φ)+t 的形式;然后根据正弦或余弦函数的有界性来求其最值.例2.在直角坐标系中,曲线C 的参数方程是ìíîïïïïx =1-t 21+t 2,y =4t 1+t 2,(t 为参数)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,直线l 的极坐标方程是2ρcos θ+3ρsin θ+11=0,求曲线C 上的点到直线l 的最短距离.解:将参数方程设为{x =cos α,y =2sin α,(α为参数,-π<α<π)根据点到直线的距离公式,可得曲线C 上任意一点(cos α,2sin α)到直线l 的距离为d =||||||4cos æèöøα-π3+117,当α=-2π3时,||||||4cos æèöøα-π3+11取得最小值7,则曲线C 到l 的最短距离是7.目标式2cos α+23sin α+11形如f ()x =λsin x+μcos x +t ,要求三角函数的最值,需要先利用辅助角公式进行恒等变换,将目标式转化成余弦函数式4cos æèöøα-π3;然后再根据余弦函数的有界性求其最值.三、f ()x =k sin 2x +m sin x +n (k ≠0)型对于形如f ()x =k sin 2x +m sin x +n (k ≠0)、f ()x =k cos 2x +m cos x +n (k ≠0)的三角函数最值问题,一般采用换元法求解.首先令sin x =t 、cos x =k ,得到二次函数;再利用二次函数和正余弦函数的性质求最值.例3.求函数f ()x =sin æèöø2x +3π2-3cos x的最小值.解:f ()x =sin æèöø2x +3π2-3cos x=-2cos 2x -3cos x +1,令cos x =t ,t ∈[-1,1],得y =-2t 2-3t +1=-2æèöøt +342+178,当t =1时,函数最小值是-4.原函数可化成f ()x =k cos 2x +m cos x +n 的形式,于是通过换元,将三角函数式转化为关于t 的二次函数式,这样便可直接根据二次函数的性质求最值.在解题时,需重点关注二次函数的定义域,此时二次函数的定义域受三角函数cos x =t 的单调性和有界性影响.四、f ()x =λsin x +t μcos x +n 或f ()x =μcos x +nλsin x +t(λμ≠0)型对于此类三角函数最值问题,一般有两种解法.一余涛涛38解题宝典是解析法,将函数f ()x =μcos x +nλsin x +t化成f ()x =μλ.cos x +n μsin x +t λ,再用换元法,令k =cos x +n μsin x +t λ,这样就得到线性函数f ()k =μλ.k (λμ≠0),即可根据线性函数的单调性求最值;或将k 看作是单位圆上的一个动点(sin x ,cos x )与定点(-t λ,-nμ)连线的斜率的最值,通过数形结合来解题.二是利用三角函数的有界性,通过恒等变形,将函数式转化成整式,再根据辅助角公式和三角函数的有界性来求最值.例4.求函数f ()x =sin x -1cos x +1的最大值.解法一:设P ()x ,y 是圆x 2+y 2=1上的动点,点A ()-1,1,k 是P 、A 两点所在直线的斜率,则PA 的直线方程是y -1=k (x +1),整理得kx -y +k +1=0.可知当直线与圆相切时,直线PA 的斜率最大,∵圆心到PA 直线的距离d ==1,解得k =0,∴f ()x =sin x -1cos x +1的最大值是0.解法二:将y =sin x -1cos x +1(x ≠(2k +1)π)变形,可得y +1=sin x -y cos x =1+y 2sin (x +φ),即sin ()x +φ=y +11+y 2,而||||||||y +11+y2=|sin (x +φ)|≤1,得||y +1≤1,则y ≤0,即函数()x =sin x -1cos x +1的最大值是0.解法一主要是运用了解析法,将函数最值问题转化为求单位圆x 2+y 2=1上的动点P (x ,y )与定点A (-1,1)连线斜率的最值,通过数形结合求得最值.解法二主要是利用正弦函数的有界性,通过三角恒等变换,将函数式转化为sin ()x +φ,再根据正弦函数的有界性|sin (x +φ)|≤1,建立关于y 的不等式,从而求得y 的最值.五、f ()x =λsin x +nμsin x 型对于形如f ()x =λsin x +nμsin x 、f ()x =λcos x +n μcos x 、f ()x =λtan x +n μtan x(λ、μ、n 为常数)的三角函数最值问题,通常利用基本不等式来求最值.当不能使用基本不等式求解时,可设t =sin x ,将原函数变为f ()t =λt +n μt ,再利用对勾函数的单调性求最值.还可以利用导数法来求最值.例5.当π4≤x ≤π2时,求函数f ()x =cos x +1cos x 的最小值.解法一:函数可变形为f ()x =cos x +12cos x+12cos x ,由基本不等式得cos x +12cos x≥2,当且仅当cos x=12cos x (即x =π4)等号成立,∵12cos x ≥,∴f ()x.解法二:∵π4≤x ≤π2,∴0<cos x ≤,令t =cos x ,∴0<t ≤,∴f ()t =t+1t为减函数,∴当t =时,f ()t =t +1t 有最小值解法三:对函数求导数,可得f ′()x =sin 3xcos 2x,∵π4≤x ≤π2,∴f ′()x >0,由此可判断出函数f ()x =cos x +1cos x在区间[π4,π2]x =π4时,函数f ()x =cos x +1cos x 取得最小值.解法一主要运用了基本不等式a +b ≥2ab(a >0,b >0),由于cos x +12cos x为两式的和,且其积为定值,在两式相等时可取等号,这就满足了运用基本不等式的应用条件:一正、二定、三相等.解法二主要运用对勾函数f ()x =x +ax的性质.运用对勾函数的性质求最值,需熟记对勾函数的单调性和最值点.解法三主要运用到导数法来求得最值.可见,求解三角函数最值问题是有规律可循的.(1)一般是从三角函数的解析式入手,明确其结构特征,充分利用函数的性质与图象来寻找解题思路;(2)对于比较复杂的三角函数式,需要利用诱导公式、同角的三角函数关系式、两角和差公式、二倍角公式等进行恒等变换,将函数式化简或转化成单一的三角函数式来求最值;(3)在求三角函数最值时,可灵活运用换元法、基本不等式法、解析法、三角函数的有界性进行解题.掌握这些方法与规律就能有效提高求三角函数最值问题的效率.(作者单位:江苏省无锡市洛社高级中学)39。
三角函数最值问题的常见类型及解法
=
6 含 有 s x与 CS i n OX的 和 与 积 型 的 函数 式
( 元思 想 ) 换
其 特 点是 含 有 或 经过 化 简 整 理 后 出 现 s x4 i - n
CS OX与 s x ox的式 子 , 理 方 式 是 应 用 ( i i cs n 处 s x± n
的一次式. 几乎所有的分式型都可以通过分子 , 分母 的化简 , 最后 整 理 成 这 个 形 式 , 的处 理 方 式 有 多 它
种.
侈 求 Y=s +2i cs 4 2 i n s xox+3o 的最 / n cs J 、
值, 并求 Y 取最小值时的 的集合.
解 : s + s x ox+3 o Y i n 2 i cs n cs
=
=
’ a・ y
.
,
√ 1 +y‘ 2+ i 2 + n
I n + I , ( ) ≤1 s i
・
5 ・ 9
《 数学之友》
20 0 8年第 1 7期
・
.
.
三 ≤1解 出Y的范围即可. ,
√ l+Y‘
解法二: n s B s Ai  ̄ i n<
( ) 一a< 一1时 , a>1时 , t 一1时 , 1若 即 在 = 取 最大值 M =a . ( ) 一1 一 ≤1 即 一1 ≤1 , t 一 2若 ≤ a , ≤a 时 在 = a
所 )s+ s2 子, 以 =x x ) ,i 。=i n s n
因 0 詈所 子 [, , 为 ≤≤ ,以 + ∈子 】
解.
可 , 中 t = . 后 利 用 三 角 函数 的 有 界 性 求 其 a n 然
高考数学一轮复习三角函数与解三角形中的最值(范围)问题
,∵函数f(x)=cos(2x+φ)(0<φ<π)在区间
π π
− ,
6 6
上单调递
π
− ≥ 0,
π
π
π
2π
减,∴ − + , + ⊆[0,π],即ቐ 3π
解得 ≤φ≤ .令f(x)=cos
3
3
3
3
+ ≤ π,
3
π
π π
(2x+φ)=0,则2x+φ= +kπ(k∈Z),即x= - + (k∈Z),又函数f
4
解:(2)f(x)=-
1 2 5
sin−
+ +a.
2
4
17
, 5
4 ⇒൝4
()max ≤
由题意得ቐ
()min ≥ 1
17
,
4 ⇒2≤a≤3,
+ ≤
−1 ≥ 1
即实数a的取值范围是[2,3].
三角形中的最值(范围)问题
考向1 利用三角函数的性质求最值(范围)
【例4】 △ABC中,sin2A-sin2B-sin2C=sin Bsin C.
重难专攻(四)
三角函数与解
三角形中的最值(范围)问题
三角函数与解三角形中的最值(范围)问题是高考的热点,主要涉及:
(1)三角函数式的最值(范围)问题;(2)利用三角函数性质求某些量的最
值(范围);(3)三角形中的最值(范围)(周长、面积等),其求解方法多
样,一般常用方法有:(1)利用三角函数的单调性(正、余弦函数的有界性)
3
3
答案
3
3
-
3
3
2
1+ 2
,
|解题技法|
sin+
三类常见的三角函数最值问题及其解法
思路探寻在近几年的高考数学试题中,三角函数最值问题屡见不鲜.此类问题一般具有较强的综合性、抽象性,侧重于考查同学们的抽象思维能力和综合处理问题的能力.本文重点谈一谈三类常见的三角函数最值问题及其求法一、求一次三角函数的最值一次三角函数最值问题属于常规题目.解答此类问题,需灵活运用三角函数中的诱导公式、两角和差公式、辅助角公式等进行三角恒等变换,将三角函数式转化为只含有一个角、一种函数名称的式子,然后根据三角函数的图象和性质来求得函数的最值.例1.求函数f ()x =cos x ()2sin x +3cos x 的最值.解:f ()x =2sin x cos x +3cos 2x =sin 2x +32cos 2x +32=sin ()2x +φ+32(2x +φ+32.由于||sin ()2x +φ≤1,因≤f ()x 那么函数的最大值是.第一步,我们要仔细观察三角函数的形式,将其进行适当的变形.若三角函数式中含有括号就要先将括号去掉;若含有两种不同的函数名称,就需用辅助角公式或tan x =sin xcos x将函数名称统一;若含有两个不同的角,就需用诱导公式、两角和差公式将角统一,最后根据三角函数的图象和性质求得最值.二、求二次三角函数的最值解答二次三角函数最值问题,我们一般要先利用二倍角sin 2x =2sin x cos x 、cos 2x =2cos 2-1=1-2sin 2x或其变形式2cos 2x =cos 2x -1、sin 2x =1-cos 2x 2等,将三角函数式的幂或角统一,将其转化成为f ()x =A sin ()ωx +φ+B 的形式,或者只含有一种函数名称的二次式,然后利用三角函数的有界性和二次函数的性质来求最值.例2.已知函数f ()x =23sin x cos x +2cos 2x -1()x ∈R .试求出函数f ()x 的最小正周期,以及当x ∈éëùû0,π2时f ()x 的最大值与最小值.分析:该三角函数式中含有二次式,需先用正弦、余弦的二倍角公式将其化简,然后利用辅助角公式,将其转化为只含有一种函数名称的函数式,再根据正余弦函数的单调性和有界性便可求得原函数的最值.解:f ()x =23sin x cos x +2cos 2x -1=3()2sin x cos x +()2cos 2x -1=3sin 2x +cos 2x =2sin æèöø2x +π6.因此这个函数的最小正周期是T =2π2=π.当x ∈éëùû0,π6,即2x +π6∈éëùûπ6,π2时,函数f ()x 单调递增;而当x ∈éëùûπ6,π2,即2x +π6∈éëùûπ2,7π6时,函数f ()x 单调递减,因此当x =π6时,函数取最大值f æèöøπ6=2sin π2=2;当x =π2时,函数取最小值f æèöøπ2=2sin 7π6=-1.三、求含有分式的三角函数的最值求含有分式的三角函数的最值有两种思路,第一种思路是尝试将常数分离,求得分离后含有变量式子的最值便可解题;第二种思路是,将函数y =f (x )看作参数,将函数式变形为整式,然后运用辅助角公式,将其转化为A sin ()ωx +φ+B 或A cos ()ωx +φ+B 的形式,再利用正余弦函数的有界性来建立关系式,解不等式便可求得y 的取值范围,进而确定函数的最值.例3.求函数y =sin x -23-2sin x 的最值.解:将y =sin x -23-2sin x变形可得()2y +1sin x =3y +2æèöøy ≠-12,即sin x =3y +22y +1.又因为||sin x ≤1,则||||||3y +22y +1≤1,将其两边同时平方可得()3y +22≤()2y +12,解得-1≤y ≤-35,因此函数的最大值为-35,最小值为-1.我们先将函数式变形为一边只含有sin x 、一边不含有sin x 的式子,然后根据y =sin x 的有界性求3y +22y +1的取值范围,求出y 的取值范围便可以确定函数的最值.总之,要想顺利求得三角函数的最值,我们需熟练掌握三角函数中的基本公式以及三角恒等变换的技巧,先将所求函数式化简为只含有一个角、一种函数名称、次数统一的最简形式,然后根据三角函数的单调性和有界性来求得原函数的最值.王国顺46。
三角函数最值问题的十种常见解法
三角函数最值问题的十种常见解法解法一:利用图像性质求解利用三角函数的图像性质,首先将函数图像画出来,观察函数在指定区间上的最大值和最小值所对应的点的坐标。
解法二:使用导数求解通过对三角函数进行求导,然后将导数等于零进行求解,可以得到函数的关键点,进而通过函数的变化趋势确定最值。
解法三:使用平均值不等式求解根据平均值不等式的性质,可以得到三角函数的最值。
例如,对于正弦函数sin(x),可以利用平均值不等式得到最值。
解法四:使用二次函数的性质求解将三角函数转化为二次函数的形式,然后利用二次函数的性质求解最值。
例如,可以将正弦函数sin(x)转化为二次函数的形式。
解法五:使用三角函数的周期性质求解三角函数的周期性质可以帮助我们确定最值所在的区间。
通过观察函数的周期性质,可以得到函数的最大值和最小值。
解法六:使用三角函数的反函数求解利用三角函数的反函数,可以将问题转化为求解反函数的最值问题。
通过对反函数的最值进行求解,可以得到原函数的最值。
解法七:使用三角函数的恒等式求解利用三角函数的恒等式,可以将复杂的三角函数转化为简单的形式,进而求解最值问题。
例如,可以利用和差公式将三角函数的角度转化为相对简单的形式。
解法八:使用三角函数的基本关系求解利用三角函数的基本关系,可以将复杂的三角函数转化为简单的形式,进而求解最值问题。
例如,可以利用正切函数和余切函数的基本关系求解最值。
解法九:使用三角函数的积分求解通过对三角函数进行积分,可以得到函数的积分表达式,并通过积分表达式求解最值。
例如,可以通过对正弦函数进行积分得到函数的积分表达式。
解法十:使用泰勒级数展开求解利用泰勒级数展开,可以将三角函数转化为幂级数形式,进而求解最值问题。
通过计算前几项幂级数的和,可以得到函数的近似值,并进一步求解最值。
解答三角函数最值问题的措施
解题宝典三角函数最值问题的综合性较强,不仅考查了三角函数知识,还考查了求最值的方法.三角函数的最值受函数名称、角的范围、参数的取值等影响,因此在解题时,我们需仔细审题,全面分析三角函数式中的函数名称、角、参数等,灵活运用数形结合思想、分类讨论思想来解题.下面介绍解答三角函数最值问题的几种常用方法.一、采用配方法若函数解析式中只含有一种三角函数名称,且次数是2次,可将给定的函数式化简成二次函数式并配方,再根据三角函数和二次函数的性质对问题进行求解.在解题时,要充分考虑函数的定义域和单调性.例1.求函数y =2cos 2x +5sin x -4的最值.解:由sin 2x +cos 2x =1可得y =2cos 2x +5sin x -4=2()1-sin 2x +5sin x -4=-2sin 2x +5sin x -2,将其配方可得y =-2æèöøsin x -542+98,因为-1≤sin x ≤1,所以函数是单调递增的.故当sin x =-1,x =2k π-π2(k ∈Z )时,y min =-9.当sin x =1,x =2k π+π2(k ∈Z )时,y max =1.我们首先将函数式变形为只含有正弦函数的式子,然后配方,结合正弦函数的有界性和二次函数的单调性,确定二次函数的定义域和最值.二、运用反函数法反函数法主要利用了函数的值域与反函数的定义域等价的性质.在解题时,我们需首先求出函数的反函数,然后挖掘函数式中的隐含信息,求得反函数的定义域,结合原函数的定义域,求出原函数的最值.例2.求函数y =2cos x +12cos x -1的最值.解:将原函数变形可得cos x =y +12y -2,因为||cos x ≤1,所以||cos x =||||||y +12y -2≤1,解得y ≥3或y ≤13.运用反函数法求最值较为简单,但反函数法的适用范围较窄,只适用于方便求得反函数的问题.三、借助化一法化一法主要用于求解解析式中同时含有正、余弦函数的问题.在解题时,我们首先要运用二倍角公式、两角和差的正余弦公式、诱导公式进行三角恒等变换,将所给的函数式化简,然后利用辅助角公式a sin x +b cos x =a 2+b 2sin(x +φ),将函数式化为只含有一种函数名的形式,再根据正弦函数或余弦函数的有界性来确定三角函数的最值.例3.已知函数y =12cos 2xx ∙cos x +1()x ∈R ,求函数的最大值.解:由cos 2x =1+cos 2x2,2sin x ∙cos x =sin 2x得y =12cos 2x +x ∙cos x +1=12∙1+cos 2x 2∙sin 2x 2+1=14cos 2x +2x +54=12sin æèöø2x +π6+54.所以当2x +π6=2k π+π2,即x =k π+π6()k ∈Z 时,y 取得最大值,最大值为y max =74.本题不仅考查了同学们的运算能力,还考查了进行三角恒等变换的技巧.我们需灵活运用二倍角公式、辅助角公式才能将函数式化简.四、数形结合数形结合法是解答函数问题的常用方法.在解题时,我们需根据函数的解析式画出相应的图形,结合函数图象的变化趋势,讨论函数的单调性、对称性以及最值.例4.求函数y =sin x2+cos x的最值.解:将原函数可变形可得y =sin x -cos x -()-2,可将该式看作点A ()cos x ,sin x 和点B ()-2,0的连线的斜率,而点A 是单位圆x 2+y 2=1上的动点.由图可知,当直线为圆的切线时,直线的斜率有最值.所以最大值为y max ,最小值为y min =.由sin 2x +cos 2x =1可联想到在单位圆上的点(cos x ,sin x ),于是构造单位圆,根据圆的切线的性质来求得函数的最值.以上几种方法都是求解三角函数最值问题的常见方法.其中化一法和数形结合法使用较多,适用范围较广;而配方法、反函数法虽较为简单,但适用范围较窄.(作者单位:江苏省沭阳高级中学)黄金晶40。
高三数学三角函数的最值问题
思维点拨: 闭区间上的二次函数的最值问题字母分 类讨论思路。
3、换元法解决
sin x cos x, sin x cos x
同时出现的题型。
例4、求函数 的最小值。
y 4 3 sin x 4 3 cos x
[思维点拨]: 遇到 sin x cos x 与 sin x cos x 相关的问题,常采用换元法,但要 注意 sin x cos x 的取值范围 是 [ 2, 2] ,以保证函数间的 等价转化。
例如:设实数 x 、 y满足 x 2 y 2 1 则3x 4 y 值为______.
的最大
二 重点难点: 通过三角变换结合代数变换求三角函数的 最值。 三 思维方式 1 认真观察函数式,分析其结构特征,确定类型 2 根据类型,适当地进行三角恒等变形或转化,这是 关键的步骤。 3 在有关几何图形的最值中,应侧重于将其化为三角 函数问题来解决。 四 特别说明 注意变换前后函数的等价性,正弦、余弦的有界性及函 数定义域对最值确定的影响,含参数函数的最值,解题 要注意参数的作用和影响。
4、图象法,解决形如
a sin x c y b cos x d
型的函数。
2 sin x 例4 P(66例3)、求函数 y 2 cos x
小值.。
的最大值和最
例5、
设 x [0, ] ,若方程
a
的取值范围。
2
3 sin( 2 x
3
)a
ቤተ መጻሕፍቲ ባይዱ
有两解,求
[思维点拨]:在用数形结合法解题 时,作图一定要准确。本题若改为 方程有一解,则 a 的范围又该怎样 呢?
三、课堂小结 ( 1) 求三角函数最值的方法有:①配方法,②化为一个角 的三角函数,③数形结合法④换元法,⑤基本不等式法。 ( 2) 三角函数最值都是在给定区间上取得的,因而要特别 注意题设所给出的区间。 (3) 求三角函数的最值时,一般要进行一些三角变换以及 代数换元,须注意函数有意义的条件和弦函数的有界性。 ( 4) 含参数函数的最值,解题要注意参数的作用和影响。
高考数学复习三角函数的最值
4.9 三角函数的最值●知识梳理1.y =a sin x +b cos x 型函数最值的求法.常转化为y =22b a +sin (x +ϕ),其中tan ϕ=ab . 2.y =a sin 2x +b sin x +c 型.常通过换元法转化为y =at 2+bt +c 型.3.y =d x c bx a ++cos sin 型.(1)转化为型1.(2)转化为直线的斜率求解. 4.利用单调性. ●点击双基 1.若0<α<β<4π,sin α+cos α=a ,sin β+cos β=b ,则 A.a <b <1 B.a >b >1 C.ab <1D.ab >1解析:a =2sin (α+4π),b =2sin (β+4π),0<α+4π<β+4π<2π,∴1<a <b ,ab >1.答案:D2.函数f (x )=cos 2x +sin x 在区间[-4π,4π]上的最小值是 A.212- B.-221+ C.-1D.221- 解析:f (x )=1-sin 2x +sin x =-(sin x -21)2+45. ∴当x =-4π时,y min =221-.答案:D3.函数y =x -sin x 在[2π,π]上的最大值是 A.2π-1 B.2π3+1 C.2π3-22D.π解析:y =x -sin x 在[2π,π]上是增函数,∴x =π时,y max =π. 答案:D 4.y =xxsin 2sin +的最大值是_________,最小值是_________.解析一:y =x x sin 22sin 2+-+=1-xsin 22+.当sin x =-1时,得y min =-1, 当sin x =1时,得y max =31.解析二:原式⇒sin x =yy-12(∵y ≠1)⇒|y y -12|≤1⇒-1≤y ≤31. ∴y max =31,y min =-1.答案:31-15.y =xxsin cos 2-(0<x <π)的最小值是________.解析一:y =xxsin cos 2-⇒y sin x +cos x =2⇒21y +sin (x +ϕ)=2⇒sin (x +ϕ)=212y+(x ∈(0,π))⇒0<212y+≤1⇒y ≥3.∴y min =3.解析二:y 可视为点A (-sin x ,cos x ),B (0,2)连线的斜率k AB ,而点A 的轨迹 ⎩⎨⎧='-=',,x y x x cos sin x ∈(0,π)是单位圆在第二、三象限的部分(如下图),易知当A (-23,21)时,y min =k AB =3.答案:3●典例剖析【例1】 函数y =a cos x +b (a 、b 为常数),若-7≤y ≤1,求b sin x +a cos x 的最大值.剖析:函数y =a cos x +b 的最值与a 的符号有关,故需对a 分类讨论. 解:当a >0时,⇒⎩⎨⎧=+-=+71b a b a a =4,b =-3;当a =0时,不合题意;当a <0时,⇒⎩⎨⎧-=+=+-71b a b a a =-4,b =-3.当a =4,b =-3时,b sin x +a cos x =-3sin x +4cos x =5sin (x +ϕ)(tan ϕ=-34); 当a =-4,b =-3时,b sin x +a cos x =-3sin x -4cos x =5sin (x +ϕ)(tan ϕ=34). ∴b sin x +a cos x 的最大值为5.【例2】 求函数y =cot 2xsin x +cot x sin2x 的最值. 剖析:先将切函数化成弦函数,再通过配方转化成求二次函数的最值问题. 解:y =x x sin cos 1+·sin x +xxsin cos ·2sin x cos x =2(cos x +41)2+87. ∵sin x ≠0,∴cos x ≠±1. ∴当cos x =-41时,y 有最小值87,无最大值. 评述:这是个基本题型,解题时要注意式中的隐含条件. 【例3】 求函数y =xxcos 2sin 2--的最大值和最小值.剖析:此题的解法较多,一是利用三角函数的有界性;二是数形结合法,将y 看成是两点连线的斜率;三是利用万能公式换算,转化成一元函数的最值问题(由于万能公式不要求掌握,所以此方法只作了解即可).解法一:去分母,原式化为 sin x -y cos x =2-2y ,即sin (x -ϕ)=2122yy +-.故21|22|y y +-≤1,解得374-≤y ≤374+. ∴y max =374+,y min =374-. 解法二:令x 1=cos x ,y 1=sin x ,有x 12+y 12=1.它表示单位圆,则所给函数y 就是经过定点P (2,2)以及该圆上的动点M (cos x ,sin x )的直线PM 的斜率k ,故只需求此直线的斜率k 的最值即可.由21|22|k k +-=1,得k =374±.n )x∴y max =374+,y min =374-. 评述:数形结合法是高考中必考的数学思维方法,对此读者要有足够的重视.●闯关训练 夯实基础1.函数y =log 2(1+sin x )+log 2(1-sin x ),当x ∈[-6π,4π]时的值域为 A.[-1,0] B.(-1,0] C.[0,1)D.[0,1]解析:y =log 2(1-sin 2x )=log 2cos 2x . 当x =0时,y max =log 21=0; 当x =4π时,y min =-1.∴值域为[-1,0]. 答案:A2.当y =2cos x -3sin x 取得最大值时,tan x 的值是 A.23 B.-23 C.13 D.4解析:y =13sin (ϕ-x )(其中tan ϕ=32).y 有最大值时,应sin (ϕ-x )=1⇒ϕ-x =2k π+2π⇒-x =2k π+2π-ϕ. ∴tan x =-tan (-x )=-tan (2k π+2π-ϕ)=-cot ϕ=-ϕtan 1=-23.答案:B 3.函数y =2sin 1sin 3+-x x 的最大值是_______,最小值是_______.解析:∵y =2sin 1sin 3+-x x =2sin 72sin 3+-+x x )(=3-2sin 7+x ,∴当sin x =1时,y max =3-37=32; 当sin x =-1时,y min =-4. 答案:32-4 4.在△ABC 中,a =sin (A +B ),b =sin A +sin B ,则a 与b 的大小关系为_______. 解析:a =sin A cos B +cos A sin B <sin A +sin B =b . 答案:a <b 5已知向量a =(cos θ,sin θ),向量b =(3,-1),则|2a -b |的最大值是____________. 解析:∵2a -b =(2cos θ-3,2sin θ+1),∴|2a -b |=22sin 23cos 2)()(1++-θθ=)(3πsin 88-+θ≤4. ∴|2a -b |的最大值为4. 答案:46.求y =1+sin x +cos x +sin x cos x 的值域. 解:设t =sin x +cos x ,则t ∈[-2,2]. 由(sin x +cos x )2=t 2⇒sin x cos x =212-t .∴y =1+t +212-t =21(t +1)2.∴y max =21(2+1)2=2223+,y min =0.∴值域为[0,2223+].培养能力7.已知对任意x ,恒有y ≥sin 2x +4sin 2x cos 2x ,求y 的最小值. 解:令u =sin 2x +4sin 2x cos 2x ,则u =sin 2x +sin 22x =21(1-cos2x )+(1-cos 22x )=-cos 22x -21cos2x +23=-(cos2x +41)2+1625,得u max =1625.由y ≥u 知y min =1625. 8.已知向量a =(cos 23x ,sin 23x ),b =(cos 2x ,-sin 2x),c =(3,-1),其中x ∈R .(1)当a ⊥b 时,求x 值的集合;(2)求|a -c |的最大值.解:(1)由a ⊥b 得a ·b =0,即cos 23x cos 2x -sin 23x sin 2x=0.则cos2x =0,得x =2πk +4π(k ∈Z ). ∴{x |x =2πk +4π,k ∈Z }为所求. (2)|a -c |2=(cos23x -3)2+(sin 23x +1)2=5+4sin (23x -3π), ∴|a -c |有最大值3. 探究创新 9.设函数f (x )=a sin ωx +b cos ωx (ω>0)的最小正周期为π,并且当x =12π时,有最大值f (12π)=4. (1)求a 、b 、ω的值;(2)若角α、β的终边不共线,f (α)=f (β)=0,求tan (α+β)的值.解:(1)由ωπ2=π,ω>0得ω=2.∴f (x )=a sin2x +b cos2x . 由x =12π时,f (x )的最大值为4, 得⎪⎩⎪⎨⎧==⇒⎪⎩⎪⎨⎧=+=+.3224232422b a b a b a ,(2)由(1)得f (x )=4sin (2x +3π). 依题意有4sin (2α+3π)=4sin (2β+3π)=0. ∴sin (2α+3π)-sin (2β+3π)=0. ∴cos (α+β+3π)sin (α-β)=0(和差化积公式见课本). ∵α、β的终边不共线,即α-β≠k π(k ∈Z ), 故sin (α-β)≠0. ∴α+β=k π+6π(k ∈Z ).∴tan (α+β)=33.●思悟小结1.求三角函数最值的常用方法有:①配方法(主要利用二次函数理论及三角函数的有界性);②化为一个角的三角函数(主要利用和差角公式及三角函数的有界性);③数形结合法(常用到直线的斜率关系);④换元法(如万能公式,将三角问题转化为代数问题);⑤基本不等式法等.2.三角函数的最值都是在给定区间上取得的,因而特别要注意题设中所给出的区间. (1)求三角函数最值时,一般要进行一些代数变换和三角变换,要注意函数有意义的条件及弦函数的有界性.(2)含参数函数的最值问题,要注意参数的作用和影响. 3.注意题中的隐含条件. ●教师下载中心 教学点睛1.建议让学生从做“点击双基”中体会总结方法.2.例题也可由学生独立完成,并从中总结方法. 拓展题例【例题】 (2001年春季全国)已知sin 2α+sin 2β+sin 2γ=1(α、β、γ均为锐角),那么cos αcos βcos γ的最大值等于_______.解析:∵sin 2α+sin 2β+sin 2γ=1, ∴3-(cos 2α+cos 2β+cos 2γ)=1.∴cos 2α+cos 2β+cos 2γ=2≥33γβα222cos cos cos . ∴cos 2αcos 2βcos 2γ≤(32)3.∴cos αcos βcos γ≤332)(=3232=962. 答案:962。
高中数学解题方法系列:三角函数最值问题的10种方法
高中数学解题方法系列:三角函数最值问题的10种方法三角函数是重要的数学运算工具,三角函数最值问题是三角函数中的基本内容,对三角函数的恒等变形能力及综合应用要求较高.解决三角函数最值这类问题的基本途径,一方面应充分利用三角函数自身的特殊性(如有界性等),另一方面还要注意将求解三角函数最值问题转化为求一些我们所熟知的函数(二次函数等)最值问题.下面介绍几种常见的求三角函数最值的方法:一.转化一次函数在三角函数中,正弦函数与余弦函数具有一个最基本也是最重要的特征——有界性,利用正弦函数与余弦函数的有界性是求解三角函数最值的最基本方法.例1.求函数2cos 1y x =-的值域[分析] 此为cos y a x b =+型的三角函数求最值问题, 设cos t x =,由三角函数的有界性得[1,1]t ∈-,则21[3,1]y t =-∈-二. 转化sin()y A x b ωϕ=++(辅助角法)观察三角函数名和角,先化简,使三角函数的名和角统一.例2.(2017年全国II 卷)求函数()2cos sin f x x x =+的最大值为.[分析] 此为sin cos y a x b x =+型的三角函数求最值问题,通过引入辅助角公式把三角函数化为sin()y A x B ωϕ=++的形式,再借助三角函数图象研究性质,解题时注意观察角、函数名、结构等特征.一般可利用|sin cos |a x b x +≤求最值.()f x ≤三. 转化二次函数(配方法)若函数表达式中只含有正弦函数或余弦函数,且它们次数是2时,一般就需要通过配方或换元将给定的函数化归为二次函数的最值问题来处理.例3. 求函数3cos 3sin 2+--=x x y 的最小值.[分析]利用22sin cos 1x x +=将原函数转化为2cos 3cos 2+-=x x y ,令cos t x =,则,23,112+-=≤≤-t t y t 配方,得41232-⎪⎭⎫ ⎝⎛-=t y , ∴≤≤-,11t Θ当t=1时,即cosx=1时,0min =y四. 引入参数转化(换元法)对于表达式中同时含有sinx+cosx ,与sinxcosx 的函数,运用关系式(),cos sin 21cos sin 2x x x x ±=± 一般都可采用换元法转化为t 的二次函数去求最值,但必须要注意换元后新变量的取值范围.例4. 求函数sin cos sin .cos y x x x x =++的最大值.[分析]解:令().cos sin 21cos sin 2x x x x +=+,设sin cos .t x x =+则[]()t t y t t x x +-=∴-∈-=21,2,221cos sin 22,其中[]2,2-∈t 当.221,14sin ,2max +=∴=⎪⎭⎫ ⎝⎛+=y x t π 五. 利用基本不等式法利用基本不等式求函数的最值,要合理的拆添项,凑常数,同时要注意等号成立的条件,否则会陷入误区.例5. 已知()π,0∈x ,求函数1sin 2sin y x x =+的最小值. [分析] 此题为xa x sin sin +型三角函数求最值问题,当sinx>0,a>1,不能用均值不等式求最值,适合用函数在区间内的单调性来求解.设()1sin ,01,2x t t y t t =<≤=+≥=2t =. 六.利用函数在区间内的单调性 例6.已知()π,0∈x ,求函数x x y sin 2sin +=的最小值. [分析] 此题为xa x sin sin +型三角函数求最值问题,当sinx>0,a>1,不能用均值不等式求最值,适合用函数在区间内的单调性来求解. 设()t t y t t x 1,10,sin +=≤<=,在(0,1)上为减函数,当t=1时,3min =y .七.转化部分分式例7.求函数1cos 21cos 2-+=x x y 的值域[分析] 此为dx c b x a y -+=cos cos 型的三角函数求最值问题,分子、分母的三角函数同名、同角,这类三角函数一般先化为部分分式,再利用三角函数的有界性去解.或者也可先用反解法,再用三角函数的有界性去解. 解法一:原函数变形为1cos ,1cos 221≤-+=x x y Θ,可直接得到:3≥y 或.31≤y 解法一:原函数变形为()()∴≤-+∴≤-+=,1121,1cos ,121cos y y x y y x Θ3≥y 或.31≤y 八. 数形结合由于1cos sin 22=+x x ,所以从图形考虑,点(cosx,sinx)在单位圆上,这样对一类既含有正弦函数,又含有余弦函数的三角函数的最值问题可考虑用几何方法求得. 例8. 求函数()π<<--=x xx y 0cos 2sin 的最小值. [分析] 法一:将表达式改写成,cos 2sin 0x x y --=y 可看成连接两点A(2,0)与点(cosx,sinx)的直线的斜率.由于点(cosx,sinx)的轨迹是单位圆的上半圆(如图),所以求y 的最小值就是在这个半圆上求一点,使得相应的直线斜率最小.设过点A 的切线与半圆相切与点B,则.0<≤y k AB 可求得.3365tan -==πAB k 所以y 的最小值为33-(此时3π=x ). 法二:该题也可利用关系式asinx+bcosx=()φ++x b a sin 22(即引入辅助角法)和有界性来求解.九. 判别式法例9.求函数22tan tan 1tan tan 1x x y x x -+=++的最值. [分析] 同一变量分子、分母最高次数齐次,常用判别式法和常数分离法.解:()()()()222tan tan 1tan tan 11tan 1tan 101,tan 0,x x y x x y x y x y y x x k k ππ-+=++∴-+++-=∴===∈1≠y 时此时一元二次方程总有实数解()()()().3310313,014122≤≤∴≤--∴≥--+=∆∴y y y y y 由y=3,tanx=-1,()3,4max =∈+=∴y z k k x ππ 由.31,4,1tan ,31min =+=∴==y k x x y ππ 十. 分类讨论法含参数的三角函数的值域问题,需要对参数进行讨论.例10.设()⎪⎭⎫ ⎝⎛≤≤--+-=20214sin cos 2πx a x a x x f ,用a 表示f(x)的最大值M(a). 解:().214sin sin 2+-+-=a x a x x f 令sinx=t,则,10≤≤t ()().21442214222+-+⎪⎭⎫ ⎝⎛--=+-+-==a a a t a at t x f t g (1) 当12≥a ,即()t g a ,2≥在[0,1]上递增, ()();21431-==a g a M (2) 当,120≤≤a 即20≤≤a 时,()t g 在[0,1]上先增后减,();214422+-=⎪⎭⎫ ⎝⎛=a a a g a M (3) 当,02≤a 即()t g a ,0≤在[0,1]上递减,()().4210a g a M -== ()⎪⎪⎪⎩⎪⎪⎪⎨⎧≤-≤≤+-≥-=∴0,42120,21442,21432a a a a a a a a M以上几种方法中又以配方法和辅助角法及利用三角函数的有界性解题最为常见.解决这类问题最关键的在于对三角函数的灵活应用及抓住题目关键和本质所在.挑战自我:1.求函数y=5sinx+cos2x 的最值2.已知函数()R x x x x y ∈+⋅+=1cos sin 23cos 212当函数y 取得最大值时,求自变量x 的集合.3.已知函数())cos (sin sin 2x x x x f +=,求函数f(x)的最小正周期和最大值.参考答案:1.[分 析] :观察三角函数名和角,其中一个为正弦,一个为余弦,角分别是单角和倍角,所以先化简,使三角函数的名和角达到统一. ()48331612,,221sin 683316812,,22,1sin ,1sin 183345sin 21sin 5sin 2sin 21sin 5max min 222=+⨯-=∈+=∴=-=+⨯-=∈-=-=∴≤≤-+⎪⎭⎫ ⎝⎛--=++-=-+=y z k k x x y z k k x x x x x x x x y ππππΘ 2.[分析] 此类问题为x c x x b x a y 22cos cos sin sin +⋅+=的三角函数求最值问题,它可通过降次化简整理为x b x a y cos sin +=型求解.解: ().47,6,2262,4562sin 21452sin 232cos 2121452sin 432cos 41122sin 2322cos 121max =∈+=∴+=+∴+⎪⎭⎫ ⎝⎛+=+⎪⎪⎭⎫ ⎝⎛+=++=+⋅++⋅=y z k k x k x x x x x x x x y ππππππ∴ f(x)的最小正周期为π,最大值为21+.3.[分析] 在本题的函数表达式中,既含有正弦函数,又有余弦函数,并且含有它们的二次式,故需设法通过降次化二次为一次式,再化为只含有正弦函数或余弦函数的表达式. 解:()⎪⎭⎫ ⎝⎛-+=+-=+=42212sin 2cos 1cos sin 2sin 22πx sn x x x x x x f。
三角函数最值问题的十种常见解法
三角函数最值问题的十种常见解法t=sinx+cosx,则y=t+sinx*cosx,利用关系式sinx*cosx≤1可得y≤t+1,而t的取值范围为[-√2,√2],当t=√2时,y取得最大值√2+1.五.利用导数法求极值对于一些复杂的三角函数最值问题,可以利用导数法求解.例如对于y=2sinx+3cosx+4sin2x,求其最大值.分析]解:y'=2cosx-3sinx+8cos2x,令y'=0,得cosx=3/10或cosx=-1/2,代入原式可得y的最大值为(7+8√6)/5.六.利用三角函数的周期性对于周期函数,可以利用其周期性来求解最值问题.例如对于y=3sin(2x+π/6)+4cos(2x-π/3),求其最大值.分析]解:由于sin和cos函数都是周期为2π的函数,因此可以将y化简为y=3sin2x+4cos2x+3√3,利用三角函数的性质可得y的最大值为7+3√3.七.利用三角函数的单调性对于单调函数,可以利用其单调性来求解最值问题.例如对于y=2sinx+3cosx,求其最小值.分析]解:y的导数y'=2cosx-3sinx,y'的符号与sinx和cosx的符号相同,因此y在[π/2,π]上单调递减,在[0,π/2]上单调递增,因此y的最小值为y(π/2)=2.八.利用三角函数的对称性对于一些具有对称性的三角函数,可以利用其对称性来求解最值问题.例如对于y=sin2x+cos2x,求其最大值和最小值.分析]解:y=sin2x+cos2x=1,因此y的最大值为1,最小值也为1.九.利用三角函数的积分性质对于一些三角函数的积分性质,可以利用其求解最值问题.例如对于y=sin2x/x,求其最大值.分析]解:y'=2cos2x/x-sin2x/x²,令y'=0,得x=tanx,代入原式可得y的最大值为2.十.利用三角函数的平均值不等式对于一些三角函数,可以利用其平均值不等式来求解最值问题.例如对于y=sin2x+cos2x,求其最大值和最小值.分析]解:由平均值不等式可得(sin2x+cos2x)/2≥sinx*cosx,因此y的最大值为1,最小值也为1.sin x+\cos x=1+2\sin x\cos x$,设$t=\sin x+\cos x$,则$2\sin x\cos x=\frac{t^2-1}{2}$,$\therefore y=\frac{t+\frac{t^2-1}{2}}{2}=\frac{t^2+t-1}{4}$,其中$t\in[-\sqrt{2},\sqrt{2}]$。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三角函数最值问题的十种常见解法
三角函数是重要的数学运算工具,三角函数最值问题是三角函数中的基本内容,对三角函数的恒等变形能力及综合应用要求较高.解决三角函数最值这类问题的基本途径,一方面应充分利用三角函数自身的特殊性(如有界性等),另一方面还要注意将求解三角函数最值问题转化为求一些我们所熟知的函数(二次函数等)最值问题.下面介绍几种常见的求三角函数最值的方法:
一.转化一次函数
在三角函数中,正弦函数与余弦函数具有一个最基本也是最重要的特征——有界性,利用正弦函数与余弦函数的有界性是求解三角函数最值的最基本方法.
例1.求函数2cos 1y x =-的值域
[分析] 此为cos y a x b =+型的三角函数求最值问题, 设cos t x =由三角函数的有界性得[1,1]t ∈-,则21[3,1]y t =-∈-
二. 转化sin()y A x b ωϕ=++(辅助角法)
观察三角函数名和角,先化简,使三角函数的名和角统一. 例2.(2017年全国II 卷)求函数()2cos sin f x x x =+的最大值为 .
[分析] 此为sin cos y a x b x =+型的三角函数求最值问题,通过引入辅助角公式把三角函数化为sin()y A x B ωϕ=++的形式,再借助三角函数图象研究性质,解题时注意观察角、函数名、结构等特征.一
般可利用
|sin cos |a x b x +≤求最值. ()f x ≤
三. 转化二次函数(配方法)
若函数表达式中只含有正弦函数或余弦函数,且它们次数是2时,一般就需要通过配方或换元将给定的函数化归为二次函数的最值问题来处理.
例3. 求函数3cos 3sin 2+--=x x y 的最小值.
[分析]利用22sin cos 1x x +=将原函数转化为2
cos 3cos 2+-=x x y 令cos t x =,则,23,112+-=≤≤-t t y t 配方,得41232
-⎪⎭
⎫ ⎝⎛-=t y , ∴≤≤-,11t Θ当t=1时,即cosx=1时,0min =y
四. 引入参数转化(换元法)
对于表达式中同时含有sinx+cosx ,与sinxcosx 的函数,运用关系式(),cos sin 21cos sin 2
x x x x ±=± 一般都可采用换元法转化为t 的二次函数去求最值,但必须要注意换元后新变量的取值范围. 例4. 求函数sin cos sin .cos y x x x x =++的最大值.
[分析]解:令().cos sin 21cos sin 2
x x x x +=+,设sin cos .t x x =+ 则[]()
t t y t t x x +-=∴-∈-=21,2,221cos sin 22, 其中[]
2,2-∈t 当.221,14sin ,2max +=∴=⎪⎭⎫ ⎝
⎛+=y x t π
五. 利用基本不等式法
利用基本不等式求函数的最值,要合理的拆添项,凑常数,同时要注意等号成立的条件,否则会陷入误区.
例5. 已知()π,0∈x ,求函数1sin 2sin y x x =+
的最小值. [分析] 此题为x
a x sin sin +型三角函数求最值问题,当sinx>0,a>1,不能用均值不等式求最值,适合用函数在区间内的单调性来求解. 设(
)1sin ,01,2x t t y t t =<≤=+
≥=,
当且仅当t =立.
六.利用函数在区间内的单调性
例6. 已知()π,0∈x ,求函数x x y sin 2sin +
=的最小值. [分析] 此题为x
a x sin sin +型三角函数求最值问题,当sinx>0,a>1,不能用均值不等式求最值,适合用函数在区间内的单调性来求解.
设()t
t y t t x 1,10,sin +=≤<=,在(0,1)上为减函数,当t=1时,3min =y .
七.转化部分分式
例7.求函数1
cos 21cos 2-+=x x y 的值域 [分析] 此为d
x c b x a y -+=cos cos 型的三角函数求最值问题,分子、分母的三角函数同名、同角,这类三角函数一般先化为部分分式,再利用三角函数的有界性去解.或者也可先用反解法,再用三角函数的有界性去解.
解法一:原函数变形为1cos ,1
cos 221≤-+
=x x y Θ,可直接得到:3≥y 或.31≤y 解法一:原函数变形为()()
11cos ,cos 1,1,2121y y x x y y ++=
≤∴≤--Q ∴3≥y 或.31≤y
八. 数形结合
由于1cos sin 22=+x x ,所以从图形考虑,点(cosx,sinx)在单位圆上,这样对一类既含有正弦函数,又含有余弦函数的三角函数的最值问题可考虑用几何方法求得.
例8. 求函数()π<<--=
x x
x y 0cos 2sin 的最小值. [分析] 法一:将表达式改写成,cos 2sin 0x x y --=y 可看成连接两点A(2,0)与点(cosx,sinx)的直线的斜率.由于点(cosx,sinx)的轨迹是单位圆的上半圆(如图),所以求y 的最小值就是在这个半圆上求一点,使得相应的直线斜率最小.
设过点A 的切线与半圆相切与点B,则.0<≤y k AB 可求得.3
365tan -==πAB k 所以y 的最小值为33-(此时3
π=x ). 法二:该题也可利用关系式asinx+bcosx=()φ++x b a sin 22(即引入辅助角法)和有界性来求解.
九. 判别式法
例9. 求函数22tan tan 1tan tan 1
x x y x x -+=++的最值. [分析] 同一变量分子、分母最高次数齐次,常用判别式法和常数分离法.
解:()()()()
222tan tan 1tan tan 1
1tan 1tan 101,tan 0,x x y x x y x y x y y x x k k ππ-+=++∴-+++-=∴===∈
1≠y 时此时一元二次方程总有实数解
()()()().33
10313,01412
2≤≤∴≤--∴≥--+=∆∴y y y y y 由y=3,tanx=-1,()3,4max =∈+=∴y z k k x π
π 由.3
1,4,1tan ,31min =+=∴==y k x x y ππ
十. 分类讨论法
含参数的三角函数的值域问题,需要对参数进行讨论.
例10.设()⎪⎭⎫ ⎝⎛≤≤--
+-=20214sin cos 2πx a x a x x f ,用a 表示f(x)的最大值M(a).
解:().2
14sin sin 2+-+-=a x a x x f 令sinx=t,则,10≤≤t ()().21442214222+-+⎪⎭
⎫ ⎝⎛--=+-+-==a a a t a at t x f t g (1) 当12≥a ,即()t g a ,2≥在[0,1]上递增, ()();2
1431-==a g a M (2) 当,12
0≤≤a 即20≤≤a 时,()t g 在[0,1]上先增后减,();2
14422+-=⎪⎭⎫ ⎝⎛=a a a g a M (3) 当,02≤a 即()t g a ,0≤在[0,1]上递减,()().4
210a g a M -== ()⎪⎪⎪⎩
⎪⎪⎪⎨⎧≤-≤≤+-≥-=∴0,42120,2
1442
,21432a a a a a a a a M
以上几种方法中又以配方法和辅助角法及利用三角函数的有界性解题最为常见.解决这类问题最关键的在于对三角函数的灵活应用及抓住题目关键和本质所在.
挑战自我:
1. 求函数y=5sinx+cos2x 的最值
2.已知函数()R x x x x y ∈+⋅+=1cos sin 2
3cos 212当函数y 取得最大值时求自变量x 的集合.
3.已知函数())cos (sin sin 2x x x x f +=,求函数f(x)的最小正周期和最大值.
参考答案:
1.[分 析] :观察三角函数名和角,其中一个为正弦,一个为余弦,角分别是单角和倍角,所以先化简,使三角函数的名和角达到统一.
()48331612,,221sin 68
3316812,,22,1sin ,1sin 183345sin 21sin 5sin 2sin 21sin 5max min 22
2=+⨯-=∈+=∴=-=+⨯-=∈-=-=∴≤≤-+⎪⎭⎫ ⎝
⎛--=++-=-+=y z k k x x y z k k x x x x x x x x y ππππΘ 2.[分析] 此类问题为x c x x b x a y 22cos cos sin sin +⋅+=的三角函数求最值问题,它可通过降次化简整理为x b x a y cos sin +=型求解. 解:
()max 11cos 2sin 2151cos 222222444
11515cos 22sin 2,2224264722,,.6264
x x y x x x x x x k x k k z y ππππππ+=⋅+⋅+=++⎛⎫⎛⎫=++=++ ⎪ ⎪ ⎪⎝⎭⎝⎭
∴+=+∴=+∈= ∴ f(x)的最小正周期为π,最大值为21+.
3.[分析] 在本题的函数表达式中,既含有正弦函数,又有余弦函数,并且含有它们的二次式,故需设法通过降次化二次为一次式,再化为只含有正弦函数或余弦函数的表达式.
解:()⎪⎭⎫ ⎝⎛-+=+-=+=42212sin 2cos 1cos sin 2sin 22πx sn x x x x x x f。