最新材料科学基础-固态相变教学讲义PPT

合集下载

固态相变-材料科学基础-课件-西南石油大学-08

固态相变-材料科学基础-课件-西南石油大学-08


: 铁素体、渗碳体交替分布的片层状共析组 织。 珠光体的形成过程: (1)碳的扩散;(2)晶体点阵重构 珠光体团:珠光体片层方向大致相同的区域。

珠光体片间距SO
不同的温度形成的珠光体片层间距不同: 在温度区间(A1~ 650℃):SO大约为400nm; 在温度区间(650℃~600℃):SO大约为 400nm~200nm,称为索氏体; 在温度区间(600℃~500℃):SO小于200nm, 称为托氏体(或屈氏体)。

转变温度、片层间距与硬度值之间的关系: 转变温度越低珠光体的片层间距越小,硬度越高

第五节 、 马氏体转变

一、马氏体转变的基本特征 1、转变不需要扩散 马氏体转变只有点阵改组而无成份变化,转变时 原子做有规律的整体迁移,每个原子移动的距离不超 过一个原子间距,且原子之间的相对位置不发生变化。 1、一些具有有序结构的合金发生马氏体转变后有序结 构不发生变化; 2、Fe-C合金奥氏体向马氏体转变后,C原子的间隙位 置保持不变; 3、马氏体转变可以在相当低的温度范围内进行,且转 变速度极快。例如:Fe-C、Fe-Ni合金,在-20~-196℃ 之间一片马氏体形成的时间约5×10-5─5×10-7 秒

3、转变时的动力学和生成相形貌转变过 程中产生的弹性应变能控制
二、马氏体转变的晶体学 1、表面浮凸现象和惯习面

马氏体转变时能在预先磨光的试样表面上形成有规 则的表面浮凸。这说明马氏体的形成与母相奥氏体的宏 观切变密切相关。 奥氏体转变为马氏体时,新旧两相之间保持着严格 的晶体学位向关系,马氏体的不变平面被称为马氏体的 惯习面,以平行于此面的母相的晶面指数表示。

弹性应变能: 大 界面能:小

固态相变PPT课件

固态相变PPT课件

Driin•vcoinrnegcaefsoneurccleeTattoedn,ugcrloewatuen
increases as we
til reach equilibrium
supercooling (eutectic, eutectoid)
Small supercooling few nuclei - large
②相变阻力使之无 法进行下去。
α+θ
Al
Cu
(a)过饱和固溶体 (b)GP区, θ′′ , θ′ (c)马氏体
α+Fe3C
Fe
Fe3C
8
第8页/共44页
金属材料热处理原理
3. 1 概述
➢新相/母相相界,类似于晶界,可分共格、部分共格、非 共格等三类
初生新相的相界面多为共格,而后逐渐向非共格界面发展.
crystals Large supercooling rapid nucleation - many
nuclei, small crystals
28
第28页/共44页
金属材料热处理原理
3. 2 新相形核
3. 3 新相形核
均匀形核(任意随机地形核)、不均匀形核(实际情况)
均匀形核(Homogeneous nucleation)
母相
溶质原子扩散
新相
26
第26页/共44页
金属材料热处理原理
3. 1 概述
非扩散型相变(移位、切变、军队)
在原子无法实现扩散的条件
下发生。新相生长时,母相
中原子不需扩散,只以小于
母相
新相
原子间距的距离相对位移,
实现晶体集体切变,新相成
分保留母相成分特点。

固态相变总论完整PPT

固态相变总论完整PPT

点阵畸变能。
界面能:共格界面<半共格界面<非共格界面!!!
(3)应变能 应变能包括共格应变能和体积应变能。
新相与母相点阵常数差异导致 新相与母相比容有所差异
TIP:单位体 积界面能分 布:球状<针 状<片状
当新相体积一定时,体积应变能的大小: 球状>针状>片状或盘状
思考题:是否 新相与母相的 比容差异越大, 体积应变能越 大呢?
固态相变表现为: 物质物理性能的突变。
因此,降低界面能和应变能以减小相变阻力是惯习现象出现的基本原因。
①非成扩n分 散不型从变相一协变同种型原长结子大(构;或离转子变)只为作有另规律一的种迁移结使点构阵。发生改组的相变。
②形核功取决于晶界的存在!
在界n棱或化界学隅处成形核分,的可以不进一连步续降低变形核化势。垒!
伸缩型半共格
切变型半共格
③ 非共格界面 由于δ( δ﹥0.25)界面处两相原子无法配合。性质与大角度 晶界相似!
(2)界面能 :由于新相与母相的点阵常数总会存在差异,在共格界面两侧必
然存在一定的弹性应力场。
①一部分同类键、异类键的结合强度和
固-固相界面能比液-固相界面高 数量变化引起的化学能;
②另一部分是由界面原子不匹配产生的
ห้องสมุดไป่ตู้
晶格畸变、自由能升高、促进形核及相变
界面形核时自由焓的变化:
通一过级②扩 相散变半偏:聚凡共进新格行旧的两界相相变的面,化相学δ变位大以相固等到溶,一体但中化定的学成位程分的度起一伏次时为偏开导,始不相,相通等界过的上相面坡变不扩。散能,使继浓续度差维越来持越完大。全共格学要一系列调
③配转变位温错度居来中时调,节扩散,速度0和.0驱5动≤力δ都≤较0大.,2此5;时转变速度最快——如T2.

九 固态相变PPT课件

九 固态相变PPT课件

(2)热激活界面过程控制的新相长大
新相的长大靠原子随机独立跳跃过相界面实现,需克服一定的 能垒,需要热激活,可分为连续长大机制和台阶长大机制。
对于台阶长大机制,新相长大速率:
ue Q /k1 T e G v/kT
a.过冷度很小时 b过冷度很大时
uK TGVeQ/k T
ueQ/k T
Q为原子由母相转移到新相的位垒(激活能),ν为原子振动频率,δ为新 相界面向母相推进的距离
<1>界面过程控制的新相长大 过冷度较小时,新相长大速率u与驱动力△G成正比;过
冷度 大时,长大速率随温度下降而单调下降。
<2>扩散控制的新相长大 β相半径r随时间τ按抛物线规律长大。
9.1.5 相变动力学
固态相变速率决定于新相的形成速率和长大速率。
1. 形核率 N c f
G
c c0e kT
f
△c的成分起伏时的自由能 变为:
G12G(c0)c2
p
q
G2
1.调幅分解:拐点p和q之间的 合金满足 G1﹤G0 ,G2﹤G0 , 无需形核,自发分解为成分为 x1和x2的α1和α2相,为上坡 扩散。 2.形核分解:x1和p、x2和q之 间的合金G1﹥G0 不能自发分 解,但G2﹤G0 ,可通过形核方 式分解为成分为x1和x2的α1 和α2相,为下坡扩散。
3. 不连续脱溶(两相式脱溶或胞状式脱溶)
• 通常在母相界面上形核,然后呈胞 状向某一相邻晶粒内生长,胞状脱 溶物与母相有明显界面
• 胞状脱溶物在晶界形核时,它与相 邻晶粒之中的一个形成不易移动的 共格晶面,而与另一晶粒间形成可 动的非共格晶面,因此胞状脱溶物 仅向一侧长大。
• 不连续脱溶可妨碍有益强化合金的 连续脱溶过程的进行,一般应避免, 但可获得比共晶组织细得多的层片 组织。

固态相变.ppt

固态相变.ppt
MMSCE2000057
菲克第二定律 实际中大多数重要的扩散都是不稳定扩散,
即扩散物质浓度分布随时间而变化。为了研究 这类情况,根据扩散物质的质量平衡,在第一 定律的基础上导出菲克第二定律,用以分析不 稳定扩散。
在一维情况下,菲克第二定律表示为:
MMSCE2000057
当扩散系数D为常数(即与浓度无关),则 菲克第二定律可表示为: 在三维扩散的情况下,菲克第二定律的表达式为:
因此在相变过程中,新相总是倾向于形成具 有一定形状并具有一定界面结构的晶核,以尽量 降低界面能和应变能,从而使形核功降低。
MMSCE2000057
b.非均匀形核 由于绝大多数的固体都包含有各种缺陷,如
空位、杂质、位错、晶界等,因此,实际上很难 出现理想的均匀形核,而相反倒是在上述缺陷处 优先形核,即发生非均匀形核。由于上述缺陷处 具有较高的能,在这些部位形核可以降低形核功, 所以非均匀形核要比均匀形核容易得多。
结果:有相变潜热,并伴随有体积改变。
MMSCE2000057
*二级相变:相变时两相化学势相等,其一级偏 微熵也相等,而二级偏微熵不等。
在转变温度Tc下其吉布斯自由能可
连续变化,又叫连续相变。
即: 1=2
S1=S2
1 2(等压膨胀系数)
1 2(等温压缩系数)
C p1 C p2 (热容量)
V1=V2
MMSCE2000057
1 2
1 2
T P T P
1 2
P T P T

21
T 2
P


22
T 2
P

2
T 2
P
(3) 相变过程的浓度条件 对于溶液中析出固体的相变而言,为使相变

固态相变ppt课件

固态相变ppt课件

• 水平。β跃迁到α相需激活能
• Δg而相原子跃迁到相所需 • 激活能为Δg+ Δ gαβ • 则两相原子的跃迁频率 • 分别为
G
α λ
Δg β
Δ gαβ
• ν β α = ν0exp(- Δg /Kt) • ν α β = ν0exp【- (Δg+ Δ gαβ)/Kt】
26
• 这样β相原子跳到α中的净频率为
13
• 固态相变增加能量Eε2 ,即弹性应变能,比 液态结晶困难。必须增大ΔGv即过冷度来克 服。
• 弹性应变能是由于新相和母相比体积不同 引起的,它与新相的几何形状有关,圆盘 状新相引起的弹性应变能最小。
Es/E0
球状 1
针状 0.5
盘状
0
1
2
新相几何形状比容相对值与应变能的关系 Es—新相单位质量应变能,E0----球状新相单位质 量应变能
5
• (6)调幅分解 某些高温下形成的均一固溶体缓 冷到某一温度,分解为结构与母相相同但成分不 同的微区转变:

α α1 +α2
• (7)有序化转变 在平衡条件下,固溶体中原子
位置由无序到有序的转变.
• 1.2.1.2 非平衡转变 在快速加热或冷却的条件 下,平衡转变受到抑制所发生的不符合平衡相图 上转变类型的转变,获得不平衡或亚稳态组织。
变称为多形性转变,如:钢的铁素体向奥氏体的 转变。
4
• (3)共析转变 合金在冷却时,同时由一 种固溶体析出两种不同相的转变,如:
• γ α+β。 • (4)包析转变 合金在冷却时,由两个固
相合并转变成一个固相的转变,如:Fe-B 系合金中910发生的包析转变 • γ + Fe2B α • (5)平衡脱溶沉淀 固溶体在冷却时因为溶 解度的下降,由固溶体中析出新相的过程, 如奥氏体中析出二次渗碳体。

固态相变的基本原理 教学PPT课件

固态相变的基本原理 教学PPT课件
38
孕育期
Incubation Period
转变开始线与纵坐标轴 之间的距离,表示在各 不同温度下过冷奥氏体 等温分解所需的准备时 间。
鼻 子 ----C 曲 线 上 转 变开始线的突出部,孕 育期最短的部位。
孕育 期
鼻 子
转变开始 转变终 了
39
C 曲线的测定方法
金相硬度法 奥氏体和转变产物的金相形态和硬度不同。 膨胀法 奥氏体和转变产物的比容不同。 磁性法及电阻法 奥氏体为顺磁性,转变产物为铁磁性。
向上 曲折
52
有部分贝氏体相变时, 贝氏体铁素体先析出,提高了A中 的碳含量,MS ↓,向下曲折。
向下曲折
53
③ CCT曲线位于C曲线的右下方 连续冷却转变时转变温度较低,孕育期较长。
54
温 细A 度
P
C曲线应用:不同冷却条件下的相变产物
均匀A
A1
等温退火
退火
ห้องสมุดไป่ตู้
? 淬火 (油冷)
正火 (空冷)
(炉冷)
奥氏体化温度越高,保温时间越长,则形成的奥氏体晶粒越粗大, 相变阻力小。
奥氏体化温度越高,保温时间越长,有利于难溶碳化物的溶解,成分也 越均匀,相变阻力大。
综合:降低奥氏体分解时的形核率,增加奥氏体的稳定性,使C曲 线右移。
45
C曲线的典型类型
46
47
48
过冷奥氏体连续冷却转变图
Continuous Cooling Transformation CCT 曲线
7
形核时自由能变化 (单位长度)
A=Gb2/4πK
位错形核时形核自由能 ∆G与核半径的关系
讨论
8
位错类型对形核的影响:

材料科学基础扩散与固态相变.幻灯片

材料科学基础扩散与固态相变.幻灯片
(1)误差函数解
适用条件:无限长棒和半无限长棒。(恒定 扩散源〕
表达式:Cx=Cs-(Cs-C0)erf(χ/2√Dt) (半 无限长棒)。
例:在渗碳条件下:Cs: 表 面 含 碳 量 ; C0: 钢 的原始含碳量→C(χ)-χ,t处的浓度。
(2)正弦解
Cx,t=Cp+A0sin(πx/λ)exp(-π2Dt/λ2)
2、菲克第二定律
一维
1)表达式
三维
c 2c 2c
稳态扩散:C/t=0,J/x=0。
非稳态扩散:C/t≠0,J/x≠0 (C/t=-J/x)。
C
C
C
J
C/ x=常数
C/ t0
J/ x 0
t
x
稳定扩散(恒源扩散)
t
x
不稳定扩散
用途:适用于不同性质的扩散体系; 可用于求解扩散质点浓度分布随时间和距离 而变化的不稳定扩散问题。
0
S2
JX δD1(SW )
JXD2(S S1)δ /
双原子分子气体溶解度与压力的关系为: S k P
则: JXDkP2P 1KP2P 1
FJAK(
P2
P1)A
式中:K—玻璃的透气率; A—玻璃面积。
(2)Fick二定律的应用
实际是根据不同的边界﹑初始条件,求解二
阶偏微分方程。
常用的两种解:
ⅰ)恒源向半无限大物体扩散的解;
概述
1、扩散的现象与本质
(1)扩散:热激活的原子通过自身的热振 动克服束缚而迁移它处的过程。
(2)现象:柯肯达尔效应。 (3)本质:原子无序跃迁的统计结果。 (不是原子的定向移动)。
柯肯达尔效应:
原来是指两种扩 散速率不同的金属在 扩散过程中会形成缺 陷,现已成为中空纳 米颗粒的一种制备方 法。

固态相变材料科学基础课件西南石油大学08_PPT课件

固态相变材料科学基础课件西南石油大学08_PPT课件
3、应变能 应变能包括共格应变能和体积应变能。
4、取相关系 固态相变时,为了降低母相与新相之间 的界面能,新相的某些低指数晶面与母相的某些低指 数晶面平行。
5、惯习面 固态相变时,为了降低界面能和维持共 格关系,新相往往在母相的一定晶面上开始形成.这 个与所生成新相的主平面或主轴平行的母相品面称为 惯习面.
效;
(5)小角度晶界或亚晶界上惯习面选择性形核;
四、晶核的长大 1、晶核的长大方式 按原子的运动规律可分为: (1)非协同型长大 原子移动无序
(2)协同型长大 母相原子有规则的向新相运动
2、晶核长大的控制因素
根据晶核的长大方式及母相和新相的化学成分的变化情况, 可将固态相变长大分为4类: ①成分不变协同型长大;
f(θ)形状因子的表达式
由图8—5可知.晶核最易在界隅形成,其次是界棱,最后是界 面.
(2)沿位错形核
位错沿位错形核后,位错消失而释放出畸变能,为 形核提供能量。
沿位错形核的特点:
(1)刃型位错比螺型位错更为有利; (2)较大柏氏矢量的位错促进形核的作用更为
有效;
(3)在位错结和位错割阶处易于形核; (4)单独位错比亚晶界上的位错对形核更为有
1、有序度参量 (1)长程有序
(2)短程有序
2、有序化过程 : 有序化过程需要原子的迁移,但不 引起宏观的成分改变,仅仅是邻近亚点阵上原子的换 位。
有序畴: 点阵上的原子交换位置,形成有序排列的微 小区域。
反相畴界:有序畴相遇时,若它们原子占据的亚点阵 在各自的有序区域中恰好相反的交界面。
2、按原子迁移情况分类,可将固态相变 分为扩散型相变和非扩散型相变
(1)扩散型相变 依靠原子(或离子)的扩 散的相变,例如脱溶沉淀、调幅分解、共析转 变等;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

通常取f=0.05的时间(τ0.05 )为转变开始时间, 取f=0.95的时间(τ0.95 )为转变终止时间。以纵 坐 标 为 温 度 , 横 坐 标 为 时 间 , 作 τ0.05 - T 及 τ0.95 -T曲线便可得到等温转变动力学图,也 称TTT图。
由TTT图,当温度较高时(如T1),扩散速度快, 但相变驱动力小,转变速度较慢;当温度较低 时(如T3),相变驱动力大,但扩散速度慢,转 变速度也较小;而在中间温度(如T2)时,相变 驱动力和扩散速度都较大,转变速度最快。
<2>受扩散控制的晶核长大 β相半径r随时间τ按抛物线规律长大。
固态相变
五、固态相变动力学
固态相变速率决定于新相的形成速率和 长大速率。
1. 动力学方程 (给定温度下的等温转变)
均匀形核的形核率及受点阵重构控制的长 大速率在恒温转变时均为常数,这类相变 的动力学可用Johnson-Mehl方程描述:
材料科学基础-固态相变
第四章第一节
固态相变总论
《材料科学基础》第八章 第一节
固态相变
固态相变的定义:
固体材料的组织、结构在温度、压力、成 分改变时所发生的转变统称为固态相变。
一、固态相变的特点
大多数固态相变是通过形核和长大完成的, 驱动力同样是新相和母相的自由焓之差。 阻力: 界面能和应变能
1. 相界面
G T
p
G T
p
G p
T
G p
T
固态相变
2TG2
p
2G T2
p
2pG2
T
2pG2
T
2G Tp
2G Tp
固态相变
由于
T2G2 p
S Tp
cp T
2G p2
T
V
2G Tp
V
其中β为材料的压缩系数,α为材料的热膨胀系数
二级相变时无体积效应和热效应,材料的压缩 系数、热膨胀系数及比定压热容均有突变。
通过扩散偏聚的方式进行的相变,为无核相变。 调幅分解
固态相变
三、固态相变的形核 1. 均匀形核
形成半径为r的球形晶核时,系统自由焓 的变化为: △G=(4π/3)r3△GV+4πr2γαβ
+ (4π/3) r3△GE =(4π/3)r3(△GV+△GE)+4πr2γαβ
固态相变
△G与r的关系曲线
固态相变
3. 晶核长大控制因素
对于冷却过程中发生的相变,当相变 温度较高时原子扩散速率较快,但过 冷度和相变驱动力较小,晶核长大速 率的控制因素是相变驱动力;相变温 度较低时,过冷度和相变驱动力较大, 原子的扩散速率将成为晶核长大的控 制因素。
固态相变
<1>受界面过程控制的晶核长大 过冷度较小时,新相长大速率u与驱动力 △G成正比;过冷度较大时,长大速率随温 度下降而单调下降。
△G
4πr2γαβ
△G* 0
r*
4πr3(△GV+△GE)/3
r △G
△G在r=r*时达到极大值,这里 r*=-2γαβ/(△GV+△GE)
固态相变
形成临界晶核必须
△G
首先克服形核势垒
4πr2γαβ
△G*, △G*称为临
界晶核的形核功
△G*=
16
3
3
GV GE
2
γαβ、 △GE减小,均 可降低△G*,有利
C曲线的鼻子温度
固态相变
《西游记》语段阅读
三、语段阅读
1、阅读下面语段,回答(1)~(3)题。
大圣却有算计:爬上树,一只手使击子,一只手将锦布直裰的襟儿扯起来,做
叶,敲了三个果,兜在襟中,跳下树,一直前来,径到厨房里去那八戒笑道:“哥
晶粒1 晶粒2
晶界
共格或半共格界面
晶界形核示意图
固态相变
四、晶核的长大
1. 晶核长大的方式
“平民式”散漫无序位移 非协同型长

2. “晶军核队长式大”类有型序位移
协同型长大
• 成分不变协同型长大 • 成分不变非协同型长大 • 成分改变协同型长大 • 成分改变非协同型长大 前两类无需溶质原子扩散,长大速度仅与界面 点阵重构过程有关,故晶核长大速度很快。
γαβ
θ β

△G=V△GV+Aαβγαβ +V△GE -Aααγαα
固态相变
界面形核示意图
推导出: r* =-2γαβ/(△GV+△GE)
△G*非=△G*均 f( θ)
f(θ) 是形状因子 非均匀形核时,临界晶核半径r*与晶界的存在 无关,但形核功△G*取决于θ,θ=00时△G降为 0,θ=900时,△G*非=△G*均。在界棱或界隅 处形核还可以进一步降低形核势垒。
f(τ)=1-exp(-KIu3τ4/4)
固态相变
非均匀形核的形核率及受扩散控制的长 大速率随时间而变化,此类相变的动力 学用Avrami方程描述:
f(τ)=1-exp(-Bτn)
固态相变
2. 等温转变动力学图
100%
T2
T3



积 50%


0
温 度
固态相变
T1>T2>T3 T1
时间 T1 T2 T3 时间
晶核最易在界隅形成,其次在界棱,最后是界面。
固态相变
只有晶界两侧界面都不共 格时,晶核才类似球形。 通常新相在大角度晶界形 核时,一侧可能与母相具 有一定的取向关系形成平 直的共格或半共格界面, 以降低界面能、减少形核 功;另一侧必为非共格界 面,为减少相界面面积, 故呈球冠状。
(2)沿位错形核
新相 非共格界面
于新相形核。
△G* 0
பைடு நூலகம்r*
4πr3(△GV+△GE)/3
r △G
临界形核功和临界晶核半径
形核率与临界晶核的形核功、相变温度之间 的函数关系:
I=ηNexp(- △G*/kT)
固态相变
二、非均匀形核 非均匀形核通常是固态相变的主要形核方式。
(1)晶界形核
设α为母相,β为新相,两 相邻α晶粒间界面能为γαα , α-β界面为非共格界面,γα界α α 面能为γαβ。球面半径为r, α 界面形核时自由焓的变化 为:
(1)共格界面 (2)半共格界面 (3)非共格界面
固态相变
因为
G S T p
G p
T
V
所以 Sα≠Sβ, Vα≠Vβ
一级相变有体积和熵的突变, △V≠0,△S≠0
固态相变
二级相变:
若相变时,Gα=Gβ,μαi=μβi ,并且自由焓的 一阶偏导数也相等,但自由焓的二阶偏导数 不相等,称为二级相变。
磁性转变、有序-无序转变多为二级相变。
固态相变
2. 按原子迁移情况分类
扩散型相变, 非扩散型相变 扩散型相变
脱溶沉淀、调幅分解、共析转变等
非扩散型相变
原子(或离子)仅作有规则的迁移使点阵 发生改组。 马氏体转变
固态相变不一定都属于单纯的扩散型
或非扩散型。 见表8-1
固态相变
3. 按相变方式分类 有核相变和无核相变 无核相变
相关文档
最新文档