统计学要点摘要英文版 Statistic Review

合集下载

统计学重点整理CH3-Describing Data Through Statistics

统计学重点整理CH3-Describing Data Through Statistics

CH3Mode - the most frequently occurring value in a data setApplicable to all levels of data measurement (nominal, ordinal, interval, and ratio)Can be used to determine what categories occur most frequentlyBimodal –In a tie for the most frequently occurring value, two modes are listedMultimodal -- Data sets that contain more than two modesMedia - middle value in an ordered array of numbers.For an array with an odd number of terms, the median is the middle numberFor an array with an even number of terms the median is the average of the middle twonumbersMean is the average of a group of numbersApplicable for interval and ratio dataNot applicable for nominal or ordinal dataAffected by each value in the data set, including extreme valuesComputed by summing all values in the data set and dividing the sum by the number ofvalues in the data setPercentile - measures of central tendency that divide a group of data into 100 partsAt least n% of the data lie below the nth percentile, and at most (100 - n)% of the data lieabove the nth percentileQuartile - measures of central tendency that divide a group of data into four subgroupsQ1:25% of the data set is below the first quartileQ2:50% of the data set is below the second quartileQ3:75% of the data set is below the third quartileInterquartile Range - range of values between the first and third quartiles13 Q Q Range ile Interquart -=Mean Absolute Deviation(MAD) - average of the absolute deviations from the mean Population variance is denoted by σ2Sample Variance – denoted by S2Empirical Rule – used to state the approximate percentage of values that lie within a givennumber of standard deviations from the set of data if the data are normally distributed Empirical rule is used only for three numbers of standard deviation: 1σ, 2σ, and 3σ1σ = 68% of data;2σ = 95% of data; and 3σ = 99% of data()122-=∑-n X X S ()N X ∑-=μσ22Chebyshev’s Theorem – applies to all distributions, and can be used whenever the datadistribution shape is unknown or non-normalChebyshev’s Theorem – states that at least (1 – 1/k2) values fall within +k standard deviations of the mean regardless of the shape of the distributionZ score – represents the number of Std Dev a value (x) is above or below the mean of a set ofnumbers when the data are normally distributedZ score allows translation of a value’s raw dista nce from the mean into units of std dev. Z = (x-µ)/σIf Z is negative, the raw value (x) is below the meanIf Z is positive, the raw value (x) is above the meanZ = + 1, are app. 68% of the valuesZ = + 2, are app. 95% of the valuesZ = + 3, are app. 99% of the valuesCoefficient of Variation (CV) - ratio of the standard deviation to the mean, expressed as apercentage;useful when comparing Std Dev computed from data with different means Measurement of relative dispersionVariance and Standard Deviation of Grouped DataCoefficient of Skewness (Sk) - compares the mean and median in light of the magnitude to the standard deviation; Md is the median; Sk is coefficient of skewness; σ is the Std DevIf Sk < 0, the distribution is negatively skewed (skewed to the left).If Sk = 0, the distribution is symmetric (not skewed).If Sk > 0, the distribution is positively skewed (skewed to the right).()100..μσ=V C ()σμσσ222==∑-N f M Sample Population ()S X M S S n f 2221=-=∑-()σμd M S k -=3。

统计学专业英语

统计学专业英语

统计学专业英语Statistics is a specialized branch of mathematics that involves the collection, analysis, interpretation, presentation, and organization of data. It is used to make informed decisions, predictions, and conclusions based on numerical information.Here are some important terms and concepts related to statistics:1. Data: Facts, numbers, or information that can be collected and analyzed.2. Population: A complete set of individuals or objects that a statistician is interested in studying.3. Sample: A subset of the population that is selected for analysis.4. Descriptive statistics: Techniques used to summarize and describe data, such as measures of central tendency (mean, median, mode) and measures of variability (range, standard deviation).5. Inferential statistics: Techniques used to make inferences or generalizations about a population based on data from a sample.6. Hypothesis testing: The process of using statistical analysis to determine if there is enough evidence to support or reject a hypothesis.7. Probability: The likelihood of an event occurring, often expressed as a number between 0 and 1.8. Random variable: A variable that takes on different values based on chance or probability.9. Distribution: A pattern of values or probabilities of a random variable.10. Regression analysis: A statistical method used to estimate the relationship between a dependent variable and one or more independent variables.11. Confidence interval: A range of values that is likely to contain the true value of a population parameter, along with a level of confidence associated with it.12. Statistical significance: The probability that an observed difference or relationship between variables is due to chance alone. These are just a few key terms and concepts in statistics. A degree in statistics typically involves studying probability theory, mathematical statistics, data analysis, and statistical modeling. Students also learn how to use statistical software and perform various tests and analyses.。

统计学要点摘要英文版-Statistic-Review

统计学要点摘要英文版-Statistic-Review

Chapter 2 Statistic ReviewA.Random variables;1.expected value:Define :X is a discrete random variable, “ the mean (or expected value)of X " is the weighted average of the possible outcomes, where the probabilities of the outcomeserve as the appropriate weight.p i is ith of prob.,i=1,2, ……nInterpretation:The random variable is a variable that have a probability associated with each outcome. Outcome is not controlled。

Discrete random Var。

: has finite outcome,or outcome is countable infinite.Continuous random Var。

:uncountable infinite outcome,the probability of each outcome is small because of too many numbers.For normal random Var。

, probability density function is used to calculate the probability between the are.E( ):the expectations operator,→… “ sample mean”, used to estimateThe is changed from sample to sample. is not a fixed on time,the outcome selected should not be the same. There is prob。

统计学要点摘要英文版-Statistic-Review培训讲学

统计学要点摘要英文版-Statistic-Review培训讲学

Chapter 2 Statistic ReviewA. Random variables; 1. expected value:Define : X is a discrete random variable, “ the mean (or expected value) of X ” is theweighted average of the possible outcomes, where the probabilities of the outcome serve as the appropriate weight.∑++===n n i i X X p X p X p X p X E ......)(2211μ p i is ith of prob., i=1,2, ……nInterpretation : The random variable is a variable that have a probability associated witheach outcome. Outcome is not controlled. Discrete random Var. : has finite outcome, or outcome is countable infinite.Continuous random Var.: uncountable infinite outcome, the probability of each outcome issmall because of too many numbers.For normal random Var., probability density function is used to calculate the probabilitybetween the are.E( ): the expectations operator, ∑=1i p→ NXobs of N X X X X X Ni iN∑==+++=`1321.)(....… “ sample mean ”, used to estimate X μThe X ϖis changed from sample to sample. is not a fixed on time, the outcome selected should not be the same. There is prob. associated with each X ϖ. X ϖis also a random variable, we can calculate E(X ϖ).2. variance: measure the dispersion(分散), the range of the value∑-=-=-==2222)()]([})]([{)(Xi i i i XX E X E X E X E X p X Var μσ “population variance ” constant)(X Var X =σ …………... “population standard deviation ”→ 1)(ˆ222--==∑N X X S iX X σ“sample variance ” used to estimate 2X σ2ˆX X X S S ==σ……….. “sample standard deviation ”3. joint distribution: (linear relation of X and Y bi-variance random variance.))])([(),(Y X Y X E Y X Cov μμ--=Covariance, measuring the linear relationship between X and Y.),(Y X Cov , depends on the units of X and Y; different unit-> different),(Y X Cov >0: the best-fitting line has a positive slope, positive relationship between X and Y . ),(Y X Cov <0: the best-fitting line has a negative slope, negative relationship between X and Y . ),(Y X Cov =0: there is no linear relationship between X and Y , but may be have nonlinearrelationship.YX XY Y X σσρ),cov(=“population correlation coefficient ” is scale free.XY ρ>0, a positive correction, XY ρ<0, a negative correction XY ρ=0, no linear relationship between X and Y11-≥≥XY ρ, XY ρ=1: regression line is a straight line with positive slope, XY ρ=-1: regressionline is a straight line with negative slope.1))((),(ˆ1---=∑=N Y Y X XY X vCo Ni i i,YX XYS S Y X ),(v ˆco =γ=221)()())((∑∑∑----=Y YX X Y Y X XiiNi i i“sample correlation coefficient ”)int (,1,1)(,1)(11prob jo pY p X p ijN i N j ij===∑∑∑∑==E(X) =0.263×1+0.403×2+0.334×3=2.071 Var(X) =4.881-(2.071)2=0.591959 E(Y) =0.298×6+0.385×5+0317×4=4.981 Var(Y)= 25.425-(4.981)2=0.614639Cov(X,Y)=)()(Y E X E Y X p ijj i j i -∑∑=10.001-2.071×4.981= -0.3174. formulaE(b)=b , Var(b)=0;E(aX)=aE(X), Var(aX)=a 2 Var(X ); E(aX+b)=aE(X)+b, Var(aX+b)= a 2 Var(X ))()]([)]}([{])([)]()[()(2222222X Var a X E X E a X E X a E b X aE b ax E b aX E b aX E b aX Var =-=-=+-+=+-+=+ΘE(X+Y)=E(X)+E(Y), Var(X+Y)=Var(X)+Var(Y)+2Cov(X, Y)\),(2)()()]}()][([2)]([)]({[)]}([)]({[)]()([)]()[()(22222Y X Cov Y Var X Var Y E Y X E X Y E Y X E X E Y E Y X E X E Y E X E Y X E Y X E Y X E Y X Var ++=----+-=-+-=--+=+-+=+Θ If X and Y is independent (linear uncorrelated), than E(X+Y)=E(X)+E(Y) → Cov(X,Y)=0, XY ρ=0, → Var(X+Y)=Var(X)+Var(Y))(][)]()()()([)]()][([),(=-=-=+--=+--=--=Y X Y X Y X Y X Y X XY E X Y XY E Y E X E Y XE X XE XY E Y E Y X E X E Y X Cov μμμμμμμμμμΘ,0),(=Y X Cov can ’t define the X and Y are independent. 2))(()(X E X X E ≠• X is not independent of itself.B. (probability) distributions:1. the normal distribution:),(`~2X X N X σμ2. the standard normal distribution:)1,0(~,N Z X Z XXσμ-=3. the Chi-square distribution:∑=+++==Ni N i NZ Z Z Z 12222122Λχ Z i : N independently normal distribution random variables with 0 mean and variance 1. → As N gets larger, the χ2 distribution because an approximation of normal distribution. the rang of χ2 : 0 → ∞ 4. the t distribution:If (1) Z is normal distribution with mean 0 and variance 1, (2) χ2 is distribution as Chi-square with N degrees of freedom, (3) Z and χ2 are independent Thenn nt NZ~2χ→As N gets large, the t distribution will tend to approximately be normal distribution. 5. the F distribution:if X and Y are independent and distribution as Chi-square will N1 and N2 degrees of freedom, respectively thus21,21~N N F N YN Xassume Xi ’s are independent each other,),(~2NX XX σμ regardless of the distribution of XE(X)=)(1)(1][21N i iX X X E NX E N NX E +++==∑∑Λ =X X X X X NN X X N μμμ=•=+++)(1Λ N N N X N X NX X X i i X22222)(1)var(1)1var()var(σσσ=•====∑∑22121)]()[()var(N N i X X X E X X X E X +++-+++=∑ΛΛΘ =22211)]}([)([)]({[N N X E X X E X X E X E -++-+-Λ =∑∑--+-)]()][([2)]([2j j i i i i X E X X E X E X E X =)var()var()var()var(21N i X X X X +++=∑Λ=2222X X X X N σσσσ=+++Λ If ),(~2XX N X σμ, then i.i.d. (independent with other variables, identically distributed over time) If ),(~2XX N X σμ, then ),(~2NN X XX σμ* Central limit theorem:If ),(~2XX X σμ (at any distribution), then ),(~2NN X XX σμ as N(sample size) increase.1)(ˆ2--==∑N X XS iX σ, what is the distribution of NS X 0μ- ?C. hypothesis testing:ex. H 0: μ=100… null hypothesis, H 1: μ≠100 …alternative hypothesis α=0.05 … level of significanceto get the value of X , the test statistic, NX Z 2100σ-=if σ2 is know.To check the critical value, Zc ( whether or not to accept H 0)If accept H 0:“we can not reject H 0 at 95% confidence level based on the data we have ”If reject H 0:“we can reject H 0 at 5% level of confidence.”Type I error: reject H 0 when H 0 is true, the probability of making type I error is α.Type II error: accept H 0 when H 0 is false, the probability of making type II error is difficult to determine.When the confidence interval increase, then the type I error will reduce and type II error will increase.※ 22000)1()1()()(σσμμμ---=-=-N S N NX S NX NS X Θ(1) if ),(~2XX N X σμ, then ),(~2NN X XX σμ, the numerator(分子) (NS X 0μ-) is the standardnormal variable Z, and22)1(σS N - is 21-N χ(21222222)()1()(11-=-=-⇒--=∑∑N i i X X S N X X N S χσσσσ)1210~)1(~----∴N N t N ZNS X χμ, if numerator and denominator(分母) are independent.(2) if ),(~2XX N X σμ, the we will appeal to the central limit theorem.D. point and interval estimate:1. point estimate: ex X =40 , but we don ’t know whether the true value approximates it ornot.2. interval estimate:NZ X Xσα2±, α=0.05 , if X σ is know.NS t X Xt 1,2-±α,α=0.05 , if X σ is unknown and N is small (<31).95% interval will include the true value.E. properties of estimator: unbiasedness, efficiency, consistency1. unbiasedness:βˆ is an unbiased estimator of β, if E(βˆ) =β(true value) → ex. X is an unbiased estimator of X μ;ex. 2X S is an unbiased estimator of 2X σ]})()([11{]1)([)(2222∑∑----=--=X X X N X N E N X X E SE μμ =222)(11X X X NN N N σσσ=-- ∑∑∑----+-=---=-)])((2)()[()]()[()(2222X X X X X X X X X X X X X X μμμμμμΘ =∑∑----+-)()(2)()(22X X X X X X X N X μμμμ =222)(2)()(X X X X N X N X μμμ---+-∑ =22)()(X X X N X μμ---∑→ bias= E(βˆ) -β2. efficiency:define: (a) minimum mean square error,MSE(βˆ)=E(βˆ-β)2 =[bias(βˆ)]2+Var(βˆ).Pove : 22]})([)](ˆ{[)ˆ(ββββββ-+-=-E E E E =]})([)](ˆ{[2])([)](ˆ[22ββββββββ--+-+-E E E E E E =)}ˆ()]ˆ([ˆ)ˆ(ˆ{2)]ˆ([)ˆvar(22βββββββββE E E E bias +--++ =0)]ˆ([)ˆvar(2++ββbias → we check X , it is mostly around μ.→ when bias(βˆ)=0, then MSE(βˆ)=Var(βˆ) → If we have an unbiased estimator with large dispersion of true value (ie. High var.) and abiased estimator with low var. we might prefer biased estimator than unbiased estimator to maximize the precision of prediction.Def. (b) If for a given sample size, (1) βˆis unbiased, (2) Var(βˆ))~var(β≤, when β~ is any other unbiased estimator of β. Then βˆ is an efficient estimator of β. Cramer-Rao lower bounds: gives a lower limit for the variance of any unbiased estimator.EX. The lower var(X )=N 2σ ; the lower variance for N 422σσ=( between the all unbiased estimators, the min. is kN -=422)ˆvar(σσ)3. consistency:The probability limit of βˆ, plim (βˆ)=β as N →∞ ; ,1)ˆ(lim =<-∞→δββprob N for any δ>0. 0)ˆ(,1)ˆ(:=>-==∞→∞→δββββN N prob prob ie2. criteria to consistency:(a) sufficient condition for consistency: not necessary for consistencyβˆ is a consistent estimator of β if plim (βˆ)=β as N →∞ → consistency ⇒⨯ plim (βˆ)=β (b) mean square error consistency:If βˆ is an estimator of β and if ,0)ˆ(lim =∞→βMSE N then βˆ is a consistent estimator of β→ ie X is a consistent estimator of X μ0lim ,0)var()]([)(222==+=+=∞→MSE NNX X bias X MSE N XXσσΘSlutsky ’s theorem: If plim (βˆ)=β and g(βˆ) is a continuous function of βˆ, then plim g(βˆ)=g[ plim (βˆ)] ( This is “ consistency carries over ” However, consistency is not always carries over. ) Biasedness doesn ’t carry over.4. asymptotic unbiasedness: as N becomes large and large.“βˆ” is an asymptotically unbiased estimator of β if ,)ˆ(lim ββ=∞→E N → if estimator is unbiased ,⇐⨯⇒ it will be asym. unbiased.→ Ex. If ∑-=22)(1~X XNiσ, it is asym. unbias221)~(σσNN E -=Θ, 22)~(lim σσ=∞→E N5. asymptotic efficiency: N →∞“βˆ” is an asymptotically efficient estimator of β if all of the following conditions are satisfied:(a) βˆ is an asymptotic distribution with finite mean and finite variance. (b) βˆ is consistent ; (c) no other consistent estimator of β has small asymptotic variance than βˆ. → if estimator is efficient, ⇐⨯⇒it will be asym. efficient.unbiaedness efficiency consistencyasym. unbiasedness asym. efficiencybiaedness inefficiency consistencyasym. unbiasedness asym. efficiencybiaedness inefficiency inconsistencyasym. unbiasedness asym. inefficiencyReview of linear algebra1. a mrtrix A is idempotent iff AA=A.2. If the inner product of the 2 vectors vanishes (ie., the scalar is 0), then the vector are orthogonal. [An inner product (or scalar, or dot product) of 2 vectors is a row vector times a column vector, yielding a scalar. An outer product of 2 vectors is a column vector times a new vector, yielding a matrix ]3. The rank of any matrix A, ρ(A), is the size of the largest n on-vanishing determinant contained in A;Or, the rank is the maximum number of linearly independent rows or columns of A, where a 1, a 2, … a N is a set of linearly independent vectors, iff∑==Nj j ja k10 ,necessarily implies021====N k k k Λ→Ex. A A ,6832⎥⎦⎤⎢⎣⎡==12-24=-12≠ 0, =∴)(A ρ 2B B ,4263⎥⎦⎤⎢⎣⎡==12-12=0 , =∴)(B ρ 1→ properties:a. )(0A ρ≤=intege r ≦min(M,N) where A is an M ×N matrix.b. )(A ρ=N, 0)0(=ρc. )(A ρ=)'()'()'(AA A A A ρρρ==d. if A and B are of the same order, )()()(B A B A ρρρ+≤+.e. if AB is defined, )](),([min )(B A AB ρρρ≤f. If A is diagonal, )(A ρ= number of nonzero elements.g. If A is idempotent, )(A ρ=trace(A.)h. The ranks of a matrix is not changed if one row ( or column) is multiplied by a nonzero constant, or if such a multiple of one row (column) is added to another row (column).4. A aquare matrix of order N is nonsingular iff it is of full rank, )(A ρ=N (or ≠A 0); otherwise, it is aingular. The rank of matrix is unchanged by premultiplying or postmultiplying by a nonsingular matrix.5. differentiation in matrix notation (rules):a. If ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⨯⨯M M M M M a a a X X X M M 111, where a i =(i=1,2,…M) are constant, then=∂∂XX a )'( a. b. IF A is a symmetric matrix of order M×M where the typical element is a constant a ij , then=∂∂X AX X )'(2AX, if not a symmetric matrix =∂∂XAX X )'((A ’+A)X. c. IF A is a symmetric matrix of order M×M where the typical element is a constant a ij , then=∂∂∂')'(X X AX X 2A, =∂∂AAX X )'(XX ’If Y and Z are vectors, B is a matrix, then=∂∂Y BZ Y )'(BZ , =∂∂Z BZ Y )'(B ’Y , =∂∂BBZ Y )'(YZ ’Formula for Matrix(A ’)’=NM A ⨯ =⨯⨯)'(KN N M B A B ’A ’A B ≠BA in general'')'(C A C A NM ±=±⨯111)(---⨯⨯=D E E D MM M M , iff det D≠0 and E≠0 ( ie. Iff D and E nonsingular matrices)(D -1)’= (D’)-1 Det D=det D ’Trace (D ± E )= trace (D) ±trace (E) Trace )()(NN MN N M FA trace F A ⨯⨯⨯=Trace (scalar)=saclar E[trace (D)]=trace (E(D))。

概率论与数理统计英文版总结

概率论与数理统计英文版总结

概率论与数理统计英文版总结Probability theory and mathematical statistics are essential branches of mathematics that deal with the study and analysis of uncertain events and data. These two fields are closely related and provide the foundation for making informed decisions and drawing conclusions based on probability and statistical analysis. In this summary, we will explain the key concepts and principles of probability theory and mathematical statistics.Probability theory is concerned with the study of random events and their likelihood of occurrence. It is used toquantify uncertainty and provide a framework for making predictions and decisions in various disciplines, including natural sciences, social sciences, finance, and engineering. The fundamental concept in probability theory is the probability of an event, which is a value between 0 and 1 that represents the likelihood of the event occurring.Probability theory is built upon three main axioms:2. The probability of the entire sample space is always 1.。

统计学原理英文版review

统计学原理英文版review

Key Words1、Nominal data 列名数据(定类数据)2、Ordinal data 顺序数据(定序数据)3、Interval data 间隔数据(定距数据)4、Ratio data 比率数据(定比数据)5、Descriptive statistics 描述统计学6、inferential statistics 推断统计学7、Elementary units 基本单位8、Population 总体9、Qualitative variable 定性变量10、quantitative variable 定量变量11、Sample survey 抽样调查12、Census (人口)普查13、Probability sample 概率抽样14、nonprobability sample 非概率抽样15、Outliers 异常值16、Bar chart 柱状图17、Pie chart 饼图18、Scatter diagram 散点图19、Histogram 直方图20、Class mark 组内代表值21、class width 组距22、Frequency 频数23、Open-ended class 开口组24、Per capita GDP 人均GDP25、Arithmetic mean 算术平均数26、Geometric mean 几何平均数27、Range 极差,全距28、interquartile range 四分位差,内距29、Median 中位数30、Mode 众数31、Parameter 参数32、Statistic 统计量33、Variance 方差34、standard deviation 标准差35、Mean absolute deviation 平均差36、Skewness 偏度37、Kurtosis 峰度38、Coefficient of variation 离散系数39、stock price indexes 股票价格指数40、consumer price index (CPI) 消费价格指数41、simple index 个体指数42、combined index 总指数43、Aggregative index number 综合指数44、Average index number 平均数指数45、intermediate factor 同度量因素(媒介因素)46、Laspeyres indexes 拉氏指数47、Paasche indexes 派氏指数48、Fisher’s ideal indexes 费雪理想指数49、Simple Linear Correlation 简单线性相关50、Regression 回归51、Residuals 残差52、Coefficient of Correlation 相关系数53、Ordinary Least Squares 最小二乘法54、Independent variable 自变量55、Dependent variable 因变量56、Slope 斜率57、Intercept 截距58、Coefficient of Determination 决定系数59、time series 时间序列60、Long-term trend 长期趋势61、Seasonal fluctuation 季节变动62、Moving averages method 移动平均法63、seasonal indexes 季节指数Functions :1)Countif (range, criteria)用来计算区域中满足给定条件的单元格的个数。

统计学英文

统计学英文

统计学英文Statistics is a branch of mathematics that deals with the collection, analysis, interpretation, presentation, and organization of data. In this article, we will discuss the key concepts and principles of statistics.Sample and PopulationStatistics is based on the idea of sampling. A sample is a subset of a population that is selected for analysis. The population is the entire group that is the subject of the study. For example, if we want to study the average age of university students in a country, the population is all the university students in the country. We cannot study the entire population, so we select a sample of students from different universities and use statistics to make inferences about the population based on the sample.Descriptive and Inferential StatisticsDescriptive statistics is concerned with summarizing and describing data. It includes measures of central tendency such as mean, median, and mode, and measures of variability such as range and standard deviation. Descriptive statistics helps us understand the characteristics of the data.Inferential statistics, on the other hand, is concerned with making conclusions about a population based on a sample. It involves testing hypotheses and estimating parameters. For example, we may want to test the hypothesis that the average age of university students in the country is 20 years. We would select a sample of students, calculate the sample mean, anduse statistical tests to determine whether the difference between the sample mean and the hypothesized population mean is significant.Variables and Data TypesA variable is a characteristic of a population or a sample that can take on different values. There are two types of variables: quantitative and qualitative. Quantitative variables are numerical, such as age, weight, and height. Qualitative variables are categorical, such as gender, ethnicity, and occupation.Data can be collected in different ways, such as through surveys, experiments, and observations. Data can also be classified into different types: nominal, ordinal, interval, and ratio. Nominal data are categorical, such as gender or race. Ordinal data are ranked, such as academic achievement or social status. Interval data are numerical, such as temperature or time, but lack a true zero point. Ratio data are numerical and have a true zero point, such as weight or height.Measures of Central TendencyMeasures of central tendency are used to summarize the data and provide a single value that represents the typical score. The three most commonly used measures of central tendency are the mean, median, and mode.The mean is the arithmetic average of the scores. It is calculated by adding up all the scores and dividing by the number of scores. The mean is sensitive to outliers, or extreme scores, which can skew the results.The median is the middle score when the scores are arranged in order. It is not affected by outliers and is a better measure of central tendency when the distribution is skewed.The mode is the most common score. It is useful for nominal data and can be used with ordinal data.Measures of VariabilityMeasures of variability are used to describe the spread or dispersion of the data. The most commonly used measures of variability are the range, variance, and standard deviation.The range is the difference between the largest and smallest scores. It is affected by outliers and is not a very reliable measure of variability.The variance is a measure of how much the scores deviate from the mean. It is calculated by subtracting each score from the mean, squaring the differences, and averaging the squares. The variance is not as intuitive as the other measures of variability, but it is useful for statistical analysis.The standard deviation is the square root of the variance. It is a more intuitive and commonly used measure of variability. The standard deviation is useful for determining how much the scores deviate from the mean and for estimating confidence intervals.Hypothesis TestingHypothesis testing is a process of determining whether a statement about a population is likely to be true or false based on a sample of data. The statement is called a null hypothesis, and the alternative to the null hypothesis is called the alternative hypothesis. We collect data and use statistics to test the null hypothesis.We use a significance level, or alpha, to determine whether the results are statistically significant. If the p-value is less than the significance level, we reject the null hypothesis and accept the alternative hypothesis.ConclusionStatistics is a powerful tool for analyzing and interpreting data. Understanding the concepts and principles of statistics is essential for making informed decisions and drawing accurate conclusions from data.。

统计学之估计与置信区间(英文版)

统计学之估计与置信区间(英文版)
The sample mean of $45,420 is a point estimate of the unknown population mean.
17
Example: Confidence Interval for a Mean – σ Known
The American Management Association wishes to have information on the mean income of middle managers in the retail industry. A random sample of 256 managers reveals a sample mean of $45,420. The standard deviation of this population is $2,050. The association would like answers to the following questions:
5. Construct a confidence interval for a population proportion(总体比例).
6. Determine the sample size for attribute and variable sampling.
4
Point Estimates and Confidence Intervals for a Mean
7
Population Standard Deviation (σ) Known
A confidence interval estimate is a range of values constructed from sample data so that the population parameter is likely to occur within that range at a specified probability. The specified probability is called the level of confidence(置信水平).

在统计方面的英语

在统计方面的英语

在统计方面的英语In terms of statistics, there are several key concepts and techniques that are important to understand. These include measures of central tendency, variability, probability, and hypothesis testing. Central tendencyrefers to the typical or average value of a set of data,and can be measured using the mean, median, or mode. Variability, on the other hand, describes the spread or dispersion of the data, and is often measured using the range, variance, or standard deviation. Probability is a measure of the likelihood of a particular event occurring, and is used to make predictions and decisions based on uncertain outcomes. Hypothesis testing is a technique usedto evaluate the strength of evidence in support of a claim about a population parameter.在统计学方面,有几个重要的概念和技术需要理解。

这些包括中心趋势、变异性、概率和假设检验。

中心趋势是指一组数据的典型或平均值,可以用均值、中位数或众数来衡量。

统计学学科英语作文模板

统计学学科英语作文模板

统计学学科英语作文模板英文回答:Statistics is the science of collecting, organizing, and interpreting data to provide information. It is used in a wide variety of fields, including business, economics, healthcare, and social science.Statistical methods can be used to describe data, make inferences about a population, and predict future events. Descriptive statistics provide a summary of the data, such as the mean, median, and mode. Inferential statistics allow us to make inferences about a population based on a sample. Predictive statistics allow us to use data to make predictions about future events.Statistics is a powerful tool that can be used to make informed decisions. It is important to understand the basics of statistics in order to be able to interpret data and use it to make sound decisions.中文回答:统计学是一门收集、整理和解释数据以提供信息的科学。

大二统计学知识点总结双语

大二统计学知识点总结双语

大二统计学知识点总结双语Statistics is a fundamental subject for students majoring in mathematics, economics, and many other fields. In the second year of college, students delve deeper into statistical concepts and methods. In this article, we will summarize the key knowledge points of second-year statistics in both Chinese and English.1. 数据与变量 (Data and Variables)在统计学中,数据是指收集到的事实或观察的结果。

变量是研究中所关注的特征或属性。

数据可以分为定量数据和定性数据两种。

定量数据通常以数字形式表示,而定性数据描述的是非数量性质的特征。

In statistics, data refers to the facts or observations that have been collected. Variables are the characteristics or attributes of interest in a study. Data can be categorized into quantitative data and qualitative data. Quantitative data is usually expressed in numerical form, while qualitative data describes non-quantitative features.2. 描述统计学 (Descriptive Statistics)描述统计学是对已有数据进行总结、展示和分析的方法。

统计学(Statistics)

统计学(Statistics)

统计学(Statistics)统计学(Statistics)when i was doing internship at the renowned cosmetics co. ltd, i was deeply impressed by the motto from , the founder of the company—“believe in miracle and miracle will indeed happen.” at one point during my undergraduate education i was very frustrated because i found that, due to the lack of effective methodology of numerical analysis, the teaching and the research of economics in china lags far behind the international standard as represented by the developed countries of the west. as a result, even though i am one of the top students from the university of finance and economics, i find it difficult for me to really enter the true realm of economics study. instead of dealing a heavy blow on me, this discovery motivated me to maximize my efforts in the study of mathematics and to apply for an advanced degree program in statistics at your well-respected university after having completed my undergraduate program. it is my conviction that, as long as i have sufficient confidence myself and make sufficient efforts, i am bound to accomplish some form of achievements in the field of statistics and make due contributions to the development of quantitative research in economics in the chinese academia. miracle will indeed happen.i specialized in accounting at the accounting college of university of finance and economics. an undergraduate education in the specialty of accounting covers knowledge in a wide range of fields—economics, management science, mathematics, statistics, and even sociology. while providing me with a solid academic foundation, this education has enabled me to ferret out the areas that can really capture my interest. i havecherished a strong interest in mathematics since the primary school and developed my talents all the way through my middle and high school. but it is only through my undergraduate study that i have come to realize the vital importance of mathematical approaches to the study of economics. this very realization has further reinforced my determination to choose the career of an applied statistician in the future. toward such an objective, i have devoted special efforts to the study of mathematics and statistics. apart from intensive work in such compulsory courses as calculus, linear algebra, theory of probability, statistics, and mathematical statistics, i have also attended a series of important optional courses including operational research, game theory of economics, sampling investigation and made full use of my spare time to learn the knowledge of statistics as much as possible.my undergraduate education should be described as very rewarding and fruitful. for the past three consecutive years, i have maintained top ranking in my class and for two consecutive years i was given the “outstanding student” award, winning level-a scholarships. i have demonstrated special aptitudes in mathematics and in english. my natural talents in mathematics and my dedicated efforts to mathematics coursework have led my gpa in all the mathematics courses to reach 3.9, far exceeding the level of average students. in terms of english language, i have also been well above average. in the first semester in 1999 i won the first prize at the “freshmen cup”english listen comprehension contest and in 20xx i won the first prize in the english contest for college students in china, the third prize at the oral english contest in province. even though i have assumed various responsibilities for extracurricular activities of several student organizations, i have still managed to perform wellacademically, a fact that should be attributed to my extra diligence, productive study methods, and effective allocation of my time and energy. from the very outset of my undergraduate career, i made up my mind to fully exploit all the available resources of my university to achieve comprehensive self-development and what i have achieved adequately testifies to the rewarding undergraduate life i have been living.as a science that tries to discover inherent quantitative relationships among different data and make rational statistical inferences by applying relevant theories and methodologies, statistics has been widely applied in the modern society, its impact penetrating into almost all fields of physical and social sciences. with china’s reform toward the market economy and its accession into the wto, statistics is becoming increasingly important in china’s economic life. the fact that the subject i am interested in will enjoy a broad prospect of application in china makes me very excited and confident concerning my future study and career. in my proposed program, i will first try to consolidate my foundation in statistics and then narrow down my interests to focus on time series analysis and statistic inference.i believe that to make rational inferences is one of the major functions of statistics. in many cases, pure statistical models or time series models can make more precise inferences and predictions than theoretical models of economics. the dilemma faced by modern economics in making predictions is one of the important reasons for me to choose statistics over economics as the area of my concentration. as an important aspect of statistical study and research, i will try to master one or two advanced statistical software such as gauss and tsp. in addition, if possible, i wish to be a member of the research group of my future advisor underwhose direction i can work on a full-length research project. it is equally desirable for me to do extensive internship at a specific government organization or a local enterprise so that i can apply my knowledge of statistics and test its efficacy.apart from the sound undergraduate education that i have received, together with my special achievements in mathematics and english, my creativity, perseverance, and my good logical thinking are three major factors of my implicit confidence in my future performance, just as they have contributed to my distinguished performance in the past over most of my peers. meanwhile, i am also very proud of my past extracurricular performance, which has considerably improved my practical abilities beyond the mere coursework, like teamwork, organization and interpersonal communication. i served as student leader in the students union, editor of the university student newspaper, member of accounting study group and youth volunteer association. in 20xx, i worked part-time as beauty consultant at the renowned american cosmetics company. an important experience directly related to my specialty is the internship i did in 20xx at the statistical bureau of city during which i worked on a city-wide population sampling investigation, collecting and analyzing data and accumulating much practical statistical experience.i prioritize on university as the school for my master’s program in statistics because a careful study of your esteemed university shows me that it is a world famous university with a long academic tradition. in terms of the teaching and research of statistics, it plays a leading role not only in american but also in international academia. naturally it becomes my ideal choice. as a student of accounting i have built up a sufficient foundation in statistics and mathematics requisite for agraduate program in statistics. therefore, i sincerely wish that my application could be seriously considered.。

统计学名词中英文对照[五篇范文]

统计学名词中英文对照[五篇范文]

统计学名词中英文对照[五篇范文]第一篇:统计学名词中英文对照统计学名词中英文对照默认分类Aabscissa 横坐标absence rate 缺勤率absolute number 绝对数absolute value 绝对值accident error 偶然误差accumulated frequency 累积频数alternative hypothesis 备择假设analysis of data 分析资料analysis of variance(ANOVA)方差分析arith-log paper 算术对数纸arithmetic mean 算术均数assumed mean 假定均数arithmetic weighted mean 加权算术均数asymmetry coefficient 偏度系数average平均数average deviation平均差Bbar chart 直条图、条图bias 偏性binomial distribution 二项分布biometrics 生物统计学bivariate normal population 双变量正态总体Ccartogram 统计图case fatality rate(or case mortality)病死率census 普查chi-sguare(X2)test 卡方检验central tendency 集中趋势class interval 组距classification 分组、分类cluster sampling 整群抽样coefficient of correlation 相关系数coefficient of regression 回归系数coefficient of variability(or coefficieut of variation)变异系数collection of data 收集资料column 列(栏)combinative table 组合表combined standard deviation 合并标准差combined variance(or poolled variance)合并方差complete survey 全面调查completely correlation 完全相关completely random design 完全随机设计confidence interval 可信区间,置信区间confidence level 可信水平,置信水平confidence limit 可信限,置信限constituent ratio 构成比,结构相对数continuity 连续性control 对照control group 对照组coordinate 坐标correction for continuity 连续性校正correction for grouping 归组校正correction number 校正数correction value 校正值correlation 相关,联系correlation analysis 相关分析correlation coefficient 相关系数critical value 临界值cumulative frequency 累积频率Ddata 资料degree of confidence 可信度,置信度degree of dispersion 离散程度degree of freedom 自由度degree of variation 变异度dependent variable 应变量design of experiment 实验设计deviation from the mean 离均差diagnose accordance rate 诊断符合率difference with significance 差别不显著difference with significance 差别显著discrete variable 离散变量dispersion tendency 离中趋势distribution 分布、分配Eeffective rate 有效率eigenvalue 特征值enumeration data 计数资料equation of linear regression 线性回归方程error 误差error of replication 重复误差error of type II Ⅱ型错误,第二类误差error of type I Ⅰ型错误,第一类误差estimate value 估计值event 事件experiment design 实验设计experiment error 实验误差experimental group 实验组extreme value 极值Ffatality rate 病死率field survey 现场调查fourfold table 四格表freguency 频数freguency distribution 频数分布GGaussian curve 高斯曲线geometric mean 几何均数grouped data 分组资料Hhistogram 直方图homogeneity of variance 方差齐性homogeneity test of variances 方差齐性检验hypothesis test 假设检验hypothetical universe 假设总体Iincidence rate 发病率incomplete survey 非全面调检indepindent variable 自变量indivedual difference 个体差异infection rate 感染率inferior limit 下限initial data 原始数据inspection of data 检查资料intercept 截距interpolation method 内插法 interval estimation 区间估计inverse correlation 负相关Kkurtosis coefficient 峰度系数Llatin sguare design 拉丁方设计least significant difference 最小显著差数least square method 最小平方法,最小乘法leptokurtic distribution 尖峭态分布leptokurtosis 峰态,峭度linear chart 线图linear correlation 直线相关linear regression 直线回归linear regression eguation 直线回归方程link relative 环比logarithmic normal distribution 对数正态分布logarithmic scale 对数尺度lognormal distribution 对数正态分布 lower limit 下限Mmatched pair design 配对设计mathematical statistics 数理统计(学)maximum value 极大值mean 均值mean of population 总体均数mean square 均方mean variance 均方,方差measurement data 讲量资料median 中位数medical statistics 医学统计学mesokurtosis 正态峰method of least squares 最小平方法,最小乘法method of grouping 分组法method of percentiles 百分位数法mid-value of class 组中值minimum value 极小值mode 众数moment 动差,矩morbidity 患病率mortality 死亡率Nnatality 出生率natural logarithm 自然对数negative correlation 负相关negative skewness 负偏志no correlation 无相关non-linear correlation 非线性相关non-parametric statistics 非参数统计normal curve 正态曲线normal deviate 正态离差normal distribution 正态分布normal population 正态总体normal probability curve 正态概率曲线normal range 正常范围normal value 正常值normal kurtosis 正态峰normality test 正态性检验nosometry 患病率null hypothesis 无效假设,检验假设Oobserved unit 观察单位observed value 观察值one-sided test 单测检验one-tailed test 单尾检验order statistic 顺序统计量ordinal number 秩号ordinate 纵坐标Ppairing data 配对资料parameter 参数percent 百分率percentage 百分数,百分率percentage bar chart 百分条图percentile 百分位数pie diagram 园图placebo 安慰剂planning of survey 调查计划point estimation 点估计population 总体,人口population mean 总体均数population rate 总体率population variance 总体方差positive correlation 正相关positive skewness 正偏态power of a test 把握度,检验效能prevalence rate 患病率probability 概率,机率probability error 偶然误差proportion 比,比率prospective study 前瞻研究prospective survey 前瞻调查public health statistics 卫生统计学Qquality eontrol 质量控制quartile 四分位数Rrandom 随机random digits 随机数字random error 随机误差random numbers table 随机数目表random sample 随机样本random sampling 随机抽样random variable 随机变量randomization 随机化randomized blocks 随机区组,随机单位组randomized blocks analysis of variance 随机单位组方差分析randomized blocks design 随机单位组设计randomness 随机性range 极差、全距range of normal values 正常值范围rank 秩,秩次,等级rank correlation 等级相关rank correlation coefficent 等级相关系数rank-sum test 秩和检验rank test 秩(和)检验ranked data 等级资料rate 率ratio 比recovery rate 治愈率registration 登记regression 回归regression analysis 回归分析regression coefficient 回归系数regression eguation 回归方程relative number 相对数relative ratio 比较相对数relative ratio with fixed base 定基比remainder error 剩余误差replication 重复retrospective survey 回顾调查Ridit analysis 参照单位分析Ridit value 参照单位值Ssample 样本sample average 样本均数sample size 样本含量sampling 抽样sampling error 抽样误差sampling statistics 样本统计量sampling survay 抽样调查scaller diagram 散点图schedule of survey 调查表semi-logarithmic chart 半对数线图semi-measursement data 半计量资料 semi-guartile range 四分位数间距sensitivity 灵敏度sex ratio 性比例sign test 符号检验significance 显著性,意义significance level 显著性水平significance test 显著性检验significant difference 差别显著simple random sampling 单纯随机抽样simple table 简单表size of sample 样本含量skewness 偏态slope 斜率sorting data 整理资料sorting table 整理表sources of variation 变异来源square deviation 方差standard deviation(SD)标准差standard error(SE)标准误standard error of estimate 标准估计误差standard error of the mean 均数的标准误standardization 标准化standardized rate 标化率standardized normal distribution 标准正态分布statistic 统计量statistics 统计学statistical induction 统计图statistical inference 统计归纳statistical map 统计推断statistical method 统计地图statistical survey 统计方法statistical table 统计调查statistical test 统计表statistical treatment 统计检验stratified sampling 统计处理stochastic variable 分层抽样sum of cross products of 随机变量deviation from mean 离均差积和sum of ranks 秩和sum of sguares of deviation from mean 离均差平方和superior limit 上限survival rate 生存率symmetry 对称(性)systematic error 系统误差systematic sampling 机械抽样Tt-distribution t分布t-test t检验tabulation method 划记法test of normality 正态性检验test of one-sided 单侧检验test of one-tailed 单尾检验test of significance 显著性检验test of two-sided 双侧检验test of two-tailed 双尾检验theoretical frequency 理论频数theoretical number 理论数treatment 处理treatment factor 处理因素treatment of date 数据处理two-factor analysis of variance 双因素方差分析two-sided test 双侧检验two-tailed test 双尾检验type I error 第一类误差type II error 第二类误差typical survey 典型调查Uu test u检验universe 总体,全域ungrouped data 未分组资料upper limit 上限Vvariable 变量variance 方差,均方variance analysis 方差分析variance ratio 方差比variate 变量variation coefficient 变异系数velocity of development 发展速度velocity of increase 增长速度Wweight 权数weighted mean 加权均数Zzero correlation 零相关第二篇:测量学名词中英文对照测绘学名词(中英对照)01.001 测绘学 surveying and mapping, SM01.002 中华人民共和国测绘法 Law of Surveying and Mapping of the People's Republic of China01.003 测绘标准 standards of surveying and mapping01.004 测量规范 specifications of surveys01.005 地形图图式 topographic map symbols01.006 大地测量学 geodesy01.007 地球形状 earth shape, figure of the earth01.008 重力基准网 gravity standard network01.009 重力场gravity field01.010 地心坐标系 geocentric coordinate system01.011 地球椭球 earth ellipsoid01.012 大地原点 geodetic origin01.013 水准原点 leveling origin01.014 测量标志survey mark01.015 测量觇标observation target01.016 高程基准height datum01.017 1954年北京坐标系Beijing geodetic coordinate system195401.018高程系统height system01.019平均海[体]面mean sea level01.020黄海平均海[水]面Huanghai mean sea level01.021海拔height above sea level01.022海军导航卫星系统Navy Navigation Satellite System,NNSS01.023NAVSTAR全球定位系统NAVSTAR Global Positioning System,NAVSTAR GPS01.024 惯性测量系统inertial surveying system,ISS01.025 摄影测量与遥感学photogrammetry and remote sensing01.026 航空摄影测量aerophotogrammetry, aerial photogrammetry01.027 航天摄影测量(又称“太空摄影测量”)space photogrammetry01.028 非地形摄影测量non-topographic photogrammetry01.029 水下摄影测量underwater photogrammetry01.030 航空航天摄影aero—space photogrammetry01.031 航空遥感aerial remote sensing01.032 航天遥感space remote sensing01.033 图像image01.034 影像image, imagery01.035 图形Graphics01.036判读(又称“判释”、“解译”)interpretation01.037 模拟摄影测量analog photogrammetry01.038 解析摄影测量analytical photogrammetry, numericalphotogrammetry01.039数字摄影测量digital photogrammetry01.040数字地图模型(又称“数值地型”)digital terrain model, DTM01.041 遥感图象处理image processing of remote sensing01.042 遥感模式识别pattern recognition of remote sensing01.043 地图制图学(又称“地图学”)cartography01.044 地理坐标网geographic graticule01.045 经纬网fictitious graticule01.046 方里网kilometer grid01.047 邻带方里网grid of neighboring zone01.048 坐标格网coordinate grid01.049 地理坐标参考系geographical reference system,GEOREF01.050 地图map01.051 地形图topographic map01.052平面图plan01.053 普通地图general map01.054 专题地图thematic map01.055 地图集atlas01.056 地球仪globe01.057 地图规范map specifications01.058 地图生产map production01.059 地图投影map projection01.060 地图编制(又称“编图”)map compilation01.061 地图复制map reproduction01.062 地图印刷map printing01.063 地图利用map use01.064 地图量算cartometry01.065 机助地图制图computer-aided cartography,computer-assisted cartography, CAC01.066 自动化制图automatic cartography01.067 自动绘图automatic plotting01.068 图形显示graphic display01.069 遥感制图remote sensing mapping01.070 地名学toponomastics, toponymy01.071 地名geographical name, place name01.072 工程测量学engineering surveying01.073 比例尺scale01.074 基本比例尺basic scale01.075 等高线contour01.076 等高距contour interval01.077 测量平差survey adjustment,adjustment of observations01.078 精度估计precision estimation01.079 精[密]度precision01.080 准确度accuracy01.081 偶然误差accident error01.082 系统误差systematic error01.083 粗差gross error01.084 常差constant error01.085 多余观测redundant observation01.086 闭合差closing error, closure01.087 限差tolerance01.088 相对误差relative error01.089 绝对误差absolute error01.090 中误差mean square error01.091 误差椭圆error ellipse01.092 边长中误差mean square error of side length01.093 测角中误差mean square error of angle observation01.094 方位角中误差mean square error of azimuth01.095 坐标中误差mean square error of coordinate01.096 点位中误差mean square error of a point01.097 高程中误差mean square error of height01.098 国土基础信息系统land base information system01.099 大地控制数据库geodetic data base01.100 重力数据库gravimetric data base01.101 地形数据库topographic data base01.102 地理信息系统geographical information system,GIS01.103 地图数据库map data base01.104 地图数据库管理系统cartographic data base management system01.105 地名数据库place-name data base01.106 地籍信息系统cadastral information system01.107 土地信息系统land information system,LIS01.108 制图专家系统cartographic expert system01.109 海洋测绘hydrographic surveying and charting01.110 测绘仪器instrument of surveying and mapping01.111 大地测量仪器geodetic instrument01.112 测距仪distance measuring instrument,rangefinder01.113 重力仪gravimeter01.114 定位系统positioning system01.115 摄影测量仪器photogrammetric instrument01.116 立体测图仪stereoplotter01.117 数字摄影测量工作站 digital photogrammetric station01.118 全数字化自测图系统full digital automatic mapping system01.119 图形输入设备graphic input unit01.120 图形输出设备graphic output unit01.121 中国测绘学会Chinese Society of Surveying and Mapping,CSSM01.122 国际测绘联合会International Union of Surveying and Mapping,IUSM01.123 国际测量师联合会Federation Internationale des Geometres,FIG(法语)01.124 国际大地测量学与地球物理学International Union of Geodesy and Geophysics,IUGG01.125 国际大地测量学协会International Association of Geodesy IAG01.126 国际摄影测量与遥感学会 International Society forPhotogrammetry and Remote Sensing,ISPRS01.127 国际地图学协会International Cartographic Association,ICA01.128国际海道测量组织International Hydrography Organization, IHO第三篇:物流常用名词中英文对照物流常用名词中英文对照alternate tiers row pattern交错码放AGV无人搬运车anchoring 膨胀螺丝AS/RS(Automatic Storage Retrieval System)自动存取机/系统自动存取仓储系统自动仓库系统assembly packaging集合包装average inventory平均存货battery电瓶beam橫撑,横梁belt conveyor皮带式输送机(带)block pattern row pattern整齐码放bonded warehouse国际物流中心保税仓库brick pattern砌砖式码放buffer stock 缓冲储备cantilever shalving悬臂架cargo freight 货物carrying搬运chain conveyor链条式输送机(带)charger充电机cold chain system冷冻链系统common carrier 公共承运人consolidation装运整合container terminal集装箱中转站contract carrier 契约承运人contract logistics契约物流counterbalance truck平衡式电动(柴油、电动、瓦斯)堆高机cycle inventory周期存货delivery配送depalletizer托盘拆垛机devanning拆箱diagonal bracing斜撑dock leveller月台调整板dock shelter 月台门封(充气式,非充气式)double-deep pallet racking双层深式重型物料钢架drive-in pallet racking直入式重型物料钢架dry cargo干货dunnage填充electronic data interchange电子资料交换EDIexport processing zone加工出口区fill rate供应比率floor utilization percentage地面面积利用率flow(dynamic)racking重型流力架flow(dynamic)rack shelving 轻型(料盒、纸箱)流力架forklift truck 叉车four-way reach truck四向式电动堆高机frame 支柱组frame feet脚底板frame joint柱连杆freight container货物集装箱general cargo一般货物hand pallet truck油压拖板车horizontal bracing橫撑industrial door 工业门industrial vehicle工业车辆intermodal transportation复合一贯运输lashing捆扎加固levelling plate垫片LGV激光引导无人搬运车 load efficient装载效率loading and unloading 装卸logistical utilities物流效用logistics物流materials handling物料搬运mezzanines floor 积层架mini-load AS/RS料盒式自动仓库系統mobile dock leveller月台桥板mobile shelving移动柜net unit load size 净单元货载尺寸operation area 理货区order picking truck电动拣料车order picking指令拣选order shipped complete订货完成率packaged cargo包装货物packaging包装pallet托盘,(木质)栈板pallet container栈板笼架pallet pool system 通用托盘系统pallet racking传统式重型物料钢架palletization托盘化palletizer托盘堆垛机palletizing pattern托盘装载方式pick up货物聚集picking拣货,拣选作业pictorial marking for handling货运标识pinwheel pattern针轮式码放plan view size平面尺寸plastic bin物料盒plastic pallet塑胶栈板platform物流容器,站台,月台physical distribution model物流标准powered pallet truck电动拖板车powered stacker自走式电动堆高机push-back pallet racking后推式重型物料钢架rack 货架rack notice标示牌reach truck前伸式电动堆高机returnable container 通用容器roll container笼车roller conveyor滚筒式输送机(带)safety pin插销safety stock 安全储备scrubber洗地机shed临时周转仓库shelving轻量型物料钢架shuttle car梭车slat conveyor条板式输送机(带)slotted-angle shelving角钢架sorting 分类special cargo特殊货物spot stock现场储备stacker crane自动存取机高架吊车stacking堆垛stockout frequency缺货频率storage存储support bar跨梁surface utilization percentage表面利用率sweeper扫地机table trolley物流台车third part logistics第三方物流third party logistics service provider第三方物流服务商transit inventory中转存货transportation运输transportation package size by modular coordination 运输包装系列尺寸tray conveyor盘式输送机(带)truck terminal卡车货运站turntable转盘(变更输送方向)unit load单元货载unit load system单元货载系统upright支柱upright protctors护脚value added network—VAN加值网络vanning装箱vertical conveyor垂直输送机very narrow aisle truck窄巷道电动堆高机warehouse仓库WCS(Warehouse Control System)仓储控制系统WMS(Warehouse Management System)仓储管理系统第四篇:质量管理中英文名词对照质量管理中英文名词对照质量管理中英文名词对照表Accuracy 准确度Active 主动Action 评价.处理Activity 活动Add 加Addition rule 加法运算规则Analysis Covariance 协方差分析Analysis of Variance 方差分析Appraisal Variation 评价变差Approved 承认ASQC 美国质量学会Attribute 计数值Audit 审核Automatic database recovery 数据库错误自动回复 Average平均数balance平衡Balance sheet 资产负债对照表Binomial 二项分配Body 机构Brainstorming Techniques 脑力风暴法Business Systems Planning 企业系统规划 Cable 电缆Capability 能力Cause and Effect matrix 因果图.鱼骨图 Center line 中心线check 检查Check Sheets 检查表Chi-square Distribution 卡方分布Clutch spring 离合器弹簧Coining 压印加工Common cause 共同原因Complaint 投诉Compound factor 调合因素Concept 新概念Condenser 聚光镜Conformity 合格Connection 关联Consumer’s ris k 消费者之风险Control 控制Control characteristic 管制特性Control chart管制图Control plan 管制计划Correction 纠正Correlation Methods 相关分析法Cost down 降低成本CPI: continuouse Process Improvement 连续工序改善Creep 渐变Cross Tabulation T ables 交叉表CS: customer Sevice 客户中心Cushion 缓冲Customer 顾客DSA: Defects Analysis System 缺陷分析系统Data 数据Data Collection 数据收集Data concentrator 资料集中缓存器DCC: Document Control Center 文控中心Decision 决策.判定Defects per unit 单位缺点数Description 描述Detection 难检度Device 装置Digital 数字Do 执行DOE: Design of Experiments 实验设计Element 元素Else 否则Engineering recbnology 工程技术Entropy 函数Environmental 环境Equipment 设备Estimated accumulative frequency 计算估计累计数EV: Equipment Variation 设备变异Event 事件External Failure 外部失效,外部缺陷FA: Failure Analysis 坏品分析Fact control 事实管理Fatique 疲劳FMEA: Failure Mode and Effect analysis 失效模式与效果分析FPY 合格率FQA: Final Quality Assurance 最终品质保证FQC: Final Quality control 最终品质控制Full-steer 完全转向function 职能Gauge system 量测系统Grade 等级Gum-roll 橡皮滚筒Health meter 体重计Heat press 冲压粘着Histogram 直方图Hi-tech 高科技hypergeometric 超几何分配hysteresis 磁滞现象Improvement 改善Inductance 电感Information 信息Initial review 先期审查Inspection 检验Internal Failure 内部失效,内部缺陷IPQC: In Process Quality Control 制程品质控制IQC: Incomming Quality Control 来料品质控制ISO: International Organization for Standardization 国际标准组织 Law of large number 大数法则Link 连接LCL: Lower Control limit 管制下限LQC: Line Quality Control 生产线品质控制LSL: Lower Size Limit 规格下限Machine 机械Manage 管理Materials 物料Measurement 量测Median 中位数Miss feed 漏送Module,sub-system,sub-unit 单位Momentum 原动力Monte garlo method 原子核分裂热运动法MSA: Measurement System Analysis 量测系统分析Multiplication rule 乘法运算规则NIST 美国:标准技术院Normal 常态分布Occurrence 发生率On.off system 开,关系统Operation Instruction 作业指导书Organization 组织Parameter 参数Parto 柏拉图Parts 零件Parts per million 不良率Passive 消极的,被动的Plan 计划Pulse 脉冲Policy 方针Population 群体Power 力量,能源PQA: Process Quality Assurance 制程品质保证Practice 实务Precision 精密度preemptive 先占式多任务Pressure 压缩Prevention 预防Probability 机率Probability density function 机率密度函数Procedure 流程Process 过程Process capability analysis 制程能力分析图Process control and process capability 制程管制与制程能力Producer’s risk 生产者之风险Product 产品Production 生产Program 方案Projects 项目QA: Quality Assurance 品质保证QC: Quality Control 品质控制QE: Quality Engineering 品质工程QFD: Quality Function Desgin 品质机能展开Quality 质量Quality manual 品质手册Quality policy 品质政策Random experiment 随机试验Random numbers 随机数Range 全距Record 记录Reflow 回流Reject 拒收Repair 返修Repeatusility 再现性Reproducibility 再生性Requirement 要求Residual 误差Response 响应Responsibilities 职责Review 评审Reword 返工Robustness 稳健性Rolled yield 直通率RPN: Risk Priority Number 风险系数sample 抽样,样本Sample space 样本空间Sampling with replacement 放回抽样Sampling without peplacement 不放回抽样Scatter diagram 散布图分析Scrap 报废Screw 螺旋Severity 严重度Shot-peening 微粒冲击平面法Simple random sampling 简单随机取样Size 规格SL: Size Line 规格中心线Slip 滑动Stratified random sampling 分层随机抽样SOP: Standard Operation Procedure 标准作业书SPC: Statistical Process Control 统计制程管制Special cause 特殊原因Specification 规范SQA: Source(Supplier)Quality Assurance 供货商品质保证Stage sampling 分段随机抽样Standard Deviation 标准差Sum of squares 统计表supplier平方和System 供方systematic sampling 系统,体系Statistical tables 系统抽样Taguchi-method 田口方法Technical committees 技术委员会Test piece 测试片Theory 原理Time stamp 时间戳印Time-lag 延迟Title 标题Torque 转矩Total 求和TQC: Total Quality Control 全面品质控制TQM: Total Quality Management 全面品质管理 Traceablity 追溯Training 培训Transaction processing and logging 交易处理 Trouble 困扰Up and down 上和下UCL: Upper Control Limit 管制上限 USL: Upper Size Limit 规格上限Validation 确认Variable 计量值Variance 变异和Vector 向量Verification 验证Version 版本VOC: voice of Customer 客户需求 VOE: Voice of Engineer 工程需求第五篇:品管中英文名词对照品管中英文名词对照Accuracy 准确度Active 主动Action 评价.处理Activity 活动Add 加Addition rule 加法运算规则Analysis Covariance 协方差分析Analysis of Variance 方差分析Appraisal Variation 评价变差Approved 承认 ASQC 美国质量学会 Attribute 计数值 Audit 审核Automatic database recovery 数据库错误自动回复Average平均数 balance平衡Balance sheet 资产负债对照表 Binomial 二项分配 Body 机构Brainstorming Techniques 脑力风暴法Business Systems Planning 企业系统规划 Cable 电缆 Capability 能力Cause and Effect matrix 因果图.鱼骨图Center line 中心线check 检查Check Sheets 检查表Chi-square Distribution 卡方分布Clutch spring 离合器弹簧Coining 压印加工 Common cause 共同原因 Complaint 投诉Compound factor 调合因素 Concept 新概念 Condenser 聚光镜 Conformity 合格 Connection 关联Consumer’s risk 消费者之风险 Control 控制Control characteristic 管制特性 Control chart 管制图 Control plan 管制计划 Correction 纠正Correlation Methods 相关分析法 Cost down 降低成本CPI: continuouse Process Improvement 连续工序改善Creep 渐变Cross Tabulation T ables 交叉表 CS: customer Sevice 客户中心Cushion 缓冲 Customer 顾客DSA: Defects Analysis System 缺陷分析系统 Data 数据Data Collection 数据收集Data concentrator 资料集中缓存器DCC: Document Control Center 文控中心 Decision 决策.判定Defects per unit 单位缺点数 Description 描述 Detection 难检度 Device 装置 Digital 数字 Do 执行DOE: Design of Experiments 实验设计 Element 元素 Else 否则Engineering recbnology 工程技术Entropy 函数Environmental 环境 Equipment 设备Estimated accumulative frequency 计算估计累计数EV: Equipment Variation 设备变异 Event 事件External Failure 外部失效,外部缺陷 FA: Failure Analysis 坏品分析 Fact control 事实管理 Fatique 疲劳FMEA: Failure Mode and Effect analysis 失效模式与效果分析FPY 合格率FQA: Final Quality Assurance 最终品质保证 FQC: Final Quality control 最终品质控制 Full-steer 完全转向 function 职能Gauge system 量测系统 Grade 等级 Gum-roll 橡皮滚筒 Health meter 体重计 Heat press 冲压粘着 Histogram 直方图 Hi-tech 高科技hypergeometric 超几何分配hysteresis 磁滞现象Improvement 改善Inductance 电感Information 信息 Initial review 先期审查 Inspection 检验Internal Failure 内部失效,内部缺陷IPQC: In Process Quality Control 制程品质控制IQC: Incomming Quality Control 来料品质控制ISO: International Organization for Standardization 国际标准组织Law of large number 大数法则 Link 连接LCL: Lower Control limit 管制下限 LQC: Line Quality Control 生产线品质控制LSL: Lower Size Limit 规格下限Machine 机械Manage 管理Materials 物料Measurement 量测Median 中位数Miss feed 漏送Module,sub-system,sub-unit 单位 Momentum 原动力Monte garlo method 原子核分裂热运动法MSA: Measurement System Analysis 量测系统分析Multiplication rule 乘法运算规则 NIST 美国:标准技术院 Normal 常态分布 Occurrence 发生率 On.off system 开,关系统Operation Instruction 作业指导书Organization 组织Parameter 参数 Parto 柏拉图 Parts 零件Parts per million 不良率 Passive 消极的,被动的 Plan 计划 Pulse 脉冲 Policy 方针 Population 群体 Power 力量,能源PQA: Process Quality Assurance 制程品质保证Practice 实务Precision 精密度preemptive 先占式多任务Pressure 压缩Prevention 预防Probability 机率Probability density function 机率密度函数Procedure 流程Process 过程Process capability analysis 制程能力分析图Process control and process capability 制程管制与制程能力Producer’s risk 生产者之风险Product 产品Production 生产Program 方案 Projects 项目QA: Quality Assurance 品质保证 QC: Quality Control 品质控制QE: Quality Engineering 品质工程QFD: Quality Function Desgin 品质机能展开 Quality 质量Quality manual 品质手册Quality policy 品质政策Random experiment 随机试验 Random numbers 随机数 Range 全距 Record 记录 Reflow 回流 Reject 拒收 Repair 返修Repeatusility 再现性 Reproducibility 再生性 Requirement 要求Residual 误差Response 响应Responsibilities 职责Review 评审Reword 返工 Robustness 稳健性 Rolled yield 直通率RPN: Risk Priority Number 风险系数 sample 抽样,样本 Sample space 样本空间Sampling with replacement 放回抽样Sampling without peplacement 不放回抽样Scatter diagram 散布图分析Scrap 报废Screw 螺旋Severity 严重度Shot-peening 微粒冲击平面法Simple random sampling 简单随机取样 Size 规格SL: Size Line 规格中心线 Slip 滑动Stratified random sampling 分层随机抽样SOP: Standard Operation Procedure 标准作业书 SPC: Statistical Process Control 统计制程管制 Special cause 特殊原因 Specification 规范SQA: Source(Supplier)Quality Assurance 供货商品质保证Stage sampling 分段随机抽样 Standard Deviation 标准差 Sum of squares 统计表 supplier平方和 System 供方systematic sampling 系统,体系Statistical tables 系统抽样Taguchi-method 田口方法 Technical committees 技术委员会 Test piece 测试片 Theory 原理Time stamp 时间戳印Time-lag 延迟Title 标题Torque 转矩Total 求和TQC: T otal Quality Control 全面品质控制 TQM: Total Quality Management 全面品质管理 Traceablity 追溯 Training 培训Transaction processing and logging 交易处理 Trouble 困扰 Up and down 上和下UCL: Upper Control Limit 管制上限 USL: Upper Size Limit 规格上限 Validation 确认 Variable 计量值 Variance 变异和 Vector 向量Verification 验证 Version 版本VOC: voice of Customer 客户需求 VOE: Voice of Engineer 工程需求质量相关术语英中文对照IQC: incomming quality control 进料检验LQC: line quality control 生产线品质控制IPQC: inprocess quality control 制程品质控制FQC: final quality control 最终品质控制OQC: outgoing quality control 出货品质控制PQA: process quality control 制程品质保证FQA: final quality assurance 最终品质保证SQA: source(supplier)quality assurance 供应商品质保证DAS: defect analysis system 缺陷分析系统DCC: document control center 文控中心QCC: quality control circle 品管圈QA: quality assurance OR quality audit 品质保证品质稽核QC: quality control 品质控制QE: quality engineering 品质工程TRAINING: 培训ZD: zero defect 零缺陷FMEA: failure mode and effects analysis 潜在缺陷模式和影响分析FMA: failure mode analysis 故障模式分析FEA: failure effect analysis 故障效应分析FCA: failure criticality analysis 故障危害度分析FA: failure analysis 坏品分析 CS: customer service 客户服务CPI: continuous process improvement 连续工序改善DOE: design of experiment 实验设计SQC: statistical quality control 统计品质控制TQC: total quality control 全面品质控制CWQC: company-wide quality control 全公司品质管理GWQC: group-wide quality control 全集团品质管理PDCA: plan do check action 计划执行检查矫正AQL: acceptable quality level 允收水准(接收质量限)SOP: standard operation procedure 操作标准SIP: standard inspection procedure 检验标准IE: industrial research 工业工程MR: method research 方法研究OR: operation research 工作研究VE: value engineering 价值工程5W2H: what 做什么?有必要吗? Why 为什么要做?目的在哪里?where 哪里做?没有更合适的地方吗?When 何时做?时间是否合适?Who 谁做?有没有更合适的人?How 如何做?有没有更好的方法?how much 需要的成本如何?4M1E: manpower 人员method 方法machine 机器material物料environment 环境。

基础统计学简介英文版

基础统计学简介英文版
Sample is a portion, or part, of the population of interest
13
Population: All items
Sample: Items selected from the population
See also p.7
14
NB: don’t confuse population in statistics with a country’s population!
7
Types of Statistics
Descriptive Statistics: Methods of organizing, summarizing, and presenting data in an informative way.
EXAMPLE 2: According to Consumer Reports, General Electric washing machine owners reported 9 problems per 100 machines during 2002. The statistic 9 describes the number of problems out of every 100 machines.
variables are the result of measuring something.
– This is why younger people pay more for insurance…
• Knowledge of statistical methods at least helps you understand why decisions are made
– In future you will make decisions that involve data

关于统计学的英文介绍

关于统计学的英文介绍

关于统计学的英文介绍【中英文版】Introduction to StatisticsStatistics is a branch of mathematics that deals with the collection, analysis, interpretation, presentation, and organization of data. It plays a crucial role in various fields, including economics, biology, psychology, and many more. By utilizing statistical methods, we can draw meaningful conclusions and make informed decisions based on the information extracted from the data.统计学是一门研究数据的收集、分析、解释、呈现和组织方法的数学分支。

它在经济学、生物学、心理学等多个领域发挥着至关重要的作用。

通过运用统计方法,我们可以从数据中提取有意义的信息,并据此做出明智的决策。

The beauty of statistics lies in its ability to simplify complex phenomena into quantifiable measures, enabling us to understand patterns, trends, and relationships within the data. Fundamental concepts such as mean, median, and mode help us summarize and describe data, while techniques like hypothesis testing and regression analysis allow us to make predictions and draw inferences.统计学的魅力在于它能将复杂的现象简化为可量化的指标,使我们能够理解数据中的模式、趋势和关系。

统计知识点英文总结

统计知识点英文总结

统计知识点英文总结Data CollectionData collection is the process of gathering information from various sources. There are two main types of data: qualitative and quantitative. Qualitative data is non-numeric and describes qualities or characteristics, while quantitative data is numerical and can be measured. The process of collecting data can involve surveys, experiments, observations, and existing sources such as databases and records.Descriptive StatisticsDescriptive statistics are used to summarize and describe the main features of a dataset. Measures of central tendency, such as the mean, median, and mode, provide a way to describe the typical value of a dataset. Measures of dispersion, such as standard deviation and variance, indicate how much the values in a dataset vary from the mean. Frequency distributions, histograms, and box plots are graphical representations that can help visualize the distribution of data.Inferential StatisticsInferential statistics involve making predictions and inferences about a population based on a sample of data. It allows us to draw conclusions and make generalizations about larger groups based on a limited amount of information. Key concepts in inferential statistics include probability, sampling distributions, and estimation. Confidence intervals and hypothesis testing are common techniques used to make inferences about population parameters.ProbabilityProbability is the measure of the likelihood that an event will occur. It provides a way to quantify uncertainty and make predictions about the outcome of random processes. The fundamental principles of probability include the addition rule, multiplication rule, and conditional probability. Probability distributions, such as the normal distribution and binomial distribution, provide a way to describe the likelihood of different outcomes in a random process.Hypothesis TestingHypothesis testing is a method for making decisions about the truth of a claim or hypothesis based on evidence from a sample of data. It involves making a null hypothesis, which is a statement that there is no effect or no difference, and an alternative hypothesis, which is a statement that there is an effect or difference. The process of hypothesis testing involves calculating a test statistic and comparing it to a critical value or p-value to determine if there is enough evidence to reject the null hypothesis.In conclusion, statistics is a powerful tool that can be used to make sense of data and make informed decisions. It encompasses a wide range of concepts and techniques for collecting, organizing, analyzing, and interpreting data. By understanding the key principles discussed in this summary, one can gain a solid foundation in statistics and apply it to various real-world problems. Whether it is to make business decisions, conduct scientific research, or understand social phenomena, statistics plays a crucial role in shaping our understanding of the world around us.。

美国大一统计知识点总结

美国大一统计知识点总结

美国大一统计知识点总结统计学是一门研究数据收集、分析和解释的学科,它广泛应用于各个领域中。

本文旨在总结美国大一统计学课程中的重要知识点。

第一部分:描述统计学描述统计学是统计学的基础,它可用于总结和描述数据的特征。

以下是几个重要的描述统计学知识点:1. 数据类型:统计学中有四种常见的数据类型,包括定性数据(描述性数据),定量数据(数值型数据),离散数据和连续数据。

了解数据类型是进行后续分析的基础。

2. 数据汇总:对数据进行汇总是为了更好地了解数据的分布和特征。

常见的汇总方式包括计算平均值、中位数、众数和四分位数等。

3. 样本与总体:统计学研究的对象可以是一个总体(所有可能的个体)或一个样本(总体的一个子集)。

了解样本与总体之间的关系是进行推断统计学的前提。

4. 频率分布:频率分布是描述变量取值的分布情况。

常见的频率分布表包括直方图和频数表等。

第二部分:概率与概率分布概率在统计学中扮演着重要的角色,它用于描述事件发生的可能性。

以下是几个重要的概率与概率分布知识点:1. 概率基本原理:概率基本原理包括加法法则和乘法法则。

加法法则用于计算多个事件同时发生的概率,乘法法则用于计算多个独立事件连续发生的概率。

2. 随机变量:随机变量是用来描述事件结果的数值指标。

随机变量可以是离散型(如掷骰子的点数)或连续型(如人的身高)。

3. 概率分布:概率分布是描述随机变量取值的规律。

常见的概率分布包括离散型分布(如二项分布)和连续型分布(如正态分布)。

4. 正态分布:正态分布是统计学中最常见的连续型分布,它具有对称的钟形曲线。

正态分布在众多实际问题中具有广泛的应用。

第三部分:统计推断统计推断用于根据样本数据推断总体的特征,并进行假设检验和置信区间估计。

以下是几个重要的统计推断知识点:1. 抽样分布:抽样分布描述了样本统计量的概率分布。

重要的抽样分布包括t分布、卡方分布和F分布等。

2. 置信区间估计:置信区间估计用于根据样本数据估计总体参数的范围。

【统计学学术论文范文】 学术论文英文摘要范文

【统计学学术论文范文】 学术论文英文摘要范文

《【统计学学术论文范文】学术论文英文摘要范文》摘要:在医院管理中,信息统计的运用具有重要意义,其是医院信息的主体组成,能够准确衡量医院经济效益,还能够对医院管理给予支持,保证医院发展的可持续性,笔者分别从:医院信息化系统的含义及重要性、医院信息化系统管理现状、医院信息统计的作用、医院信息统计在医院管理中的运用,四个方面进行阐述,[4]张红,许萍,张润升,等.医院信息统计在医院管理中的作用[J].齐鲁医学杂志,2014,(6):559,561.借助统计学,可以帮助需求者梳理出其中所需要的数据,从而根据专业的整合分析,能够宏观把控事态的发展方向,从而使得决策更加具有相对科学的预见性。

下文是小编为大家搜集整理的关于统计学学术论文范文的内容,欢迎大家阅读参考!浅谈统计学在证券期货市场中的作用摘要:伴随着经济市场的不断革新,社会经济领域不断加强开放政策,统计学在全球经济市场以及经济管理等领域发挥了重要的作用。

近几年来,受到经济全球化的影响,我国经济体制也随之实行开放发展,证券期货市场迎来了新的挑战。

我国的证券期货市场相比英国、美国等发达国家,起步比较晚,目前正处于初步发展阶段。

证券期货市场是促进我国经济体制形成良好格局的重要手段,因此,为了实现证券期货市场的快速发展,要加强对统计工作的严格规范。

本文阐述了我国目前证券市场的发展现状,主要研究了统计学及相关学科在证券期货市场的应用,并根据证券期货市场的发展情况对统计学的价值进行了分析。

关键词:统计学;应用;证券期货市场一、统计学以及相关学科在证券期货市场中的应用随着经济金融的不断发展,MBA人才已经不再是金融界的顶梁柱,而统计学和数理逻辑强的人才才是新的具有竞争力的人才。

在美国华尔街,许多钻研于统计学以及数学的中国留学生都被聘任到金融部门,成就了一批年轻的年薪百万的白领贵族。

比如,在中国科学技术大学少年班的黄沁,在1988年提前毕业后到美国麻省理工学院就读研究生,毕业后直接进入到华尔街证券公司工作。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Chapter 2 Statistic ReviewA. Random variables; 1. expected value:Define : X is a discrete random variable, “ the mean (or expected value) of X ” is theweighted average of the possible outcomes, where the probabilities of the outcome serve as the appropriate weight.∑++===n n i i X X p X p X p X p X E ......)(2211μ p i is ith of prob., i=1,2, ……nInterpretation : The random variable is a variable that have a probability associated witheach outcome. Outcome is not controlled.Discrete random V ar. : has finite outcome, or outcome is countable infinite.Continuous random V ar.: uncountable infinite outcome, the probability of each outcome issmall because of too many numbers.For normal random V ar., probability density function is used to calculate the probabilitybetween the are.E( ): the expectations operator, ∑=1i p→ NX obs of N XX XX X Ni iN∑==+++=`1321.)(....… “ sample mean ”, used to estimate X μThe Xis changed from sample to sample. is not a fixed on time, the outcome selected should not be the same. There is prob. associated with each X . X is also a random variable, we can calculate E(X ).2. variance: measure the dispersion(分散), the range of the value∑-=-=-==2222)()]([})]([{)(Xi i i iXX E X E X E X E X pX Var μσ “population variance ” constant)(X Var X=σ…………... “population standard deviation ”→ 1)(ˆ222--==∑N X XS iX Xσ “sample variance ” used to estimate 2X σ2ˆXX X S S ==σ……….. “sample standard deviation ”3. joint distribution: (linear relation of X and Y bi-variance random variance.))])([(),(Y X Y X E Y X Cov μμ--=Covariance, measuring the linear relationship between X and Y.),(Y X Cov , depends on the units of X and Y; different unit-> different),(Y X Cov >0: the best-fitting line has a positive slope, positive relationship between X and Y . ),(Y X Cov <0: the best-fitting line has a negative slope, negative relationship between X and Y . ),(Y X Cov =0: there is no linear relationship between X and Y , but may be have nonlinearrelationship.YX XY Y X σσρ),cov(=“population correlation coefficient ” is scale free.XY ρ>0, a positive correction, XY ρ<0, a negative correction XY ρ=0, no linear relationship between X and Y11-≥≥XY ρ, XY ρ=1: regression line is a straight line with positive slope, XY ρ=-1: regressionline is a straight line with negative slope.1))((),(ˆ1---=∑=N Y Y X XY X vCo Ni i i,YX XYS S Y X ),(v ˆco =γ=221)()())((∑∑∑----=Y Y X XY Y X Xi iNi i i“sample correlation coefficient ”)int (,1,1)(,1)(11prob jo p Y p X p ijN i Nj ij ===∑∑∑∑==E(X) =0.263×1+0.403×2+0.334×3=2.071 V ar(X) =4.881-(2.071)2=0.591959 E(Y) =0.298×6+0.385×5+0317×4=4.981 V ar(Y)= 25.425-(4.981)2=0.614639Cov(X,Y)=)()(Y E X E Y X p ijj i j i -∑∑=10.001-2.071×4.981= -0.3174. formulaE(b)=b , V ar(b)=0;E(aX)=aE(X), V ar(aX)=a 2 V ar(X ); E(aX+b)=aE(X)+b, Var(aX+b)= a 2 V ar(X ))()]([)]}([{])([)]()[()(2222222X Var a X E X E a X E X a E b X aE b ax E b aX E b aX E b aX Var =-=-=+-+=+-+=+E(X+Y)=E(X)+E(Y), V ar(X+Y)=V ar(X)+V ar(Y)+2Cov(X, Y)\),(2)()()]}()][([2)]([)]({[)]}([)]({[)]()([)]()[()(22222Y X Cov Y Var X Var Y E Y X E X Y E Y X E X E Y E Y X E X E Y E X E Y X E Y X E Y X E Y X Var ++=----+-=-+-=--+=+-+=+ If X and Y is independent (linear uncorrelated), than E(X+Y)=E(X)+E(Y) → Cov(X,Y)=0, XY ρ=0, → V ar(X+Y)=Var(X)+V ar(Y))(][)]()()()([)]()][([),(=-=-=+--=+--=--=Y X Y X Y X Y X Y X XY E X Y XY E Y E X E Y XE X XE XY E Y E Y X E X E Y X Cov μμμμμμμμμμ,0),(=Y X Cov can ’t define the X and Y are independent.2))(()(X E X X E ≠∙ X is not independent of itself.B. (probability) distributions:1. the normal distribution:),(`~2XX N X σμ2. the standard normal distribution:)1,0(~,N Z X Z XXσμ-=3. the Chi-square distribution:∑=+++==Ni NiNZ Z Z Z12222122 χZ i : N independently normal distribution random variables with 0 mean and variance 1. → As N gets larger, the χ2 distribution because an approximation of normal distribution. the rang of χ2 : 0 → ∞ 4. the t distribution:If (1) Z is normal distribution with mean 0 and variance 1, (2) χ2 is distribution as Chi-square with N degrees of freedom, (3) Z and χ2 are independent Thennnt NZ~2χ→As N gets large, the t distribution will tend to approximately be normal distribution. 5. the F distribution:if X and Y are independent and distribution as Chi-square will N1 and N2 degrees of freedom, respectively thus21,21~N N F N YN Xassume Xi ’s are independent each other,),(~2NX XX σμ regardless of the distribution of XE(X)=)(1)(1][21Ni iXX X E NX E NNX E +++==∑∑=X XXXX N N XXNμμμ=∙=+++)(1NN NXNXNX XXiiX22222)(1)var(1)1var()var(σσσ=∙====∑∑22121)]()[()var(N N i X X X E X X X E X +++-+++=∑=22211)]}([)([)]({[N N X E X X E X X E X E -++-+- =∑∑--+-)]()][([2)]([2j j i i i i X E X X E X E X E X =)var()var()var()var(21N i X X X X +++=∑=2222X X X X N σσσσ=+++If ),(~2X X N X σμ, then i.i.d.(independent with other variables, identically distributed over time) If ),(~2XX N X σμ, then ),(~2NN X XX σμ* Central limit theorem:If ),(~2XX X σμ (at any distribution), then ),(~2NN X XX σμ as N(sample size) increase.1)(ˆ2--==∑N X XS iX σ, what is the distribution ofNS X 0μ- ?C. hypothesis testing:ex. H 0: μ=100… null hypothesis, H 1: μ≠100 …alternative hypothesis α=0.05 … level of significanceto get the value of X , the test statistic, NX Z 2100σ-=if σ2 is know.To check the critical value, Zc ( whether or not to accept H 0)If accept H 0:“we can not reject H 0 at 95% confidence level based on the data we have ”If reject H 0:“we can reject H 0 at 5% level of confidence.”Type I error: reject H 0 when H 0 is true, the probability of making type I error is α.Type II error: accept H 0 when H 0 is false, the probability of making type II error is difficult to determine.When the confidence interval increase, then the type I error will reduce and type II error will increase.※ 22000)1()1()()(σσμμμ---=-=-N S N NX SNX NS X(1) if ),(~2XX N X σμ, then ),(~2NN X XX σμ, the numerator(分子) (NS X 0μ-) is the standardnormal variable Z, and22)1(σSN - is 21-N χ (21222222)()1()(11-=-=-⇒--=∑∑N i i XX SN XX NSχσσσσ)121~)1(~----∴N N t N ZNS X χμ, if numerator and denominator(分母) are independent.(2) if ),(~2X X N X σμ, the we will appeal to the central limit theorem.D. point and interval estimate:1. point estimate: ex X =40 , but we don ’t know whether the true value approximates it ornot.2. interval estimate:N Z X Xσα2±, α=0.05 , if X σ is know.NS t X Xt 1,2-±α,α=0.05 , if X σ is unknown and N is small (<31).95% interval will include the true value.E. properties of estimator: unbiasedness, efficiency , consistency1. unbiasedness:βˆ is an unbiased estimator of β, if E(βˆ) =β(true value)→ ex. X is an unbiased estimator of X μ;ex. 2X S is an unbiased estimator of 2X σ]})()([11{]1)([)(2222∑∑----=--=X X X N X N E N X XE S E μμ=222)(11XXXNNN N σσσ=--∑∑∑----+-=---=-)])((2)()[()]()[()(2222X X XXXXX X X X X X X X μμμμμμ =∑∑----+-)()(2)()(22XXXXX X X N X μμμμ =222)(2)()(XXXX N X N X μμμ---+-∑ =22)()(XXX N X μμ---∑→ bias= E(βˆ) -β2. efficiency:define: (a) minimum mean square error , MSE(βˆ)=E(βˆ-β)2 =[bias(βˆ)]2+Var(βˆ).Pove : 22]})([)](ˆ{[)ˆ(ββββββ-+-=-E E E E=]})([)](ˆ{[2])([)](ˆ[22ββββββββ--+-+-E E E E E E =)}ˆ()]ˆ([ˆ)ˆ(ˆ{2)]ˆ([)ˆvar(22βββββββββE E E E bias +--++ =0)]ˆ([)ˆvar(2++ββbias→ we check X , it is mostly around μ.→ when bias(βˆ)=0, then MSE(βˆ)=V ar(βˆ)→ If we have an unbiased estimator with large dispersion of true value (ie. High var.) and abiased estimator with low var. we might prefer biased estimator than unbiased estimator to maximize the precision of prediction.Def. (b) If for a given sample size, (1) βˆis unbiased, (2) V ar(βˆ))~var(β≤, when β~is anyother unbiased estimator of β. Then βˆ is an efficient estimator of β.Cramer-Rao lower bounds: gives a lower limit for the variance of any unbiased estimator. EX. The lower var(X )=N2σ; the lower variance for N422σσ=( between the all unbiased estimators, the min. is kN -=422)ˆvar(σσ)3. consistency:The probability limit of βˆ, plim (βˆ)=β as N →∞ ;,1)ˆ(lim =<-∞→δββprob N for any δ>0.0)ˆ(,1)ˆ(:=>-==∞→∞→δββββN N prob prob ie2. criteria to consistency:(a) sufficient condition for consistency: not necessary for consistency βˆ is a consistent estimator of β if plim (βˆ)=β as N →∞ → consistency ⇒⨯ plim (βˆ)=β (b) mean square error consistency:If βˆ is an estimator of β and if ,0)ˆ(lim =∞→βMSE N then βˆ is a consistent estimatorof β→ ie X is a consistent estimator of X μ0lim ,0)var()]([)(222==+=+=∞→MSE NNX X bias X MSE N XXσσSlutsky ’s theorem: If plim (βˆ)=β and g(βˆ) is a continuous function of βˆ,then plim g(βˆ)=g[ plim (βˆ)]( This is “ consistency carries over ” However, consistency is not always carries over. ) Biasedness doesn ’t carry over.4. asymptotic unbiasedness: as N becomes large and large. “βˆ” is an asymptotically unbiased estimator of β if ,)ˆ(lim ββ=∞→E N→ if estimator is unbiased ,⇐⨯⇒ it will be asym. unbiased.→ Ex. If ∑-=22)(1~X XNiσ, it is asym. unbias221)~(σσNN E -= , 22)~(lim σσ=∞→E N5. asymptotic efficiency: N →∞“βˆ” is an asymptotically efficient estimator of β if all of the following conditions are satisfied:(a) βˆ is an asymptotic distribution with finite mean and finite variance. (b) βˆ is consistent ;(c) no other consistent estimator of β has small asymptotic variance than βˆ. → if estimator is efficient, ⇐⨯⇒it will be asym. efficient.unbiaedness efficiency consistency asym. unbiasedness asym. efficiencybiaedness inefficiency consistency asym. unbiasedness asym. efficiencybiaedness inefficiency inconsistency asym. unbiasedness asym. inefficiencyReview of linear algebra1. a mrtrix A is idempotent iff AA=A.2. If the inner product of the 2 vectors vanishes (ie., the scalar is 0), then the vector areorthogonal. [An inner product (or scalar, or dot product) of 2 vectors is a row vector times a column vector, yielding a scalar. An outer product of 2 vectors is a column vector times a new vector, yielding a matrix ]3. The rank of any matrix A, ρ(A), is the size of the largest non -vanishing determinantcontained in A;Or, the rank is the maximum number of linearly independent rows or columns of A, wherea 1, a 2, … a N is a set of linearly independent vectors, iff∑==Nj j ja k10 ,necessarily implies021====N k k k →Ex.AA ,6832⎥⎦⎤⎢⎣⎡==12-24=-12≠ 0, =∴)(A ρ 2BB ,4263⎥⎦⎤⎢⎣⎡==12-12=0 , =∴)(B ρ 1→ properties:a. )(0A ρ≤=intege r ≦min(M,N) where A is an M ×N matrix.b. )(A ρ=N, 0)0(=ρc. )(A ρ=)'()'()'(AA A A A ρρρ==d. if A and B are of the same order, )()()(B A B A ρρρ+≤+.e. if AB is defined, )](),([min )(B A AB ρρρ≤f. If A is diagonal, )(A ρ= number of nonzero elements.g. If A is idempotent, )(A ρ=trace(A.)h. The ranks of a matrix is not changed if one row ( or column) is multiplied by a nonzero constant, or if such a multiple of one row (column) is added to another row (column).4. A aquare matrix of order N is nonsingular iff it is of full rank, )(A ρ=N (or ≠A 0);otherwise, it is aingular. The rank of matrix is unchanged by premultiplying or postmultiplying by a nonsingularmatrix. 5. differentiation in matrix notation (rules):a. If ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⨯⨯MMM MM a a a X X X 111, where a i =(i=1,2,…M) are constant, then=∂∂XX a )'( a.b. IF A is a symmetric matrix of order M×M where the typical element is a constant a ij , then=∂∂XAX X )'(2AX,if not a symmetric matrix=∂∂XAX X )'((A ’+A)X.c. IF A is a symmetric matrix of order M×M where the typical element is a constant a ij , then=∂∂∂')'(X X AX X 2A,=∂∂AAX X )'(XX ’If Y and Z are vectors, B is a matrix, then=∂∂YBZ Y )'(BZ ,=∂∂ZBZ Y )'(B ’Y ,=∂∂BBZ Y )'(YZ ’Formula for Matrix(A ’)’=NM A ⨯ =⨯⨯)'(KN N M B A B ’A ’A B ≠BA in general'')'(C A C A NM ±=±⨯111)(---⨯⨯=DE E DMM M M , iff det D≠0 and E≠0 ( ie. Iff D and E nonsingular matrices)(D -1)’= (D’)-1 Det D=det D ’Trace (D ± E )= trace (D) ±trace (E) Trace )()(NN MN N M FA trace F A ⨯⨯⨯=Trace (scalar)=saclar E[trace (D)]=trace (E(D))。

相关文档
最新文档