数学:1.5《解直角三角形的应用》同步练习(鲁教版九年级上)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.5解直角三角形的应用

一、耐心填一填,一锤定音!

1.菱形的较长对角线与边长之比为3:1,那么菱形的两邻角分别是.

2.一轮船以每小时20海里的速度沿正东方向航行,上午8时,该船在A地测得某灯塔位于它的北偏东30°的B处(如图1).上午9时行至C处,测得该灯塔恰好在它的正北方向,此时它与灯塔的距离是海里(结果保留根号).

3.如图2所示,机器人从A点出发,沿着西南方向,行了42个单位到达B点后,观察到原点O在它的南偏东60°的方向上,则A点的坐标为(结果保留根号).

二、精心选一选,慧眼识金!

4.如图3,沿AC方向开山修路,为了加快施工进度,要在小山的另一边同时施工,从AC上的一点B,取∠ABD=145°,BD=500米,∠D=55°.要使A,C,E成一直线,那么开挖点E离点D的距离是()

A.500sin55°米B.500cos55°米

C.500tan55°米D.

500 cos55

5.两座灯塔A和B与海洋观测站的距离相等,灯塔A在观测站的北偏东40°,灯塔B在观测站的南偏东60°,那么灯塔A在灯塔B的()

A.北偏东10°B.南偏东10°

C.北偏西10°D.南偏西20°

6.如图4,为了测量河两岸A,B两点间的距离,在与AB垂直的方向上取点C,测得AC a

=,

ACBα

=

∠,则AB的长为()

A .sin a α

B .cos a α

C .tan a α

D .tan a α

7.一船向东航行,上午8时到达B 处,看到有一灯塔在它的南偏东60°距离为72海里的A 处,上午10时到达C 处,看到灯塔在它的正南方向,则这艘船航行的速度为( )

A .18海里/时

B .183海里/时

C .36海里/时

D .363海里/时

三、用心做一做,马到成功!

8.如图5,一艘渔船在A 处观测到东北方向有一小岛C ,已知小岛C 周围4.8海里范围内是水产养殖场.渔船沿北偏东30°方向航行10海里到达B 处,在B 处测得小岛C 在北偏东60°方向,这时渔船改变航线向正东(即BD )方向航行,这艘渔船是否有进入养殖场的危险?

参考答案:

一、1.60120,

2.203 3.40433⎛⎫+ ⎪⎝⎭

, 二、4~7.BCCB 三、8.渔船没有进入养殖场的危险.

相关文档
最新文档