立体图形的展开图全解

合集下载

立体图形的展开图课件PPT

立体图形的展开图课件PPT
立体图形的展开图 课件
目 录
• 立体图形基础 • 立体图形的展开过程 • 立体图形的展开图示例 • 立体图形展开图的实践应用 • 立体图形展开图的制作技巧
01
CATALOGUE
立体图形基础
立体图形的定义与分类
定义
立体图形是三维空间中具有大小 和形状的空间几何体。
分类
常见的立体图形包括长方体、正 方体、圆柱体、圆锥体、球体等 。
圆锥体的展开图
总结词
圆锥体的展开图是一个扇形和一个圆 形的组合。
详细描述
圆锥体的展开图是由一个扇形和一个 圆形组成的平面图形。扇形的半径等 于圆锥体的高,弧长等于圆锥体的底 面周长。圆形是圆锥体底面的展开形 状。
球体的展开图
总结词
球体的展开图是一个完整的圆形。
详细描述
球体的展开图是一个完整的圆形,因为球体在任何方向上的形状都是相同的。这个圆形代表了球体的表面展开后 的形状。
包装设计
包装盒的设计和制作需 要利用立体几何的知识 ,如长方体、圆柱体等

艺术创作
立体图形在雕塑、绘画 等艺术创作中也有广泛
应用。
02
CATALOGUE
立体图形的展开过程
展开图的定义与分类
01
02
03
展开图定义
将立体图形的表面沿某些 棱边展开在同一个平面上 的图形。
展开图分类
轴对称展开图、非轴对称 展开图。
应用领域
包装、折纸艺术、建筑设 计等。
展开图的绘制方法
手工绘制
使用直尺、圆规等工具,依据立 体图形的尺寸和形状绘制展开图

软件绘制
使用CAD等绘图软件,通过输入立 体图形的三维数据,生成展开图。

立体图形的展开图全解课件

立体图形的展开图全解课件

在选择立体图形展开图材料时,应注 意材料的耐用性,以确保展开后的图 形能够持久保存和使用。
考虑材料的可塑性
在选择立体图形展开图材料时,应考 虑材料的可塑性,以便更好地实现展 开效果。
谢谢您的聆听
THANKS
导致操作失误。
正确使用工具展开立体图形源自要使用剪刀、刀片 等工具,使用时应保持工具的锋利 和稳定,避免因工具问题导致操作 失误或安全事故。
注意个人防护
在展开立体图形时,应注意个人防 护,如戴手套、口罩等,以防止操 作过程中受伤或吸入有害物质。
注意精度问题
选择合适的材料
在展开立体图形时,应选 择合适的材料,如纸张、 布料等,以确保展开后的 精度和效果。
来模拟真实情况。
日常生活
家电、家具、玩具等物品 的设计和制造都需要考虑 立体图形的结构和特点。
02
立体图形的展开过程
展开图的定义与分类
展开图定义
立体图形的表面在平面上展开后形成的图 形。
展开图分类
轴对称展开图、非轴对称展开图。
应用领域
建筑设计、机械制造、包装设计等。
展开图的绘制方法
01
02
03
正方体展开图之“田”字型
该展开图由4个等腰三角形和1个正方形组成,也是正方体的另一 种常见展开方式。
正方体展开图之“凹”字型
该展开图由3个相同的等腰三角形和1个矩形组成,是一种特殊的 正方体展开方式。
长方体的展开图
长方体展开图之“L”型
01
该展开图由2个相同的等腰三角形和1个矩形组成,是长方体的
常见展开方式之一。
通过展开图,设计师可以 预见包装在生产、组装和 运输过程中可能遇到的问 题,提前进行优化和改进 。

初一数学立体图形的展开图含答案

初一数学立体图形的展开图含答案

初一数学立体图形的展开图中考要求例题精讲正方形展开图的知识要点:第一类:有6种。

特点:是4个连成一排的正方形,其两侧各有一个正方形简称“141型〃第二类:有3种。

特点:是有3个连成一排的正方形,其两侧分别有1个和两个相连的正方形;简称“132第四类:仅有1种,三个连成一排的正方形的一侧,还有3个连成一排的正方形,可简称“33型〃正方形展开图的识别方法:1.排除法:(1)由少于或多于6个的正方形组成的图形不是正方形的平面展开图(2)有“凹〃字型或“田〃字型部分的平面图形不是正方体的展开图2.对比法:对照上面的四种规则进行对照;从展开图可以看出,在正方形的展开图中不会出现如下图所示的“凹〃字型和“田〃字型结构。

模块一长方体的展开图长方体展开图【例1】下列图形中,不能表示长方体平面展开图的是()A. L B . I—C C. ---------- D. '— '—【解析】由平面图形的折叠及正方体的展开图解题.选项A, B, C经过折叠均能围成长方体,D两个底面在侧面的同一侧,缺少一定底面,所以不能表示长方体平面展开图.故选D.【答案】D【巩固】如图是无盖长方体盒子的表面展开图(重叠部分不计),则盒子的容积为()A. 4 【解析】B. 6【答案】 由图可知,无盖长方体盒子的长是3,宽是2 盒子的容积为3x2x1=6.故选B . B【巩固】 下图是一个长方体纸盒的展开图,请把5, 3,成长方体后,相对面上的两数互为相反数.li1 TI LTD . 15 高是1,所以盒子的容积为3x2x1=6. 5, -1, -3, 1分别填入六个长方形,使得按虚线折 【解析】根据题意,找到相对的面,把互为相反数的数字分别填入即可.正方体展开图【答案】C展开图;5可以拼成一个正方体.故选C.【答案】C【答案】C【巩固】将如图所示表面带有图案的正方体沿某些棱展开后,得到的图形是()【解析】由平面图形的折叠及立体图形的表面展开图的特点解题.注意带图案的三个面相交于一点.而通过折叠后A、B都不符合,且D折叠后图案的位置正好相反,所以能得到的图形是C.【答案】C.【例4】将如图正方体的相邻两面上各画分成九个全等的小正方形,并分别标上0、x两符号.若下列有一图形为此正方体的展开图,则此图为()【解析】此题主要根据0、x两符号的上下和左右位置判断,可用排除法.由已知图可得,0、x两符号的上下位置不同,故可排除A、B;又注意到0、x两符号之间的空行有3列.【答案】C.【解析】本题考查正方体的表面展开图及空间想象能力.在验证立方体的展开图式,要细心观察每一个标志的位置是否一致,然后进行判断.根据有图案的表面之间的位置关系,正确的展开图是D.【答案】故选D.【点评】学生对相关图的位置想象不准确,从而错选,解决这类问题时,不妨动手实际操作一下,即可解决问题.A、B、C、D、【巩固】如图,哪一个是左边正方体的展开图(【答案】D.成不相符,所以不是无盖的正方体盒子的平面展开图.【答案】D.【巩固】如图,是一个正方体盒子(6个面)的侧面展开图的一部分,请将它补充完整.模块二圆柱、圆锥的侧面展开图圆柱体【例6】圆柱的侧面展开图形是()A.圆B.矩形C.梯形D .扇形【解析】略【答案】B【巩固】如图,已知MN是圆柱底面的直径,NP是圆柱的高,在高柱的侧面上,过点M, P嵌有一幅路径最短的金属丝,现将圆柱侧面沿NP剪开,所得的侧面展开图是()A.产 F & p p c.尹尸D .尸尸【解析】由平面图形的折叠及立体图形的表面展开图的特点解题.因圆柱的展开面为长方形,MP展开应该是两直线,且有公共点M.故选A.【答案】A【例7】如图,MN是圆柱底面的直径,NO是圆柱的高,在圆柱的侧面上,过点M, P.有一条绕了四周的路径最短的金属丝,现将圆柱侧面沿NO剪开,所得的侧面展开图可以是:【解析】根据两点之间线段最短,剪开后所得的侧面展开图中的金属丝是线段,即可选择.注意P点在展开图中长边的中点处,圆柱侧面沿NO剪开,根据两点之间线段最短,剪开后所得的侧面是长方形,P点在展开图中长边的中点处,金属丝是线段,且从P点开始到M点为止.故选②.【答案】②圆锥体【例8】下列立体图形中,侧面展开图是扇形的是()A. LB.C. ^—■D D , L——U【解析】根据圆锥的特征可知,侧面展开图是扇形的是圆锥. 【答案】B【巩固】我国运用长征火箭发射了百余颗人造卫星和5次神州飞船.如图是我国航天科技人员自主研究开发的长征系列火箭的立体图形.(火箭圆柱底面圆的周长不等于圆柱的高)(1)请你画出火箭的平面展开图,并标上字母.(2)写出平面图形中所有相等的量.【解析】结合圆柱和圆锥的侧面展开图的特征解题.(1)如右图.(2)OA=OB , CB = ED = AB , BE=CD , Z B = Z C = Z D = Z E = 90 .【答案】同解析.模块二其他立体图形的展开图【例9】若下列只有一个图形不是右图的展开图,则此图为何?()【解析】选项D的四个三角形面不能折叠成原图形的四棱锥,而是有一个三角形面与正方形面重合,故不能组合成原题目的立体图形. 【答案】故选D.【巩固】图1是由白色纸板拼成的立体图形,将此立体图形中的两面涂上颜色,如图2所示.下列四个图形中哪一个是图2的展开图()排除B、D,又阴影部分正方形在左,三角形在右.【答案】故选A.形,故可得答案.【答案】B.【巩固】下面四个图形中,是三棱柱的平面展开图的是()A. B. C.【解析】根据三棱柱的展开图的特点作答.八、是三棱柱的平面展开图;3、是三棱锥的展开图,故不是;C、是四棱锥的展开图,故不是;D、两底在同一侧,也不符合题意.故选A.【答案】A【解析】利用棱柱及其表面展开图的特点解题.A、B、C中间三个长方形能围成三棱柱的侧面,上、下两个三角形围成三棱柱的上、下两底面,故均能围成三棱柱,均是三棱柱的表面展开图.D 围成三棱柱时,两个三角形重合为同一底面,而另一底面没有.故D不能围成三棱柱.【答案】故选D.【例12]如图是一个正四面体,它的四个面都是正三角形,现沿它的三条棱AC、BC、CD剪开展成平面图形,则所得的展开图是()【答案】B.【例13】哪种几何体的表面能展成如图所示的平面图形?需剪几条棱才能得到如此形状的平面图?你是怎样数出来的?请总结其规律.【解析】侧面为五个长方形,底边为五边形,故原几何体为五棱柱.五棱柱能展成如图所示的平面图形.由五棱柱展开成平面图形,需要剪9条棱.因为五棱柱共有15条棱,7个面,展成平面图形时,7个面需有6条棱相连,共需留下6条棱不剪,所以需剪15-6=9 (条)棱.总结规律:n棱柱有n+2个面,3n条棱,展成平面图形时,n+2个面需有n+1条棱相连,故应留下n+1条棱不剪,所以要把n棱柱展成平面图形,共需剪3n- (n+1) =(2n-1)条棱.(n +1)= 2 n -1.【答案】五棱柱;9; 3 n-【例14】下列图形是某些立体图形的平面展开图,说出这些立体图形的名称.【解析】由平面图形的折叠及常见立体图形的展开图解题.根据图示可知:①五棱锥;②圆柱;③三棱柱.【答案】①五棱锥②圆柱③三棱柱由平面图形的折叠及立体图形的表面展开图的特点解题.6个正方形能围成一个正方体,个长方形和两个三角形能围成一个三棱柱,一个四边形和四个三角形能围成四棱锥,6个长方形可以围成长方体.课后作业【解析】圆锥的侧面展开图是扇形,故选C .【答案】C【巩固】图中四个图形是多面体的展开图,你能说出这些多面体的名称吗?【解析】 【答案】 正方体;三棱柱;四棱锥;长方体.【答案】故选D ..【答案】B4.如图,四种图形各是哪种立体图形的表面展开所形成的?画出相应的四种立体图形.【解析】根据四棱锥、三棱柱、圆柱、圆锥及其表面展开图的特点解答并作图.观察图形,由立体图形及其表面展开图的特点可知相应的立体图形顺次是四棱锥、三棱柱、圆柱、圆锥.作图如下:【答案】同解析.【点评】本题考查了几何体的展开图,可根据所给图形判断具体形状,也可根据所给几何体的面数进行判断.。

立体图形的表面展开图例题与讲解

立体图形的表面展开图例题与讲解

立体图形的表面展开图例题与讲解(总4页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--立体图形的表面展开图1.圆柱、圆锥、棱柱的表面展开图将一个几何体的外表面展开,就像打开一件礼物的包装纸.礼物外形不同,包装纸的形状也各不相同.那么我们熟悉的一些几何体,如圆柱、圆锥、棱柱的表面展开图是什么形状呢(1)圆柱的表面展开图是两个圆(作底面)和一个长方形(作侧面).(2)圆锥的表面展开图是一个圆(作底面)和一个扇形(作侧面).(3)棱柱的表面展开图是两个完全相同的多边形(作底面)和几个长方形(作侧面).【例1】如图,将图中的阴影部分剪下来,围成一个几何体的侧面,使AB,DC重合,则所围成的几何体图形是().解析:此题可用排除法.因为阴影部分是个扇环,而圆柱的侧面展开图是长方形,所以排除A;圆锥的侧面展开图是扇形,所以排除B;长方体的侧面展开图是长方形,所以C 也要排除;故选D.答案:D2.正方体的表面展开图(1)正方体的表面展开图按展开图中正方形所在的行数及正方形的个数,归纳起来有四种情形,各种类型的共同特点是行与行之间有且只有一个“日”型结构,由此可知正方体的展开图不会出现如下面图形所示的“凹”字型和“田”字型结构,因为这里的行与行之间出现了两组“日”型结构.(2)正方体展开图中相对面的寻找技巧:相间的两个小正方形(中间隔着一个小正方形)是正方体的两个对面,如图1中的A面和B面;‘Z’字两端处的小正方形是正方体的对面,如图2、图3的A面和B面.此种方法简称为“相间、‘Z’端是对面”.解技巧正方体的表面展开图的判断思路(1)是否满足四种阵型中的一种;(2)行与行之间有且只有一个“日”型结构.【例2】一个正方形的每一个面上都写有一个汉字,其平面展开图如图所示,那么在该正方形中,与“爱”相对的字是().A.家B.乡C.孝D.感解析:本题以热爱家乡为素材,考查正方体的表面展开图.解题时可亲自动手剪一剪、折一折,即可得到与“爱”相对的字是“乡”;另外也可对展开图加以分析,根据展开图对面之间不能有公共边或公共的顶点,“爱”的对面不可能是“我”或“家”,折叠起来后“孝”、“感”与“爱”相邻,所以“爱”的对面不可能是“孝”、“感”,所以与“爱”相对的字是“乡”;但如果本题应用正方体展开图的对面寻找技巧——“相间、‘Z’端是对面”来解决,会非常简单,由相间的两个小正方形(中间隔着一个小正方形)是正方体的两个对面易知“爱”与“乡”相对.答案:B【例3】如图是正方体的展开图,则原正方体相对两个面上的数字和最小是().A.4 B.6 C.7D.8解析:将展开图还原成正方体,2和6相对,3和4相对,1和5相对,则原正方体相对两个面上的数字和最小为6.答案:B谈重点解决正方体展开图问题的关键熟练掌握正方体展开图的对面寻找技巧可以有效降低解题的难度,起到事半功倍的效果.3.正方体表面展开图的应用如果不考虑由于旋转等造成的相对位置的不同,正方体表面展开图一共有11个.正方体表面展开图的特点是每一个顶点周围的棱不超过三条.(1)“1–4–1”型有6个,其中通过“1”的移动可以由一个得到另外的5个,如图.(2)“1–3–2”型有3个,其中通过“1”的移动可以由1个得到另外的2个,如图.(3)“3–3”型有一个,“2–2–2”型有一个,如图.【例3-1】一个正方体的每一个面上都写着一个汉字,其表面展开图如图所示,那么,在该正方体中和“超”所对的汉字是__________.解析:这是“1–3–2”型的正方体表面展开图.根据展开图可知对面之间不能有公共边或公共顶点,所以“超”字的对面不能是“沉”、“着”、“越”,根据上下相对和左右相对,由于“信”和“着”相对,“着”和“超”相邻,所以“信”和“超”相邻.这样和“超”相对的字只能是“自”.答案:自【例3-2】六一儿童节时,阿兰准备用硬纸片通过裁剪、折叠制作一个封闭的正方体礼盒.她先在硬纸片上设计了一个如图1所示的裁剪方案(实线部分),经裁剪、折叠后成为一个封闭的正方体礼盒.请你参照如图,帮她设计另外两种不同的裁剪方案,使之经裁剪、折叠后也能成为一个封闭的正方体礼盒.图1 图2分析:阿兰设计的是正方体的11种展开图中的一种,可以从剩下的10种展开图中任选两种在如图的小方格中画出.解:如图2所示.4.其他立体图形展开图的应用由平面图形围成的立体图形叫多面体,其表面展开图可以有不同的形状.应多实践,观察,并大胆想象立体图形与表面展开图的关系.立体图形的表面展开图包括侧面展开图和底面展开图,画立体图形的展开图时,一定先观察立体图形的每一个面的形状.圆柱的侧面展开图是长方形,底面是圆;圆锥的侧面展开图是扇形,底面是圆;n棱柱的侧面展开图是n个高相等的长方形,底面是n边形;n棱锥的侧面展开图是n个三角形,底面是n边形.【例4】小新的茶杯是圆柱形,如图所示.左边下方有一只蜘蛛,从A处爬行到对面的中点B处,如果蜘蛛爬行路线最短,请画出这条最短路线图.分析:先画出圆柱的侧面展开图,再连接得到最短路线.解:如图所示.5.立体图形展开图的应用立体图形展开图的考查一般以选择题为主要方式,答案的获得需要学生经历一定的实验操作过程,当然学生也可以将操作活动转化为思维活动,在头脑中模拟(想象)折纸、翻转活动,较好地考查了学生的空间观念.解决此类问题,要充分考虑带有各种符号和各种图案的面的特点及位置,解题时,先正确画出立体图形的表面展开图,再仔细观察图案以及符号的不同特点,从而选出正确的答案.有时,根据图案的位置和方向可以先把一些很明显的不符合题目要求的选择项先排除掉,再一步步的寻找正确的选项.要想灵活解决此类问题,一要熟练掌握立体图形展开图的基本知识和解题技巧;二要充分发挥自己的空间想象力;三要不断积累生活经验和解题经验.【例5-1】如图所示的正方体的展开图是().解析:利用正方体及其表面展开图的特点解题.选项A和选项D折叠后,箭头不指向白三角形,C项折叠后与原正方体不符.B折叠后与原正方体相同.故选B.答案:B【例5-2】图1是由白色纸板拼成,将其中两面涂上颜色,如图2所示.下列四个中哪一个是图2的表面展开图().解析:由图中阴影部分的位置,首先可以排除B,D,又阴影部分正方形在左,三角形在右.故选A.答案:A。

初一数学立体图形的展开图含答案

初一数学立体图形的展开图含答案

初一数学立体图形的展开图中考要求例题精讲正方形展开图的知识要点:第一类:有6种。

特点:是4个连成一排的正方形,其两侧各有一个正方形.简称“141型”第二类:有3种。

特点:是有3个连成一排的正方形,其两侧分别有1个和两个相连的正方形;简称“132型”第三类:仅有一种。

特点:是两个连成一排的正方形的两侧又各有两个连成一排的正方形;简称“222型”第四类:仅有1种,三个连成一排的正方形的一侧,还有3个连成一排的正方形,可简称“33型”正方形展开图的识别方法:1.排除法:(1)由少于或多于6个的正方形组成的图形不是正方形的平面展开图(2)有“凹”字型或“田”字型部分的平面图形不是正方体的展开图2.对比法:对照上面的四种规则进行对照;从展开图可以看出,在正方形的展开图中不会出现如下图所示的“凹”字型和“田”字型结构。

模块一长方体的展开图长方体展开图【例1】下列图形中,不能表示长方体平面展开图的是()A.B.C.D.【解析】由平面图形的折叠及正方体的展开图解题.选项A,B,C经过折叠均能围成长方体,D两个底面在侧面的同一侧,缺少一定底面,所以不能表示长方体平面展开图.故选D.【答案】D【巩固】如图是无盖长方体盒子的表面展开图(重叠部分不计),则盒子的容积为()A.4 B.6 C.12 D.15【解析】由图可知,无盖长方体盒子的长是3,宽是2,高是1,所以盒子的容积为3×2×1=6.盒子的容积为3×2×1=6.故选B.【答案】B【巩固】下图是一个长方体纸盒的展开图,请把-5,3,5,-1,-3,1分别填入六个长方形,使得按虚线折成长方体后,相对面上的两数互为相反数.【解析】根据题意,找到相对的面,把互为相反数的数字分别填入即可.【答案】如下图:正方体展开图【例2】下列图形中为正方体的平面展开图的是()A.B.C.D.【解析】由四棱柱四个侧面和上下两个底面的特征可知,A,B,D上底面不可能有两个,故不是正方体的展开图.选项C可以拼成一个正方体.【答案】C【巩固】将一个正方体沿某些棱展开后,能够得到的平面图形是()A.B.C.D.【解析】本题考查图形的展开与折叠中,正方体的常见的十余种展开图有关内容.可将这四个图折叠后,看能否组成正方形.A、出现了田字格,故不能;B、D、上底面不可能有两个,故不是正方体的展开图;C、可以拼成一个正方体.故选C.【答案】C【例3】一个正方体的表面展开图可以是下列图形中的()A.B.C.D.【解析】A,B,D折叠后有一行两个面无法折起来,从而缺少面,不能折成正方体,只有C是一个正方体的表面展开图.故选C.【答案】C【巩固】下列图形中,不是正方体表面展开图的是()A.B.C.D.【解析】A、B、C经过折叠均能围成正方体,D、折叠后第一行两个面无法折起来,不能折成正方体.【答案】D【巩固】将如图所示表面带有图案的正方体沿某些棱展开后,得到的图形是()A.B.C.D.【解析】由平面图形的折叠及立体图形的表面展开图的特点解题.注意带图案的三个面相交于一点.而通过折叠后A、B都不符合,且D折叠后图案的位置正好相反,所以能得到的图形是C.【答案】C.【例4】将如图正方体的相邻两面上各画分成九个全等的小正方形,并分别标上O、×两符号.若下列有一图形为此正方体的展开图,则此图为()A、B、C、D、【解析】此题主要根据O、×两符号的上下和左右位置判断,可用排除法.由已知图可得,O、×两符号的上下位置不同,故可排除A、B;又注意到O、×两符号之间的空行有3列.【答案】C.【巩固】如图,哪一个是左边正方体的展开图()A.B.C.D.【解析】本题考查正方体的表面展开图及空间想象能力.在验证立方体的展开图式,要细心观察每一个标志的位置是否一致,然后进行判断.根据有图案的表面之间的位置关系,正确的展开图是D.【答案】故选D.【点评】学生对相关图的位置想象不准确,从而错选,解决这类问题时,不妨动手实际操作一下,即可解决问题.【例5】下面哪个图形不是正方体的展开图()A.B.C.D.【解析】选项A,B,C折叠后都可以围成正方体,而D折叠后折叠后第一行两个面无法折起来,而且下边没有面,不能折成正方体.【答案】D.【巩固】一个无盖的正方体盒子的平面展开图可以是下列图形中的()A.只有图①B.图①、图②C.图②、图③D.图①、图③【解析】图②,经过折叠后,没有上下底面,侧面是由5个正方形组成,与正方体的侧面是4个正方形围成不相符,所以不是无盖的正方体盒子的平面展开图.【答案】D.【巩固】如图,是一个正方体盒子(6个面)的侧面展开图的一部分,请将它补充完整.【解析】根据正方体的展开图特点补全即可,答案不唯一.正方体的展开图如下:(答案不唯一),最后一个图形不符合.【答案】略模块二圆柱、圆锥的侧面展开图圆柱体【例6】圆柱的侧面展开图形是()A.圆B.矩形C.梯形D.扇形【解析】略【答案】B【巩固】如图,已知MN是圆柱底面的直径,NP是圆柱的高,在高柱的侧面上,过点M,P嵌有一幅路径最短的金属丝,现将圆柱侧面沿NP剪开,所得的侧面展开图是()A.B.C.D.【解析】由平面图形的折叠及立体图形的表面展开图的特点解题.因圆柱的展开面为长方形,MP展开应该是两直线,且有公共点M.故选A.【答案】A【例7】如图,MN是圆柱底面的直径,NO是圆柱的高,在圆柱的侧面上,过点M,P.有一条绕了四周的路径最短的金属丝,现将圆柱侧面沿NO剪开,所得的侧面展开图可以是:【解析】根据两点之间线段最短,剪开后所得的侧面展开图中的金属丝是线段,即可选择.注意P 点在展开图中长边的中点处,圆柱侧面沿NO 剪开,根据两点之间线段最短,剪开后所得的侧面是长方形,P 点在展开图中长边的中点处,金属丝是线段,且从P 点开始到M 点为止.故选②.【答案】②【巩固】底面直径为m 的圆柱体(如图),沿它的一条母线AB (也就是圆柱的高,且AB=h )剪开展平,则圆柱侧面展开后的面积为 .【解析】根据圆柱侧面积=底面周长×高计算即可.圆柱的侧面积=mh π. 【答案】mh π圆锥体【例8】 下列立体图形中,侧面展开图是扇形的是( )A .B.C. D .【解析】根据圆锥的特征可知,侧面展开图是扇形的是圆锥. 【答案】B【巩固】我国运用长征火箭发射了百余颗人造卫星和5次神州飞船.如图是我国航天科技人员自主研究开发的长征系列火箭的立体图形.(火箭圆柱底面圆的周长不等于圆柱的高) (1)请你画出火箭的平面展开图,并标上字母. (2)写出平面图形中所有相等的量.【解析】结合圆柱和圆锥的侧面展开图的特征解题.(1)如右图.(2)OA OB =,CB ED AB ==,BE CD =,90B C D E ∠=∠=∠=∠=.【答案】同解析.模块二其他立体图形的展开图【例9】若下列只有一个图形不是右图的展开图,则此图为何?()A.B.C.D.【解析】选项D的四个三角形面不能折叠成原图形的四棱锥,而是有一个三角形面与正方形面重合,故不能组合成原题目的立体图形.【答案】故选D.【巩固】图1是由白色纸板拼成的立体图形,将此立体图形中的两面涂上颜色,如图2所示.下列四个图形中哪一个是图2的展开图()A、B、C、D、【解析】由平面图形的折叠及立体图形的表面展开图的特点解题.由图中阴影部分的位置,首先可以排除B、D,又阴影部分正方形在左,三角形在右.【答案】故选A.【例10】下列四个图中,是三棱锥的表面展开图的是()A.B.C.D.【解析】三棱锥的四个面都是三角形,还要能围成一个立体图形,可排除C,D,而A不能围成立体图形,故可得答案.【答案】B.【巩固】下面四个图形中,是三棱柱的平面展开图的是()A.B.C.D.【解析】根据三棱柱的展开图的特点作答.A、是三棱柱的平面展开图;B、是三棱锥的展开图,故不是;C、是四棱锥的展开图,故不是;D、两底在同一侧,也不符合题意.故选A.【答案】A【例11】下列图形中,不是三棱柱的表面展开图是()A.B.C.D.【解析】利用棱柱及其表面展开图的特点解题.A、B、C中间三个长方形能围成三棱柱的侧面,上、下两个三角形围成三棱柱的上、下两底面,故均能围成三棱柱,均是三棱柱的表面展开图.D围成三棱柱时,两个三角形重合为同一底面,而另一底面没有.故D不能围成三棱柱.【答案】故选D.【例12】如图是一个正四面体,它的四个面都是正三角形,现沿它的三条棱AC、BC、CD剪开展成平面图形,则所得的展开图是()A 、B 、C 、D 、【解析】亲自动手具体操作,或根据三棱锥的图形特点作答.根据三棱锥的图形特点,可得展开图为B .【答案】B .【例13】 哪种几何体的表面能展成如图所示的平面图形?需剪几条棱才能得到如此形状的平面图?你是怎样数出来的?请总结其规律.【解析】侧面为五个长方形,底边为五边形,故原几何体为五棱柱.五棱柱能展成如图所示的平面图形.由五棱柱展开成平面图形,需要剪9条棱.因为五棱柱共有15条棱,7个面,展成平面图形时,7个面需有6条棱相连,共需留下6条棱不剪,所以需剪15-6=9(条)棱. 总结规律:n 棱柱有n+2个面,3n 条棱,展成平面图形时,n+2个面需有n+1条棱相连,故应留下n+1条棱不剪,所以要把n 棱柱展成平面图形,共需剪3n-(n+1)=(2n-1)条棱.【答案】五棱柱;9;()3121n n n -+=-.【例14】 下列图形是某些立体图形的平面展开图,说出这些立体图形的名称.【解析】由平面图形的折叠及常见立体图形的展开图解题.根据图示可知:①五棱锥;②圆柱;③三棱柱.【答案】①五棱锥②圆柱③三棱柱【巩固】图中四个图形是多面体的展开图,你能说出这些多面体的名称吗?【解析】由平面图形的折叠及立体图形的表面展开图的特点解题.6个正方形能围成一个正方体,三个长方形和两个三角形能围成一个三棱柱,一个四边形和四个三角形能围成四棱锥,6个长方形可以围成长方体.【答案】正方体;三棱柱;四棱锥;长方体.课后作业1. 下列各图形中,可以是一个正方体的平面展开图的是()A.B.C.D.【解析】选项A,C折叠后缺少一个底面,而B折叠后缺少一个侧面,所以可以是一个正方体的平面展开图的是D.【答案】故选D.2.把圆锥的侧面展开,会得到的图形是()A.B.C.D.【解析】圆锥的侧面展开图是扇形,故选C.【答案】C3.如图,圆柱体的表面展开后得到的平面图形是()A、B、C、D、【解析】根据圆柱的侧面展开图作答.圆柱体的侧面展开后得到的平面图形是矩形,上下两底是两个圆,故选B.【答案】B4.如图,四种图形各是哪种立体图形的表面展开所形成的?画出相应的四种立体图形.【解析】根据四棱锥、三棱柱、圆柱、圆锥及其表面展开图的特点解答并作图.观察图形,由立体图形及其表面展开图的特点可知相应的立体图形顺次是四棱锥、三棱柱、圆柱、圆锥.作图如下:【答案】同解析.【点评】本题考查了几何体的展开图,可根据所给图形判断具体形状,也可根据所给几何体的面数进行判断.初中数学.图形初步A级.第01讲.教师版Page 11 of 11。

立体图形的展开图-PPT课件

立体图形的展开图-PPT课件
立体图形的表面展开图
1
P135做一做:能否折叠成多面体?
(1)
(2)

不能
(3)

2
(1)
(2)
(3)
1.沿着多面体的一些棱将它剪开,可以把多
面体展开成一个平面图形.
2.多面体是由平面图形围成的立体图形.
3.图(1)和(3)都叫做三棱锥的表面展开图,因 此一个多面体可能不止有一个表面展开图.
4.不是所有的平面图形都可以作为多面体的 表面展开图.
(1)如果A面在多面体的底部,哪一面会在上面? (2)如果面F在前面,面B在左面,哪一面会在上面? (3)如果面C在右面,面D在后面,哪一面会在上面?
9
考考你:
2.如右图所示,它是正方体的平面展开图, 每个面都标有字母,面A,面B,面C的对面分 别是哪个面?
EF CD AB
10
考考你:
3、在没有数字的方格内填入数,使折 成正方体后相对面上的数互为相反数.
21
AB C DE
(17) F
F E (18) AB CD
(19) E AB CD
F
DE F
ABC
(20)
22
/ 消防泵型号 消防泵厂家
老大儿子古峥嵘直奔工地那儿理论/去咯好几天/回来时俩人被打得壹身伤/我那年轻の孙子の腿都打断咯/再后来/俩人跑去县里政府去说事/想着说那人民官能够管管给我们那小老百姓壹各公道/哪想根本连面儿都见别上……最后/等他 们从县里回来/老二就跟变咯各人壹样/说他加入咯壹各神主教/他就要得到救赎咯/他把家里所有の积蓄全都拿走/说那是要供奉神主/让我们都要壹起跟着神主信仰神主/成天神神叨叨/跟左邻右舍四处宣传/镇上别少人被他说服/跟着他 经常到常青山里の三古村去/老头子虽然上咯年纪也别是愚笨到全信老二の话/那天老二和他妹妹聊天/两人就约着去三古村/我也偷偷跟在后面/他们壹路有说有笑/走到壹片小树林里/别远处就是三古村/还能看到村里の人走动/我本以 为没啥啊大事/看看没情况就回家去/我看见老二她带着自己の妹妹/走到壹处空地上/然后有三各壮汉从树林里出来/他们恶狠狠の/壹看就别是啥啊好人/我别晓得老二为啥啊会认识那些人/接着就看到/就看到……/古大爷忽然停住话/老 泪纵横/苍老の眸子充满浓重の悲伤和绝望/攥紧の拳头狠狠の砸在椅边の桌面上/哽咽の说出接下来让左中又为之震惊の话语——/老二他……他将自己の妹妹推出去/任由那些畜生侵犯自己の妹妹/我至今都记得那些畜生の样子/他们 脸上透着邪恶淫/荡の笑/将魔爪伸向我可怜の小女儿/我别顾壹切の冲上去要跟拼命/还没到那/老二发现咯将我壹把摁倒在地/而我/我亲眼看着自己の女儿被那帮禽兽/强/奸/我の女儿她挣扎她哭喊/壹声又壹声の喊着爸爸/看向我の眼 神害从惊惧到无助到绝望/没什么人停止残忍の暴行/那样下去她会死の/我死命推搡着老二也无济于事/他只是疯魔壹样自言自语‘那是救赎那是救赎’……/话到那里/左中又万分震惊/她知晓世间丑恶の事物千千万/却别想听到壹各人 真实描述出来时/那番感觉简直无比揪心/左中又哭得双眼通红/想安慰古大爷/又别晓得从何说起/只能攥紧手心里本来要给古大爷の纸巾/某各因别动声色站定在左中又の身旁/壹手揽住左中又の肩/往自己の怀里带咯带/左中又低着头 省咯省鼻子/壹手抓紧某各因の衣角/晓得那是某各因给予她无声の抚慰//最后/她真の死咯//古大爷の声音别像刚才の愤恨控诉/空空得有些缥缈//那帮禽兽完事就走咯/她就躺在血泊里/眼睛呆呆の望着天空/她好像就要走咯/我挣开咯 老二爬上前/我别敢碰她/我怕下壹秒她就会别见咯……五年咯/我无数次梦见她来我の梦里哭着喊着说‘爸爸救我/爸爸救我……’/言尽于此/空气仿佛凝固咯壹般/左中又大气都别敢喘壹口/假设那各女孩儿还在/还是跟她差别多の年纪 /她们说别定此刻还能说上话/左中又心中坚定の想着/她壹定要将那壹帮凶徒通通抓住/绳之以法/小房间里此时沉浸在浓浓の哀伤里面/古大爷微捶着自己胸口/佝偻の身躯里是自己深深の悔恨和痛心/沉默壹阵/某各因走到古大爷面前/ 右腿屈膝蹲下/壹手握住古大爷の胳膊/沉冷の声音格外有力量:/我们别会让穷凶极恶の罪犯逍遥法外/为咯逝者安息/也为咯生者安心//古大爷收敛自己の情绪/他能感受到从胳膊处の力量/眼前の年轻人面色清冷/可那双目光正直坚毅 /心中为之动容/那么多年/老二苦苦所求の救赎/从头到脚都是错の/他现在该为自己行为付出代价//古大爷/我们壹定会让那些坏人得到惩罚//左中又也擦干眼泪/走到古大爷跟前//我相信您们//世间众多罪恶/正义别能面面俱到/但壹定 会来临/第017也没/就是她/到达小旅馆时大约是上午11点多/林壹和吕飞翔也都回来咯/某各因把所有人都召集到壹起//打起十二分の精神/今天/我们要剿咯那各窝点//铿锵有力の声音传到每各人の耳朵里/某各因浑身透着壹股强劲の 凌厉气息/在场の几各人亦是万分认真/他们既然选择咯警察那壹行业/就是要秉承为人民服务の信念/身体力行/别管所面对の处境有多艰险/他们都会时刻冲在最前方//古力处理好咯没///换地方绑起来咯/跑别咯//乔远回答//中午我和 左中又会进山里/您们几各人等会先去常青山进山口附近隐蔽起来/林壹您在镇上与昌平县局外警组壹起/乔远您随时注意情况/时机壹到就马上让林壹行动//某各因给每各人分配任务//收到//林壹乔远异口同声//行动吧//人都走得差别 多/剩下某各因和左中又/还有壹各故意磨蹭最后走の乔远//北璟/您确定要带着那各菜鸟?/那会乔远也顾别上啥啊/毫别掩饰对左中又の质疑/某各因置若罔闻/甚至壹各眼神都没给他/然后拿出壹件运动外套换上//那可别是开玩笑/我 当然相信有您没问题/但难免她万壹出咯差错坏咯事//左中又壹向别太在意外人对她の看法/只是那乔远确定要把话说得那么难听?她本人还在场呢/某各因好像都听别见乔远の话壹样/站在房间の镜子前随意地整咯整衣领/别得别说某 各因天生の好皮相/壹件简单休闲の黑白色运动外套都被他穿出优雅慵懒の感觉/左中又看得眼神痴咯壹瞬/恰巧她站在某各因身后/整各人也出现在镜中/从镜中の角度看/两各人好像依偎在壹起/左中又猛地醒神/壹下就对上镜中某各因 の眼神/见此/左中又连忙假装低头躲开那道视线//北璟……/乔远那情商为零完全没察觉到两人の眼神涌动/见某各因迟迟别回答他/再次开口道/某各因却是没耐心再跟乔远废话//我看上の人别会差/您可以走咯//听出某各因话里毋庸置 疑の意味/乔远嘴唇动咯动也没说出来话/再次看咯壹眼左中又就离开房间咯/左中又冲乔远背后扮咯壹各鬼脸/叫您别相信我/今天就让您见识我の实力/虽然左中又那么想着/心里还是虚虚の/毕竟那是她第壹次实战/而且她也很意外/某 各因居然那么看好她?心底莫名有股涌动/朝着某各因脱口而出:/我壹定别会丢您脸//声音里是按捺别住の激动/目光灼灼染上热烈/灿烂の眸里仿佛闪烁着星辰/光芒像要盛别住溢出来咯壹样//去准备吧/等会就走///OK/出发前/左中 又也换咯套运动装/巧の是也是黑白色系/在快到常青山路口处の时候/被暗处隐藏起来の吕飞翔看到/心里暗暗吃咯壹把惊:卧咯各槽/没看错吧/居然是情侣装啊/等案子结束后他可要好好问问小傅怎么把那朵高岭之花采撷下来/那俊男 好の/倒是十分登对/简直可喜可贺/左中又更万万没想到/她就随便换咯套衣服就被认为是人��

立体图形平面展开图

立体图形平面展开图

特点
步骤
选择合适的投影面,将立体图形放置 在投影面上,保持立体图形与投影面 平行,然后按照投影规律绘制平面展 开图。
平行投影法能够保持立体图形的形状 和大小不变,适用于绘制各种立体图 形的平面展开图。
中心投影法
01 02
定义
中心投影法是一种将三维立体图形投影到二维平面的方法,通过将立体 图形放置在投影中心,光源从中心发出照射到立体图形上,然后将投影 面上的影子描绘下来。
分类
常见的立体图形包括长方体、正 方体、圆柱体、圆锥体、球体等 。
立体图形的特点
01
02
03
空间性
立体图形存在于三维空间 中,具有空间占有明确的边界和结构。
方向的明确性
立体图形在空间中具有明 确的方向性,如上下、左 右、前后等。
立体图形与平面图形的区别
05
立体图形平面展开图的 实例分析
实例一:纸盒的折叠与展开
纸盒的折叠与展开是立体图形平面展开 图最直观的实例之一。通过将纸盒折叠 成所需的立体形状,然后展开成平面图 形,可以展示立体图形与平面图形之间
的转换关系。
纸盒的展开图通常采用轴对称或中心对 称的方式,以简化制作过程并确保展开 后的平面图形与原始立体形状相匹配。
长方体的平面展开图有多种形式,包括 一字型、L型、U型和十字型等。
VS
详细描述
长方体的平面展开图是由其六个面中的四 个或五个面围成的。其中,一字型展开图 是由长方体的三组对面分别平铺而成;L 型展开图是长方体的三组对面中,两组对 面平铺,另一组对面的一个面折叠;U型 展开图是长方体的三组对面中,两组对面 的两个面平铺,另一组对面的一个面折叠 ;十字型展开图则是长方体的两组对面平 铺,另外两组对面的两个面折叠。

立体图形的展开图(课件)

立体图形的展开图(课件)
第四章 几何图形初步
4.1.3 立体图形的展开图
立体图形的展开图
立体图形的展开图
立体图形的展开图
立体图形的展开图
1.了解立体图形可由平面图形围成,立体图形可 展开为平面图形;
2.掌握正方体的展开图,熟悉圆柱、圆锥、棱柱、 棱锥的表面展开图,能根据展开图判断立体图 形的形状.
立体图形的展开图





立体图形的展开图

第二类: "1-3-2"型





立体图形的展开图

第三类: "2-2-2"型




第四类: "3-3"型

立体图形的展开图
将正方体相对的面涂上颜色,你会发现什么?
对 面 相

不 相 连

?

立体图形的展开图
正 方 体 展 开 图
-
立体图形的展开图
自主反思:
立体图形的展开图 做个巧手活 看个妙东西 当个小帮手
立体图形的展开图
做个巧手活
1、折叠下列图形,看能不能折叠成一个立 体图形?
(1)
(2)
(3)
→经过动手折叠发现( 1 )( 3 )
可以折叠成一个( 三棱锥 )
立体图形的展开图
立体图形是平面图形围成的,把这些立 体图形的表面适当剪开,得到的平面图形称 为相应图形的展开图.
1.立体图形和平面图形之间的关系?
展开
有些立体图形
有些平面图形 折叠
平面图形 立体图形
2.常见的一些立体图形的展开图是 什么样的?正方体展开图中不能

立体图形的展开图(有答案)汇总

立体图形的展开图(有答案)汇总

01
02
03
空间性
立体图形存在于三维空间 中,具有长、宽、面围 成的封闭空间。
组合性
立体图形可以由多个简单 的基本图形组合而成。
立体图形的重要性
实际应用
立体图形在建筑、机械、 电子等领域有广泛应用。
数学研究
立体图形是数学中几何学 的重要研究对象,对于理 解空间结构和性质具有重 要意义。
优化材料
根据立体图形的结构和展开图的特 点,选择合适的材料,如金属、塑 料等,以降低成本和提高加工效率。
考虑加工工艺
在绘制展开图时需要考虑加工工艺 的可行性,如折弯、切割、焊接等, 以保证加工的准确性和效率。
04 立体图形展开图的实例分 析
正方体展开图的实例分析
正方体的展开图是一个六面体,其中 三个面是正方形,另外三个面是长方 形。
01
选择合适的CAD软件,如AutoCAD、SolidWorks等。
02
在软件中创建立体图形的三维模型,然后通过软件的展开功能
生成展开图。
CAD软件可以快速生成准确的展开图,并可以方便地进行修改
03
和优化。
立体图形展开图的优化技巧
简化图形
在保证功能的前提下,尽量简化 展开图的形状和结构,减少材料
的使用和加工难度。
教育价值
立体图形的教学有助于培 养学生的空间想象能力和 逻辑思维能力。
02 常见立体图形的展开图
正方体的展开图
1-4-1型
2-3-1型
三个面相连构成底面,上方有两个面 相互垂直。
三个面相连构成底面,上方有两个面 相互垂直且不相邻。
1-3-2型
四个面相连构成底面,上方有一个面 与底面相邻。
长方体的展开图

初一数学展开图及点线面体讲解

初一数学展开图及点线面体讲解

练一练:围成下面这些几何体的各个面中,哪些 面是平的?哪些面是曲的?
观察我们的教室和周围环境,举出一些实际生活中“面” 的例子,并指出哪些面是平的,那些面是曲的?
观察几何体模型,回答下列问题: (1)面与面相交的地方形成了什么图形?它们有什么不同? (2)线与线相交的地方形成了什么图形?它们有什么不同?
点 动 成 线
物体的运动会留下运动轨迹,这些运动轨迹往往也 能抽象成几何图形.如果把笔尖看成一个点,这个点在 纸上运动时,形成的图形是什么?动手试一试.
归纳结论: 点动成线.
汽车的雨刷在挡风玻璃上画出一个扇面,从几何 的角度观察这种现象,你可以得出什么结论?
概括结论: 线动成面.
线 动 成 面
线 动 成 面
线 动 成 面
三角形 绕一边 旋转成 圆锥体
长方形 绕一边 旋转成 圆柱体
既然“点动成线,线动成面”,那么请同学 们想一想:当面运动时又会形成什么图形?如何 验证你的猜想?
概括结论:面动成体.
点动成—— 线 线动成—— 面 面动成—— 体
体是由面组成 面与面相交成线 线与线相交成点
观察可知:长方体有__6__个面,面与面相交的地方形成了 _1_2_条线,线与线相交成__8__个点;三棱柱有__5__个面,面与面 相交的地方形成了__9_条线,线与线相交成__6__个点.
归纳:图形的构成元素包括__点__、 _线___、 __面__、 __体__.
我们先来认识“体”.观察一本书、圆罐、篮球,从它们 外形中分别可以抽象出什么立体图形?
常见几何体展开图及点、线、面、体的关系 执教:小密初中 钟岩锋
从上面看
从左面看 主视图
从正面看
左视图
俯视图

立体图形的表面展开图例题与讲解

立体图形的表面展开图例题与讲解

立体图形的表面展开图1.圆柱、圆锥、棱柱的表面展开图将一个几何体的外表面展开,就像打开一件礼物的包装纸.礼物外形不同,包装纸的形状也各不相同.那么我们熟悉的一些几何体,如圆柱、圆锥、棱柱的表面展开图是什么形状呢(1)圆柱的表面展开图是两个圆(作底面)和一个长方形(作侧面).(2)圆锥的表面展开图是一个圆(作底面)和一个扇形(作侧面).(3)棱柱的表面展开图是两个完全相同的多边形(作底面)和几个长方形(作侧面).【例1】如图,将图中的阴影部分剪下来,围成一个几何体的侧面,使AB,DC重合,则所围成的几何体图形是( ).解析:此题可用排除法.因为阴影部分是个扇环,而圆柱的侧面展开图是长方形,所以排除A;圆锥的侧面展开图是扇形,所以排除B;长方体的侧面展开图是长方形,所以C也要排除;故选D.答案:D2.正方体的表面展开图(1)正方体的表面展开图按展开图中正方形所在的行数及正方形的个数,归纳起来有四种情形,各种类型的共同特点是行与行之间有且只有一个“日”型结构,由此可知正方体的展开图不会出现如下面图形所示的“凹”字型和“田”字型结构,因为这里的行与行之间出现了两组“日”型结构.(2)正方体展开图中相对面的寻找技巧:相间的两个小正方形(中间隔着一个小正方形)是正方体的两个对面,如图1中的A面和B面;‘Z’字两端处的小正方形是正方体的对面,如图2、图3的A面和B面.此种方法简称为“相间、‘Z’端是对面”.解技巧正方体的表面展开图的判断思路(1)是否满足四种阵型中的一种;(2)行与行之间有且只有一个“日”型结构.【例2】一个正方形的每一个面上都写有一个汉字,其平面展开图如图所示,那么在该正方形中,与“爱”相对的字是( ).A.家B.乡C.孝D.感解析:本题以热爱家乡为素材,考查正方体的表面展开图.解题时可亲自动手剪一剪、折一折,即可得到与“爱”相对的字是“乡”;另外也可对展开图加以分析,根据展开图对面之间不能有公共边或公共的顶点,“爱”的对面不可能是“我”或“家”,折叠起来后“孝”、“感”与“爱”相邻,所以“爱”的对面不可能是“孝”、“感”,所以与“爱”相对的字是“乡”;但如果本题应用正方体展开图的对面寻找技巧——“相间、‘Z’端是对面”来解决,会非常简单,由相间的两个小正方形(中间隔着一个小正方形)是正方体的两个对面易知“爱”与“乡”相对.答案:B【例3】如图是正方体的展开图,则原正方体相对两个面上的数字和最小是( ).A.4 B.6 C.7 D.8解析:将展开图还原成正方体,2和6相对,3和4相对,1和5相对,则原正方体相对两个面上的数字和最小为6.答案:B谈重点解决正方体展开图问题的关键熟练掌握正方体展开图的对面寻找技巧可以有效降低解题的难度,起到事半功倍的效果.3.正方体表面展开图的应用如果不考虑由于旋转等造成的相对位置的不同,正方体表面展开图一共有11个.正方体表面展开图的特点是每一个顶点周围的棱不超过三条.(1)“1–4–1”型有6个,其中通过“1”的移动可以由一个得到另外的5个,如图.(2)“1–3–2”型有3个,其中通过“1”的移动可以由1个得到另外的2个,如图.(3)“3–3”型有一个,“2–2–2”型有一个,如图.【例3-1】一个正方体的每一个面上都写着一个汉字,其表面展开图如图所示,那么,在该正方体中和“超”所对的汉字是__________.解析:这是“1–3–2”型的正方体表面展开图.根据展开图可知对面之间不能有公共边或公共顶点,所以“超”字的对面不能是“沉”、“着”、“越”,根据上下相对和左右相对,由于“信”和“着”相对,“着”和“超”相邻,所以“信”和“超”相邻.这样和“超”相对的字只能是“自”.答案:自【例3-2】六一儿童节时,阿兰准备用硬纸片通过裁剪、折叠制作一个封闭的正方体礼盒.她先在硬纸片上设计了一个如图1所示的裁剪方案(实线部分),经裁剪、折叠后成为一个封闭的正方体礼盒.请你参照如图,帮她设计另外两种不同的裁剪方案,使之经裁剪、折叠后也能成为一个封闭的正方体礼盒.图1 图2分析:阿兰设计的是正方体的11种展开图中的一种,可以从剩下的10种展开图中任选两种在如图的小方格中画出.解:如图2所示.4.其他立体图形展开图的应用由平面图形围成的立体图形叫多面体,其表面展开图可以有不同的形状.应多实践,观察,并大胆想象立体图形与表面展开图的关系.立体图形的表面展开图包括侧面展开图和底面展开图,画立体图形的展开图时,一定先观察立体图形的每一个面的形状.圆柱的侧面展开图是长方形,底面是圆;圆锥的侧面展开图是扇形,底面是圆;n棱柱的侧面展开图是n个高相等的长方形,底面是n边形;n棱锥的侧面展开图是n个三角形,底面是n边形.【例4】小新的茶杯是圆柱形,如图所示.左边下方有一只蜘蛛,从A处爬行到对面的中点B处,如果蜘蛛爬行路线最短,请画出这条最短路线图.分析:先画出圆柱的侧面展开图,再连接得到最短路线.解:如图所示.5.立体图形展开图的应用立体图形展开图的考查一般以选择题为主要方式,答案的获得需要学生经历一定的实验操作过程,当然学生也可以将操作活动转化为思维活动,在头脑中模拟(想象)折纸、翻转活动,较好地考查了学生的空间观念.解决此类问题,要充分考虑带有各种符号和各种图案的面的特点及位置,解题时,先正确画出立体图形的表面展开图,再仔细观察图案以及符号的不同特点,从而选出正确的答案.有时,根据图案的位置和方向可以先把一些很明显的不符合题目要求的选择项先排除掉,再一步步的寻找正确的选项.要想灵活解决此类问题,一要熟练掌握立体图形展开图的基本知识和解题技巧;二要充分发挥自己的空间想象力;三要不断积累生活经验和解题经验.【例5-1】如图所示的正方体的展开图是( ).解析:利用正方体及其表面展开图的特点解题.选项A和选项D折叠后,箭头不指向白三角形,C项折叠后与原正方体不符.B折叠后与原正方体相同.故选B.答案:B【例5-2】图1是由白色纸板拼成,将其中两面涂上颜色,如图2所示.下列四个中哪一个是图2的表面展开图( ).解析:由图中阴影部分的位置,首先可以排除B,D,又阴影部分正方形在左,三角形在右.故选A.答案:A。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
D、圆锥、六棱柱、圆柱、三棱锥
D
(A )
(B )
(C)
(D)
想一想、折一折
以下哪些图形经过折叠可以围成一个棱柱?




拓展: 你有办法将图形( 1 ) , ( 3 )修改, 使它能折叠成棱柱?
思考题
如图,一只蚂蚁要从正方体的顶点A沿表面 爬行到顶点B,怎样爬行路线最短?如果要 爬行到顶点C呢?说出你的理由.

红 兰

黄 乙

绿
兰 丙


红---绿(甲`乙) 黄---黑(乙`丙) 兰---白(甲`丙)
12 有一正方体木块,它的六个面分别标上 数字1——6,下图是这个正方体木块从不同 面所观察到的数字情况。请问数字1和5对面 的数字各是多少?
1 5 4 1 2 4 6 1
2
5----4
1----3
13 下面几个图形是一些常见几何体的 展开图,你能正确说出这些几何体的 名字么?
3.下图所示的平面图形中不能围成三棱 柱的是( B )
4. 下列哪个平面图形沿虚线折叠不能围成 正方体的是( B )
5 、右图需再添上一个面,折叠后才能围成一个正方 体,下面是四位同学补画的情况(图中阴影部分), 其中正确的是( B )
A.
B.
C.
D.
7 ,如图,这是一个正方体的展开图, 如果将它组成原来的正方体,哪些点 与点P重合。
圆锥
四棱锥
长方体
三棱柱
三棱锥
三棱柱
正方体
圆柱
14 下图中的那些图形可以沿虚线折叠成 长方体包装盒,先想一想,再折一折。
(1)
(2)
(3)
(4 )
(1)(3)可以; (2)(4)不可以
15 把下面的正三角形沿虚线折叠 后的几何体是什么?
三棱锥(正四面体)
16 折叠出正八面体来(它是由8个正三角形 的面围成的)如图,试画出它的表面展开图
C
B A
本节课你收获了什么?能谈一谈立体 图形与平面图形的关系?
作业
棱柱的表面展开图是
两个完全相同的多边形(作底面)和 几个长方形(作侧面)
棱锥的展开图是 由一个多边形(作底)和 几个三角形(作侧面)组成的
圆柱的表面展开图是
两个圆(作底面)和一个长方形(作侧面)
圆锥的表面展开图是
一个圆(作底面)和一个扇形(作侧面)
长 方 体
长方体的展开图
做一做
• 将一个正方体的表面沿某些棱剪开,能展成 一个平面图形吗?你能得到哪些平面图形? 与同伴进行交流.
长方形 六边形 _______ ,底面的形状是_______.
相等 ,棱柱有上下 2、棱柱的所有侧棱长度都______ 相同 相等 两个底面,且形状______ 、大小_____. 3、判断一个平面展开图是否能折叠成一个棱柱, 一般情况下应该具备两个条件: (1)底面图形的边数=侧棱的个数
(2)棱柱的两个底面分别在侧面展开图的两端。
立体图形的表面展 开图
学习目标
• 会判断所给定的平面图形能否折成立体图 形(多面体) • 给出一些多面体的展开图,能说出相应多 面体的名称; • 会判断给定的平面图形是否某多面体的展 开图,并会把一个简单的多面体展开成平 面图形;
圆柱 棱柱
圆锥 长方体
棱柱
复习旧知识: 18 条棱,____ 6条 12 1、六棱柱有 ____个顶点,______ 8个面,______个侧面 6 侧棱,_______ ,侧面的形状是
S T H
P
R
U
V
l
M
N
Q
W
K
与P点重合的有:V,T
Z
Y
8 下图是一个正方体的展开图,标注了字 母 A 的面是正方体的正面,如果正方体的左 面与右面所标注代数式的值相等,求 x 的 值.
-2
3
-4
1
A 3x-2
考考你
9 下面图形中,哪些是正方体的平面展开图?
1 2 3 4 5 6 祝 前 你 似 程 锦 A B C D E F
17 下列图形哪个不是长方体的表面展开图? (B) _______
A
B
C
D
19 把左图中长方体 的表面展开图,折叠成 一个长方体,那么与字 A 母 J重合的点是哪几个?
E
B C D
F
G
ห้องสมุดไป่ตู้
N
M
L
K
I
H
与J重合的点有:H , N
J
A、圆柱、六棱柱、圆锥、三棱柱 B、圆柱、六棱柱、圆锥、三棱锥
C、圆锥、六棱柱、圆柱、三棱柱
10 如图是一个正方体纸盒的展开图,请在图中 的6个正方形中分别填入1、2、3、-1、-2、-3,使 展开图沿虚线折叠成正方体后相对面上的两个数 互为相反数。
11 有一个正方体,在它的各个面上分别涂 了白、红、黄、兰、绿、黑六种颜色。甲、乙、 丙三位同学从三个不同的角度去观察此正方体, 结果如下图,问这个正方体各个面的对面的颜 色是什么?
[例]下面图形经过折叠能否围成棱柱?
(1)侧面数(4个)≠底面边数(3条),不能围成棱柱. (2)两底面在侧面展开图的同一端,不在两端,所以也不能 围成棱柱.
(3)可以折成棱柱
考考你
1.如图,上面的图形分别是下面哪个立体图形 展开的形状?把它们用线连起来.
2、下图是一些立体图形的展开图,用它 们能围成怎样的立体图形?
相关文档
最新文档