倍频激光器的设计
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
目录
第1章概述 (1)
第2章光倍频原理与技术....................... 错误!未定义书签。
2.1光倍频原理............................. 错误!未定义书签。第3章脉冲紫外激光器的设计 (4)
3.1被动调Q基础........................... 错误!未定义书签。
3.2被动调Q获得基频光..................... 错误!未定义书签。结论. (8)
参考文献 (3)
第1章概述
在被动调Q理论的指导下,充分考虑了被动调Q晶体Cr:YAG的激发态吸收效应对脉冲激光器性能的影响,延伸了Degnan的被动调Q优化理论,直接给出了优化设计过程中我们最关心的被动调Q晶体的小信号透过率与输出耦合镜的透过率关系,简化了设计程序。在高斯光束倍频理论的指导下,改进了传统的聚焦方式,使结构更为紧凑下,获得了更高的紫外功率输出,并且该结构可同时满足三倍频,四倍频的要求。在连续紫外的研究中,充分考虑到激光器输出镜的最佳透过率与倍频转换效率之间的关系,并由此优化倍频晶体长度。
采用简单的两镜腔结构,将二倍频、三倍频频率变换晶体同时放在腔内,还实现了355nm连续激光的输出。LD泵浦全固态激光器从二十世纪八十年代以来获得长足的进步,紫外激光器因其在人眼安全波段,光刻的主要光源等重要应用,一直以来就是人们研究的热点。
因此,发展激光产业将带动传统工业的改造和发展。加速我国国防技术的现代化激光技术在军事上已应用于测距、指向、制导、通讯及战术武器等,为改善武器装备的性能,提高命中率和可靠性,起到重要的作用,并有一定数量的产品出口。
图1-1自动加湿器功能原理图;2.2实现方式;要达到自动加湿器功能要做好硬件和软件设计和调试三;本系统分信号的主要有温度传感器的输入信号和单片机;2.3理论基础;2.3.1单片机;T89C2051是一种带2K字节闪烁可编程可擦除;图2-1AT89S51芯片引脚图;AT89S51共有40个引脚,大致可分为4类:电;
2.3.2DS18B20传感器;传感器是一种按
图1-1 自动加湿器功能原理图
2.2 实现方式
要达到自动加湿器功能要做好硬件和软件设计和调试三个方面的工作。首先硬件方面,通过合理的设计单片机管脚及其他外围电路的链接,使之既有I/O口的功能,又有控制型号的功能。由于时间仓促,没有找到合适的水位传感器,在开发过程中利用三个按钮开关代替水位传感器分别代表高、中、低水位,而加湿器开关则由一发光二级管代替,在方正过程中更容易观察系统开发效果。这方面的内容详见硬件设计部分内容。其次软件方面,通过合理设计软件的结构和安排子程序,使程序以
最简洁有效的方式实现目的。最后,调试方面,程序编辑用VW8系列方针器环境,编辑过程可使用软件仿真观察,并对其进行调试。在程序编辑完成之后使用硬件仿真,最终用烧录器将程序写入单片机进行实测。
本系统分信号的主要有温度传感器的输入信号和单片机输出的控制信号构成。首先由单片机向温度传感器发出读信号,随后温度传感器做出响应,单片机待DS18B20完成收集到得温度信息进行AD处理并存储为数字信号后,开始读取温度值,并对其信号做位处理使之达到用户需求的精度以及计算得到相对湿度,最后通过1602LCD显示温湿度值。另外,系统在运行过程中还有专门的控制声光报警系统、光电耦合开关的控制信号,
结论
由于倍频晶体的阈值很高,因此要获得高的倍频效率,基频波的功率密度要足够高。这样对连续或者高重复频率的激光器,一般均采用腔内倍频方式。如Photonics Industries采用LD泵浦的Nd:YVO4绿光激光器,两个谐振腔镜对基频波(波长为1064nm)都镀高反膜,而对二次谐波(波长为532nm)有一定的耦合输出,这样腔内的基频波功率密度就非常高,就能获得极高的二次谐波转换效率。当LD泵浦功率为80W时,可获得16W 的100kHz 532nm绿光输出。
尽管目前在紫外激光的研究很多,但离产业化、实用化的目标很远,通过对激光器的
整体优化设计,旨在提高全固态紫外激光器的性能并产业化,
因此本文主要做了以下几个方面的工作:
1、在被动调Q理论的指导下,充分考虑了被动调Q晶体Cr:YAG的激发态吸收效应对脉冲激光器性能的影响,延伸了Degnan的被动调Q优化理论,直接给出了优化设计过程中我们最关心的被动调Q晶体的小信号透过率与输出耦合镜的透过率关系,简化了设计程序.
2、在频率变化晶体的优化选取的总前提下,详细计算倍频晶体的各主要参数,优化选取了各倍频晶体及长度,在高斯光束频率变换理论的指导下,改进了传统的聚焦方式,使结构更为紧凑下,获得了更高的紫外功率输出,并且该结构可同时满足三倍频,四倍频的要求。
3、充分考虑到激光器输出镜的最佳透过率与倍频转换效率之间的关系,详细计算了一定泵浦功率时的最佳输出镜透过率,并由此优化倍频晶体(KTP)长度的选取。
参考文献
[1]丁丽明, 杨福民, Bowman S R. 聚光腔对光泵均匀性的影响. 中国激光, 1989. [2]梁柱,宁国斌,金光勇.LD泵浦高频YAG激光器.长春理工大学学报, 2002
[3]周炳琨,高以智等.激光原理。北京:国防工业出版社,2007.
[4]克希耐尔W. 固体激光工程. 北京:科学出版社,2002.
[5]蔡伯荣. 激光器件. 湖南:湖南科技出版社,1988.
[6]姚建铨. 线性光学频率变换及激光调协技术. 北京:科学技术出版社,1995.
[7]傅竹西.固体光电子学.合肥:中国科学技术大学出版社,2004.
[8]饶云江.光纤技术.北京:科学出版社,2006.
东北石油大学课程设计成绩评价表
指导教师:年月日