第二章 完全信息静态博弈的基本理论解析
第2章_完全信息静态博弈
乙
前行
退让
前行
(-10,-10) (20,-2)
甲
退让
(-2,20) (0,0)
❖ (甲前行、乙退让)和(甲退让、乙前行)都是“斗鸡博弈” 的纳什均衡。
3.“市场争夺战”博弈
❖ 假设在市场中有两个竞争对手。一个是已经在市场中的“在位者”, 另一个是企图进入市场的“潜在进入者”。
❖ 潜在进入者有两个可以选择的策略:进入、不进入。在位者也有两个 可以选择的策略:斗争、默许。
(10,1) (2,2)
❖ 如果嫌疑人乙选择坦白,那么嫌疑人甲应该如何选择? ❖ 理性的嫌疑人甲会选择坦白。 ❖ 在嫌疑人甲选择坦白所对应的收益“5”的下方划一道短横线。 ❖ 类似可分析其他情况
❖ 2.通过“划横线法”求解“智猪博弈”的均衡
大猪
按开关 等待
小猪
按开关
等待
(5,-1)
(4,2)
(10,-2) (0,0)
❖ 如果大猪和小猪都去按压开关,然后两头猪从开关处奔向猪圈 另一端的盛食槽。由于大猪跑的快,小猪跑得慢,因此大猪会 比小猪早到达盛食槽并把盛食槽内的食物吃光。小猪付出了按 压开关的劳动却没有吃到食物。在此种情况下,大猪的收益为 5,小猪的收益为 -1。
❖ 如果大猪去按压开关,小猪在盛食槽旁等待。那么当大猪按下 开关后,盛食槽内出现食物,小猪立即开始吃,大猪则需要花 一定时间从猪圈一端跑到另一端。当大猪到达盛食槽后,身强 力壮的大猪会把小猪挤到一旁,吃光剩余的食物。在这种情况 下,大猪得到的收益是 4,小猪得到的收益是 2。
❖ 将嫌疑人甲标识在支付矩阵左侧,将嫌疑人乙标识在支付 矩阵上方 。
❖ 嫌疑人甲有两个策略可以选择:坦白、不坦白。将嫌疑人 甲可能的策略纵向排列在博弈支付矩阵左侧。
第二章 完全信息静态博弈
两寡头间的囚徒困境博弈
厂商2
不突破
厂 不突破 商 1 突破
突破
4.5,4.5
5,3.75
3.75,5
4,4
以自身最大利益为目标:各生产 2单位产量,各自得益为4 以两厂商总体利益最大:各生产 1.5单位产量,各自得益为4.5
2.3.2 反应函数(划线法)
古诺模型的反应函数
(0,6) R1(q2)
Cont…
反应函数: *
P
* 2
P 1
1 * ( a1 d1 P 2 ) 2b 1
2.3 无限策略分析和反应函数
2.3.1 古诺的寡头模型 2.3.2 反应函数 2.3.3 伯特兰德寡头模型 2.3.4 豪泰琳模型
2.3.1 古诺的寡头模型
企业Cournot模型 (无限策略博弈) 古诺( Cournot ,1838)比纳什(1950)定义早100年 假设条件: 1. 在一个寡头市场上两企业生产销售同质产品,市场 总产量Q = q1+q2 (两寡头企业就是指这两家企业 垄断了某一行业的市场) 2. 市场出清价格 P = 8 - Q 3. 生产无固定成本,边际成本 c=c1=c2=2 4. 两企业同时独立地决定各自的生产产量(q1, q2) 问题:两家企业应如何决策?
2.2.2
纳什均衡与一致预期
一致预期:基于信念的选择是合理的;支持选择的 信念是正确的; 预期的自我实现:如何所有人认为这个结果会出现, 这个结果就会出现。预期是自我实现的,预期不会 错误。如果你认为我预期你将选择X,你就真的会 选择X。
2.2.3 纳什均衡与严格下策反复消去法
上策均衡定是纳什均衡,但纳什均衡不一定是上策均衡 命题2.1:在n个博弈方的博弈 G {S1 ,Sn ; u1 ,un } 中,如 * * 果严格下策反复消去法排除了除 (s1 , sn ) 之外的所有策 * * 略组合,那么 (s1 , sn ) 一定是该博弈的唯一的纳什均衡 命题2.2:在n个博弈方的博弈中G {S1,Sn ; u1,un } 中,如 * * , sn )是 果 (s1 G 的 一个纳什均衡,那么严格下策 反复消去法一定不会将它消去 上述两个命题保证在进行纳什均衡分析之前先通过严 格下策反复消去法简化博弈是可行的
第二章完全信息静态博弈
第二章完全信息静态博弈2在完全信息静态博弈中,各博弈方同时决策,且所有博弈方对各方得益都完全了解。
完全信息静态博弈属于非合作博弈最基本类型。
本章介绍该类博弈的一般分析方法、纳什均衡概念及分析方法的扩展。
2.1 基本分析方法3上策均衡严格下策反复消去法划线法箭头法上策均衡4 (Dominant-strategy Equilibrium)上策(Dominant-strategy) :不管其它博弈方选择什么策略,一个博弈方的某个策略给他带来的得益至少不低于其他策略。
例:囚徒困境Idea..?5上策均衡与均衡结果:上策均衡(坦白,坦白)均衡得益(-5,-5)“坦白”相对于“抵赖”是每个囚徒的上策(优势策略)-5,-50,-8-8,0-1,-1坦白抵赖坦白抵赖囚徒B囚徒A上策均衡6 (Dominant-strategy Equilibrium)上策均衡:由每个博弈方的上策所组成的策略组合。
一个博弈的某个策略组合中的所有策略都是各个博弈方各自的上策,必然是该博弈比较稳定的结果。
博弈方2博弈方1A B C a3,22,35,4 b2,11,23,3 c1,61,44,5例寻找上策(优势策略)检查一下你是否存在上策,如果有,就选择它。
站在其他方的位置上思考问题如果你没有上策,那么从其他博弈方角度考虑。
如果其他博弈方有上策,预期他将选择自己的上策。
严格下策:不管其它博弈方的策略如何变化,某种策略给一个博弈方带来的得益总比另一种策略小,称前一种策略为相对于后一种策略的“严格下策”。
1,01,30,40,2左中1,01,3左中1,01,30,10,40,22,0左中右上下211,3中上例:巡逻6,24,48,00,0巡逻不巡逻穷人不巡逻富人WELCOME富人与穷人1112处于强势的博弈方为维护自己利益采取某种决策时,为其他弱势博弈方提供了搭便车的机会公司里的大股东与小股东每一个博弈方针对其他方的每一种策略,在自己的最大可能得益下划线2,10,00,01,3时装足球时装足球丈夫妻子夫妻之争划线法13划线法:通过在最佳对策得益下划线分析博弈的方法。
应用博弈论第二讲完全信息静态博弈
•
生活中的例子
例1 股市博弈 在股票市场上,大户是大猪,他们
要进行技术分析,收集信息、预测股价 走势,但大量散户就是小猪。
他们不会花成本去进行技术分析, 而是跟着大户的投资战略进行股票买卖 ,即所谓“散户跟大户”的现象。
•
例2
为什么中小企业不会花钱去开发新产品 ?
•
完全信息静态博弈的内涵
完全信息静态博弈,它有两个条件,(1 )各博弈方一次性的、同时决策(如剪 刀、石头、布的游戏,以及囚徒困境) ,(2)所有博弈方对各方得益都了解的 博弈,即各博弈方都完全了解所有博弈 方在各种情况下的得益。
见下页具体实例(石头、剪子、布游戏 )来理解什么是完全信息静态博弈。
•
生活中的“囚徒困境”例子
至迟从休谟(1739)开始,政治哲学
和经济学家已经认识到如果公民只关注 个人福利,公共物品就会出现短缺,并
且公共资源也会过度使用。因此政府应 该积极合理的干预经济生活。
•
例子
为什么政府要负责修建公共设施,因
为私人没有积极性出资修建公共设施
设想有两户相居为邻的农家,十分需要 有一条好路从居住地通往公路。修一条路的成 本为4,每个农家从修好的好路上获得的好处为 3。如果两户居民共同出资联合修路,并平均分 摊修路成本,则每户居民获得净的好处(支付 )为3-4/2=1;当只有一户人家单独出资修路时 ,修路的居民获得的支付为3-4=-1(亏损), “ 搭便车”不出资但仍然可以使用修好的路的另一 户人家获得支付3-0=3,见表2。
在技术创新市场上,大企业是大猪,它 们投入大量资金进行技术创新,开发新 产品,而中小企业是小猪,不会进行大 规模技术创新,而是等待大企业的新产 品形成新的市场后生产模仿大企业的新 产品的产品去销售。
第二讲 完全信息静态博弈
得每个参与人的策略是对其他
参与人策略的最优反应。
在纳什均衡点上,每一个理性 的参与者都不会有单独改变策略的冲动 均衡不一定是博弈的最优结果
19
纳什均衡
2.3 博弈的解和纳什均衡
纳什均衡定义: 在博弈 G S1,..., Sn ; u1,..., un 中,
* * 如果策略组合 ( s1 ,...sn )
中任一博弈方i的策略
* si* 都是对其余博弈方的策略组合 (s1* ,..., si*1, si*1,..., sn )
的最佳对策,也即
ui (s ,..., s , si , s ,..., s ) ui (s ,..., s , sij , s ,..., s )
* 1 * i 1 * * i 1 * n * 1 * i 1 * i 1 * n
* i
命题2.1 在n个博弈方的博弈 G S1,..., Sn ; u1,..., un 中,如 * * 果严格下策反复消去法排除了 (s1 ,..., sn ) 以外的所有策略组 * * ,..., sn ) 一定是G的唯一的纳什均衡。 合,则 (s1 命题2.2 在n个博弈方的博弈 G S1,..., Sn ; u1,..., un 中, * * 如果 (s1 ,..., sn ) 是G的一个纳什均衡,则严格下策反复消去 法一定不会将它消去。
11
2.2 基本分析思路和方法
箭头法 思路 对博弈中的每个策略组合进行分析,考察在每 个策略组合处各个博弈方能否通过单独改变自己的 策略而增加得益。 如能,则从所分析的策略组合对应的得益数组 引一箭头,到改变策略后策略组合对应的得益数组。
完全信息静态博弈——基本分析思路和方法
经济博弈论 02 完全信息静态博弈(Park)
都成立,则称 {S1*, ...Sn*}为G的一个纳什均衡
YBU
Economics department
Cont.
二、纳什均衡的一致预测性质 一致预测:如果所有博弈方都预测一个特定博弈结果会
妻(囚徒 2 )
坦白
不坦白
-5, -5
0, -8
-8, 0
-1, -1
Payoff
YBU
Economics department
2.1 Cont.
二、下策均衡
严格下策(dominate str.):不管其它博弈方的策略
如何变化,给一个博弈方带来的收益总是比另一种
策略给他带来的收益小的策略,
ui (Si’ , S-i) ≥,> ui (Si*, S-i ) ,分别称为弱下策、严格下
Cont.
二、混合策略、混合策略博弈和混合策略纳什均衡 混合策略:在博弈 G={S1, ...Sn; u1, ...un} 中,博弈方 i 的 策略空间 {Si1, ...Sik} ,则博弈方 i 以概率分布{pi1, ...pik}随 机在其k个可选策略中选择的“策略”,称为一个“混合策 略”,其中0< pij <1 , 对 1< j <k,都成立, pi1+ ...pik=1 混合策略扩展博弈:博弈方在混合策略的策略空间(概率 分布空间)的选择看作一个博弈,就是原博弈的“混合策略 扩展博弈)。
Strategy:[0 ,p1max], [0 ,p2max] Payoff: q1(p1, p2)=28- p1-0.5p2 , q2(p1, p2)=28- p2-0.5p1 , c1=c2=2; ➢ u1=(p1-2)(28- p1-0.5p2); u2=(p2-2)(28- p2-0.5p1); Howe to find the equilibrium?
博弈论日记(2)完全信息静态博弈基础理论
博弈论⽇记(2)完全信息静态博弈基础理论1.1.博弈的标准式和纳什均衡1.1A.博弈的标准式表述⾸先我们来说明⼀下什么是完全信息静态博弈,静态博弈指开始时由参与者同时选择⾏动,然后根据所有参与者的选择,每个参与者得到各⾃的结果。
完全信息博弈即每⼀个参与者的收益函数(根据所有参与者选择⾏动的不同组合决定某⼀参与者收益的函数)在所有参与者之间是共同知识。
之所以称为基础理论,是因为本⼩结要解决两个基本问题:如何描述⼀个博弈以及如何求博弈的解。
定义:在⼀个n⼈博弈的标准式的表述中,参与者的战略空间为S1,S2,……,Sn,收益函数为u1,u2,……,un,我们⽤G={S1,S2,……,Sn;u1,u2,……,un}表⽰此博弈。
1.2B.重复剔除严格劣策略上⾯是博弈论的表述⽅法,下⾯是⼀个关于博弈论的解的⽅法(虽然不常⽤)。
定义:在标准式的博弈G={S1,S2,……,S3;u1,u2,……,un}中,令Si′和Si″代表参与者i的两个可⾏战略(即Si′和Si″是Si中的元素)。
如果对其他参与者每⼀个可能的战略组合,i选择Si′的收益都⼩于其选择Si″的收益,则称战略Si′相对于Si″是严格劣战略。
ui(S1,S2,…,Si′,…,Sn;u1,u2,…,ui′,…un}<ui{S1,S2,…,Si″,…,Sn;u1,u2,…,ui″,…un}1/2 L2 R2 M2L1 1,0 1,2 0,1R1 0,3 0,1 2,0参与⼈1有两个可选策略,S1={L1,R1},参与⼈2有三个可选策略S2={L2,R2,M2}。
在这个博弈中,对参与⼈1来说L1和R1都不是严格占优的。
因为如果参与⼈2选择L2,参与⼈1L1优于R1;参与⼈2选择R2,参与⼈1L1优于R1;参与⼈2选择R2,参与⼈1R1优于L1;但对参与⼈2来讲,M2是严格劣于R2的,因此理性的参与⼈2是不可能选择M2的,就可以把M2在战略空间中剔除,如果参与⼈1知道参与⼈2是理性的,那么他就可以将这个博弈视为下图:1/2 L2 R2L1 1,0 1,2R1 0,3 0,1此时⼜产⽣了⼀个新的情况,对于参与⼈1来讲,R1⼜是严格劣与L1的,因此就可以将R1在参与⼈1的战略空间中剔除,博弈⼜变成了如下情况:1/2 L2 R2L1 1,0 1,2此时双产⽣了⼀个新的情况,对于参与⼈2来讲,L2⼜是严格劣与R2的,因此就可以将L2在参与⼈2的战略空间中剔除,博弈双变成了如下情况:1/2 R2L1 1,2上述的过程就可以称为“重复剔除严格劣策略”。
第2章完全信息静态博弈
存在问题
▪ 伯特兰德模型之所以会得出这样的结论,与它的前提假 定有关。从模型的假定看至少在以下两方面的问题:
▪ ①假定企业没有生产能力的限制。如果企业的生产能力 是有限的,它就无法供应整个市场,价格也不会降到边 际成本的水平上。
▪ ②假定企业生产的产品是完全替代品。如果企业生产的 产品不完全相同,就可以避免直接的价格竞争。
演唱会
李 亚
足球
2,1
鹏
演唱会 -1,-1
0,0 1,2
某策略组合只有指向的箭头,没有 指离的箭头,则为稳定性的策略组合
猜硬币方
盖
硬 币
正面
方 反面
正面
方面
-1,1 1,-1
1,-1 -1,1
博
弈上 方
1
下
博弈方2
左
中
右
1,0 1,3 0,1
0,4 0,2 2,0
1.3 画线法
由于决策的原则是使自己的得益尽可能的 大。同时由于一方的得益取决于其他方的策 略。
s
令p 为商店i的价格,D (p ,p ) 为需求函数, i=1,2。
i
i 12
如果住在x左边的将都在商店1购买,而住在xs右边的将在商店 s 2购买,需求分别为:
D =x,D =1-x,
1
2
这里x满足 p1+tx=p2+t(1-x)
解上式,得需求函数分别为: D1(p1,p2)=x=(p2-p1+t)/2t D2(p1,p2)=1-x=(p1-p2+t)/2t
第二章
博弈论——完全信息静态博弈
static games of complete formation
完全信息静态博弈
2 完全信息静态博弈
2 政府
救济 3,
3
-1,
1 0 0,
1 )( ( )) ( 01
不救济 -1,
求微分,得到政府最优化的一阶条件:
同样,可以根据流浪汉 的期望效用函数找到政 府的最优混合策略。??
即:流浪汉以0.2的概率选择寻 找工作,0.8的概率选择游荡
四. 混合策略纳什均衡
社会福利博弈
四. 混合策略纳什均衡
社会福利博弈
救济 政府
流浪汉
寻找工作 2 3, 1 不救济 -1, 0, -1, 0 流浪 3
设:政府救济的概率:1/2 ;不救济的概率:1/2。 流浪汉:寻找工作的概率:0. 2;流浪的概率:0.8 每个参与人的策略都是给定对方混合策略时的最优策略
四. 混合策略纳什均衡
四. 混合策略纳什均衡
策略:参与人在给定信息集的情况下选择行动的规则, 它规定参与人在什么情况下选择什么行动,是参与人 的“相机行动方案”。
纯策略:如果一个策略规定参与人在每一个给定的信 息情况下只选择一种特定的行动,该策略为 纯策略。 混合策略:如果一个策略规定参与人在给定信息情况 下以某种概率分布随机地选择不同的行动, 则该策略为混合策略。
由于混合策略伴随的是支付的不确定性,因此参与 人关心的是其期望效用。
最优混合策略:是指使期望效用函数最大的混合策 略(给定对方的混合策略) 在两人博弈里,混合策略纳什均衡是两个参与人的 最优混合策略的组合。
支付最大 化法
四. 混合策略纳什均衡
流浪汉
寻找工作 流浪
假定政府的混合战略是 G , ); ( 1 流浪汉的混合战略是 L , )。 ( 1 政府的期望效用函数为: v( G, L) (3 1 ( )( )) 1 (5 1 ) vG 5 1 0 故 * 0.2
第2讲 完全信息静态博弈【博弈论经典】
第2讲 完全信息静态博弈
• 例2:公共产品的供给也是一个囚徒困境问题。 如果大家都出钱兴办公共事业,所有人的福利都会增加。问题是,如果我出钱你 不出钱,我得不偿失,而如果你出钱我不出钱,我就可以占你的便宜。所以,每 个人的最优战略是“不出钱”,这种情况下,使得所有人的福利都得不到提高。
例3:“军备竞赛”。 例4:经济改革本身也可能是这样,在许多改革中,改革要付出成本(包括风险), 而改革的成果大家共享,结果是:尽管人人都认为改革好,却没有人真正去改革, 大家只好在都不满意的体
第们集中讨论完全信息静态博弈。 • “完全信息”指的是每个参与人对所有其他参与人的特征(包括战略空间、支付
函数等)有完全的了解。 • “静态”指的是所有参与人同时选择行动且只选择一次。“同时行动”是一个信
息概念而非日历上的时间概念:只要每个参与人在选择自己的行动时不知道其他 参与人的选择,我们就说他们在同时行动。
的组合。 定义:在博弈的战略式表述中,如果对于所有的i,si*是i的占优
战略,那么,战略组合s* = s1*,...,s*n 称为占优战略均衡(do min ant
strategy equilibrium)
第2讲 完全信息静态博弈
• 在一个博弈里,如果所有参与人都有占优战略存在,那么,占优战略均衡是可以 预测的到惟一的均衡,因为没有一个理性的参与人会选择劣战略。
• 纳什均衡是完全信息博弈解的一般概念,也是所有其他类型博弈解的基本要求。
第2讲 完全信息静态博弈
• 1.纳什均衡 纳什对博弈论的贡献有两个方面:一是合作博弈理论中的讨价还价模型,称为纳什 讨价还价解(Nash bargaining solution); 二是非合作博弈论方面,这是他的 主要贡献所在。 纳什对非合作博弈的主要贡献是他在1950年和1951年的两篇论文中在非常一般意义 上定义了非合作博弈及其均衡解,并证明了均衡解的存在。这样就奠定了非合作 博弈论的基础。纳什所定义的均衡称为“纳什均衡”,它如同瓦尔拉斯均衡一样, 已成为经济学中的专家术语。
第二章(完全信息静态博弈)PPT课件
q2 R2(q1)
(3,0) (6,0)
q1
图2.9 古诺模型的反应函数几何描述
2021
27
三、伯特兰德寡头模型——价格博弈
当厂商1和厂商2价格分别是 P1 和 P2 时,它们各 自的需求函数为 :
q 1 q 1 ( P 1 ,P 2 ) a 1 b 1 P 1 d 1 P 2 q 2 q 2 ( P 1 ,P 2 ) a 2 b 2 P 2 d 2 P 1
一、纳什均衡的定义
n个参与人的策略式表达博弈:G {S1, ,Sn;u1, un},
策略组合 S*{S1 *, ,Si*, Sn *}是一个纳什均衡,如果
对于每一个
i,s
* i
是给定其他所有参与人选择
S * 1 { S 1 * , ,S i* 1 ,S i* 1 S n * }的情况下第 i个参与人的
2021
17
三、纳什均衡与上述分析方法的关系
(一)纳什均衡与上策均衡的关系 上策均衡是比纳什均衡更强、稳定性更高的均衡 概念
纳什 均衡
上策均衡
图2.8 纳什均衡与上策均衡的关系
2021
18
G { S 1, ,S n;u 1, u n}
(二)纳什均衡与严格下策反复消去法
命题2.1 在 n个博弈方的博弈 G {S1, ,Sn;u1, un}中,
2021
16
正是由于纳什均衡是一致性预测,因此才进一 步有下列性质:首先,各博弈方可以预测它,可以 预测他们的对手会预测它,还可以预测他们的对手 会预测自己会预测它,……;其次,预测任何非纳 什均衡策略组合将是博弈的最终结果,意味着要么 各博弈方的预测其实并不相同(预测不同的纳什均 衡会出现等),要么预期至少一个博弈方要“犯错 误”,包括对博弈结构理解的错误,对其他博弈方 的策略预测错误,其理性和计算能力有问题,或者 是实施策略时会出现差错等。
经济博弈论完全信息静态博弈
19
2024/9/21
2.3.2 应用
混合策略旳措施不但能够处理不存在纯策略纳什均衡旳博弈问题,一样 可应用于存在多种纯策略纳什均衡旳博弈问题。
例 夫妻之争
丈夫
该博弈与上一种博弈旳不同之处于
时装 足球
于每一方所希望对方懂得自己旳策略选
妻 时装 2,1 0,0
择以到达有利于自己旳成果。现实中,
子 足球 0,0 1,3
严格下策反复消去法与纳什均衡
严则格称下ui策(s1:,...对si ,于...,某sn )一为策u略i (s(1s,1..,.s..i*.s,.i.,.,..s.n,)sn旳),严若格u下i (s策1,..。.si ,..., sn ) ui (s1,...si*,..., sn )
命策题反复2.1消去在法n排个除博了弈方(s1*旳,..博., s弈n* )以G外 旳S1全,...,部Sn策;u1略,..组.,u合n 中,,则假(s如1*,严...格, s下n* )
9
2024/9/21
2.2.2 反应函数-古诺模型
在古诺模型中厂商1和厂商2旳反应函数分别为
q1
R1(q2 )
1 2
(6
q2
),
q2
R2 (q1)
1 2
(6
q1 )
q2 (0,6) R1(q2)
(0,3) 0
(2,2)
6
R2(q1)
(3,0) (6,0)q1
从左图能够看出,当一方旳 选择为0时,另一方旳最佳反应 为3,这正是我们前面所说过旳 实现总体最大利益旳产量,因为 一家产量为零,意味着另一家垄 断市场。当一方旳产量到达6时, 另一方则被迫选择0,因为实际 上坚持生产已无利可图。
经济博弈论02完全信息静态博弈(Park)
合策略。
02
混合策略纳什均衡
当所有参与者都选择混合策略,并且每个参与者的混合策略都是针对其
他参与者混合策略的最佳反应时,这组混合策略组合就构成了混合策略
纳什均衡。
03
混合策略纳什均衡求解
通过求解每个参与者在给定其他参与者混合策略下的期望收益最大化问
题,可以得到混合策略纳什均衡。
多重纳什均衡问题
多重纳什均衡定义
参与者、策略与收益
参与者
在完全信息静态博弈中,参与者是决策的主体,他们可以是个人、组织或国家等。每个参 与者都有各自的目标和利益诉求,通过选择不同的策略来追求自身利益最大化。
策略
策略是参与者在博弈中可选择的行动方案。在完全信息静态博弈中,每个参与者的策略空 间是已知的,包括所有可能的选择和组合。参与者需要根据自身情况和对其他参与者行为 的预期来制定最优策略。
Part
05
完全信息静态博弈实验设计与 数据分析
实验设计原则和方法
代表性原则
选择具有代表性的参与者和博弈 场景,确保实验结果具有普遍意 义。
实验方法
采用随机分组、角色扮演、问卷 调查等方法收集数据。
可控性原则
对实验条件进行严格控制,确保 实验结果不受外部因素干扰。
可重复性原则
确保实验过程可重复进行,以便 验证实验结果的稳定性和可靠性。
行为博弈论和演化博弈论发展动态
行为博弈论的研究进展
演化博弈论的研究动态
行为与演化博弈论的融 合趋势
行为博弈论将心理学、经济学等学科 的成果引入博弈论分析框架中,探讨 参与者在现实决策中的有限理性、学 习过程和情绪等因素对博弈结果的 方法来研究博弈问题,关注策略在群 体中的演化过程和稳定性分析。近年 来,演化博弈论在多个领域取得了重 要进展,如社会网络中的信息传播、 生态系统中的物种竞争等。
第2章_完全信息静态博弈
2.3.1 古诺的寡头模型
反应函数:是指每个博弈方针对其他博弈方所有战略的最佳反应构成 的函数。 纳什均衡就是各个博弈方的一组互为最佳反应对策的战略。
2.1.1 占优战略均衡(上策均衡)
开发商B 需求大的情况 开发商A 不开发 开发 开发 4000,4000 0,8000 不开发 8000,0 0,0 开发商B B严格劣 战略
A严格劣 战略
需求小的情况
开发
开发 开发商A 不开发 0,1000 -3000,-3000
不开发
1000,0 0,0
2.1.1 占优战略均衡(上策均衡)
-8, -8 -8, 0
0, -8 -1, -1
2, 1 0, 0
0, 0 1, 3
-1, 1 1, -1
1, -1 -1, 1
2.1.4 箭头法
基本思路
对博弈中每个策略组合进行分析,考察在每个策略组合
处各个博弈方能否通过单独改变自己的策略而增加得益。
如能,则从所分析的策略组合对应的得益数组引一箭头, 到改变策略后策略组合对应的得益数组。最后综合分析 对每个策略组合的分析情况,形成对博弈结构的判断。
有任何人有积极性破坏这个协议,则这个协议是自动
实施的。这个协议就构成了一个纳什均衡。
2.2 纳什均衡
通俗地说,纳什均衡的含义就是:
给定你的策略,我的策略是最好的策略;给定我的策略,
你的策略也是你的最好的策略。即双方在给定的策略下
不愿意调整自己的策略。
2.2 纳什均衡
寻找纳什均衡
参与人B
1,12 0,11 0,13
剔除顺序:C2、R2、C1、R3,战略组合(R1,C3)
2.完全信息静态博弈
第2章 完全信息静态博弈 章
电影《美丽心灵》中,有人向纳什提出了这样一个 问题,问题的背景如下:在一个舞会上,有两个以 上的男士,有比男士更多的魅力十足的女士,但只 有一个金发女郎,男人开始邀请舞伴,但只能邀请 一次请一个女郎作为舞伴,所有男士更喜欢金发女 郎,但有女伴比无女伴要好,如果两个男士同时邀 请一个女士,两人都会被拒绝。假设你作为一个男 士,你会如何邀请舞伴?
构造博弈模型所需要的要素
1.局中人集合 局中人集合 N = {0,1,2,⋯, n},称 N 为局中人或参与人集合。N 中元素称为参与人或局
中人。参与人不专指人,它泛指参与博弈活动的政府、企业、地区、国家、 个人……等决策主体。通常用“0”表示虚拟局中人,它的行为是以确定的 概率分布进行随机选择, i = 1,2, ⋯ , 表示实际参与人。 n
T ② T ① I12 T ② I 22 T H T H ② HT T ② H H ① ①
I11
H ② T H ① I15 T ② H T ② I 25 H T H ② H
I 21
I13
H T ② T H ② T
① I14 H
I 23
I 24
H T
图2-2
信息集可以告诉我们以下4点 信息集可以告诉我们以下 点 1.在一个信息集上应由哪个参与人选择行动。 2.从一个信息集出发,局中人可能选择哪些行动。 3.局中人在一个信息集上选择行动时已知道了哪些信息。 4.单点信息集表明相应的局中人完全了解博弈从开始到该信息 集的博弈历程。 完美信息博弈 如果G的每个信息集都是单点信息集。表明博弈的每个参与人 在选择行动时对博弈到现在为止的历程都完全了解,这时称G 为完美信息博弈 完美信息博弈。 完美信息博弈 扩展型博弈不仅能刻画动态博弈, 扩展型博弈不仅能刻画动态博弈,也能刻画静态博弈
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.占优策略与劣策略。
严格占优策略与严格劣策略:不管对手采取什么策略,如果参与人采取a策略所获得的支付严格大于b策略,则称a策略是相对于b策略的严格占优策略(strictly dominating strategy),b策略是相对于a策略的严格劣策略(strictly dominated strategy)。
案例1:霍布斯博弈
假设鲁滨逊与星期五生活在一个自然状态之中。为了生存,他们各自有两个选择:自己生产财富或掠夺对方的财富。博弈情形如下:
乙
生产
掠夺
甲生产
8
8
10
-2
掠夺
-2
10
-1
-1
思考:面对囚徒困境、广告博弈、霍布斯博弈,请思考如何解决社会困境?(答案略;最低价格承诺实际上就是为解决寡头之间的串谋困境提供了有效的解决机制)
第二章完全信息静态博弈的基本理论
0.完全信息(complete information)博弈与不完全信息(incomplete information)博弈
完全信息博弈是指每个参与人的支付函数都是该博弈的公共知识;只要有一个参与人的支付函数不是该博弈的公共知识,就意味着该博弈是不完全信息博弈。
特别提示:如果该博弈是完全信息博弈,这意味着参与人不仅知道自己是什么类型的人,也知道对手们是什么类型的人。
占优策略就是我们平时所说的上策,劣策略就是我们平时所说的下策。
特别提ห้องสมุดไป่ตู้:本文对占优策略的理解与其他教材不同,本文可以将以上述方式定义出来的占优策略称为局部占优策略;如果不管对手采取什么策略,如果参与人采取a策略所获得的支付严格大于其他所有策略,则称a策略是全局严格占优策略。类似地,可以定义局部劣策略与全局劣策略。
市郊
甲市中心
城市东部
城市西部
思考(市中心市中心)这个策略组合具有什么特点?
3.纳什均衡:它是由全部参与人所选择的策略构成的这样一个组合,在这个组合中,每个参与人的策略都是针对其他参与人人策略选择的最优反应。
案例2:1964年以前,美国香烟的电视广告非常普遍,1964年卫生总监的报告宣布以后,美国四大烟草公司经过协商与联邦政府达成协议,决定不再做电视广告,协议于1971年生效。各大烟草公司的利润得以大幅增加。
(2)合作博弈与非合作博弈
A合作博弈:参与人直接事先达成具有约束力的协议,以集体协商的方式选择策略,故又可称之为联盟博弈。由此形成的策略选择与支付被称为博弈的合作解,通常以帕累托最优作为度量标准。合作博弈其实就是指参与人在行动前能够实现进行沟通、交流,且沟通交流达成的协议是有约束力的。
思考:该博弈存在占优策略均衡吗?该博弈存在集体困境吗?
从这个博弈可以看出,只有中间立场在政治上被充分表达,绝大多数的非中间立场的选民的立场被严重忽视。
(4)占优策略均衡在制度设计中有着广泛的应用价值。
二.求解方法之二:最优反应法——符合理性人性质的方法,博弈论最重要的求解方法
1.最优反应策略:给定其他所有参与人策略选择的情况下,能够给某参与人带来最大收益的策略,其思维过程为:如果对手采用……,某参与人就应该采用……。这是一种相对优势策略。
案例2选址博弈
甲乙两家百货公司考虑开店,可供选择的地址有四个:市郊、市中心、城市东部、城市西部。具体支付情况如下:
乙
市郊市中心城市东部城市西部
30 40
50 95
55 95
55120
115 40
100100
13085
12095
12545
95 65
60 40
115120
105 50
75 75
9595
35 55
C注意:不要认为占优策略均衡都一定意味着集体处于困境之中。以下面的政治博弈为例:
甲乙作为竞选的对手,分别有三种立场可以选择:左中右;选民的分布是对称的;甲乙均追求选票最大化;具体的选票情况如下:
乙
55 45
30 70
50 50
75 25
50 50
70 30
50 50
25 75
45 55
左中右
左
甲中
右
弱占优策略与弱劣策略:不管对手采取什么策略,如果参与人采取a策略所获得的支付不低于b策略,且至少有一种情况下的支付会严格大于b策略,则称b策略是相对于a策略的弱劣策略(weakly dominated strategy );a策略则是相对于b策略的弱占优策略(weakly dominating strategy)。
通过最优反应方法所获得的博弈解称之为纳什均衡。
2.如何寻找纳什均衡?划线法(仅适合二人有限策略博弈)
案例1竞选博弈假设甲乙两个参与人分别在上中下,左中右之间作选择:
乙
左中右
0 4
4 0
5 3
4 0
0 4
5 3
3 5
3 5
6 6
上
甲中
下
思考(下,右)这个策略组合具有什么特点?互相构成对对手策略选择的最优反应。
B非合作博弈:又称策略博弈,参与人以独立的方式选择策略。由此形成的策略选择与支付被称为博弈的非合作解。
C一般所说的博弈论是指非合作博弈理论。
(3)集体困境与占优策略均衡
A集体困境的基本特征就是博弈的不合作解与合作解相悖。
B凡是存在集体困境问题的场合必定存在占优策略均衡,即集体困境问题是存在占优策略均衡的重要博弈类型。
理性的人在博弈时绝对不会选择严格劣策略。通过剔除严格劣策略所获得的博弈解就称之为占优策略均衡。
2.案例
案例1
乙
坦白
不坦白
甲坦白
-6
-6
-10
0
不坦白
0
-10
-1
-1
案例2
乙
不作广告
作广告
甲不作广告
8
8
10
2
作广告
2
10
4
4
在上面的两个例子中,通过剔除严格劣策略,可以获得一个占优策略均衡(坦白,坦白),(作广告,作广告)。
4.思考:下面这个博弈是否存在占优策略均衡?
假设甲乙两个参与人分别在上中下,左中右之间作选择:
乙
左中右
0 4
4 0
5 3
4 0
0 4
5 3
3 5
3 5
6 6
上
甲中
下
剔除严格劣策略并不适合于求解所有的博弈,许多博弈是不存在占优策略均衡的。
5.集体困境(dilemma)、合作与非合作博弈、占优策略均衡
(1)案例
3.请思考下面这个例子是否存在占优策略均衡?
甲在上与下之间作选择,乙在左中右之间作选择
乙
左中右
1,0
1,2
0,1
0,3
0,1
2,0
甲上
下
经过重复剔除严格劣策略,可以获得一个占优策略均衡(上,中),这就是求解方法之一——严格劣策略的迭代剔除方法。
思考:占优策略均衡(上,中)是通过不断剔除严格劣策略而获得的,为了成功地进行剔除,需要什么样的前提条件?由此可以理解公共知识的重要性。