《锐角三角函数》全章复习与巩固-- 巩固练习(提高带答案)

合集下载

《锐角三角函数》全章复习与巩固--巩固练习

《锐角三角函数》全章复习与巩固--巩固练习

《锐角三角函数》全章复习与巩固--巩固练习锐角三角函数是高中数学中的重要知识点,理解和掌握这一内容对于后续的数学学习和应用至关重要。

为了巩固和加深对锐角三角函数的理解,下面是一些提高级别的巩固练习。

1.填空题1. 计算sin 60°的值:解:根据定值指函数的定义,sin 60°=√3/22. 计算cos 30°的值:解:根据定值指函数的定义,cos 30°=√3/23. 计算tan 45°的值:解:tan 45°=14. 计算csc 45°的值:解:根据定值指函数的定义,csc 45°=2/√2=√25. 计算sec 60°的值:解:根据定值指函数的定义,sec 60°=2/√36. 计算cot 30°的值:解:根据定值指函数的定义,cot 30°=1/√32.选择题1. 若角A的终边在第2象限,且sinA=-1/2,则角A为:B.150°C.210°D.240°解:根据sinA=-1/2可知,角A的终边在第3象限,角度为210°。

答案:C2. 若角B的终边在第4象限,且cosB=-√3/2,则角B为:A.30°B.60°C.150°D.210°解:根据cosB=-√3/2可知,角B的终边在第4象限,角度为210°。

答案:D3. 若角C的终边在第2象限,且tanC=√3,则角C为:A.30°B.45°C.60°D.90°解:根据tanC=√3可知,角C的终边在第1象限,角度为60°。

4. 若角D的终边在第3象限,且cotD=1/√3,则角D为:A.30°B.45°C.60°答案:D3.计算题1. 计算tan 50°的值:解:利用tan函数的性质,tan 50°=sin 50°/cos 50°=sin50°/√(1-sin²50°)。

《锐角三角函数》全章复习与巩固--巩固练习(基础)

《锐角三角函数》全章复习与巩固--巩固练习(基础)

《锐角三角函数》全章复习与巩固--巩固练习(基础)【巩固练习】 一、选择题1.如图所示,在Rt △ABC 中,3tan 2B =,23BC =,则AC 等于( ). A .3 B .4 C .43 D .6 2.已知α为锐角,则sin cos m αα=+的值( ). A .m ≥1 B .m =1 C .m <1 D .m >13.如图所示,在梯形ABCD 中,AD ∥BC ,AC ⊥AB ,AD =CD ,cos ∠DCA =45,BC =10,则AB 的值是( ). A .3 B .6 C .8 D .9第1题图 第3题图 第4题图 4.如图所示,在菱形ABCD 中,DE ⊥AB ,3cos 5A =, tan ∠DBE 的值是( ). A.12B.2C. 5D. 55.如图所示,在四边形ABCD 中,E 、F 分别是AB 、AD 的中点,若EF =2,BC =5,CD =3,则tan C 等于( ).A .34 B .43 C .35 D .45第5题图 第7题图6.已知Rt △ABC 中,∠C =90°,3sin B =,则cosA 的值为( ). A .12B 2C 3D 37.如图所示,先锋村准备在坡角为α的山坡上栽树,要求相邻两树之间的水平距离为5米,那么这两树在坡面上的距离AB 为( ). A .5cos α米 B .5cos α米 C .5sin α米 D .5sin α米 8.等腰三角形一腰上的高与腰长之比是1:2,则等腰三角形顶角的度数为( ).A .30°B .50°C .60°或120°D .30°或150°二、填空题9.计算:101|23tan 45|(2 1.41)3-⎛⎫--++-= ⎪⎝⎭°________.10.如图所示,已知Rt △ABC 中,斜边BC 上的高AD =4,4cos 5B =,则AC =________. 11.如图所示,将以A 为直角顶点的等腰直角三角形ABC 沿直线BC 平移得到A B C '''△,使点B '与C 重合,连接A B ',则tan ∠A BC ''的值为________.第10题图 第11题图 第12题图12.如图所示,一架梯子斜靠在墙上,若梯子底端到墙的距离AC =3米,3cos 4BAC ∠=,则梯子长AB =_______米. 13.如图所示,已知正方形ABCD 的边长为2,如果将线段BD 绕着点B 旋转后,点D 落在CB 的延长线上的D ' 处,那么tan ∠BAD ′等于________.第13题图 第15题图 14.一次函数经过(tan 45°,tan 60°)和(-cos 60°,-6tan30°),则此一次函数的解析式为________. 15.如图所示,在△ABC 中,∠ACB =90°,CD 是AB 边的中线,AC =6,CD =5,则sinA 等于________.16.已知21+是方程2(3tan )20x x θ-+=的一个根,θ是三角形的一个内角,那么cos θ的值为________.三、解答题17. 为了缓解长沙市区内一些主要路段交通拥挤的现状,交警队在一些主要路口设立了交通路况显示牌(如图所示).已知立杆AB 高度是3 m ,从侧面D 点测得显示牌顶端C 点和底端B 点的仰角分别是60°和45°.求路况显示牌BC 的高度.18.如图所示,在梯形ABCD 中,AD ∥BC ,AB =DC =8,∠B =60°,BC =12,连接AC .(1)求tan ∠ACB 的值;(2)若M 、N 分别是AB 、DC 的中点,连接MN ,求线段MN 的长.19.如图所示,点E 、C 在BF 上,BE =FC ,∠ABC =∠DEF =45°,∠A =∠D =90°.(1)求证:AB =DE ;(2)若AC 交DE 于M ,且AB =3,ME =2,将线段CE 绕点C 顺时针旋转,使点E 旋转到AB 上的G 处,求旋转角∠ECG 的度数.20. 如图所示(左图为实景侧视图,右图为安装示意图),在屋顶的斜坡面上安装太阳能热水器:先安装支架AB 和CD (均与水平面垂直),再将集热板安装在AD 上.为使集热板吸热率更高,公司规定:AD 与水平线夹角为θ1,且在水平线上的射影AF 为1.4m.现已测量出屋顶斜面与水平面夹角为θ2,并已知tan θ1=1.082,tan θ2=0.412.如果安装工人确定支架AB 高为25cm ,求支架CD 的高(结果精确到1cm)?【答案与解析】 一、选择题 1.【答案】A ; 【解析】由tan ACB BC=知3tan 233AC BC B ===. 2.【答案】D ;【解析】在Rt △ABC 中,设α所对的边为a ,斜边为c ,邻边为b .则sin a c α=,cos bcα=, ∴ sin cos a b a bm c c cαα+=+=+=,而a b c +>,∴ m >1. 3.【答案】B ;【解析】因为AD =DC ,所以∠DAC =∠DCA ,又∵ AD ∥BC ,∴ ∠DAC =∠ACB ,所以∠DCA =∠ACB .在Rt △ACB 中,AC =BC ·cos ∠BCA =41085⨯=,则226AB BC AC =-=. 4.【答案】B ;【解析】∵DE ⊥AB ,∴在Rt △ADE 中,cosA =35. ∴设AD =5k ,则AE =3k ,DE =4k ,又AD =AB , ∴BE =2k , ∴tan ∠DBE =422DE kBE k==. 5.【答案】B ;【解析】如图所示,连结BD ,由三角形中位线定理得BD =2EF =2×2=4,又BC =5,CD =3,∴ CD 2+BD 2=BC 2.∴ △BDC 是直角三角形.且∠BDC =90°,∴ 4tan 3BD C CD ==.6.【答案】C ; 【解析】∵3sin B =,∴ ∠B =60°,∠A =90°-60°=30°, ∴3cos A =. 7.【答案】B ;【解析】由上图知ABC α∠=,在Rt △ABC 中,cos BC AB α=.∴5cos AB α=. 8.【答案】D ;【解析】有两种情况:当∠A 为锐角时,如图(1),sin A =12,∠A =30°; 当∠A 为钝角时,如图(2),sin(180°-∠BAC)=12,180°-∠BAC =30°,∠BAC =150°.二、填空题9.【答案】23;【解析】原式=3|23142323--+=-+=. 10.【答案】5;【解析】在Rt △ABC 中,.AD ⊥BC ,所以∠CAD =∠B .∴cos cos AD CAD B AC =∠=,∴45AD AC =, 又∵ AD =4,∴AC =5..11.【答案】13; 【解析】过A '作A D BC ''⊥于点D ,在Rt △A B D ''中,设A D x '=,则B D x '=,BC=2x,BD=3x.12.【答案】4 ; 【解析】由3cos 4AC BAC AB ∠==,知334AB =,AB =4米. 13.2;【解析】由题意知22BD BD '==Rt △ABD ′中,22tan 22BD BAD AB ''∠=== 14.【答案】233y x =【解析】tan 45°=1, tan603-cos60°=12-,-6tan30°=23-. 设y =kx+b 经过点3)、1,232⎛-- ⎝,则用待定系数法可求出23k =3b = 15.【答案】45; 【解析】∵CD 是Rt △ABC 斜边上的中线,∴AB =2CD =2×5=10,BC 22221068AB AC -=-=,∴84sin 105BC A AB ===. 16.【答案】22; 【解析】由方程解的意义,知2(21)3tan (21)20θ-+=g ,故tan 1θ=,从而45θ=°,则2cos cos 452θ==°.三、解答题17.【答案与解析】∵在R △ADB 中,∠BDA =45°,AB =3,∴ DA =3.在Rt△ADC中,∠CDA=60°,∴tan60CA AD =°,∴CA=3AD=33,∴BC=CA-BA=(333-)m.答:路况显示牌BC的高度是(333-)m.18.【答案与解析】(1)如图所示,作AE⊥BC于E,则BE=AB·cos B=8cos 60°=1842⨯=.AE=AB·sin B=8sin 60°=38432⨯=.∴EC=BC-BE=12—4=8.∴在Rt△ACE中,tan∠ACB=43382 AEEC==(2)作DF⊥BC于F,则AE∥DF,∵ AD∥EF,∴四边形AEFD是矩形.AD=EF.∵ AB=DC,∴∠B=∠DCF.又∵∠AEB=∠DFC=90°,∴△ABE△≌△DCF(AAS).∴FC=BE=4,∴EF=BC-BE—FC=4.∴AD=4.∴MN=12(AD+BC)=12×(4+12)=8.19.【答案与解析】(1)证明:∵BE=FC,∴BC=EF.又∵∠ABC=∠DEF,∠A=∠D,∴△ABC≌△DEF.∴AB=DE.(2)解:∵∠DEF=∠B=45°,∴DE∥AB.∴∠CME=∠A=90°.∴AC=AB=3,MC=ME=2.∴CG=CE=2.在Rt△CAG中,3cosACACGCG∠==,∴∠ACG=30°.∴∠ECG=∠ACB-∠ACB=45°-30°=15°.20.【答案与解析】解:如图所示,过点A作AE∥BC,则∠EAF=∠CBG=θ2,且EC=AB=25cm,在Rt△DAF中,∠DAF=θ1,DF=AFtanθ1,在Rt△EAF中,∠EAF=θ2,EF=AFtanθ2,∴DE=DF-EF=AF(tanθ1-tanθ2),又∵AF=140cm,tanθ1=1.082,tanθ2=0.412,∴DE=140×(1.082-0.412)=93.8,∴CD=DE+CE=93.8+25=118.8≈119.答:支架CD的高应为119cm.。

【人教版】九年级下册数学《锐角三角函数》全章知识点复习及同步习题(含答案)

【人教版】九年级下册数学《锐角三角函数》全章知识点复习及同步习题(含答案)

锐角三角函数我们知道,在Rt△ABC 中,∠C =90°,∠A 、∠B 、∠C 的对边分别为a 、b 、c ,则有:sin cos a A B c ==,cos sin b A B c ==,tan aA b=,这就是锐角三角函数的定义.根据锐角三角函数的定义,再结合直角三角形的性质,我们可以探索出锐角三角函数之间的三个特殊关系. 一、余角关系由上面的定义我们已得到sin A =cos B ,cos A =sin B ,而在直角三角形中,∠A +∠B =90°,即∠B =90°-∠A .因此有:sin A =cos (90°-A ),cos A =sin (90°-A ).应用这些关系式,可以很轻松地进行三角函数之间的转换.例1 如图,在Rt△ABC 中,∠C =90°,CD ⊥AB 于D ,已知1sin 2A =,BD =2,求BC 的长.解:由于∠A +∠B =90°,所以1cos sin(90)sin 2B B A =-==.在Rt△BCD 中,cos BD B BC =,所以212BC =.所以BC =4. 二、平方关系 由定义知sin a A c =,cos b A c=, 所以222222222sin cos a b a b A A c c c++=+=(sin 2A 、cos 2A 分别表示sin A 、cos A 的平方).又由勾股定理,知a 2+b 2=c 2,所以sin 2A +cos 2A =22c c=1.应用此关系式我们可以进行有关锐角三角函数平方的计算. 例2 计算:sin256°+sin245°+sin234°.解:由余角关系知sin56°=cos(90°-56°)=cos34°. 所以原式=sin245°+(sin234°+cos234°)223122⎛⎫=+= ⎪ ⎪⎝⎭. 三、相除关系 由定义中sin a A c =,cos bA c=, 得sin tan cos aA a c ac A b A c b bc==⨯==.利用这个关系式可以使一些化简求值运算过程变得简单. 例3 已知α为锐角,tan α=2,求3sin cos 4cos 5sin αααα+-的值.解:因为sin tan 2cos ααα==,所以sin α=2cos α, 所以原式6cos cos 6174cos 10cos 4106αααα++===---.求三角函数值的方法较多,且方法灵活.是中考中常见的题型.我们可以根据已知条件结合图形选用灵活的求解方法.四、设参数法例4 如图1, 在△ABC 中,∠C =90°,如果t a n A =125,那么sin B 等于( ) (A)135 (B) 1312 (C) 125 (D)512 分析:本题主要考查锐角三角函数的定义及直角三角形的有关性质.因为tan A =125=b a ,所以可设a =5k ,b =12k (k >0),根据勾股定理得c =13k , 所以sin B =1312=c b .应选(B).五、等线段代换法例5 如图2,小明将一张矩形的纸片ABC D 沿C E 折叠,B 点恰好落在A D 边上,设此点为F ,若BA :BC =4:5,则c os∠DCF 的值是______.分析:根据折叠的性质可知△E BC ≌△EF C ,所以C F=CB , 又C D=AB ,AB :BC =4:5, 所以C D :C F=4:5,图1 图2在Rt△D C F 中,c os∠D C F=54=CF DC . 六、等角代换法例6 如图3,C D 是平面镜,光线从A 点出发经C D 上点E 反射后照射到B 点,若入射角为α (入射角等于反射角),AC ⊥C D ,B D⊥C D ,垂足分别为C 、D ,且AC =3,B D =6,C D =11,则tan α的值为( ) (A )311 (B )113 (C )119 (D )911分析:根据已知条件可得∠α=∠CA E ,所以只需求出tan∠CA E .根据条件可知△AC E∽△B DE,所以ED CE BD AC =,即CECE-=1163, 所以C E=311,在Rt△A E C 中,tan∠CA E=9113311==AC CE .所以tan α=911.七、等比代换法例7 如图4, 在Rt△ABC 中,ACB =90,C D⊥AB 于点D ,BC =3,AC =4,设BC D=α,tan α的值为( )(A)43 (B)34 (C)53 (D)54分析:由三角形函数的定义知tan α=DCDB, 由Rt△C D B ∽Rt△ACB , 所以43==AC BC DC DB ,所以tan α=43,选(A). ABCDEα 图3图4锐角三角函数测试1.比较大小:sin41°________sin42°.2.比较大小:cot30°_________cot22°.3.比较大小:sin25°___________cos25°.4.比较大小:tan52°___________cot52°.5.比较大小:tan48°____________cot41°.6.比较大小:sin36°____________cos55°.7、下列命题①sinα表示角α与符号sin的乘积;②在△ABC中,若∠C=90°,则c=αsinA成立;③任何锐角的正弦和余弦值都是介于0和1之间实数.其正确的为()A、②③ B.①②③ C.② D. ③8、若Rt△ABC的各边都扩大4倍得到Rt△A′B′C′,那么锐角A和锐角A′正切值的关系为( )A.tanA′=4tanA B.4tanA′=tanA C.tanA′=tanA D.不确定.9(新疆中考题)(1)如图(1)、(2),锐角的正弦值和余弦值都随着锐角的确定而确定,变化而变化.试探索随着锐角度数的增大.它的正弦值和余弦值变化的规律.(2)根据你探索到的规律,试比较18°,34°,50°,62°,88°,这些锐角的正弦值的大小和余弦值的大小。

《锐角三角函数》全章复习与巩固--巩固练习(基础).doc

《锐角三角函数》全章复习与巩固--巩固练习(基础).doc

《锐角三角函数》全章复习与巩固--巩固练习(基础)【巩固练习】一、选择题 1.(2016•沈阳)如图,在Rt △ABC 中,∠C=90°,∠B=30°,AB=8,则BC 的长是( )A .B .4C .8D .42.(2015•抚顺县四模)等腰三角形底边与底边上的高的比是2:,则顶角为( )A .60°B . 90°C . 120°D . 150°3.如图所示,在梯形ABCD 中,AD ∥BC ,AC ⊥AB ,AD =CD ,cos ∠DCA =45,BC =10,则AB 的值是( ). A .3 B .6 C .8 D .9第1题图 第3题图 第4题图 4.如图所示,在菱形ABCD 中,DE ⊥AB ,3cos 5A =, tan ∠DBE 的值是( ).A.125.如图所示,在四边形ABCD 中,E 、F 分别是AB 、AD 的中点,若EF =2,BC =5,CD =3,则tan C 等于( ).A .34 B .43 C .35 D .45第5题图 第7题图6.已知Rt △ABC 中,∠C =90°,sin 2B =,则cosA 的值为( ).A .12B .2C .2D .37.如图所示,先锋村准备在坡角为α的山坡上栽树,要求相邻两树之间的水平距离为5米,那么这两树在坡面上的距离AB 为( ). A .5cos α米 B .5cos α米 C .5sin α米 D .5sin α米 8.等腰三角形一腰上的高与腰长之比是1:2,则等腰三角形顶角的度数为( ).A .30°B .50°C .60°或120°D .30°或150°二、填空题9.计算:101|245| 1.41)3-⎛⎫--++= ⎪⎝⎭°________.10.如图所示,已知Rt △ABC 中,斜边BC 上的高AD =4,4cos 5B =,则AC =________. 11.如图所示,将以A 为直角顶点的等腰直角三角形ABC 沿直线BC 平移得到A B C '''△,使点B '与C 重合,连接A B ',则tan ∠A BC ''的值为________.第10题图 第11题图 第12题图12.如图所示,一架梯子斜靠在墙上,若梯子底端到墙的距离AC =3米,3cos 4BAC ∠=,则梯子 长AB =_______米. 13.如图所示,已知正方形ABCD 的边长为2,如果将线段BD 绕着点B 旋转后,点D 落在CB 的延长线上的D ' 处,那么tan ∠BAD ′等于________.第13题图 第15题图 14.一次函数经过(tan 45°,tan 60°)和(-cos 60°,-6tan30°),则此一次函数的解析式为________. 15.如图所示,在△ABC 中,∠ACB =90°,CD 是AB 边的中线,AC =6,CD =5,则sinA 等于________. 16.(2016•自贡)如图,在边长相同的小正方形网格中,点A 、B 、C 、D 都在这些小正方形的顶点上,AB ,CD 相交于点P ,则的值= ,tan ∠APD 的值= .三、解答题17. (2015•沛县二模)如图是某市一座人行过街天桥,天桥高CB=5米,斜坡AC 的坡度为1:1,为了方便行人推车过天桥,市政部门决定降低坡度,使新坡面的傾斜角为30°.若新坡脚前需留3m 的人行道,问离原坡脚A 处7m 的建筑物M 是否需要拆除,请说明理由. (≈1.73)18.如图所示,在梯形ABCD中,AD∥BC,AB=DC=8,∠B=60°,BC=12,连接AC.(1)求tan∠ACB的值;(2)若M、N分别是AB、DC的中点,连接MN,求线段MN的长.19.如图所示,点E、C在BF上,BE=FC,∠ABC=∠DEF=45°,∠A=∠D=90°.(1)求证:AB=DE;(2)若AC交DE于M,且AB ME,将线段CE绕点C顺时针旋转,使点E旋转到AB上的G处,求旋转角∠ECG的度数.20. 如图所示,AB是⊙O的直径,点C在BA的延长线上,直线CD与⊙O相切于点D,弦DF⊥AB于点E,线段CD=10,连接BD.(1)求证:∠CDE=2∠B;(2)若BD:AB,求⊙O的半径及DF的长.【答案与解析】 一、选择题 1.【答案】D.【解析】∵在Rt △ABC 中,∠C=90°,∠B=30°,AB=8,cosB=,即cos30°=,∴BC=8×=4;故选:D .2.【答案】A ;【解析】如图,在△ABC 中,AB=AC ,AD⊥CB 于D ,依题意得CD :AD=1:=:3, 而tan∠DAC=CD:AD , ∴tan∠DAC=:3, ∴∠DAC=30°, ∴顶角∠BAC=60°.3.【答案】B ;【解析】因为AD =DC ,所以∠DAC =∠DCA ,又∵ AD ∥BC ,∴ ∠DAC =∠ACB ,所以∠DCA =∠ACB .在Rt △ACB 中,AC =BC ·cos ∠BCA =41085⨯=,则6AB ==. 4.【答案】B ;【解析】∵DE ⊥AB ,∴在Rt △ADE 中,cosA =35. ∴设AD =5k ,则AE =3k ,DE =4k ,又AD =AB , ∴BE =2k , ∴tan ∠DBE =422DE kBE k==. 5.【答案】B ;【解析】如图所示,连结BD ,由三角形中位线定理得BD =2EF =2×2=4,又BC =5,CD =3,∴ CD 2+BD 2=BC 2.∴ △BDC 是直角三角形.且∠BDC =90°,∴ 4tan 3BD C CD ==.6.【答案】C ;【解析】∵sin 2B =,∴ ∠B =60°,∠A =90°-60°=30°,∴cos A =7.【答案】B ;【解析】由上图知ABC α∠=,在Rt △ABC 中,cos BC AB α=.∴5cos AB α=. 8.【答案】D ;【解析】有两种情况:当∠A 为锐角时,如图(1),sin A =12,∠A =30°; 当∠A 为钝角时,如图(2),sin(180°-∠BAC)=12,180°-∠BAC =30°,∠BAC =150°.二、填空题9.【答案】2;【解析】原式=3|21422--+=-+=. 10.【答案】5;【解析】在Rt △ABC 中,.AD ⊥BC ,所以∠CAD =∠B .∴cos cos AD CAD B AC =∠=,∴45AD AC =, 又∵ AD =4,∴AC =5..11.【答案】13; 【解析】过A '作A D BC ''⊥于点D ,在Rt △A B D ''中,设A D x '=,则B D x '=,BC=2x,BD=3x.12.【答案】4 ; 【解析】由3cos 4AC BAC AB ∠==,知334AB =,AB =4米.13.;【解析】由题意知BD BD '==Rt △ABD ′中,tan 2BD BAD AB ''∠===14.【答案】y =【解析】tan 45°=1, tan60-cos60°=12-,-6tan30°=-.设y =kx+b 经过点、1,2⎛-- ⎝,则用待定系数法可求出k =b = 15.【答案】45; 【解析】∵CD 是Rt △ABC 斜边上的中线,∴AB =2CD =2×5=10,BC 8==,∴84sin 105BC A AB ===. 16.【答案】3,2.【解析】解:∵四边形BCED 是正方形, ∴DB ∥AC ,∴△DBP ∽△CAP , ∴==3,连接BE ,∵四边形BCED 是正方形,∴DF=CF=CD ,BF=BE ,CD=BE ,BE ⊥CD , ∴BF=CF ,根据题意得:AC ∥BD , ∴△ACP ∽△BDP ,∴DP :CP=BD :AC=1:3, ∴DP :DF=1:2,∴DP=PF=CF=BF , 在Rt △PBF 中,tan ∠BPF==2,∵∠APD=∠BPF , ∴tan ∠APD=2,三、解答题17.【答案与解析】解:在Rt△ABC 中,∠ABC=90°,BC=5, ∵i=1:1,∴AB=5,在Rt△DBC 中,∠DBC=90°,∠CDB=30°,BC=5, tan30°=, ∴=,精品初中数学讲义(带详细答案)解得DB==5×1.73≈8.65, ∵BM=7+5=12,BD≈8.65, ∴12﹣8.65>3,所以,离原坡脚7m 的建筑物无需拆除.18.【答案与解析】(1)如图所示,作AE ⊥BC 于E ,则BE =AB ·cos B =8cos 60°=1842⨯=.AE =AB ·sin B =8sin 60°=8= ∴EC =BC -BE =12—4=8.∴在Rt △ACE 中,tan ∠ACB =82AE EC == (2)作DF ⊥BC 于F ,则AE ∥DF ,∵ AD ∥EF ,∴ 四边形AEFD 是矩形.AD =EF . ∵ AB =DC ,∴ ∠B =∠DCF .又∵∠AEB =∠DFC =90°,∴△ABE △≌△DCF(AAS). ∴FC =BE =4,∴EF =BC -BE —FC =4.∴AD =4. ∴MN =12(AD+BC)=12×(4+12)=8.19.【答案与解析】(1)证明:∵BE =FC ,∴BC =EF . 又∵∠ABC =∠DEF ,∠A =∠D , ∴△ABC ≌△DEF .∴AB =DE .(2)解:∵∠DEF =∠B =45°,∴DE ∥AB .∴∠CME =∠A =90°.∴AC =AB ,MC =ME .∴CG =CE =2.在Rt △CAG 中,cos 2AC ACG CG ∠==,∴∠ACG =30°. ∴∠ECG =∠ACB -∠ACB =45°-30°=15°.20.【答案与解析】(1)连接OD ,∵直线CD 与⊙O 相切于点D ,∴OD ⊥CD ,∴∠CD0=90°,∴∠CDE+∠ODE =90°.又∵DF ⊥AB ,∴∠DEO =∠DEC =90°,∴∠EOD+∠ODE =90°. ∴∠CDE =∠EOD .又∵∠EOD =2∠B ; ∴∠CDE =2∠B .(2)连接AD .∵AB 是⊙O 的直径,∴∠ADB =90°.精品初中数学讲义(带详细答案)∵BD:AB ,∴在Rt △ADB 中,cos BD B AB ==, ∴∠B =30°,∵∠AOD =2∠B =60°.又∵∠CDO =90°,∴∠C =30°,∵在Rt △CDO 中,CD =10,∴ OD =10tan 30O 在Rt △CDE 中,CD =10,∠C =30°,∴DE =CDsin 30°=5. ∵ 弦DF ⊥直径AB 于点E ,∴ DE =EF =12DF ,∴ DF =2DE =10.。

人教版九年级数学教学讲义,复习补习资料(巩固练习):67【提高】《锐角三角函数》全章复习与巩固

人教版九年级数学教学讲义,复习补习资料(巩固练习):67【提高】《锐角三角函数》全章复习与巩固

《锐角三角函数》全章复习与巩固--知识讲解(提高)【学习目标】1.了解锐角三角函数的概念,能够正确使用sinA 、cos A、tanA表示直角三角形中两边的比;记忆30°、45°、60°的正弦、余弦和正切的函数值,并会由一个特殊角的三角函数值求出这个角的度数;2.能够正确地使用计算器,由已知锐角的度数求出它的三角函数值,由已知三角函数值求出相应的锐角的度数;3.理解直角三角形中边与边的关系,角与角的关系和边与角的关系,会运用勾股定理、直角三角形的两个锐角互余、以及锐角三角函数解直角三角形,并会用解直角三角形的有关知识解决简单的实际问题;4.通过锐角三角函数的学习,进一步认识函数,体会函数的变化与对应的思想,通过解直角三角的学习,体会数学在解决实际问题中的作用,并结合实际问题对微积分的思想有所感受.【知识网络】《锐角三角函数》全章复习与巩固--巩固练习(提高)【巩固练习】一、选择题1. 计算tan 60°+2sin 45°-2cos 30°的结果是( ).A.2 B D.12.如图所示,△ABC 中,AC =5,cos B =,3sin 5C =,则△ABC 的面积是( ) A .212B .12C .14D .21 3.如图所示,A 、B 、C 三点在正方形网格线的交点处,若将△ACB 绕着点A 逆时针旋转得到△AC B '',则tan B '的值为( )A .12B .13C .14D .4第2题图 第3题图 第4题图4.如图所示,小明要测量河内小岛B 到河边公路l 的距离,在A 点测得∠BAD =30°,在C 点测得∠BCD =60°,又测得AC =50米,那么小岛B 到公路l 的距离为( ).A .25米B .C .3米 D .25+米 5.如图所示,将圆桶中的水倒入一个直径为40 cm ,高为55 cm 的圆口容器中,圆桶放置的角度与水平线的夹角为45°.要使容器中的水面与圆桶相接触,则容器中水的深度至少应为( ).A .10 cmB .20 cmC .30 cmD .35 cm6.如图所示,已知坡面的坡度1i =α为( ).A .15°B .20°C .30°D .45°第5题图 第6题图 第7题图7.如图所示,在高为2 m ,坡角为30°的楼梯上铺地毯,则地毯的长度至少应为( ).A .4 mB .6 m C.m D.(2+8.(2019•绵阳)如图,△ABC 中AB=AC=4,∠C=72°,D 是AB 中点,点E 在AC 上,DE ⊥AB ,则cosA 的值为( )A .B .C .D .二、填空题9.如图,若AC 、BD 的延长线交于点E ,511CD AB =,则cos CEB ∠= ;tan CEB ∠= .10.如图,AD ⊥CD ,AB=10,BC=20,∠A=∠C=30°,则AD的长为;CD 的长为 .第9题图 第10题图 第11题图11.如图所示,已知直线1l ∥2l ∥3l ∥4l ,相邻两条平行直线间的距离都是1,如果正方形ABCD 的四个顶点分别在四条直线上,则sin α=________.12.如果方程2430x x -+=的两个根分别是Rt △ABC 的两条边,△ABC 最小的角为A ,那么tanA 的值为__ ______.A B CD E13.(2019•荆州)如图,小明在一块平地上测山高,先在B 处测得山顶A 的仰角为30°,然后向山脚直行100米到达C 处,再测得山顶A 的仰角为45°,那么山高AD 为 米(结果保留整数,测角仪忽略不计,≈1.414,,1.732)14. 在△ABC 中,AB =8,∠ABC =30°,AC =5,则BC =____ ____.15. 如图,直径为10的⊙A 经过点C (0,5)和点O (0,0),B 是y 轴右侧⊙A 优弧上一点,则∠OBC 的余弦值为 .第15题图16. (2019•临沂)一般地,当α、β为任意角时,sin (α+β)与sin (α﹣β)的值可以用下面的公式求得:sin (α+β)=sin α•cos β+cos α•sin β;sin (α﹣β)=sin α•cos β﹣cos α•sin β.例如sin90°=sin (60°+30°)=sin60°•cos30°+cos60°•sin30°=×+×=1.类似地,可以求得sin15°的值是 .三、解答题17.如图所示,以线段AB 为直径的⊙O 交线段AC 于点E ,点M 是AE 的中点,OM 交AC 于点D ,∠BOE =60°,cos C =12,BC = (1)求∠A 的度数;(2)求证:BC 是⊙O 的切线;(3)求MD 的长度.18. (2019•湖州模拟)如图,坡面CD的坡比为,坡顶的平地BC上有一棵小树AB,当太阳光线与水平线夹角成60°时,测得小树的在坡顶平地上的树影BC=3米,斜坡上的树影CD=米,则小树AB的高是多少米?19.如图所示,圆O的直径为5,在圆O上位于直径AB的异侧有定点C和动点P,已知BC:CA =4:3,点P在半圆弧AB上运动(不与A、B重合),过C作CP的垂线CD交PB的延长线于D点.(1)求证:AC·CD=PC·BC;(2)当点P运动到AB弧中点时,求CD的长;(3)当点P运动到什么位置时,△PCD的面积最大?并求这个最大面积S.20. 如图所示,在Rt△ABC中,∠A=90°,AB=6,AC=8,D,E分别是边AB,AC的中点,点P从点D出发沿DE方向运动,过点P作PQ⊥BC于Q,过点Q作QR∥BA交AC于R,当点Q与点C重合时,点P停止运动.设BQ=x,QR=y.(1)求点D到BC的距离DH的长;(2)求y关于x的函数关系式(不要求写出自变量的取值范围);(3)是否存在点P,使△PQR为等腰三角形?若存在,请求出所有满足要求的x的值;若不存在,请说明理由.【答案与解析】一、选择题1.【答案】C;⨯-==【解析】tan 60°+2sin 45°-2cos 302222.【答案】A;B=,所以∠B=45°,所以AD=BD,因为【解析】过A作AD⊥BC于D,因为cos23sin 5AD C AC ==,所以3535AD =⨯=,∴ BD =AD =3,所以4DC ==,所以BC =BD+DC =7, 112173222ABC S BC AD ==⨯⨯=△.3.【答案】B ;【解析】旋转后的三角形与原三角形全等,得∠B ′=∠B ,然后将∠B 放在以BC 为斜边,直角边在网格线上的直角三角形中,∠B 的对边为1,邻边为3,tan B ′=tanB =13. 4.【答案】B ;【解析】依题意知BC =AC =50米,小岛B 到公路l 的距离,就是过B 作l 的垂线,即是BE 的长,在Rt △BCE 中,sin 60BE BC =°,BE =BC ·sin 60°=50×2=米),因此选B .5.【答案】D ;【解析】如图,△ABD 是等腰直角三角形,过A 点作AC ⊥BD 于C ,则∠ABC =45°,AC =BC =140202⨯=,则所求深度为55-20=35(cm).6.【答案】C ;【解析】tanBC AC α===,∴ 30α=°. 7.【答案】D ;【解析】地毯长度等于两直角边长之和,高为2 m ,宽为2tan 30=°,则地毯的总长至少为(2+m .8.【答案】C .【解析】∵△ABC 中,AB=AC=4,∠C=72°,∴∠ABC=∠C=72°,∠A=36°,∵D 是AB 中点,DE ⊥AB ,∴AE=BE ,∴∠ABE=∠A=36°,∴∠EBC=∠ABC ﹣∠ABE=36°,∠BEC=180°﹣∠EBC ﹣∠C=72°,∴∠BEC=∠C=72°,∴BE=BC ,∴AE=BE=BC .设AE=x ,则BE=BC=x ,EC=4﹣x .在△BCE 与△ABC 中,,∴△BCE ∽△ABC ,∴=,即=,解得x=﹣2±2(负值舍去),∴AE=﹣2+2.在△ADE 中,∵∠ADE=90°,∴cosA===.故选C .二、填空题9.【答案】cos ∠CEB=511;tan ∠CEB=5 【解析】如图,连结BC ,则∠ACB=90°,易证△ECD ∽△EBA ,∴CE CD 5=EB AB 11=,cos ∠CEB=5.11CE =EB tan ∠CEB=5BC =CE第9题答案图 第10题答案图10.【答案】5+10;10+5.【解析】过B 点分别作BE ⊥AD ,BF ⊥CD ,垂足分别为E 、F ,则得BF=ED ,BE=DF. ∵在Rt △AEB 中,∠A=30°,AB=10,∴AE=AB ·cos30°=10×=5,BE=AB ·sin30°=10×=5.又∵在Rt △BFC 中,∠C=30°,BC=20,∴BF=BC=×20=10,CF=BC ·cos30°=20×=10.∴AD=AE+ED=5+10, CD=CF+FD=10+5.11. 【解析】设AB 边与直线2l 的交点为E ,∵ 1l ∥2l ∥3l ∥4l ,且相邻两条平行直线间的距离都是1,则E 为AB 的中点,在Rt △AED 中,∠ADE =α,AD =2AE .设AE =k ,则AD =2k ,DE =.∴ sin sin5AE ADE ED α=∠===.12.【答案】13或4; 【解析】由2430x x -+=得x 1=1,x 2=3.①当1,3为直角边时,则tan A =13;②当3为斜边时,=∴ tan4A ==. 13.【答案】137 ;【解析】如图,∠ABD=30°,∠ACD=45°,BC=100m ,设AD=xm ,在Rt△ACD 中,∵tan∠ACD=,∴CD=AD=x,∴BD=BC+CD=x+100,在Rt△ABD 中,∵tan∠ABD=, ∴x=(x+100), ∴x=50(+1)≈137,即山高AD 为137米.14.【答案】3或3;【解析】因△ABC 的形状不是唯一的,当△ABC 是锐角三角形时,如图所示,作AH ⊥BC 于H ,在Rt △ABH 中.AH =AB ·sin ∠ABC =8×sin30°=4,BH=在Rt △AHC 中,HC3=.∴ BC=3. 当△ABC 是钝角三角形时,如图所示,同上可求得BC=3.15.;16.【答案】.【解析】sin15°=sin (60°﹣45°)=sin60°•cos45°﹣cos60°•sin45°=•﹣•=.故答案为.三、解答题17.【答案与解析】(1)∵∠BOE =60°,∴∠A =12∠BOE =30°. (2)在△ABC 中,∵cos C =12,∴∠C =60°, 又∵∠A =30°,∴∠ABC =90°,∠ABC =90°, ∴AB ⊥BC ,∴ BC 是⊙O 的切线.(3)∵点M 是AE 的中点,∴OM ⊥AE ,在Rt △ABC 中,∵BC =AB =BC tan 60°=6=,∴OA =32AB=, ∴OD =12OA =32,∴MD =32.18. 【解析】解:由已知得Rt △AFD ,Rt △CED ,如图,且得:∠ADF=60°,FE=BC ,BF=CE , 在Rt△CED 中,设CE=x ,由坡面CD 的坡比为,得:DE=x ,则根据勾股定理得:x 2+=,得x=,(﹣不合题意舍去),所以,CE=米,则,ED=米,那么,FD=FE+ED=BC+ED=3+=米,在Rt△AFD 中,由三角函数得: =tan∠ADF, ∴AF=FD•tan60°=×=米, ∴AB=AF﹣BF=AF ﹣CE=﹣=4米,答:小树AB 的高是4米.19.【答案与解析】(1)∵AB 为直径,∴∠ACB =90°. 又∵ PC ⊥CD ,∴ ∠PCD =90°.而∠CAB =∠CPD ,∴△ABC ∽△PDC .∴AC BCCP CD=. ∴AC ·CD =PC ·BC .(2)当点P 运动到AB 弧中点时,过点B 作BE ⊥PC 于点E .∵P 是AB 中点,∴∠PCB =45°,CE =BE =2BC =.又∠CAB =∠CPB ,∴tan ∠CPB =tan ∠CAB =43.∴3tan 422BE PE BC CPB ⎛⎫=== ⎪ ⎪∠⎝⎭.从而PC =PE+EC =2.由(1)得CD =433PC =. (3)当点P 在AB 上运动时,12PCD S PC CD =△. 由(1)可知,CD =43PC . ∴223PCD S PC =△.故PC 最大时,PCD S △取得最大值; 而PC 为直径时最大,∴PCD S △的最大; ∴PCD S △的最大值2250533S =⨯=.20.【答案与解析】(1)∵∠A =90°,AB =6,AC =8,∴BC =10.∵点D 为AB 中点,∴BD =12AB =3.∵∠DHB =∠A =90°,∠B =∠B . ∴△BHD ∽△BAC ,∴DH BD AC BC =,∴3128105BD DH AC BC ==⨯=.(2)∵QR∥AB,∴△RQC∽△ABC,∴RQ QCAB BC=,∴10610y x-=,即y关于x的函数关系式为:365y x=-+.(3)存在,分三种情况:①当PQ=PR时,过点P作PM⊥QR于M,如图所示,则QM=RM.∵∠1+∠2=90°.∠C+∠2=90°,∴∠1=∠C.∴84cos1cos105C∠===,∴45QMQP=,∴1425QRDH=,∴1364251255x⎛⎫-+⎪⎝⎭=,∴185x=.②当PQ=RQ时,如图28—46所示,则有312655x-+=,∴x=6.③当PR=QR时,则R为PQ中垂线上的点,如图所示.于是点R为EC的中点,∴11224CR CE AC===.∵tanQR BACCR CA==,∴366528x-+=,∴152x=.综上所述,当x为185或6或152时,△PQR为等腰三角形.。

北师大初三数学下册《锐角三角函数》习题巩固练习(含解析)

北师大初三数学下册《锐角三角函数》习题巩固练习(含解析)

锐角三角函数—巩固练习【巩固练习】一、选择题1. 如图,在Rt △ABC 中,∠BAC=90°,AD ⊥BC 于点D ,则下列结论不正确的是( )A .AB AD SinB = B .BC AC SinB = C .AC AD SinB = D .ACCD SinB = 2. 如图,在网格中,小正方形的边长均为1,点A ,B ,C 都在格点上,则∠ABC 的正切值是( ) A .2 B .552 C .55 D .21 3. 已知锐角α满足sin25°=cosα,则α=( )A .25°B .55°C .65°D .75°4.如图所示,直径为10的⊙A 经过点C(0,5)和点O(0,0),B 是y 轴右侧⊙A 优弧上一点,则∠OBC 的余弦值为( )A .12B .34C .32D .45第4题 第5题5.如图,在△ABC 中,∠A =120°,AB =4,AC =2,则sinB 的值是( )A .5714B .35C .217D .21146.在Rt △ABC 中,∠C =90°,若将各边长度都扩大为原来的2倍,则∠A 的正弦值( )A .扩大2倍B .缩小2倍C .扩大4倍D .不变7.如图所示是教学用具直角三角板,边AC =30cm ,∠C =90°,tan ∠BAC =33,则边BC 的长为( ) A .3 B .203 C .103 D .53cm第7题 第8题8. 如图所示,在Rt △ABC 中,∠ACB =90°,CD ⊥AB ,垂足为D ,若AC 5BC =2,则sin ∠ACD 的值为( )A 5B 25C 5D .23二、填空题9.如图,点A (3,t )在第一象限,OA 与x 轴所夹的锐角为α,tanα=23,则t 的值是 . 10. 用不等号连接下面的式子.(1)cos50°________cos20° (2)tan18°________tan21° 11.在△ABC 中,若223sin cos 02A B ⎫+-=⎪⎪⎝⎭,∠A 、∠B 都是锐角,则∠C 的度数为 .12.如图所示,△ABC 的顶点都在方格纸的格点上,则sinA =________.13.已知:正方形ABCD 的边长为2,点P 是直线CD 上一点,若DP =1,则tan ∠BPC 的值是________. 第12题 第15题14.如果方程2430x x -+=的两个根分别是Rt △ABC 的两条边,△ABC 的最小角为A ,那么tanA 的值为________.15.如图所示,△ABC 的内心在y 轴上,点C 的坐标为(2,0),点B 的坐标是(0,2),直线AC 的解析式为112y x =-,则tanA 的值是________. 16. 若α为锐角,且231cos m -=α,则m 的取值范围是 . 三、解答题17.如图所示,△ABC 中,D 为AB 的中点,DC ⊥AC ,且∠BCD =30°,求∠CDA 的正弦值、余弦值和正切值.18. 计算下列各式的值.(1) ︒+︒-60tan 645cos 230sin 4o ; (2)2sin45°+tan45°﹣2cos60°. (3) ︒-︒-︒︒60cos 2345tan 60sin 230sin 2. 19.如图所示,在矩形ABCD 中,E 是BC 边上的点,AE =BC ,DF ⊥AE ,垂足为F ,连接DE .(1)求证:AB =DF ;(2)若AD =10,AB =6,求tan ∠EDF 的值.20. 如图所示,已知⊙O 的半径为2,弦BC 的长为23A 为弦BC 所对优弧上任意一点(B 、C 两点除外).(1)求∠BAC 的度数;(2)求△ABC 面积的最大值.(参考数据:3sin 602=°,3cos302=°,3tan 303=°. 【答案与解析】一、选择题1.【答案】C.2.【答案】D ;3. 【答案】C ;【解析】由互余角的三角函数关系,cos sin(90)αα=-°,∴ sin25°-sin(90°-α),即90°-α=25°,∴ α=65°.4.【答案】C ;【解析】设⊙A 交x 轴于另一点D ,连接CD ,根据已知可以得到OC =5,CD =10,∴ 2210553OD =-= ∠OBC =∠ODC ,5.【答案】D ;【解析】如图所示,过点C 作CD ⊥AB 于D ,∵ ∠BAC =120°,∴ ∠CAD =60°,又∵ AC =2,∴ AD =1,CD 3∴ BD =BA+AD =5,在Rt △BCD 中,222827BC BD CD +==, 6.【答案】D ;【解析】根据锐角三角函数的定义,锐角三角函数值等于相应边的比,与边的长度无关,而只与边的比值或角的大小有关.7.【答案】C ; 【解析】由3tan BC BAC AC ∠==,∴ 33303BC AC === 8. 【答案】A ;【解析】 ∵ 223AB AC BC +=,∴ 5sin sin 3AC ACD B AB ∠=∠== 二、填空题9.【答案】29. 10.【答案】(1)<; (2)<;【解析】当α为锐角时,其余弦值随角度的增大而减小,∴ cos50°<cos20°;当α为锐角时,其正切值随角度的增大而增大,∴ tan18°<tan21°.11.【答案】105°;【解析】∵ 223sin cos 02A B ⎫+-=⎪⎪⎝⎭, 即2sin 2A =,3cos 2B =. 又∵ ∠A 、∠B 均为锐角,∴ ∠A =45°,∠B =30°,在△ABC 中,∠A+∠B+∠C =180°,∴ ∠C =105°.12.【答案】55; 【解析】假设每一个小正方形的边长为1,利用网格,从C 点向AB 所在直线作垂线CH .垂足为H ,则∠A 在直角△ACH 中,利用勾股定理得224225AC +=∴ 5sin 25CH A AC === 13.【答案】2或23【解析】此题为无图题,应根据题意画出图形,如图所示,由于点P 是直线CD 上一点,所以点P 既可以在边CD 上,也可以在CD 的延长线上,当P 在边CD 上时,tan 2BC BPC PC ∠==;当P 在CD 延长线上时,2tan 3BC BPC PC ∠==. 14.【答案】13或24;【解析】由2430x x -+=得11x =,23x =,①当3为直角边时,最小角A 的正切值为1tan 3A =;②当3为斜边时,223122-=∴ 最小角A 的正切值为2tan 422A ==. 故应填13或24. 15.【答案】13; 【解析】由△ABC 的内心在y 轴上可知OB 是∠ABC 的角平分线,则∠OBA =45°,易求AB 与x 轴的交点为(-2,0),所以直线AB 的解析式为:2y x =+, 联立2112y x y x =+⎧⎪⎨=-⎪⎩可求A 点的坐标为(-6,-4), ∴ 2262AB AD BD =+=OC =OB =2,∴ BC =22Rt △ABC 中,221tan 362BC A AB ===. 16.【答案】3131<<-m ; 三、解答题17.【答案与解析】过D 作DE ∥AC ,交BC 于点E .∵ AD =BD ,∴ CE =EB ,∴ AC =2DE .又∵ DC ⊥ AC ,DE ∥AC ,∴ DC ⊥DE ,即∠CDE =90°.又∵ ∠BCD =30°,∴ EC =2DE ,DC 3.设DE =k ,则CD 3k ,AC =2k .在Rt △ACD 中,227AD AC CD k =+=.18.答案略19.【答案与解析】(1)证明:∵ 四边形ABCD 是矩形,∴ AD ∥BC ,AD =BC∴ ∠DAF =∠AEB又∵ AE =BC ,∴ AE =AD又∵ ∠B=∠DFA =90°,∴ △EAB ≌△ADF .∴ AB =DF .(2)解:在Rt △ABE 中,22221068BE AE AB =-=-=∵ △EAB ≌△ADF ,∴ DF =AB =6,AF =EB =8,∴ EF =AE-AF =10-8=2.20.【答案与解析】(1)连接BO 并延长,交⊙O 于点D ,连接CD .∵ BD 是直径,∴ BD =4,∠DCB =90°.在Rt △DBC 中,233sin BC BDC BD ∠=== ∴ ∠BDC =60°,∴ ∠BAC =∠BDC =60°.(2)因为△ABC 的边BC 的长不变,所以当BC 边上的高最大时,△ABC 的面积最大,此时点A 应落在优弧BC 的中点处.过O 作OE ⊥BC 于点E ,延长EO 交⊙O 于点A ,则A 为优孤BC 的中点.连结AB ,AC , 则AB =AC ,∠BAE 12=∠BAC =30°. 在Rt △ABE 中,∵ BE 3=BAE =30°,答:△ABC 面积的最大值是33。

4《锐角三角函数》全章复习与巩固-- 巩固练习提高含答案

4《锐角三角函数》全章复习与巩固-- 巩固练习提高含答案

《锐角三角函数》全章复习与巩固--巩固练习(提高)【巩固练习】一、选择题1. 计算tan 60°+2sin 45°-2cos 30°的结果是( ).A .2B .12.如图所示,△ABC 中,AC =5,cos 2B =,3sin 5C =,则△ABC 的面积是( )A .212B .12C .14D .21 3.如图所示,A 、B 、C 三点在正方形网格线的交点处,若将△ACB 绕着点A 逆时针旋转得到△AC B '', 则tan B '的值为( )A .12 B .13 C .14 D .4第2题图 第3题图 第4题图4.如图所示,小明要测量河内小岛B 到河边公路l 的距离,在A 点测得∠BAD =30°,在C 点测 得∠BCD =60°,又测得AC =50米,那么小岛B 到公路l 的距离为( ).A .25米B .C .3米 D .25+ 5.如图所示,将圆桶中的水倒入一个直径为40 cm ,高为55 cm 的圆口容器中,圆桶放置的角度与水平线的夹角为45°.要使容器中的水面与圆桶相接触,则容器中水的深度至少应为( ). A .10 cm B .20 cm C .30 cm D .35 cm6.如图所示,已知坡面的坡度1i =α为( ). A .15° B .20° C .30° D .45°第5题图 第6题图 第7题图7.如图所示,在高为2 m ,坡角为30°的楼梯上铺地毯,则地毯的长度至少应为( ).A .4 mB .6 mC ..(2+8.因为1sin 302=°,1sin 2102=-°,所以sin 210sin(18030)sin30=+=-°°°°;因为sin 452=°,sin 2252=-°,所以sin 225sin(18045)sin 45=+=-°°°°,由此猜想,推理知:一般地,当α为锐角时有sin(180°+α)=-sin α,由此可知:sin240°=( ). A .1-2 B. C. D.二、填空题9.如图,若AC 、BD 的延长线交于点E ,511CD AB =,则cos CEB ∠= ;tan CEB ∠= . 10.如图,AD ⊥CD ,AB=10,BC=20,∠A=∠C=30°,则AD 的长为 ;CD 的长为 .A B第9题图 第10题图 第11题图11.如图所示,已知直线1l ∥2l ∥3l ∥4l ,相邻两条平行直线间的距离都是1,如果正方形ABCD 的四个顶点分别在四条直线上,则sin α=________.12.如果方程2430x x -+=的两个根分别是Rt △ABC 的两条边,△ABC 最小的角为A ,那么tanA 的值 为__ ______.13.1sin 2α=-,则锐角α的取值范围是____ ____.14. 在△ABC 中,AB =8,∠ABC =30°,AC =5,则BC =____ ____.15. 如图,直径为10的⊙A 经过点C (0,5)和点O (0,0),B 是y 轴右侧⊙A 优弧上一点,则∠OBC 的余弦值为 .第15题图 第16题图16. 如图,等腰梯形ABCD 中,AD ∥BC ,∠DBC=45°,翻折梯形ABCD ,使点B 重合于点D ,折痕分别交边AB 、BC 于点F 、E ,若AD=2,BC=8.则(1)BE 的长为 . (2)∠CDE 的正切值为 .三、解答题17.如图所示,以线段AB 为直径的⊙O 交线段AC 于点E ,点M 是 AE 的中点,OM 交AC 于点D ,∠BOE =60°,cos C =12,BC = (1)求∠A 的度数;(2)求证:BC 是⊙O 的切线;(3)求MD 的长度.18. 如图所示,要在木里县某林场东西方向的两地之间修一条公路MN ,已知C 点周围200米范围内为原始森林保护区,在MN 上的点A 处测得C 在A 的北偏东45°方向上,从A 向东走600米到达B 处,测得C 在点B 的北偏西60°方向上.(1)MN 是否穿过原始森林保护区?为什么?( 1.732)(2)若修路工程顺利进行,要使修路工程比原计划提前5天完成,需将原定的工作效率提高25%,则原计划完成这项工程需要多少天?19.如图所示,圆O 的直径为5,在圆O 上位于直径AB 的异侧有定点C 和动点P ,已知BC:CA =4:3,点P在半圆弧AB上运动(不与A、B重合),过C作CP的垂线CD交PB的延长线于D点.(1)求证:AC·CD=PC·BC;(2)当点P运动到AB弧中点时,求CD的长;(3)当点P运动到什么位置时,△PCD的面积最大?并求这个最大面积S.20. 如图所示,在Rt△ABC中,∠A=90°,AB=6,AC=8,D,E分别是边AB,AC的中点,点P从点D出发沿DE方向运动,过点P作PQ⊥BC于Q,过点Q作QR∥BA交AC于R,当点Q与点C重合时,点P 停止运动.设BQ=x,QR=y.(1)求点D到BC的距离DH的长;(2)求y关于x的函数关系式(不要求写出自变量的取值范围);(3)是否存在点P,使△PQR为等腰三角形?若存在,请求出所有满足要求的x的值;若不存在,请说明理由.【答案与解析】一、选择题 1.【答案】C ;【解析】tan 60°+2sin 45°-2cos 3022-== 2.【答案】A ;【解析】过A 作AD ⊥BC 于D ,因为cos 2B =,所以∠B =45°,所以AD =BD ,因为3sin 5AD C AC ==,所以3535AD =⨯=,∴ BD =AD =3,所以4DC ==,所以BC =BD+DC =7, 112173222ABCS BC AD ==⨯⨯= △.3.【答案】B ;【解析】旋转后的三角形与原三角形全等,得∠B ′=∠B ,然后将∠B 放在以BC 为斜边,直角边在网格线上的直角三角形中,∠B 的对边为1,邻边为3,tan B ′=tanB =13. 4.【答案】B ;【解析】依题意知BC =AC =50米,小岛B 到公路l 的距离,就是过B 作l 的垂线,即是BE 的长,在Rt △BCE 中,sin 60BE BC =°,BE =BC ·sin 60°=50=米),因此选B .5.【答案】D ;【解析】如图,△ABD 是等腰直角三角形,过A 点作AC ⊥BD 于C ,则∠ABC =45°,AC =BC =140202⨯=,则所求深度为55-20=35(cm).6.【答案】C ;【解析】tanBC AC α===,∴ 30α=°. 7.【答案】D ;【解析】地毯长度等于两直角边长之和,高为2 m ,宽为2tan 30=°,则地毯的总长至少为(2+m .8.【答案】C ;【解析】sin 240°=sin(180°+60°)=-sin 60°=2-.二、填空题9.【答案】cos ∠CEB=511;tan ∠CEB=5【解析】如图,连结BC ,则∠ACB=90°,易证△ECD ∽△EBA ,∴CE CD 5=EB AB 11=,cos ∠CEB=5.11CE =EB tan ∠CEB=5BC =CE第9题答案图 第10题答案图 10.【答案】5+10;10+5.【解析】过B 点分别作BE ⊥AD ,BF ⊥CD ,垂足分别为E 、F ,则得BF=ED ,BE=DF. ∵在Rt △AEB 中,∠A=30°,AB=10, ∴AE=AB ·cos30°=10×=5,BE=AB ·sin30°=10×=5.又∵在Rt △BFC 中,∠C=30°,BC=20, ∴BF=BC=×20=10,CF=BC ·cos30°=20×=10.∴AD=AE+ED=5+10, CD=CF+FD=10+5.11.【答案】5; 【解析】设AB 边与直线2l 的交点为E ,∵ 1l ∥2l ∥3l ∥4l ,且相邻两条平行直线间的距离都是1,则E 为AB 的中点,在Rt △AED 中,∠ADE =α,AD =2AE .设AE =k ,则AD =2k ,DE =.∴ sin sinAE ADE ED α=∠===12.【答案】13或4; 【解析】由2430x x -+=得x 1=1,x 2=3.①当1,3为直角边时,则tan A =13;②当3=.∴ tanA ==. 13.【答案】0<α≤30°; 【解析】由题意知1sin 02α-≥,故sin α≤12,即sin α≤sin 30°,由正弦函数是增函数. 知0<α≤30°.14.【答案】3或3;【解析】因△ABC 的形状不是唯一的,当△ABC 是锐角三角形时,如图所示,作AH ⊥BC 于H ,在Rt △ABH 中.AH =AB ·sin ∠ABC =8×sin30°=4,BH =在Rt △AHC 中,HC 3==.∴ BC =3.当△ABC 是钝角三角形时,如图所示,同上可求得BC =3.15.;【解析】连接CA 并延长到圆上一点D ,∵CD 为直径,∴∠COD=∠yOx=90°,∵直径为10的⊙A 经过点C (0,5)和点O (0,0),16.【答案】(1)BE=5;(2)tan ∠CDE=【解析】(1)由题意得△BFE ≌△DFE ,∴DE=BE.又∵在△BDE 中,∠DBE=45°, ∴∠BDE=∠DBE=45°,即DE ⊥BC. ∵在等腰梯形ABCD 中,AD=2,BC=8, ∴EC=(BC-AD)=3,BE=5.(2)由(1)得DE=BE=5,在△DEC 中,∠DEC=90°,DE=5,EC=3, ∴tan ∠CDE==.三、解答题17.【答案与解析】(1)∵∠BOE =60°,∴∠A =12∠BOE =30°. (2)在△ABC 中,∵cos C =12,∴∠C =60°, 又∵∠A =30°,∴∠ABC =90°,∠ABC =90°, ∴AB ⊥BC ,∴ BC 是⊙O 的切线.(3)∵点M 是 AE 的中点,∴OM ⊥AE ,在Rt △ABC 中,∵BC =AB =BC tan 60°=6=,∴OA =32AB=, ∴OD =12OA =32,∴MD =32.18.【答案与解析】(1)过C 点作CH ⊥AB 于H .设CH ⊥AB . 由已知有∠EAC =45°,∠FBC =60°,则∠CAH=45°,∠CBA=30°.在Rt△ACH中,AH=CH=x,在Rt△HBC中,tan∠HBC=CH HB.∴tan30CHHB===°,∵AH+HB=AB,∴600x=,解得x=≈220(米)>200(米).∴ MN不会穿过森林保护区.(2)设原计划完成这项工程需要y天,则实际完成工程需要(y-5)天.根据题意得:11(125%)5y y=+⨯-,解得:y=25.经检验知:y=25是原方程的根.答:原计划完成这项工程需要25天.19.【答案与解析】(1)∵AB为直径,∴∠ACB=90°.又∵ PC⊥CD,∴∠PCD=90°.而∠CAB=∠CPD,∴△ABC∽△PDC.∴AC BCCP CD=.∴AC·CD=PC·BC.(2)当点P运动到AB弧中点时,过点B作BE⊥PC于点E.∵P是 AB中点,∴∠PCB=45°,CE=BE=2BC=又∠CAB=∠CPB,∴tan∠CPB=tan∠CAB=43.∴3tan422BEPE BCCPB⎛⎫===⎪⎪∠⎝⎭.从而PC=PE+EC=2.由(1)得CD=433PC=(3)当点P在 AB上运动时,12PCDS PC CD=△.由(1)可知,CD=43PC.∴223PCDS PC=△.故PC最大时,PCDS△取得最大值;而PC为直径时最大,∴PCDS△的最大;∴PCD S △的最大值2250533S =⨯=.20.【答案与解析】(1)∵∠A =90°,AB =6,AC =8,∴BC =10.∵点D 为AB 中点,∴BD =12AB =3.∵∠DHB =∠A =90°,∠B =∠B . ∴△BHD ∽△BAC ,∴DH BD AC BC =,∴3128105BD DH AC BC ==⨯= . (2)∵QR ∥AB ,∴△RQC ∽△ABC , ∴RQ QC AB BC =,∴10610y x-=, 即y 关于x 的函数关系式为:365y x =-+. (3)存在,分三种情况:①当PQ =PR 时,过点P 作PM ⊥QR 于M ,如图所示,则QM =RM .∵∠1+∠2=90°.∠C+∠2=90°,∴∠1=∠C .∴84cos 1cos 105C ∠===,∴45QM QP =,∴1425QR DH =,∴1364251255x ⎛⎫-+ ⎪⎝⎭=,∴185x =. ②当PQ =RQ 时,如图28—46所示,则有312655x -+=,∴x =6.③当PR =QR 时,则R 为PQ 中垂线上的点,如图所示.于是点R 为EC 的中点,∴11224CR CE AC ===.∵tanQR BACCR CA==,∴366528x-+=,∴152x=.综上所述,当x为185或6或152时,△PQR为等腰三角形.第11页共11页。

锐角三角函数(复习巩固)

锐角三角函数(复习巩固)

=2×6.6+2×5.65+3.5=28m
点此图打开 计算器
5. 不查表,运用计算器,比较大小
sin20°_______sin20°15′ <
tan51°_______tan51°2′ cos6°48 ′ _______tan78°12′ > cos79°8 ′ _______cot18°2′ < sin52°-sin23° _______0 > sin78°-sin45° _______0 > cot20°-tan70° _______0 =
2. 选择题,(1)下列等式中,成立的是( D )
A. tan45°5′< 1
C. tan60°1′<
B. sin29°59′>
1 2
2 2
3
D. cos44°48′> D )
1 (2)如果∠A为锐角,且 cos A ,那么( 5
A. 0°< A ≤ 30° C. 45°< A ≤ 60°
B. 30°< A ≤ 45°
我们把 A的正弦、余弦、正切都叫做∠A的三角函数
练习巩固
1. 分别求出图中∠A的正弦值、余弦值和正切值
B 2
C
C
B A
6
A
A
6
2 B
2
C
6
3 3 2. 若 cos A 且∠B=90°- ∠A,则sinB=____________ 2 2
3. 在,那么 直角 △ABC一定是____________三角形.
·· 5.671 7.115 9.514 ·
·· ·
·· ·
·· 0.268 0.325 0.364 0.404 ·

锐角三角函数综合复习(能力提升)-中考数学基础知识复习和专题巩固提升训练含答案

锐角三角函数综合复习(能力提升)-中考数学基础知识复习和专题巩固提升训练含答案

ABCa bc考向10锐角三角函数综合复习—能力提升【知识梳理】考点一、锐角三角函数的概念如图所示,在Rt△ABC中,∠C=90°,∠A所对的边BC记为a,叫做∠A的对边,也叫做∠B的邻边,∠B所对的边AC记为b,叫做∠B的对边,也是∠A的邻边,直角C所对的边AB 记为c ,叫做斜边.锐角A 的对边与斜边的比叫做∠A的正弦,记作sinA,即sinA aAc∠==的对边斜边;锐角A的邻边与斜边的比叫做∠A的余弦,记作cosA,即cosA bAc∠==的邻边斜边;锐角A的对边与邻边的比叫做∠A的正切,记作tanA,即tanA a AA b∠==∠的对边的邻边.同理sinB bBc∠==的对边斜边;cosB aBc∠==的邻边斜边;tanB bBB a∠==∠的对边的邻边.方法指导:(1)正弦、余弦、正切函数是在直角三角形中定义的,反映了直角三角形边与角的关系,是两条线段的比值.角的度数确定时,其比值不变,角的度数变化时,比值也随之变化.(2)sinA,cosA,tanA分别是一个完整的数学符号,是一个整体,不能写成,,,不能理解成sin与∠A,cos与∠A,tan与∠A的乘积.书写时习惯上省略∠A的角的记号“∠”,但对三个大写字母表示成的角(如∠AEF),其正切应写成“tan ∠AEF”,不能写成“tanAEF”;另外,、、常写成、、.(3)任何一个锐角都有相应的锐角三角函数值,不因这个角不在某个三角形中而不存在.(4)由锐角三角函数的定义知:当角度在0°<∠A<90°之间变化时,,,tanA>0.考点二、特殊角的三角函数值利用三角函数的定义,可求出30°、45°、60°角的各三角函数值,归纳如下:锐角30°45° 160°方法指导:(1)通过该表可以方便地知道30°、45°、60°角的各三角函数值,它的另一个应用就是:如果知道了一个锐角的三角函数值,就可以求出这个锐角的度数,例如:若,则锐角.(2)仔细研究表中数值的规律会发现:、、的值依次为、、,而、、的值的顺序正好相反,、、的值依次增大,其变化规律可以总结为:当角度在0°<∠A<90°之间变化时,①正弦、正切值随锐角度数的增大(或减小)而增大(或减小),②余弦值随锐角度数的增大(或减小)而减小(或增大).考点三、锐角三角函数之间的关系如图所示,在Rt△ABC中,∠C=90°.(1)互余关系:,;(2)平方关系:;(3)倒数关系:或;(4)商数关系:.方法指导:锐角三角函数之间的关系式可由锐角三角函数的意义推导得出,常应用在三角函数的计算中,计算时巧用这些关系式可使运算简便.考点四、解直角三角形在直角三角形中,由已知元素(直角除外)求未知元素的过程,叫做解直角三角形.在直角三角形中,除直角外,一共有5个元素,即三条边和两个锐角.设在Rt△ABC中,∠C=90°,∠A、∠B、∠C所对的边分别为a、b、c,则有:①三边之间的关系:a2+b2=c2(勾股定理).②锐角之间的关系:∠A+∠B=90°.③边角之间的关系:,,,,,.④,h为斜边上的高.方法指导:(1)直角三角形中有一个元素为定值(直角为90°),是已知的值.(2)这里讲的直角三角形的边角关系指的是等式,没有包括其他关系(如不等关系).(3)对这些式子的理解和记忆要结合图形,可以更加清楚、直观地理解.考点五、解直角三角形的常见类型及解法已知条件解法步骤Rt△ABC 两边两直角边(a,b)由求∠A,∠B=90°-∠A,斜边,一直角边(如c,a)由求∠A,∠B=90°-∠A,一边一角一直角边和一锐角锐角、邻边(如∠A,b)∠B=90°-∠A,,锐角、对边(如∠A,a)∠B=90°-∠A,,斜边、锐角(如c,∠A)∠B=90°-∠A,,方法指导:1.在遇到解直角三角形的实际问题时,最好是先画出一个直角三角形的草图,按题意标明哪些元素是已知的,哪些元素是未知的,然后按先确定锐角、再确定它的对边和邻边的顺序进行计算.2.若题中无特殊说明,“解直角三角形”即要求出所有的未知元素,已知条件中至少有一个条件为边.考点六、解直角三角形的应用解直角三角形的知识应用很广泛,关键是把实际问题转化为数学模型,善于将某些实际问题中的数量关系化归为直角三角形中的边角关系是解决实际应用问题的关键.解这类问题的一般过程是:(1)弄清题中名词、术语的意义,如仰角、俯角、坡度、坡角、方向角等概念,然后根据题意画出几何图形,建立数学模型.(2)将已知条件转化为几何图形中的边、角或它们之间的关系,把实际问题转化为解直角三角形的问题.(3)根据直角三角形(或通过作垂线构造直角三角形)元素(边、角)之间的关系解有关的直角三角形.(4)得出数学问题的答案并检验答案是否符合实际意义,得出实际问题的解.拓展:在用直角三角形知识解决实际问题时,经常会用到以下概念:(1)坡角:坡面与水平面的夹角叫做坡角,用字母表示.坡度(坡比):坡面的铅直高度h和水平距离的比叫做坡度,用字母表示,则,如图,坡度通常写成=∶的形式.(2)仰角、俯角:视线与水平线所成的角中,视线中水平线上方的叫做仰角,在水平线下方的叫做俯角,如图.(3)方位角:从某点的指北方向线按顺时针转到目标方向的水平角叫做方位角,如图①中,目标方向PA,PB,PC的方位角分别为是40°,135°,245°.(4)方向角:指北或指南方向线与目标方向线所成的小于90°的水平角,叫做方向角,如图②中的目标方向线OA ,OB ,OC ,OD 的方向角分别表示北偏东30°,南偏东45°,南偏西80°,北偏西60°.特别如:东南方向指的是南偏东45°,东北方向指的是北偏东45°,西南方向指的是南偏西45°,西北方向指的是北偏西45°.方法指导:1.解直角三角形实际是用三角知识,通过数值计算,去求出图形中的某些边的长或角的大小,最好画出它的示意图.2.非直接解直角三角形的问题,要观察图形特点,恰当引辅助线,使其转化为直角三角形或矩形来解.例如:3.解直角三角形的应用题时,首先弄清题意(关键弄清其中名词术语的意义),然后正确画出示意图,进而根据条件选择合适的方法求解.【能力提升训练】一、选择题1. 在△ABC 中,∠C =90°,cosA =35,则tan A 等于 ( )A .35B .45C .34D .432.在Rt △ABC 中,∠C=90°,把∠A 的邻边与对边的比叫做∠A 的余切,记作cotA=ab.则下列关系式中不成立的是()A.tanA•cotA=1 B.sinA=tanA•cosA C.cosA=cotA•sinA D.tan2A+cot2A=1第2题第3题3.如图,在四边形ABCD中,E、F分別是AB、AD的中点,若EF=2,BC=5,CD=3,则tanC等于()A.34B.43C.35D.454.如图所示,直角三角形纸片的两直角边长分别为6、8,现将△ABC如图那样折叠,使点A与点B重合,折痕为DE,则tan∠CBE的值是( )A.247B.73C.724D.135.如图所示,已知∠α的终边OP⊥AB,直线AB的方程为y=-33x+33,则cosα等于 ( )A.12B.22C.32D.336.如图,一艘海轮位于灯塔P的北偏东55°方向,距离灯塔2海里的点A处,如果海轮沿正南方向航行到灯塔的正东方向,海轮航行的距离AB长是()A.2海里B.2sin55°海里C.2cos55°海里D.2tan55°海里二、填空题7.设θ为锐角,且x2+3x+2sinθ=0的两根之差为5.则θ=.8.如图,在矩形ABCD中,点E在AB边上,沿CE折叠矩形ABCD,使点B落在AD边上的点F处,若AB=4,BC=5,则tan∠AFE的值为 .9.已知△ABC的外接圆O的半径为3,AC=4,则sinB= .第8题第9题10.当0°<α<90°时,求21sincosαα-的值为.11.如图,点E(0,4),O(0,0),C(5,0)在⊙A上,BE是⊙A上的一条弦.则tan∠OBE=.12.在△ABC中,AB=12,AC=13,cos∠B=,则BC边长为 .三、解答题13.如图,某仓储中心有一斜坡AB,其坡度为i=1:2,顶部A处的高AC为4m,B、C 在同一水平地面上.(1)求斜坡AB的水平宽度BC;(2)矩形DEFG为长方体货柜的侧面图,其中DE=2.5m,EF=2m,将该货柜沿斜坡向上运送,当BF=3.5m时,求点D离地面的高.(≈2.236,结果精确到0.1m)14. 为缓解“停车难”的问题,某单位拟建造地下停车库,建筑设计师提供了该地下停车库的设计示意图,如图所示.按规定,地下停车库坡道1:3上方要张贴限高标志,以便告知停车人车辆能否安全驶入,为标明限高,请你根据该图计算CE(精确到0.1 m)(sin18°≈0.3090,cos18°≈0.9511,tan18°≈0.3249)15.如图所示,某中学九年级一班数学课外活动小组利用周末开展课外实践活动,他们要在某公园人工湖旁的小山AB上,测量湖中两个小岛C、D间的距离.从山顶A处测得湖中小岛C的俯角为60°,测得湖中小岛D的俯角为45°.已知小山AB的高为180米,求小岛C、D间的距离.(计算过程和结果均不取近似值)16. 在△ABC中,AB=AC,CG⊥BA,交BA的延长线于点G.一等腰直角三角尺按如图①所示的位置摆放,该三角尺的直角顶点为F,一条直角边与AC边在一条直线上,另一条直角边恰好经过点B.(1)在图①中请你通过观察、测量BF与CG的长度,猜想并写出BF与CG满足的数量关系,然后证明你的猜想;(2)当三角尺沿AC方向平移到图②所示的位置时,一条直角边仍与AC边在同一直线上,另一条直角边交BC边于点D,过点D作DE⊥BA于点E.此时请你通过观察、测量DE、DF 与CG的长度,猜想并写出DE+DF与CG之间满足的数量关系;然后证明你的猜想;(3)当三角尺在②的基础上沿AC方向继续平移到图③所示的位置(点F在线段AC上,且点F与点C不重合)时,(2)中的猜想是否仍然成立?(不用说明理由)答案与解析一、选择题1.【答案】D;【解析】在Rt△ABC中,设AC=3k,AB=5k,则BC=4k,由定义可知tan A =4433BC k AC k ==.故选D. 2.【答案】D ; 【解析】根据锐角三角函数的定义,得A 、tanA•cotA=a b b a ⋅=1,关系式成立;B 、sinA=c a ,tanA•cosA=c a c b b a =⋅,关系式成立;C 、cosA=,cotA•sinA=c b a b c a =⋅,关系式成立; D 、tan 2A+cot 2A=(ba )2+(ab )2≠1,关系式不成立. 故选D .3.【答案】B ; 【解析】连接BD .∵E 、F 分別是AB 、AD 的中点.∴BD=2EF=4∵BC=5,CD=3∴△BCD 是直角三角形.∴tanC= 43故选B .4.【答案】C ;【解析】设CE =x ,则AE =8-x .由折叠性质知AE =BE =8-x .在Rt △CBE 中, 由勾股定理得BE 2=CE 2+BC 2,即(8-x)2=x 2+62,解得74x =,∴ tan ∠CBE 774624CE BC ===. 5.【答案】A ;【解析】∵y 3x 3,∴当x =0时,y 3,当y =0时,x =1,∴A(1,0),B30,3⎛⎫⎪⎪⎝⎭,∴OB=33,OA=1,∴AB=22OB OA+=233,∴cos∠OBA=12OBAB=.∴OP⊥AB,∴∠α+∠OAB=90°,又∵∠OBA+∠OAB=90°,∴∠α=∠OBA.∴cosα=cos∠OBA=12.故选A.6.【答案】C;【解析】如图,由题意可知∠NPA=55°,AP=2海里,∠ABP=90°.∵AB∥NP,∴∠A=∠NPA=55°.在Rt△ABP中,∵∠ABP=90°,∠A=55°,AP=2海里,∴AB=AP•cos∠A=2cos55°海里.故选C.二、填空题7.【答案】30°;【解析】x1·x2=2sinθ,x1+x2=-3,则(x1-x2)2=(x1+x2)2-4x1x2=9-8sinθ=5)2,∴sinθ=12,∴θ=30°.8.【答案】34;【解析】∵四边形ABCD是矩形,∴∠A=∠B=∠D=90°,CD=AB=4,AD=BC=5,由题意得:∠EFC=∠B=90°,CF=BC=5,∴∠AFE+∠DFC=90°,∠DFC+∠FCD=90°,∴∠DCF=∠AFE,∵在Rt△DCF中,CF=5,CD=4,∴DF=3,∴tan∠AFE=tan∠DCF=DFDC=34.9.【答案】23;【解析】连接AO并延长交圆于E,连CE.∴∠ACE=90°(直径所对的圆周角是直角);在直角三角形ACE中,AC=4,AE=6,∴sin∠E=23 ACAE=;又∵∠B=∠E(同弧所对的的圆周角相等),∴sinB=23.10.【答案】1;【解析】由sin2α+cos2α=1,可得1-sin2α=cos2α∵sin2α+cos2α=1,∴cos2α=1-sin2α.∴221sin cos|cos| cos cos cosαααααα-==.∵0°<α<90°,∴cosα>0.∴原式=coscosαα=1.11.【答案】;【解析】连接EC.根据圆周角定理∠ECO=∠OBE.在Rt△EOC中,OE=4,OC=5,则tan∠ECO=.故tan∠OBE=.12.【答案】7或17;【解析】∵cos∠B=,∴∠B=45°,当△ABC为钝角三角形时,如图1,∵AB=12,∠B=45°,∴AD=BD=12,∵AC=13,∴由勾股定理得CD=5,∴BC=BD﹣CD=12﹣5=7;当△ABC为锐角三角形时,如图2,BC=BD+CD=12+5=17.三、解答题13.【答案与解析】解:(1)∵坡度为i=1:2,AC=4m,∴BC=4×2=8m.(2)作DS⊥BC,垂足为S,且与AB相交于H.∵∠DGH=∠BSH,∠DHG=∠BHS,∴∠GDH=∠SBH,∴=,∵DG=EF=2m,∴GH=1m,∴DH==m,BH=BF+FH=3.5+(2.5﹣1)=5m,设HS=xm,则BS=2xm,∴x2+(2x)2=52,∴x=m,∴DS=+=2m≈4.5m.14.【答案与解析】解:在Rt△ABD中,∠ABD=90°,∠BAD=18°,∴tanBD BADAB ∠=,BD=tan∠BAD·AB=tan 18°×9,∴CD=tan 18°×9-0.5.在Rt △DCE 中,∠DEC =90°,∠CDE =72°, ∴sin CE CDE CD∠=,sin CE CDE CD =∠=sin 72°×(tan 18°×9-0.5)≈2.3(m).即该图中CE 的长约为2.3m .15.【答案与解析】解:如图所示,由已知可得∠ACB =60°,∠ADB =45°.∴在Rt △ABD 中,BD =AB .又在Rt △ABC 中,∵tan 60AB BC=°, ∴3AB BC=3BC AB =. ∵BD =BC+CD ,∴33AB AB CD =+. ∴CD =AB-33AB =180-180×33=(3米. 答:小岛C 、D 间的距离为(180-3米.16.【答案与解析】解:(1)BF =CG .证明:在△ABF 和△ACG 中,∵∠F =∠G =90°,∠FAB =∠GAC ,AB =AC ,∴△ABF ≌△ACG(AAS),∴BF =CG .(2)DE+DF=CG.证明:过点D作DH⊥CG于点H(如图所示).∵DE⊥BA于点E,∠G=90°,DH⊥CG,∴四边形EDHG为矩形,∴DE=HG.DH∥BG.∴∠GBC=∠HDC∴AB=AC.∴∠FCD=∠GBC=∠HDC.又∵∠F=∠DHC=90°,CD=DC,∴△FDC≌△HCD(AAS),∴DF=CH.∴GH+CH=DE+DF=CG,即DE+DF=CG.(3)仍然成立.(注:本题还可以利用面积来进行证明,比如(2)中连结AD)。

锐角三角函数(全章复习与巩固)(巩固篇)-2022-2023学年九年级数学下册基础知识讲练(人教版)

锐角三角函数(全章复习与巩固)(巩固篇)-2022-2023学年九年级数学下册基础知识讲练(人教版)

专题28.16 锐角三角函数(全章复习与巩固)(巩固篇)(专项练习)一、单选题1.已知6cos 33α=α是锐角,则α=( ) A .75︒B .60︒C .45︒D .302.如图,若点 A 的坐标为(1,2),则tan∠1=( )A .2B .12C .3D 33.在∠ABC 中,90C ∠=︒,若1tan 2A =,则sinB =( ) A 5B 3C 25D 234.如图,直线y =34x ﹣3与x 轴,y 轴分别交于A ,B 两点,则sin ∠OAB 的值为( )A .35 B .35C .45D .﹣455.如图是一段索道的示意图.若100AB =米,BAC α∠=,则缆车从A 点到B 点上升的高度BC 的长为( )A .1000sin α米B .1000sin α米 C .1000cos α米 D .1000cos α米 6.矩形ABCD 中AB =10,BC =8,E 为AD 边上一点,沿CE 将∠CDE 对折,使点D正好落在AB 边上,tan∠AFE 等于( )A .43B .34C .52D .257.ABC 中,231sin A cos B 022⎛⎫-= ⎪⎝⎭,则ABC 是( ) A .等腰但不等边三角形 B .等边三角形 C .直角三角形D .等腰直角三角形8.如图,在Rt ∠ABC 中,∠C =90°,AB =2CB =4.以点B 为圆心、适当长为半径作弧,分别交BC ,BA 于点D ,E ,再分别以点D ,E 为圆心、大于12DE 的长为半径作弧,两弧在∠ABC 内部交于点F ,作射线BF ;分别以点A ,C 为圆心、大于12AC 的长为半径作弧,两弧交于G ,H 两点,作直线GH 交BF 于点J ,交AB 于点K ,则∠JKB 的面积是( )A .2B .1C .23D 39.如图,在ABCD 中,4,10,60AB AD B ==∠=︒.作AE AB ⊥交BC 边于点E ,连接DE ,则sin EDC ∠的值为( )A 21B .12C 7D 21 10.已知△ABC 中,∠C =90°,tan A =12 ,D 是 AC 上一点, ∠CBD =∠A , 则 cos∠CDB的值为( )A .12B 5C 25D .2二、填空题11.计算:012(1)2tan 60-︒--=________.1221是方程2(3tan )20x x θ-的一个根,θ是三角形的一个内角,那么cos θ的值为________.13.如图,在∠ABC 中,∠ACB =90°,点D 在AB 的延长线上,连接CD ,若AB =2BD ,tan∠BCD =12,则AC BC 的值为 _____.14.如图,B 为地面上一点,测得B 到树底部C 的距离为10m ,在B 处放置1m 高的测角仪BD ,测得树顶A 的仰角为60︒,则树高AC 为___________m (结果保留根号).15.如图,矩形ABCD 的边长1,3AB AD ==ABCD 以B 为中心,按顺时针方向旋转到A BC D '''的位置(点A '落在对角线BD 上),则△BDD '的形状为________.16.如图,将一个矩形纸片OABC 放置在平面直角坐标系中,点O (0,0),点B (32).D 是边BC 上一点(不与点B 重合),过点D 作DE ∠OB 交OC 于点E .将该纸片沿DE 折叠,得点C 的对应点C′.当点C′落在OB 上时,点C′的坐标为________.17.在Rt∠ABC 中∠C =90°,AC =4,BC =3.如图∠,四边形DEFG 为Rt∠ABC 的内接正方形,则正方形DEFG 的边长为________;如图∠,若Rt∠ABC 内有并排的n 个全等的正方形,它们组成的矩形内接于Rt ∠ABC ,则正方形的边长为________.18.如图,11122233,,,AB A A B A A B A ⋅⋅⋅△△△是等边三角形,直线32y =+经过它们的顶点123,,,,A A A A ⋅⋅⋅,点123,,,B B B ⋅⋅⋅在x 轴上,则点2022A 的横坐标是____________.三、解答题 19.计算: (1)()1245201412-︒-;(2)()310.125π4tan 602-︒⎛⎫⨯-+-+ ⎪⎝⎭;(3)()()()12014cos 60128tan 30121-︒÷-+︒-+;20.已知:如图,在Rt ABC 中,90,30∠=︒∠=︒C A .()1 作AB 的垂直平分线DE 交AB 于点D ;交AC 于点E (要求:尺规作图,保留作图痕迹,不必写作法);()2 连接BE ,若1BC =,求BCE 的周长.21.已知:如图在ABC 中,AD 是边BC 上的高,E 为边AC 的中点,14BC =,12AD =,4sin 5B =.求: (1)线段DC 的长;(2)tan EDC ∠的值.22.如图,在平面直角坐标系xOy 中,函数y =x +b 的图像与函数ky x=(x >0)的图像相交于点B (1,6),并与x 轴交于点A .点C 是线段AB 上一点,∠OAC 与∠OAB 的面积比为2:3(1) 求k 和b 的值;(2) 若将∠OAC 绕点O 顺时针旋转,使点C 的对应点C ′落在x 轴正半轴上,得到∠OA ′C ′,判断点A ′是否在函数ky x=(x >0)的图像上,并说明理由.23.如图,小文在数学综合实践活动中,利用所学的数学知识测量居民楼的高度AB ,在居民楼前方有一斜坡,坡长15m CD =,斜坡的倾斜角为α,4cos 5α=.小文在C 点处测得楼顶端A 的仰角为60︒,在D 点处测得楼顶端A 的仰角为30(点A ,B ,C ,D 在同一平面内).(1) 求C ,D 两点的高度差;(2) 求居民楼的高度AB .(结果精确到1m 3 1.7≈)24.无人机在实际生活中应用广泛.如图8所示,小明利用无人机测量大楼的高度,无人机在空中P 处,测得楼CD 楼顶D 处的俯角为45︒,测得楼AB 楼顶A 处的俯角为60︒.已知楼AB 和楼CD 之间的距离BC 为100米,楼AB 的高度为10米,从楼AB 的A 处测得楼CD 的D 处的仰角为30(点A 、B 、C 、D 、P 在同一平面内).(1) 填空:APD ∠=___________度,ADC ∠=___________度; (2) 求楼CD 的高度(结果保留根号); (3) 求此时无人机距离地面BC 的高度.参考答案1.D【分析】由6cos 33α=3cos α=然后再根据特殊角的三角函数值求角度即可. 解:∠6cos 33α=∠3cos α=∠α=30. 故选D .【点拨】本题主要考查了利用特殊角的三角函数值求角度、一元一次方程等知识点,将cos α整体当做未知数成为解答本题的关键.2.A【分析】过点A 作AB ∠x 轴,垂足为B ,根据点A 的坐标,得到OB =1,AB =2,根据正切的定义计算选择即可.解:过点A 作AB ∠x 轴,垂足为B ,根据点A 的坐标(1,2), ∠OB =1,AB =2, ∠ tan ∠1=221AB OB ==,故选A .【点拨】本题考查了坐标的意义,正切的定义即对边比邻边,熟练掌握正切的定义是解题的关键.3.C【分析】根据三角函数的定义,知tan 12BC A AC ==,设BC =x ,AC =2x ,根据勾股定理可求得AB ,再根据三角函数的定义就可以求出sin B 的值.解:在∠ABC 中,90C ∠=︒, ∠tan 12BC A AC ==, ∠设BC =x ,AC =2x ,()222225AB BC AC x x x ∴=++=,25sin 5AC B AB x=∴=,故选:C .【点拨】本题考查了锐角三角函数的定义及运用:在直角三角形中,一个锐角的正弦值为对边比斜边,余弦值为邻边比斜边,正切值为对边比邻边.4.B【分析】分别令x =0,y =0,由直线解析式可求解A 、B 的坐标,即可得OB 、OA 的长,再利用勾股定理可求解AB 的长,再根据正弦的定义可求解.解:直线y =34x ﹣3,令x =0,则y =0﹣3=﹣3,令y =0,34x ﹣3=0,解得x =4,∴A (4,0),B (0,﹣3), ∴OB =3,0A =4,∴AB 2222435++OA OB , ∴sin ∠OAB =35OB AB =, 故选:B .【点拨】本题主要考查一次函数图象与坐标轴的交点,勾股定理,锐角三角函数的定义,求解A 、B 两点坐标是解题的关键.5.A【分析】在Rt ABC 中,90ACB ∠=︒,斜边AB 是已知边,BAC ∠是已知角,而要求的是BAC ∠的对边BC 的长,所以选择BAC ∠的正弦,即可求出结果.解:如图,在Rt ABC 中,90ACB ∠=︒,BAC α∠=, ∠sin BCABα=, ∠sin BC AB α=⋅, ∠1000AB =米, ∠1000sin BC α=米. 故选:A .【点拨】此题考查了解直角三角形的应用,解题的关键是正确掌握锐角三角函数的定义,选择适当的锐角三角函数模型.6.B【分析】依据折叠的性质以及矩形的性质,易得∠AFE =∠BCF ;在Rt∠BFC 中,有BC =8,CF =10,由勾股定理易得BF 的长.根据三角函数的定义,易得tan∠BCF 的值,依据∠AFE =∠BCF ,可得tan∠AFE 的值.解:∠四边形ABCD 是矩形, ∠CD =AB =10,∠B =∠D =90°, ∠∠BCF +∠BFC =90°,根据折叠的性质得:∠EFC =∠D =90°,CF =CD =10, ∠∠AFE +∠BFC =90°, ∠∠AFE =∠BCF ,在Rt∠BFC 中,BC =8,CF =CD =10,由勾股定理得:BF 22CF CB -22108-6, 则tan∠BCF =BF BC =6384=, ∠tan∠AFE =tan∠BCF =34,故B 正确.故选:B .【点拨】本题主要考查了矩形的折叠问题,求三角函数值,勾股定理,余角的性质,根据折叠和勾股定理求出6BF =,是解题的关键.7.B【分析】由绝对值和完全平方的非负性可得:31sin 0,cos 022A B,再根据特殊角的锐角函数值可知60A B ∠=∠=︒ ,即可求解.解:3sin A 02-≥,21cos B 02⎛⎫-≥ ⎪⎝⎭,231sin A cos B 022⎛⎫-= ⎪⎝⎭,23sin 021cos 02A B ⎧=⎪⎪∴⎨⎪⎛⎫-= ⎪⎪⎝⎭⎩, 则可得:3sin 1cos 2A B ⎧=⎪⎪⎨⎪=⎪⎩,解得:6060A B ∠=︒⎧⎨∠=︒⎩ , 在ABC 中,18060C A B ∠=︒-∠-∠=︒ ,ABC ∴ 为等边三角形.故选:B .【点拨】本题考查了非负数的性质,绝对值和完全平方的非负性,由三角函数值求锐角的度数,三角形内角和以及等边三角形的判定;掌握非负数的性质,绝对值和完全平方的非负性是解题的关键.8.D【分析】如图,过点K 作KH ∠BJ 于H ,设KJ 交AC 于W .解直角三角形求出BJ ,KH ,可得结论.解:如图,过点K 作KH ∠BJ 于H ,设KJ 交AC 于W ,∠∠C =90°,AB =2BC ,∠2BC A AB==sin , ∠∠A =30°,∠ABC =60°,由作图可知,BJ 平分∠ABC ,KJ 垂直平分线段AC ,∠∠KBJ =∠CBJ =12∠ABC =30°,AW =WC ,∠WK ∠BC ,∠AK =KB =2,∠KJB =∠CBJ =30°,∠HK =12KB =1,BH 33∠∠KBJ =∠KJB =30°,∠KB =KJ ,∠KH ∠BJ ,∠HB =HJ 3∠S △KBJ =1233 故选:D .【点拨】本题考查作图-复杂作图、角平分线的定义、线段的垂直平分线的性质、解直角三角形等知识,解题的关键是熟练掌握基本知识,属于中考常考题型9.A【分析】过点E 作EF AD ⊥于点F ,过点C 作CG ED ⊥于点G ,根据三角函数以及勾股定理求出,,,,,,BE AE AF EF FD ED EC 的长度,然后根据三角形面积公式得出CG 的长度,结果可得.解:过点E 作EF AD ⊥于点F ,过点C 作CG ED ⊥于点G ,AE AB ⊥,90BAE ∴∠=︒,4,60AB B =∠=︒,tan 6043AE AB ∴=︒=8cos60BE ==︒, 1082EC BC BE ∴=-=-=,四边形ABCD 是平行四边形,120BAD ∴∠=︒,1209030EAF BAD BAE ∴∠=∠-∠=︒-︒=︒,EF AD ⊥,90AFE ∴∠=︒,1232EF AE ∴== ∴cos306AF AE =︒=,1064FD AD AF ∴=-=-=,2222(23)427ED EF FD ∴++1122ECD S EC EF ED CG ∴==, 即112232722CG ⨯⨯⨯,221CG ∴ 221217sin 4CG EDC CD ∴∠==, 故选:A .【点拨】本题考查了平行四边形的性质,解直角三角形,勾股定理,含30的直角三角形的性质等知识点,熟练掌握解直角三角形以及勾股定理是解本题的关键.10.B【分析】由已知条件CBD A ∠=∠,可得1tan tan 2CBD A ∠==,设CD a =,由题意可得1tan 2CD CBD BC ∠==,即可算出2BC a =,在t ΔR CBD 中,根据勾股定理可得2222(2)BD CD BC a a ++解:CBD A ,1tan tan 2CBD A ∴∠==, 设CD a =,1tan 2CD CBD BC ∴∠==, 2BC a ∴=, 在Rt ΔCBD 中,2222(2)5BD CD BC a a a =+=+,5cos 5CD CDB BD a∴∠=. 故选:B 【点拨】本题主要考查了解直角三角形,熟练掌握解直角三角形的方法进行求解是解决本题的关键.11.12- 【分析】先计算零次幂、负整数指数幂、正切值的平方,再按照运算顺序计算就可以了.解:()012212tan 60113231212---︒=-⨯=-=-故答案为: 12-. 【点拨】本题考查了0指数幂()()010a a =≠、负整数指数幂()10q qa a a -=≠、特殊角的正切值、二次根式的性质(()20a a a =≥和实数的混合运算等知识.正确的计算是解决本题的关键.122【分析】21代入方程2(3tan )20x x θ-+=,得出tan θ的值,从而得出θ的度数,进而的解.解:21是方程2(3tan )20x x θ-=的一个根, ∠2(21)3tan (21)20θ-+=,解得:tan 1θ=,∠45θ=︒,∠2cos cos 45θ==° 2. 【点拨】考查三角函数值与一元二次方程根的应用,熟练掌握一元二次方程的根的意义以及特殊角三角函数值是解本题的关键.13.32【分析】过点D 作DM ∠CM ,交CB 的延长线于点M ,可得∠DMC =90°,在Rt∠DMC 中,利用锐角三角函数的定义可设DM =a ,则CM =2a ,然后证明8字模型相似三角形∠ACB ∠∠DMB ,从而利用相似三角形的性质可得AB BD =AC DM =CB BM =2,进而可得AC =2a ,CB =43a ,最后进行计算即可解答.解:过点D 作DM ∠CM ,交CB 的延长线于点M ,∠∠DMC =90°,在Rt∠DMC 中,tan∠BCD =12, ∠tan∠DCM =DM CM =12, 设DM =a ,则CM =2a ,∠∠ACB =∠DMC =90°,∠ABC =∠DBM ,∠∠ACB ∠∠DMB , ∠AB BD=AC DM =CB BM =2, ∠AC =2DM =2a ,∠2433CB CM a ==, ∠AC BC =243a a =32, 故答案为:32. 【点拨】本题考查了相似三角形的判定与性质,解直角三角形,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.14.31##1103+【分析】在Rt ADE △中,利用tan 310∠==AE AE ADE DE 103AE =1m 即为AC 的长.解:过点D 作DE AC ⊥交于点E ,如图:则四边形BCED 是矩形,∠BC =DE ,BD =CE ,由题意可知:60ADE ∠=︒,10m ==DE BC ,在Rt ADE △中,tan 310∠===AE AE ADE DE ∠103AE =∠()1031m +=AE EC ,故答案为:1031【点拨】本题考查了解直角三角形,解直角三角形的应用—仰角俯角问题,要求学生能借助仰角构造直角三角形并解直角三角形.15.等边三角形【分析】根据特殊角三角函数值求出∠CDB 的度数,然后根据旋转的性质和等边三角形的判定即可解决问题.解:∠四边形ABCD 为矩形,∠DC =AB =1,BC =AD 3∠DCB =90°, ∠tan∠CDB 33=∠CDB =60°; 由旋转的性质可知:BD =BD ',∠∠BDD '为等边三角形.故答案为:等边三角形.【点拨】本题考查了矩形的性质,特殊角三角函数值,旋转的性质以及等边三角形的判定等知识,解题的关键是抓住旋转过程中的不变量,灵活运用有关性质来解题. 16.31()2【分析】根据B 点坐标可求出AB 、OB ,得到12AB OB =,所以30AOB ∠=︒,60BOC ∠=︒,再利用折叠与平行的性质,证明∠OEC ′是等边三角形,OE =CD =12AB ,然后可利用三角函数求出点C ′的坐标.解:∠点B 坐标为(32),∠AB =2,OA =3 ∠()222234OB + ∠12AB OB = ∠30AOB ∠=︒,60BOC ∠=︒∠C ′是C 关于DE 的对称点∠CED C ED '∠=∠, EC =EC ′∠DE ∠OB∠CED EOC '∠=∠=60°∠∠OE C ′=180°-2×60°=60°∠∠OE C ′是等边三角形∠OE = EC =EC ′=12AB =1112⨯= ∠C ′横坐标=31sin 60⨯︒==11sin302⨯︒= ∠C ′坐标为312⎫⎪⎪⎝⎭【点拨】本题考查了三角形,熟练运用特殊三角形的性质是解题的关键.17. 6037602512n + 【分析】在图∠中先解直角三角形ABC 得到3tan 4A =,4tan 3B =,=5AB ,再分别解直角三角形ADG 和直角三角形BEF 得到43AD DG =,34BE EF =,再由5AB AD DE BE =++=进行求解即可;对于图∠同图∠求解即可.解:如图∠所示,∠在Rt∠ABC 中∠C =90°,AC =4,BC =3,∠3tan 4BC A AC ==,4tan 3AC B BC ==,225AB AC BC +=, ∠四边形DEFG 是Rt∠ABC 的内接正方形,∠DG =DE =EF ,∠GDE =∠DEF =90°,∠∠ADG =∠BEF =90°,在Rt∠ADG 中,4tan 3DG AD DG A ==, 在Rt∠BEF 中,3tan 4EF BE EF B ==, ∠43534AB AD DE BE DG DG DG =++=++=, ∠6037DG =; 如图∠所示, 同理可得43AD DG =,34BE EF =,DE nDG =, ∠43534AB AD DE BE DG nDG DG =++=++=, ∠602512DG n=+, 故答案为:6037;602512n+.【点拨】本题主要考查了解直角三角形,勾股定理,正方形的性质,正确求出43AD DG =,34BE EF =是解题的关键. 18.(2023223-【分析】如图,设直线32y x =+与x 轴交于点C ,求出点A 、C 的坐标,可得OA =2,OC =23∠ACO =30°,可得1190CB A ∠=︒,130CB A =∠︒,然后求出12124323CB B O ===13228323CB CB ===324216323CB CB ===…,进而可得2023202223CB =2022OB 即可.解:如图,设直线32y x =+与x 轴交于点C , 在32y =+中,当x =0时,y =2; 当y =0320+=,解得:23x =- ∠A (0,2),C (23-0),∠OA =2,OC =23∠tan∠ACO =323OA OC == ∠∠ACO =30°,∠11AB A △是等边三角形,∠111160AA B AB A ∠=∠=︒,∠1190CB A ∠=︒,∠130CB A =∠︒,∠AC =1AB ,∠AO ∠1CB ,∠123O O C B == ∠12124323CB B O === 同理可得:13228323CB CB ==324216323CB CB ===…,∠2023202223CB = ∠(2023202320222323223OB =-∠点2022A 的横坐标是(2023223- 故答案为:(2023223-【点拨】本题考查了一次函数的图象和性质,等边三角形的性质,解直角三角形,等腰三角形的判定和性质等知识,通过解直角三角形求出∠ACO=30°是解题的关键.19.(1)12;(23;(3)2.【分析】(1) 先进行绝对值、三角函数、零指数幂计算,然后根据实数的运算法则求得计算结果;(2)先进行负整数指数幂、零指数幂、三角函数计算,然后根据实数的运算法则求得计算结果;(3)先进行三角函数、负整数指数幂、绝对值、零指数幂、二次根式计算,然后根据实数的运算法则求得计算结果;解:(1)原式=12212+=1112+-=12;(2)原式=0.125×(-8)33(3)原式=111222221-⎛⎫÷+-⎪+⎝⎭2222222+-=2.【点拨】本题考查实数的综合运算能力,解决此类题目的关键是熟记特殊角的三角函数值,熟练掌握零指数幂、二次根式化简、绝对值等考点的运算.20.()1见分析;()213【分析】(1)分别以A、B两点为圆心,以大于12AB长度为半径画弧,在AB两边分别相交于两点,然后过这两点作直线即为AB的垂直平分线;(2)根据线段垂直平分线上的点到线段两端点的距离相等可得BE=AE,然后求出△BCE 的周长=AC+BC,根据直角三角形30°角所对的直角边等于斜边的一半求出AB,再利用勾股定理列式求出AC的长,即可得解.解:()1AB的垂直平分线DE如图所示;()2DE 垂直平分AB ,BE AE ∴=,BCE ∴△的周长BE EC BC AE EC BC AC BC =+-++=++.在Rt ABC 中,330BC AC tan =︒BCE ∴△的周长为13【点拨】本题考查了复杂作图,线段垂直平分线上的点到线段两端点的距离相等的性质,直角三角形30°角所对的直角边等于斜边的一半的性质,熟记性质是解题的关键.21.(1)5;(2)125【分析】(1)利用直角三角形中4sin 5B =求解,AB 再利用勾股定理求解,BD 从而可得答案; (2)先利用直角三角形斜边上的中线的性质证明,EDEA EC 可得,EDC ECD ∠=∠ 再求解12tan tan ,5ADEDC ECD CD 从而可得答案. 解:(1) AD 是边BC 上的高,12AD =,4sin 5B =, ∴ 90ADB ADC ∠=∠=︒,412sin ,5B AB== 2215,15129,AB BD14,BC 149 5.CD BC BD(2) E 为边AC 的中点,90ADC ∠=︒,ED EA EC,EDC ECD ∴∠=∠ 12tan tan .5ADEDC ECD CD 【点拨】本题考查的是锐角三角函数的应用,勾股定理的应用,直角三角形斜边上的中线等于斜边的一半,等腰三角形的性质,掌握“等角的三角函数值相等”是解题的关键.22.(1)b =5,k =6(2)不在,理由见详解【分析】(1)把点B 的坐标分别代入一次函数与反比例函数解析式进行求解即可;(2)由(1)及题意易得点C 的坐标,然后根据旋转的性质可知点C ′的坐标,则根据等积法可得点A ′的纵坐标,进而根据三角函数可得点A ′的横坐标,最后问题可求解.(1)解:由题意得:166b k +=⎧⎨=⎩, ∠b =5,k =6;(2)解:点A ′不在反比例函数图像上,理由如下:过点A ′作A ′E ∠x 轴于点E ,过点C 作CF ∠x 轴于点F ,如图,由(1)可知:一次函数解析式为5y x =+,反比例函数解析式为6y x =, ∠点()5,0A -,∠∠OAC 与∠OAB 的面积比为2:3,且它们都以OA 为底,∠∠OAC 与∠OAB 的面积比即为点C 纵坐标与点B 纵坐标之比,∠点C 的纵坐标为2643⨯=,∠点C 的横坐标为451x =-=-,∠点C 坐标为()1,4-,∠CF =4,OF =1, ∠221417OC +tan 4CF COF OF∠==, 由旋转的性质可得:17,OC OC A OC AOC '''==∠=∠,根据等积法可得:2017OA CF A E OC ⋅'=='∠517tan A E OE A OE '=='∠, ∠5172017A '⎝⎭, 5172017100617=≠, ∠点A ′不在反比例函数图像上.【点拨】本题主要考查反比例函数与一次函数的综合、三角函数及旋转的性质,熟练掌握反比例函数与一次函数的综合、三角函数及旋转的性质是解题的关键.23.(1)9m(2)24m【分析】(1)过点D 作DE BC ⊥,交BC 的延长线于点E ,在Rt DCE 中,可得()4cos 1512m 5CE CD α=⋅=⨯=,再利用勾股定理可求出DE ,即可得出答案. (2)过点D 作DF AB ⊥于F ,设m AF x =,在Rt ADF 中,330AF x tan DF DF ︒===,解得3DF x =,在Rt ABC 中,()9m AB x =+,()312m BC x =-,tan603312AB BC x ︒===-x 的值,即可得出答案. (1)解:过点D 作DE BC ⊥,交BC 的延长线于点E ,在Rt DCE 中,4cos 5α=,15m CD =, ()4cos 1512m 5CE CD α∴=⋅=⨯=. ()222215129m DE CD CE ∴=--=.答:C ,D 两点的高度差为9m .(2)过点D 作DF AB ⊥于F ,由题意可得BF DE =,DF BE =, 设m AF x =,在Rt ADF 中,3tan tan30AF x ADF DF DF ∠=︒=== 解得3DF x =, 在Rt ABC △中,()9m AB AF FB AF DE x =+=+=+,)312m BC BE CE DF CE x =-=-=-, tan603312AB BC x ︒===- 解得9632x =, ()963924m 2AB ∴=+≈. 答:居民楼的高度AB 约为24m .【点拨】本题考查解直角三角形的应用-仰角俯角问题、坡度坡角问题,熟练掌握锐角三角函数的定义是解答本题的关键.24.(1)75;60(2)1003103⎫⎪⎭米(3)110米 【分析】(1)根据平角的定义求APD ∠,过点A 作AE DC ⊥于点E ,再利用三角形内角和求ADC ∠;(2)在Rt AED △中,30DAE ∠=︒求出DE 的长度再根据CD DE EC =+计算即可; (3)作PG BC ⊥于点G ,交AE 于点F ,证明APF DAE △≌△即可.解:(1)过点A 作AE DC ⊥于点E ,由题意得:60,45,30,MPA NPD DAE ∠=︒∠=︒∠=︒∠18075APD MPA NPD ∠=︒-∠-∠=︒9060ADC DAE ∠=︒-∠=︒(2)由题意得:100AE BC ==米,10EC AB ==.在Rt AED △中,30DAE ∠=︒, ∠)3100tan 3010033DE AE =⋅︒==米, ∠()1003103CD DE EC =+米 ∠楼CD 的高度为1003103⎫⎪⎭米. (3)作PG BC ⊥于点G ,交AE 于点F ,则()90,10PFA AED FG AB ∠=∠=︒==米∠MN AE ∥,∠60PAF MPA ∠=∠=︒.∠60ADE ∠=︒,∠PAF ADE ∠=∠.∠30DAE ∠=︒,∠30PAD ∠=︒.∠75APD ∠=︒,∠75ADP ∠=︒.∠ADP APD ∠=∠.∠AP AD =.∠APF DAE △≌△(AAS ).∠100PF AE ==.∠()10010110PG PF FG =+=+=米∠无人机距离地面BC 的高度为110米.【点拨】此题考查了解直角三角形的应用-——仰角俯角问题的知识.此题难度适中,注意能借助仰角或俯角构造直角三角形并解直角三角形是解此题的关键.。

【优选】北师大初中数学中考总复习:锐角三角函数综合复习--巩固练习(提高)

【优选】北师大初中数学中考总复习:锐角三角函数综合复习--巩固练习(提高)

中考总复习:锐角三角函数综合复习—巩固练习(提高)【巩固练习】 一、选择题1. 在△ABC 中,∠C =90°,cosA =35,则tan A 等于 ( )A .35B .45C .34D .432.在Rt △ABC 中,∠C=90°,把∠A 的邻边与对边的比叫做∠A 的余切,记作cotA=ab.则下列关系式中不成立的是( )A .tanA•cotA=1B .sinA=tanA•cosAC .cosA=cotA•sinAD .tan 2A+cot 2A=1第2题 第3题3.如图,在四边形ABCD 中,E 、F 分別是AB 、AD 的中点,若EF=2,BC=5,CD=3,则tanC 等于( )A .34 B .43 C .35 D .454.如图所示,直角三角形纸片的两直角边长分别为6、8,现将△ABC 如图那样折叠,使点A 与点B 重合,折痕为DE ,则tan ∠CBE 的值是( )A .247 B .3 C .724 D .135.如图所示,已知∠α的终边OP ⊥AB ,直线AB 的方程为y x ,则cos α等于 ( )A .12B C D6.(2015•南充)如图,一艘海轮位于灯塔P 的北偏东55°方向,距离灯塔2海里的点A 处,如果海轮沿正南方向航行到灯塔的正东方向,海轮航行的距离AB 长是( )A.2海里B.2sin55°海里C.2cos55°海里D.2tan55°海里二、填空题7.设θ为锐角,且x2+3x+2sinθ=0.则θ=.8.如图,在矩形ABCD中,点E在AB边上,沿CE折叠矩形ABCD,使点B落在AD边上的点F处,若AB=4,BC=5,则tan∠AFE的值为 .9.已知△ABC的外接圆O的半径为3,AC=4,则sinB= .第8题第9题第11题10.当0°<α<90的值为.11.如图,点E(0,4),O(0,0),C(5,0)在⊙A上,BE是⊙A上的一条弦.则tan∠OBE=.12.(2015•牡丹江)在△ABC中,AB=12,AC=13,cos∠B=,则BC边长为 .三、解答题13.(2015•泰州)如图,某仓储中心有一斜坡AB,其坡度为i=1:2,顶部A处的高AC为4m,B、C在同一水平地面上.(1)求斜坡AB的水平宽度BC;(2)矩形DEFG为长方体货柜的侧面图,其中DE=2.5m,EF=2m,将该货柜沿斜坡向上运送,当BF=3.5m 时,求点D离地面的高.(≈2.236,结果精确到0.1m)14. 为缓解“停车难”的问题,某单位拟建造地下停车库,建筑设计师提供了该地下停车库的设计示意图,如图所示.按规定,地下停车库坡道1:3上方要张贴限高标志,以便告知停车人车辆能否安全驶入,为标明限高,请你根据该图计算CE(精确到0.1 m)(sin18°≈0.3090,cos18°≈0.9511,tan18°≈0.3249)15.如图所示,某中学九年级一班数学课外活动小组利用周末开展课外实践活动,他们要在某公园人工湖旁的小山AB上,测量湖中两个小岛C、D间的距离.从山顶A处测得湖中小岛C的俯角为60°,测得湖中小岛D的俯角为45°.已知小山AB的高为180米,求小岛C、D间的距离.(计算过程和结果均不取近似值)16. 在△ABC中,AB=AC,CG⊥BA,交BA的延长线于点G.一等腰直角三角尺按如图①所示的位置摆放,该三角尺的直角顶点为F,一条直角边与AC边在一条直线上,另一条直角边恰好经过点B.(1)在图①中请你通过观察、测量BF与CG的长度,猜想并写出BF与CG满足的数量关系,然后证明你的猜想;(2)当三角尺沿AC方向平移到图②所示的位置时,一条直角边仍与AC边在同一直线上,另一条直角边交BC边于点D,过点D作DE⊥BA于点E.此时请你通过观察、测量DE、DF与CG的长度,猜想并写出DE+DF与CG之间满足的数量关系;然后证明你的猜想;(3)当三角尺在②的基础上沿AC方向继续平移到图③所示的位置(点F在线段AC上,且点F与点C 不重合)时,(2)中的猜想是否仍然成立?(不用说明理由)【答案与解析】一、选择题 1.【答案】D ;【解析】在Rt △ABC 中,设AC =3k ,AB =5k ,则BC =4k ,由定义可知tan A =4433BC k AC k ==.故选D. 2.【答案】D ;【解析】根据锐角三角函数的定义,得A 、tanA•cotA=a bb a ⋅=1,关系式成立; B 、sinA=c a ,tanA•cosA=cac b b a =⋅,关系式成立;C 、cosA=,cotA•sinA=cba b c a =⋅,关系式成立; D 、tan 2A+cot 2A=(ba )2+(ab )2≠1,关系式不成立.故选D .3.【答案】B ;【解析】连接BD .∵E 、F 分別是AB 、AD 的中点.∴BD=2EF=4 ∵BC=5,CD=3∴△BCD 是直角三角形. ∴tanC= 43故选B .4.【答案】C ;【解析】设CE =x ,则AE =8-x .由折叠性质知AE =BE =8-x .在Rt △CBE 中,由勾股定理得BE 2=CE 2+BC 2,即(8-x)2=x 2+62,解得74x =, ∴ tan ∠CBE 774624CE BC ===. 5.【答案】A ; 【解析】∵yx,∴当x =0时,y,当y =0时,x =1,∴A(1,0),B ⎛ ⎝⎭,∴OB ,OA =1,∴AB cos ∠OBA =12OB AB =. ∴OP ⊥AB ,∴∠α+∠OAB =90°,又∵∠OBA +∠OAB =90°,∴∠α=∠OBA .∴cos α=cos ∠OBA =12.故选A.6.【答案】C ;【解析】如图,由题意可知∠NPA=55°,AP=2海里,∠ABP=90°. ∵AB∥NP,∴∠A=∠NPA=55°.在Rt △ABP 中,∵∠ABP=90°,∠A=55°,AP=2海里, ∴AB=AP•cos∠A=2cos55°海里.故选C .二、填空题 7.【答案】30°;【解析】x 1·x 2=2sin θ,x 1+x 2=-3,则(x 1-x 2)2=(x 1+x 2)2-4x 1x 2=9-8sin θ=)2,∴sin θ=12,∴θ=30°. 8.【答案】34; 【解析】∵四边形ABCD 是矩形,∴∠A=∠B=∠D=90°,CD=AB=4,AD=BC=5, 由题意得:∠EFC=∠B=90°,CF=BC=5, ∴∠AFE+∠DFC=90°,∠DFC+∠FCD=90°, ∴∠DCF=∠AFE ,∵在Rt △DCF 中,CF=5,CD=4, ∴DF=3,∴tan ∠AFE=tan ∠DCF=DFDC =34. 9.【答案】23; 【解析】连接AO 并延长交圆于E ,连CE .∴∠ACE=90°(直径所对的圆周角是直角); 在直角三角形ACE 中,AC=4,AE=6,∴sin∠E=23AC AE =; 又∵∠B=∠E(同弧所对的的圆周角相等), ∴sinB=23.10.【答案】1;【解析】由sin 2α+cos 2α=1,可得1-sin 2α=cos 2α∵sin 2α+cos 2α=1,∴cos 2α=1-sin 2α.|cos |cos αα=. ∵0°<α<90°,∴cos α>0. ∴原式=cos cos αα=1. 11.【答案】;【解析】连接EC .根据圆周角定理∠ECO=∠OBE.在Rt△EOC 中,OE=4,OC=5,则tan∠ECO=.故tan∠OBE=.12.【答案】7或17; 【解析】∵cos ∠B=,∴∠B=45°,当△ABC 为钝角三角形时,如图1, ∵AB=12,∠B=45°, ∴AD=BD=12, ∵AC=13,∴由勾股定理得CD=5, ∴BC=BD ﹣CD=12﹣5=7;当△ABC 为锐角三角形时,如图2,BC=BD+CD=12+5=17.三、解答题13.【答案与解析】解:(1)∵坡度为i=1:2,AC=4m,∴BC=4×2=8m.(2)作DS⊥BC,垂足为S,且与AB相交于H.∵∠DGH=∠BSH,∠DHG=∠BHS,∴∠GDH=∠SBH,∴=,∵DG=EF=2m,∴GH=1m,∴DH==m,BH=BF+FH=3.5+(2.5﹣1)=5m,设HS=xm,则BS=2xm,∴x2+(2x)2=52,∴x=m,∴DS=+=2m≈4.5m.14.【答案与解析】解:在Rt△ABD中,∠ABD=90°,∠BAD=18°,∴tanBD BADAB ∠=,BD=tan∠BAD·AB=tan 18°×9,∴CD=tan 18°×9-0.5.在Rt△DCE中,∠DEC=90°,∠CDE=72°,∴sinCECDECD∠=,sinCE CDE CD=∠=sin 72°×(tan 18°×9-0.5)≈2.3(m).即该图中CE的长约为2.3m.15.【答案与解析】解:如图所示,由已知可得∠ACB =60°,∠ADB =45°. ∴在Rt △ABD 中,BD =AB . 又在Rt △ABC 中, ∵tan 60ABBC=°,∴ABBC=BC AB =. ∵BD =BC+CD,∴3AB AB CD =+. ∴CD ==180-180)米. 答:小岛C 、D 间的距离为(180-米.16.【答案与解析】 解:(1)BF =CG .证明:在△ABF 和△ACG 中,∵∠F =∠G =90°,∠FAB =∠GAC ,AB =AC , ∴△ABF ≌△ACG(AAS), ∴BF =CG .(2)DE+DF =CG .证明:过点D 作DH ⊥CG 于点H(如图所示).∵DE ⊥BA 于点E ,∠G =90°,DH ⊥CG ,∴四边形EDHG 为矩形, ∴DE =HG .DH ∥BG . ∴∠GBC =∠HDC ∴AB =AC .∴∠FCD =∠GBC =∠HDC .又∵∠F =∠DHC =90°,CD =DC , ∴△FDC ≌△HCD(AAS),∴DF =CH . ∴GH+CH =DE+DF =CG , 即DE+DF =CG . (3)仍然成立.(注:本题还可以利用面积来进行证明,比如(2)中连结AD)。

《锐角三角函数》全章复习与巩固-- 巩固练习(提高带答案)

《锐角三角函数》全章复习与巩固-- 巩固练习(提高带答案)

《锐角三角函数》全章复习与巩固--知识讲解(提高)【学习目标】1.了解锐角三角函数的概念,能够正确使用sinA 、cos A、tanA表示直角三角形中两边的比;记忆30°、45°、60°的正弦、余弦和正切的函数值,并会由一个特殊角的三角函数值求出这个角的度数;2.能够正确地使用计算器,由已知锐角的度数求出它的三角函数值,由已知三角函数值求出相应的锐角的度数;3.理解直角三角形中边与边的关系,角与角的关系和边与角的关系,会运用勾股定理、直角三角形的两个锐角互余、以及锐角三角函数解直角三角形,并会用解直角三角形的有关知识解决简单的实际问题;4.通过锐角三角函数的学习,进一步认识函数,体会函数的变化与对应的思想,通过解直角三角的学习,体会数学在解决实际问题中的作用,并结合实际问题对微积分的思想有所感受.【知识网络】【要点梳理】要点一、锐角三角函数1.正弦、余弦、正切的定义如右图、在Rt△ABC中,∠C=90°,如果锐角A确定:(1)sinA=,这个比叫做∠A的正弦. (2)cosA=,这个比叫做∠A的余弦.(3)tanA=,这个比叫做∠A的正切.要点诠释:(1)正弦、余弦、正切是在一个直角三角形中定义的,其本质是两条线段的比值,它只是一个数值,其大小只与锐角的大小有关,而与所在直角三角形的大小无关.(2)sinA、cosA、tanA是一个整体符号,即表示∠A三个三角函数值,书写时习惯上省略符号“∠”,但不能写成sin·A,对于用三个大写字母表示一个角时,其三角函数中符号“∠”不能省略,应写成sin∠BAC,而不能写出sinBAC.(3)sin2A表示(sinA)2,而不能写成sinA2. (4)三角函数有时还可以表示成等.2.锐角三角函数的定义锐角A的正弦、余弦、正切都叫做∠A的锐角三角函数.要点诠释: 1. 函数值的取值范围对于锐角A的每一个确定的值,sinA有唯一确定的值与它对应,所以sinA是∠A的函数.同样,cosA、tanA也是∠A的函数,其中∠A是自变量,sinA、cosA、tanA分别是对应的函数.其中自变量∠A的取值范围是0°<∠A<90°,函数值的取值范围是0<sinA<1,0<cosA<1,tanA>0.2.锐角三角函数之间的关系:余角三角函数关系:“正余互化公式”如∠A+∠B=90°,那么:sinA=cosB; cosA=sinB;同角三角函数关系:sin2A+cos2A=1;tanA=3.30°、45°、60∠A 30°45°60°30°、45°、60°角的三角函数值和解30°、60°直角三角形和解45°直角三角形为本章重中之重,是几何计算题的基本工具,三边的比借助锐角三角函数值记熟练.要点二、解直角三角形在直角三角形中,由已知元素求出未知元素的过程,叫做解直角三角形.解直角三角形的依据是直角三角形中各元素之间的一些相等关系,如图:角角关系:两锐角互余,即∠A+∠B=90°;边边关系:勾股定理,即;边角关系:锐角三角函数,即要点诠释:解直角三角形,可能出现的情况归纳起来只有下列两种情形:(1)已知两条边(一直角边和一斜边;两直角边);(2)已知一条边和一个锐角(一直角边和一锐角;斜边和一锐角).这两种情形的共同之处:有一条边.因此,直角三角形可解的条件是:至少已知一条边.要点三、解直角三角形的应用解直角三角形的知识应用很广泛,关键是把实际问题转化为数学模型,善于将某些实际问题中的数量关系化归为直角三角形中的边角关系是解决实际应用问题的关键.1.解这类问题的一般过程(1)弄清题中名词、术语的意义,如仰角、俯角、坡度、坡角、方向角等概念,然后根据题意画出几何图形,建立数学模型.(2)将已知条件转化为几何图形中的边、角或它们之间的关系,把实际问题转化为解直角三角形的问题.(3)根据直角三角形(或通过作垂线构造直角三角形)元素(边、角)之间的关系解有关的直角三角形.(4)得出数学问题的答案并检验答案是否符合实际意义,得出实际问题的解.2.常见应用问题(1)坡度:;坡角:.(2)方位角:(3)仰角与俯角:由由,,,2.用解直角三角形的知识解决实际问题的基本方法是:把实际问题抽象成数学问题(解直角三角形),就是要舍去实际事物的具体内容,把事物及它们的联系转化为图形(点、线、角等)以及图形之间的大小或位置关系.借助生活常识以及课本中一些概念(如俯角、仰角、倾斜角、坡度、坡角等)的意义,也有助于把实际问题抽象为数学问题.当需要求解的三角形不是直角三角形时,应恰当地作高,化斜三角形为直角三角形再求解.3.锐角三角函数的应用用相似三角形边的比的计算具有一般性,适用于所有形状的三角形,而三角函数的计算是在直角三角形中解决问题,所以在直角三角形中先考虑三角函数,可以使过程简洁。

中考总复习:锐角三角函数综合复习--巩固练习(提高)

中考总复习:锐角三角函数综合复习--巩固练习(提高)

中考总复习:锐角三角函数综合复习—巩固练习(提高)【巩固练习】 一、选择题1. 在△ABC 中,∠C =90°,cosA =35,则tan A 等于 ( )A .35B .45C .34D .432.在Rt △ABC 中,∠C=90°,把∠A 的邻边与对边的比叫做∠A 的余切,记作cotA=ab.则下列关系式中不成立的是( )A .tanA•cotA=1B .sinA=tanA•cosAC .cosA=cotA•sinAD .tan 2A+cot 2A=1第2题 第3题3.如图,在四边形ABCD 中,E 、F 分別是AB 、AD 的中点,若EF=2,BC=5,CD=3,则tanC 等于( )A .34 B .43 C .35 D .454.如图所示,直角三角形纸片的两直角边长分别为6、8,现将△ABC 如图那样折叠,使点A 与点B 重合,折痕为DE ,则tan ∠CBE 的值是( )A .247 B .3 C .724 D .135.如图所示,已知∠α的终边OP ⊥AB ,直线AB 的方程为y x ,则cos α等于 ( )A .12B .2C D6.(2015•南充)如图,一艘海轮位于灯塔P 的北偏东55°方向,距离灯塔2海里的点A 处,如果海轮沿正南方向航行到灯塔的正东方向,海轮航行的距离AB 长是( )A.2海里B.2sin55°海里C.2cos55°海里D.2tan55°海里二、填空题7.设θ为锐角,且x2+3x+2sinθ=0.则θ=.8.如图,在矩形ABCD中,点E在AB边上,沿CE折叠矩形ABCD,使点B落在AD边上的点F处,若AB=4,BC=5,则tan∠AFE的值为 .9.已知△ABC的外接圆O的半径为3,AC=4,则sinB= .第8题第9题第11题10.当0°<α<90的值为.11.如图,点E(0,4),O(0,0),C(5,0)在⊙A上,BE是⊙A上的一条弦.则tan∠OBE=.12.(2015•牡丹江)在△ABC中,AB=12,AC=13,cos∠B=,则BC边长为 .三、解答题13.(2015•泰州)如图,某仓储中心有一斜坡AB,其坡度为i=1:2,顶部A处的高AC为4m,B、C在同一水平地面上.(1)求斜坡AB的水平宽度BC;(2)矩形DEFG为长方体货柜的侧面图,其中DE=2.5m,EF=2m,将该货柜沿斜坡向上运送,当BF=3.5m 时,求点D离地面的高.(≈2.236,结果精确到0.1m)14. 为缓解“停车难”的问题,某单位拟建造地下停车库,建筑设计师提供了该地下停车库的设计示意图,如图所示.按规定,地下停车库坡道1:3上方要张贴限高标志,以便告知停车人车辆能否安全驶入,为标明限高,请你根据该图计算CE(精确到0.1 m)(sin18°≈0.3090,cos18°≈0.9511,tan18°≈0.3249)15.如图所示,某中学九年级一班数学课外活动小组利用周末开展课外实践活动,他们要在某公园人工湖旁的小山AB上,测量湖中两个小岛C、D间的距离.从山顶A处测得湖中小岛C的俯角为60°,测得湖中小岛D的俯角为45°.已知小山AB的高为180米,求小岛C、D间的距离.(计算过程和结果均不取近似值)16. 在△ABC中,AB=AC,CG⊥BA,交BA的延长线于点G.一等腰直角三角尺按如图①所示的位置摆放,该三角尺的直角顶点为F,一条直角边与AC边在一条直线上,另一条直角边恰好经过点B.(1)在图①中请你通过观察、测量BF与CG的长度,猜想并写出BF与CG满足的数量关系,然后证明你的猜想;(2)当三角尺沿AC方向平移到图②所示的位置时,一条直角边仍与AC边在同一直线上,另一条直角边交BC边于点D,过点D作DE⊥BA于点E.此时请你通过观察、测量DE、DF与CG的长度,猜想并写出DE+DF与CG之间满足的数量关系;然后证明你的猜想;(3)当三角尺在②的基础上沿AC方向继续平移到图③所示的位置(点F在线段AC上,且点F与点C不重合)时,(2)中的猜想是否仍然成立?(不用说明理由)【答案与解析】一、选择题1.【答案】D;【解析】在Rt△ABC中,设AC=3k,AB=5k,则BC=4k,由定义可知tan A=4433BC kAC k==.故选D.2.【答案】D ;【解析】根据锐角三角函数的定义,得A 、tanA•cotA=a bb a ⋅=1,关系式成立; B 、sinA=c a ,tanA•cosA=cac b b a =⋅,关系式成立;C 、cosA=,cotA•sinA=cba b c a =⋅,关系式成立; D 、tan 2A+cot 2A=(b a )2+(ab )2≠1,关系式不成立. 故选D .3.【答案】B ;【解析】连接BD .∵E 、F 分別是AB 、AD 的中点.∴BD=2EF=4 ∵BC=5,CD=3∴△BCD 是直角三角形. ∴tanC= 43故选B .4.【答案】C ;【解析】设CE =x ,则AE =8-x .由折叠性质知AE =BE =8-x .在Rt △CBE 中,由勾股定理得BE 2=CE 2+BC 2,即(8-x)2=x 2+62,解得74x =, ∴ tan ∠CBE 774624CE BC ===. 5.【答案】A ; 【解析】∵yx,∴当x =0时,y,当y =0时,x =1, ∴A(1,0),B ⎛ ⎝⎭,∴OB,OA =1, ∴AB,∴cos ∠OBA =12OB AB =. ∴OP ⊥AB ,∴∠α+∠OAB =90°,又∵∠OBA +∠OAB =90°,∴∠α=∠OBA .∴cosα=cos∠OBA=12.故选A.6.【答案】C;【解析】如图,由题意可知∠NPA=55°,AP=2海里,∠ABP=90°.∵AB∥NP,∴∠A=∠NPA=55°.在Rt△ABP中,∵∠ABP=90°,∠A=55°,AP=2海里,∴AB=AP•cos∠A=2cos55°海里.故选C.二、填空题7.【答案】30°;【解析】x1·x2=2sinθ,x1+x2=-3,则(x1-x2)2=(x1+x2)2-4x1x2=9-8sinθ=)2,∴sinθ=12,∴θ=30°.8.【答案】34;【解析】∵四边形ABCD是矩形,∴∠A=∠B=∠D=90°,CD=AB=4,AD=BC=5,由题意得:∠EFC=∠B=90°,CF=BC=5,∴∠AFE+∠DFC=90°,∠DFC+∠FCD=90°,∴∠DCF=∠AFE,∵在Rt△DCF中,CF=5,CD=4,∴DF=3,∴tan∠AFE=tan∠DCF=DFDC=34.9.【答案】23;【解析】连接AO并延长交圆于E,连CE.∴∠ACE=90°(直径所对的圆周角是直角);在直角三角形ACE中,AC=4,AE=6,∴sin∠E=23 ACAE;又∵∠B=∠E(同弧所对的的圆周角相等),∴sinB=23.10.【答案】1;【解析】由sin 2α+cos 2α=1,可得1-sin 2α=cos 2α∵sin 2α+cos 2α=1,∴cos 2α=1-sin 2α.|cos |cos αα==. ∵0°<α<90°,∴cos α>0. ∴原式=cos cos αα=1. 11.【答案】;【解析】连接EC .根据圆周角定理∠ECO=∠OBE.在Rt△EOC 中,OE=4,OC=5,则tan∠ECO=.故tan∠OBE=.12.【答案】7或17; 【解析】∵cos ∠B=,∴∠B=45°,当△ABC 为钝角三角形时,如图1, ∵AB=12,∠B=45°, ∴AD=BD=12, ∵AC=13,∴由勾股定理得CD=5, ∴BC=BD ﹣CD=12﹣5=7;当△ABC 为锐角三角形时,如图2, BC=BD+CD=12+5=17.三、解答题13.【答案与解析】 解:(1)∵坡度为i=1:2,AC=4m , ∴BC=4×2=8m .(2)作DS ⊥BC ,垂足为S ,且与AB 相交于H .∵∠DGH=∠BSH ,∠DHG=∠BHS , ∴∠GDH=∠SBH , ∴=,∵DG=EF=2m , ∴GH=1m ,∴DH==m ,BH=BF+FH=3.5+(2.5﹣1)=5m ,设HS=xm ,则BS=2xm ,∴x 2+(2x )2=52, ∴x=m ,∴DS=+=2m ≈4.5m .14.【答案与解析】解:在Rt △ABD 中,∠ABD =90°,∠BAD =18°,∴tan BDBAD AB∠=, BD =tan ∠BAD ·AB =tan 18°×9, ∴CD =tan 18°×9-0.5.在Rt △DCE 中,∠DEC =90°,∠CDE =72°, ∴sin CECDE CD∠=,sin CE CDE CD =∠=sin 72°×(tan 18°×9-0.5)≈2.3(m). 即该图中CE 的长约为2.3m .15.【答案与解析】解:如图所示,由已知可得∠ACB =60°,∠ADB =45°. ∴在Rt △ABD 中,BD =AB . 又在Rt △ABC 中, ∵tan 60ABBC=°,∴ABBC=BC AB =.∵BD=BC+CD,∴AB AB CD=+.∴CD=AB-3AB=180-180×3=(米.答:小岛C、D间的距离为(180-米.16.【答案与解析】解:(1)BF=CG.证明:在△ABF和△ACG中,∵∠F=∠G=90°,∠FAB=∠GAC,AB=AC,∴△ABF≌△ACG(AAS),∴BF=CG.(2)DE+DF=CG.证明:过点D作DH⊥CG于点H(如图所示).∵DE⊥BA于点E,∠G=90°,DH⊥CG,∴四边形EDHG为矩形,∴DE=HG.DH∥BG.∴∠GBC=∠HDC∴AB=AC.∴∠FCD=∠GBC=∠HDC.又∵∠F=∠DHC=90°,CD=DC,∴△FDC≌△HCD(AAS),∴DF=CH.∴GH+CH=DE+DF=CG,即DE+DF=CG.(3)仍然成立.(注:本题还可以利用面积来进行证明,比如(2)中连结AD)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《锐角三角函数》全章复习与巩固--知识讲解(提高)【学习目标】1.了解锐角三角函数的概念,能够正确使用sinA 、cos A、tanA表示直角三角形中两边的比;记忆30°、45°、60°的正弦、余弦和正切的函数值,并会由一个特殊角的三角函数值求出这个角的度数;2.能够正确地使用计算器,由已知锐角的度数求出它的三角函数值,由已知三角函数值求出相应的锐角的度数;3.理解直角三角形中边与边的关系,角与角的关系和边与角的关系,会运用勾股定理、直角三角形的两个锐角互余、以及锐角三角函数解直角三角形,并会用解直角三角形的有关知识解决简单的实际问题;4.通过锐角三角函数的学习,进一步认识函数,体会函数的变化与对应的思想,通过解直角三角的学习,体会数学在解决实际问题中的作用,并结合实际问题对微积分的思想有所感受.【知识网络】【要点梳理】要点一、锐角三角函数1.正弦、余弦、正切的定义如右图、在Rt△ABC中,∠C=90°,如果锐角A确定:(1)sinA=,这个比叫做∠A的正弦. (2)cosA=,这个比叫做∠A的余弦.(3)tanA=,这个比叫做∠A的正切.要点诠释:(1)正弦、余弦、正切是在一个直角三角形中定义的,其本质是两条线段的比值,它只是一个数值,其大小只与锐角的大小有关,而与所在直角三角形的大小无关.(2)sinA、cosA、tanA是一个整体符号,即表示∠A三个三角函数值,书写时习惯上省略符号“∠”,但不能写成sin·A,对于用三个大写字母表示一个角时,其三角函数中符号“∠”不能省略,应写成sin∠BAC,而不能写出sinBAC.(3)sin2A表示(sinA)2,而不能写成sinA2. (4)三角函数有时还可以表示成等.2.锐角三角函数的定义锐角A的正弦、余弦、正切都叫做∠A的锐角三角函数.要点诠释: 1. 函数值的取值范围对于锐角A的每一个确定的值,sinA有唯一确定的值与它对应,所以sinA是∠A的函数.同样,cosA、tanA也是∠A的函数,其中∠A是自变量,sinA、cosA、tanA分别是对应的函数.其中自变量∠A的取值范围是0°<∠A<90°,函数值的取值范围是0<sinA<1,0<cosA<1,tanA>0.2.锐角三角函数之间的关系:余角三角函数关系:“正余互化公式”如∠A+∠B=90°,那么:sinA=cosB; cosA=sinB;同角三角函数关系:sin2A+cos2A=1;tanA=3.30°、45°、60∠A 30°45°60°30°、45°、60°角的三角函数值和解30°、60°直角三角形和解45°直角三角形为本章重中之重,是几何计算题的基本工具,三边的比借助锐角三角函数值记熟练.要点二、解直角三角形在直角三角形中,由已知元素求出未知元素的过程,叫做解直角三角形.解直角三角形的依据是直角三角形中各元素之间的一些相等关系,如图:角角关系:两锐角互余,即∠A+∠B=90°;边边关系:勾股定理,即;边角关系:锐角三角函数,即要点诠释:解直角三角形,可能出现的情况归纳起来只有下列两种情形:(1)已知两条边(一直角边和一斜边;两直角边);(2)已知一条边和一个锐角(一直角边和一锐角;斜边和一锐角).这两种情形的共同之处:有一条边.因此,直角三角形可解的条件是:至少已知一条边.要点三、解直角三角形的应用解直角三角形的知识应用很广泛,关键是把实际问题转化为数学模型,善于将某些实际问题中的数量关系化归为直角三角形中的边角关系是解决实际应用问题的关键.1.解这类问题的一般过程(1)弄清题中名词、术语的意义,如仰角、俯角、坡度、坡角、方向角等概念,然后根据题意画出几何图形,建立数学模型.(2)将已知条件转化为几何图形中的边、角或它们之间的关系,把实际问题转化为解直角三角形的问题.(3)根据直角三角形(或通过作垂线构造直角三角形)元素(边、角)之间的关系解有关的直角三角形.(4)得出数学问题的答案并检验答案是否符合实际意义,得出实际问题的解.2.常见应用问题(1)坡度:;坡角:.(2)方位角:(3)仰角与俯角:由由,,,2.用解直角三角形的知识解决实际问题的基本方法是:把实际问题抽象成数学问题(解直角三角形),就是要舍去实际事物的具体内容,把事物及它们的联系转化为图形(点、线、角等)以及图形之间的大小或位置关系.借助生活常识以及课本中一些概念(如俯角、仰角、倾斜角、坡度、坡角等)的意义,也有助于把实际问题抽象为数学问题.当需要求解的三角形不是直角三角形时,应恰当地作高,化斜三角形为直角三角形再求解.3.锐角三角函数的应用用相似三角形边的比的计算具有一般性,适用于所有形状的三角形,而三角函数的计算是在直角三角形中解决问题,所以在直角三角形中先考虑三角函数,可以使过程简洁。

如:射影定理不能直接用,但是用等角的三角函数值相等进行代换很简单:∵∴∵∴∵∴【典型例题】类型一、锐角三角函数1.在Rt △ABC 中,∠C =90°,若将各边长度都扩大为原来的2倍,则∠A 的正弦值是( ).A .扩大2倍B .缩小2倍C .扩大4倍D .不变【答案】 D ;【解析】根据A sin A ∠∠=的对边斜边知sin ∠A 的值与∠A 的大小有关,与A ∠的对边斜边的比值有关.当各边长度都扩大为原来的2倍时,其A ∠的对边斜边的比值不变.故选D.【总结升华】 锐角三角函数正弦、余弦和正切反映了直角三角形中边与边的关系.举一反三:【变式1】已知,如图,ABC ∆中,CE AB ⊥,BD AC ⊥,25DEBC =,求cos A 及tan A .【答案】易证点B 、C 、D 、E 四点共圆,△ADE ∽△ABC ,cos A=2,5ADDEAB BC == tanA=2BDAD =变式2】如图所示,已知△ABC 是⊙O 的内接三角形,AB =c ,AC =b ,BC =a ,请你证明sin sin sin abcA B C ==.1A B 2【答案】 证明:⊙O 是△ABC 的外接圆,设圆的半径为R ,连结AO 并延长交⊙O 于点D ,连结CD ,则∠B =∠D .∵AD 是⊙O 的直径,∴∠ACD =90°.即△ADC 为直角三角形. ∴sin sin 2AC bB D AD R ===,∴2sin bR B =. 同理可证:2sin a R A =,2sin c R C =.∴2sin sin sin a bcR A B C ===.类型二、 特殊角三角函数值的计算2.已知a =3,且2(4tan 45)0b -°,则以a 、b 、c 为边长的三角形面积等于( ). A .6 B .7 C .8 D .9【答案】A ;【解析】根据题意知4tan 450,130,2b bc -=⎧⎪⎨+-=⎪⎩° 解得 4,5.b c =⎧⎨=⎩ 所以a =3,b =4,c =5,即222a b c +=,其构成的三角形为直角三角形,且∠C =90°,所以162S ab ==. 【总结升华】利用非负数之和等于0的性质,求出b 、c 的值,再利用勾股定理的逆定理判断三角形是直角三角形,注意tan45°的值不要记错.举一反三:【变式】计算:tan 60tan 45tan 60tan 45︒-︒︒⋅︒+2sin 60°【答案】原式2+=类型三、 解直角三角形3.如图所示,在等腰Rt △ABC 中,∠C =90°,AC =6,D 是AC 上一点,若1tan 5DBA ∠=,则AD 的长为( ). A .2 B.1【思路点拨】 如何用好1tan 5DBA ∠=是解题关解,因此要设法构造直角三角形,若所求的元素不在直角三角形中,则应将它转化到直角三角形中去,转化的途径及方法很多,如可作辅助线构造直角三角形,或找已知直角三角形中的边或角替代所要求的元素等.【答案】 A ;【解析】 作DE ⊥AB 于点E .因为△ABC 为等腰直角三角形,所以∠A =45°,所以AE =DE .又设DE =x ,则AE =x ,由1tan 5DE DBA EB ∠==.知BE =5x ,所以AB =6x ,由勾股定理知AC 2+BC 2=AB 2, 所以62+62=(6x)2,x =AD2=.【总结升华】在直角三角形中,若已知两边,宜先用勾股定理求出第三边,再求锐角三角函数值;若已知一边和角,应先求另一角,再通过锐角三角函数列出含有未知元素和已知元素的等式求解.类型四 、锐角三角函数与相关知识的综合4.如图所示,直角△ABC 中,∠C =90°,AB=sin B=5,点P 为边BC 上一动点,PD ∥AB ,PD 交AC 于点D ,连接AP , (1)求AC ,BC 的长;(2)设PC 的长为x ,△ADP 的面积为y ,当x 为何值时,y 最大,并求出最大值.【思路点拨】 (1)在Rt △ABC 中,由AB=sin BAC AB =,易得AC =2,再由勾股定理求BC . (2)12ADP S AD PC =⋅△,只要把AD 用x 表示即可求出△ADP 的面积y , 由PD ∥AB 可得PC CD BC AC =,从而求出12CD x =,则122AD x =-. 【答案与解析】(1)在Rt △ABC中,由sin B =,∴AC =2,由勾股定理得BC =4. (2)∵PD ∥AB ,∴△ABC ∽△DPC ,∴12D C A C P C B C ==.∵PC =x ,则2211112(2)12244y x x x x x ⎛⎫=-⨯=-+=--+ ⎪⎝⎭,∴当x =2时,y 有最大值,最大值是1. 【总结升华】 近几年,锐角三角函数与圆、函数、相似三角形以及方程相结合的题目在各地中考试题中出现的频率越来越大.如圆中的垂径定理,直径所对的圆周角都出现了直角或直角三角形.在函数中,在直角坐标系中求点的坐标,离不开求直角三角形两直角边的问题,相似三角形中可将有些元素进行转换或替代.举一反三:【变式】如图,设P 是矩形ABCD 的AD 边上一动点,PE AC ⊥于点E ,PF BD ⊥于F ,3AB =,4AD =.求PE PF +的值.【答案】如图,sin ∠1=.PE PA sin ∠2=.PF PD 由矩形ABCD 知∠1=∠2,则 PE=PAsin ∠1,PF=PDsin ∠2,sin ∠1=CD 3=AC 5,所以PE+PF= PAsin ∠1+ PDsin ∠2=(PA+PD )sin ∠1=3124=55⨯类型五、三角函数与实际问题5.某乡镇中学教学楼对面是一座小山,去年“联通”公司在山顶上建了座通讯铁塔.甲、乙两位同学想测出铁塔的高度,他们用测角器作了如下操作:甲在教学楼顶A 处测得塔尖M 的仰角为α,塔座N 的仰角为β;乙在一楼B处只能望到塔尖M ,测得仰角为θ(望不到底座),他们知道楼高AB =20 m ,通过查表得:tan α=0.572 3,tan β=0.2191,tan θ=0.7489,请你根据这几个数据,结合图形推算出铁塔高度MN 的值.【答案与解析】 如图所示,设地平线BD 、水平线AE 分别交直线MN 于D 、E ,显然AE =BD ,不妨设为m ,则在Rt △AEM 中,ME =mtan α,在Rt △AEN 中,NE =mtan β.∴MN =m(tan α-tan β).在Rt △BDM 中,MD =mtan θ,而AB =DE =MD -ME =m(tan θ-tan α), ∴tan tan AB m θα=-,∴(tan tan )tan tan AB MN αβθα-=-. 将AB =20(m),tan α=0.5723,tan β=0.2191,tan θ=0.7489代入得MN =40(m).∴可测得铁塔的高度MN =40m.【总结升华】构造直角三角形,把实际问题转化为解直角三角形问题.6.如图所示,帆船A 和帆船B 在太湖湖面上训练,O 为湖面上的一个定点,教练船静候于O 点.训练时要求A ,B 两船始终关于O 点对称.以O 为原点,建立如图所示的坐标系,x 轴,y 轴的正方向分别表示正东、正北方向.设A ,B 两船可近似看成在双曲线4y x=上运动.湖面风平浪静,双帆远影优美.训练中当教练船与A ,B 两船恰好在直线y =x 上时,三船同时发现湖面上有一遇险的C 船,此时教练船测得C 船在东南45°方向上,A 船测得AC 与AB 的夹角为60°,B 船也同时测得C 船的位置(假设C 船位置不再改变,A ,B ,C 三船可分别用A ,B ,C 三点表示).(1)发现C 船时,A ,B ,C 三船所在位置的坐标分别为A(________,________),B(________,________)和C(________,________);(2)发现C 船,三船立即停止训练,并分别从A ,O ,B 三点出发沿最短路线同时前往救援,设A ,B 两船的速度相等,教练船与A 船的速度之比为3:4,问教练船是否最先赶到?请说明理由.【思路点拨】作AD ⊥x 轴,在等腰直角三角形ADO 中. 结合点A 在4y x=上,不难求出A 点坐标,而B 与A 关于原点对称.注意到△ABC 为等边三角形,连OC ,作CH ⊥x 轴解直角三角形,求出CH 、OH 的长,即可求出点C 坐标.在求点A 、B 、C 坐标过程中,可求出AC 、OC 的长再根据两船速度比,分别用含字母的式子表示所用的时间,再比较大小.【答案与解析】(1)A(2,2);B(-2,-2);C(-.(2)作AD ⊥x 轴于D ,连接AC ,BC 和OC .如图所示.∵ A 的坐标为(2,2),∴∠AOD =45°,AO = ∵ C 在O 的东南45°方向上,∴ ∠AOC =45°+45°=90°.∵ AO =BO ,∴ AC =BC .又∵ ∠BAC =60°.∴ △ABC 为正三角形,∴ AC =BC =AB =2AO = OC =BC ·cos30°=2=. 由条件设:教练船的速度为3m ,A 、B 两船的速度均为4m .,A 、B =.∴ 教练船不是最先赶到. 【总结升华】(1)一是通过问题提供的信息,知道变量之间有什么函数关系,在这种情况下,可先设出函数的表达式,再由已知条件确定表达式中的字母系数即可;(2)从问题本身的条件中不知道变量之间是什么函数关系,在这种情况下和列方程解实际问题一样找出等量关系,把变量联系起来就得到函数的表达式.《锐角三角函数》全章复习与巩固--巩固练习(提高)一、选择题1. 计算tan 60°+2sin 45°-2cos 30°的结果是( ). A .2 B .12.如图所示,△ABC 中,AC =5,cos 2B =,3sin 5C =,则△ABC 的面积是( )A .212 B .12 C .14D .21 3.如图所示,A 、B 、C 三点在正方形网格线的交点处,若将△ACB 绕着点A 逆时针旋转得到△AC B '',则tan B '的值为( )A .12 B .13 C .14 D .4第2题图 第3题图 第4题图4.如图所示,小明要测量河内小岛B 到河边公路l 的距离,在A 点测得∠BAD =30°,在C 点测得∠BCD =60°,又测得AC =50米,那么小岛B 到公路l 的距离为( ).A .25米B .米C 米D .25+ 5.如图所示,将圆桶中的水倒入一个直径为40 cm ,高为55 cm 的圆口容器中,圆桶放置的角度与水平线的夹角为45°.要使容器中的水面与圆桶相接触,则容器中水的深度至少应为( ). A .10 cm B .20 cm C .30 cm D .35 cm6.如图所示,已知坡面的坡度1i =α为( ). A .15° B .20° C .30° D .45°第5题图 第6题图 第7题图7.如图所示,在高为2 m ,坡角为30°的楼梯上铺地毯,则地毯的长度至少应为( ).A .4 mB .6 mC ..(2+8.因为1s i n 302=°,1sin 2102=-°,所以s i n 210s i n (18030)=+=-°°°°;因为sin 45=°,sin 2252=-°,所以sin 225sin(18045)sin 45=+=-°°°°,由此猜想,推理知:一般地,当α为锐角时有sin(180°+α)=-sin α,由此可知:sin240°=( ). A .1-2 B .-2 C .-2 D . 二、填空题9.如图,若AC 、BD 的延长线交于点E ,511CD AB =,则cos CEB ∠= ;tan CEB ∠= . 10.如图,AD ⊥CD ,AB=10,BC=20,∠A=∠C=30°,则AD 的长为 ;CD 的长为 .A B第9题图 第10题图 第11题图 11.如图所示,已知直线1l ∥2l ∥3l ∥4l ,相邻两条平行直线间的距离都是1,如果正方形ABCD 的四个顶点分别在四条直线上,则sin α=________.12.如果方程2430x x -+=的两个根分别是Rt △ABC 的两条边,△ABC 最小的角为A ,那么tanA 的值为__ ______. 13.1sin 2α=-,则锐角α的取值范围是____ ____. 14. 在△ABC 中,AB =8,∠ABC =30°,AC =5,则BC =____ ____.15. 如图,直径为10的⊙A 经过点C (0,5)和点O (0,0),B 是y 轴右侧⊙A 优弧上一点,则∠OBC 的余弦值为 .16. 如图,等腰梯形ABCD 中,AD ∥BC ,∠DBC=45°,翻折梯形ABCD ,使点B 重合于点D ,折痕分别交边AB 、BC 于点F 、E ,若AD=2,BC=8.则(1)BE 的长为 . (2)∠CDE 的正切值为.第15题图 第16题图 三、解答题17.如图所示,以线段AB 为直径的⊙O 交线段AC 于点E ,点M 是 AE 的中点,OM 交AC 于点D ,∠BOE =60°,cos C =12,BC= (1)求∠A 的度数;(2)求证:BC 是⊙O 的切线;(3)求MD 的长度.18. 如图所示,要在木里县某林场东西方向的两地之间修一条公路MN ,已知C 点周围200米范围内为原始森林保护区,在MN 上的点A 处测得C 在A 的北偏东45°方向上,从A 向东走600米到达B 处,测得C 在点B 的北偏西60°方向上.(1)MN 是否穿过原始森林保护区?为什么?(1.732)(2)若修路工程顺利进行,要使修路工程比原计划提前5天完成,需将原定的工作效率提高25%,则原计划完成这项工程需要多少天?19.如图所示,圆O 的直径为5,在圆O 上位于直径AB 的异侧有定点C 和动点P ,已知BC:CA =4:3,点P 在半圆弧AB 上运动(不与A 、B 重合),过C 作CP 的垂线CD 交PB 的延长线于D 点.(1)求证:AC ·CD =PC ·BC ;(2)当点P 运动到AB 弧中点时,求CD 的长;(3)当点P 运动到什么位置时,△PCD 的面积最大?并求这个最大面积S .20. 如图所示,在Rt △ABC 中,∠A =90°,AB =6,AC =8,D ,E 分别是边AB ,AC 的中点,点P 从点D 出发沿DE 方向运动,过点P 作PQ ⊥BC 于Q ,过点Q 作QR ∥BA 交AC 于R ,当点Q 与点C 重合时,点P 停止运动.设BQ =x ,QR =y .(1)求点D 到BC 的距离DH 的长;(2)求y 关于x 的函数关系式(不要求写出自变量的取值范围);(3)是否存在点P ,使△PQR 为等腰三角形?若存在,请求出所有满足要求的x 的值;若不存在,请说明理由.【答案与解析】一、选择题1.【答案】C ;【解析】tan 60°+2sin 45°-2cos 302222-⨯==2.【答案】A ;【解析】过A 作AD ⊥BC 于D ,因为cos 2B =,所以∠B =45°,所以AD =BD ,因为3sin 5AD C AC ==,所以3535AD =⨯=,∴ BD =AD =3,所以4DC =,所以BC =BD+DC =7, 112173222ABC S BC AD ==⨯⨯= △. 3.【答案】B ;【解析】旋转后的三角形与原三角形全等,得∠B ′=∠B ,然后将∠B 放在以BC 为斜边,直角边在网格线上的直角三角形中,∠B 的对边为1,邻边为3,tan B ′=tanB =13. 4.【答案】B ;【解析】依题意知BC =AC =50米,小岛B 到公路l 的距离,就是过B 作l 的垂线,即是BE 的长,在Rt △BCE 中,sin 60BE BC =°,BE =BC ·sin 60°=50=米),因此选B .5.【答案】D ;【解析】如图,△ABD 是等腰直角三角形,过A 点作AC ⊥BD 于C ,则∠ABC =45°,AC =BC =140202⨯=,则所求深度为55-20=35(cm).6.【答案】C ;【解析】tanBC AC α===,∴ 30α=°. 7.【答案】D ;【解析】地毯长度等于两直角边长之和,高为2 m ,宽为2tan 30=°,则地毯的总长至少为(2+m .8.【答案】C ;【解析】sin 240°=sin(180°+60°)=-sin 60°=二、填空题9.【答案】cos ∠CEB=511;tan ∠CEB=5【解析】如图,连结BC ,则∠ACB=90°,易证△ECD ∽△EBA ,∴CE CD 5=EB AB 11=,cos ∠CEB=5.11CE =EB tan ∠CEB=5BC =CE第9题答案图 第10题答案图10.【答案】5+10;10+5.【解析】过B 点分别作BE ⊥AD ,BF ⊥CD ,垂足分别为E 、F ,则得BF=ED ,BE=DF. ∵在Rt △AEB 中,∠A=30°,AB=10, ∴AE=AB ·cos30°=10×=5,BE=AB ·sin30°=10×=5. 又∵在Rt △BFC 中,∠C=30°,BC=20,∴BF=BC=×20=10, CF=BC ·cos30°=20×=10.∴AD=AE+ED=5+10, CD=CF+FD=10+5.11.【解析】设AB 边与直线2l 的交点为E ,∵ 1l ∥2l ∥3l ∥4l ,且相邻两条平行直线间的距离都是1,则E 为AB 的中点,在Rt △AED 中,∠ADE =α,AD =2AE .设AE =k ,则AD =2k ,DE =.∴ sin sin5AE ADE ED α=∠===.12.【答案】13或4; 【解析】由2430x x -+=得x 1=1,x 2=3.①当1,3为直角边时,则tan A =13;②当3= tan4A ==. 13.【答案】0<α≤30°; 【解析】由题意知1sin 02α-≥,故sin α≤12,即sin α≤sin 30°,由正弦函数是增函数.知0<α≤30°.14.【答案】3或3;【解析】因△ABC 的形状不是唯一的,当△ABC 是锐角三角形时,如图所示,作AH⊥BC 于H ,在Rt △ABH 中.AH =AB ·sin ∠ABC =8×sin30°=4,BH =在Rt △AHC 中,HC 3=.∴ BC =3.当△ABC 是钝角三角形时,如图所示,同上可求得BC =3.15.【答案】2;【解析】连接CA 并延长到圆上一点D ,∵CD 为直径,∴∠COD=∠yOx=90°, ∵直径为10的⊙A 经过点C (0,5)和点O (0,0),∴CD=10,CO=5,∴DO=B=∠CDO ,∴∠OBC 的余弦值为∠CDO 的余弦值,∴cos ∠OBC=cos ∠. 16.【答案】(1)BE=5;(2)tan ∠CDE=【解析】(1)由题意得△BFE ≌△DFE ,∴DE=BE.又∵在△BDE 中,∠DBE=45°, ∴∠BDE=∠DBE=45°,即DE ⊥BC.∵在等腰梯形ABCD 中,AD=2,BC=8, ∴EC=(BC-AD)=3,BE=5.(2)由(1)得DE=BE=5, 在△DEC 中,∠DEC=90°,DE=5,EC=3, ∴tan ∠CDE==. 三、解答题17.【答案与解析】(1)∵∠BOE =60°,∴∠A =12∠BOE =30°.(2)在△ABC 中,∵cos C =12,∴∠C =60°, 又∵∠A =30°,∴∠ABC =90°,∠ABC =90°,∴AB ⊥BC ,∴ BC 是⊙O 的切线.(3)∵点M 是 AE 的中点,∴OM ⊥AE ,在Rt △ABC 中,∵BC =AB =BCtan 60°=6=,∴OA =32AB =,∴OD =12OA =32,∴MD =32. 18.【答案与解析】 (1)过C 点作CH ⊥AB 于H .设CH ⊥AB .由已知有∠EAC =45°,∠FBC =60°,则∠CAH =45°,∠CBA =30°.在Rt △ACH 中,AH =CH =x ,在Rt △HBC 中,tan ∠HBC =CH HB .∴tan 30CH HB ===°,∵AH+HB =AB,∴600x =,解得x =≈220(米)>200(米).∴ MN 不会穿过森林保护区. (2)设原计划完成这项工程需要y 天,则实际完成工程需要(y-5)天.根据题意得:11(125%)5y y=+⨯-,解得:y =25.经检验知:y =25是原方程的根.答:原计划完成这项工程需要25天.19.【答案与解析】(1)∵AB 为直径,∴∠ACB =90°.又∵ PC ⊥CD ,∴ ∠PCD =90°.而∠CAB =∠CPD ,∴△ABC ∽△PDC .∴AC BC CP CD=.∴AC ·CD =PC ·BC . (2)当点P 运动到AB 弧中点时,过点B 作BE ⊥PC 于点E .∵P 是 AB 中点,∴∠PCB =45°,CE =BE=2BC = 又∠CAB =∠CPB ,∴tan ∠CPB =tan ∠CAB =43.∴3tan 422BE PE BC CPB ⎛⎫=== ⎪ ⎪∠⎝⎭. 从而PC =PE+EC.由(1)得CD=43PC =(3)当点P 在 AB 上运动时,12PCD S PC CD = △. 由(1)可知,CD =43PC .∴223PCD S PC =△.故PC 最大时,PCD S △取得最大值; 而PC 为直径时最大,∴PCD S △的最大; ∴PCD S △的最大值2250533S =⨯=. 20.【答案与解析】(1)∵∠A =90°,AB =6,AC =8,∴BC =10.∵点D 为AB 中点,∴BD =12AB =3.∵∠DHB =∠A =90°,∠B =∠B . ∴△BHD ∽△BAC ,∴DH BD AC BC =,∴3128105BD DH AC BC ==⨯= . (2)∵QR ∥AB ,∴△RQC ∽△ABC ,∴RQ QC AB BC =,∴10610y x -=,即y 关于x 的函数关系式为:365y x =-+. (3)存在,分三种情况:①当PQ =PR 时,过点P 作PM ⊥QR 于M ,如图所示,则QM =RM . 123∵∠1+∠2=90°.∠C+∠2=90°,∴∠1=∠C .∴84cos1cos105C∠===,∴45QMQP=,∴1425QRDH=,∴1364251255x⎛⎫-+⎪⎝⎭=,∴185x=.②当PQ=RQ时,如图28—46所示,则有312655x-+=,∴x=6.③当PR=QR时,则R为PQ中垂线上的点,如图所示.于是点R为EC的中点,∴11224CR CE AC===.∵tanQR BACCR CA==,∴366528x-+=,∴152x=.综上所述,当x为185或6或152时,△PQR为等腰三角形.。

相关文档
最新文档