小学奥数牛吃草问题的解题方法
牛吃草问题解法公式
牛吃草问题解法公式牛吃草问题有这么几个公式哦。
一、基本公式(假设草匀速生长的情况)1. 草的生长速度 = (对应的牛头数×吃的较多天数 - 相应的牛头数×吃的较少天数)÷(吃的较多天数 - 吃的较少天数)- 你可以这么想哈,比如说有一群牛,多吃几天的话,那吃到的草就多。
这里面多出来的草量呢,其实就是多吃的这几天里草长出来的量。
那用多吃的草量除以多吃的天数,不就得到草每天生长的速度了嘛。
就像你种树,过了几天发现树多了一些,那多出来的树的数量除以过的天数就是树每天长的数量呀。
2. 原有草量 = 牛头数×吃的天数 - 草的生长速度×吃的天数- 这个呢,就是说原来草地上有的草量。
你想啊,牛吃的草量是牛头数乘以吃的天数,但是这里面有一部分是草自己长出来的呀,把草长出来的那部分(草的生长速度乘以吃的天数)减掉,剩下的就是原来草地上就有的草量啦。
就好比你存钱,你存进去的钱(牛吃的草量)有一部分是利息(草生长的量),把利息减掉,就是你最开始存的本金(原有草量)。
3. 吃的天数 = 原有草量÷(牛头数 - 草的生长速度)- 这个公式就是说,当我们知道原来有多少草,也知道牛的数量和草生长的速度的时候,就可以算出这些牛能吃多少天。
你可以想象成有一堆食物(原有草量),有一些人(牛)在吃,同时食物还在慢慢增加(草生长),那用食物总量除以每天实际减少的量(牛头数减去草生长速度,因为草在长就相当于吃的量减少了),就得到能吃的天数啦。
4. 牛头数 = 原有草量÷吃的天数+草的生长速度- 这个就好比你知道有一堆活(原有草量)要干多少天(吃的天数),而且这个活还在慢慢增加(草生长速度),那你就能算出需要多少人(牛头数)来干这个活啦。
牛吃草问题的详细解法
牛吃草问题的详细解法一、牛吃草问题基础概念。
1. 问题描述。
- 牛吃草问题又称为消长问题或牛顿问题。
典型的牛吃草问题的条件是假设草的生长速度固定不变,不同头数的牛吃光同一片草地所需的天数各不相同,求若干头牛吃这片草地可以吃多少天。
2. 基本公式。
- 设每头牛每天的吃草量为1份。
- 草的生长速度=(对应的牛头数×吃的较多天数 - 对应的牛头数×吃的较少天数)÷(吃的较多天数 - 吃的较少天数)- 原有草量 = 牛头数×吃的天数 - 草的生长速度×吃的天数。
- 吃的天数 = 原有草量÷(牛头数 - 草的生长速度)- 牛头数 = 原有草量÷吃的天数+草的生长速度。
二、牛吃草问题示例及解析。
1. 题目1。
- 有一片牧场,草每天都在匀速生长。
如果放养24头牛,6天可以把草吃完;如果放养21头牛,8天可以把草吃完。
问:- 要使草永远吃不完,最多放养多少头牛?- 如果放养36头牛,多少天可以把草吃完?- 解析:- 设每头牛每天吃草量为1份。
- 首先求草的生长速度:(21×8 - 24×6)÷(8 - 6)=(168 - 144)÷2 = 12(份/天)。
要使草永远吃不完,那么牛每天的吃草量不能超过草的生长速度,所以最多放养12头牛。
- 由知草的生长速度为12份/天,先求原有草量:24×6 - 12×6 = 144 - 72 = 72(份)。
- 当放养36头牛时,设可以吃x天,根据原有草量 = 牛头数×吃的天数- 草的生长速度×吃的天数,可得72 = 36x-12x,24x = 72,解得x = 3天。
2. 题目2。
- 牧场上有一片匀速生长的草地,可供27头牛吃6周,或供23头牛吃9周。
那么这片草地可供21头牛吃几周?- 解析:- 设每头牛每周吃草量为1份。
- 草的生长速度(23×9 - 27×6)÷(9 - 6)=(207 - 162)÷3 = 15(份/周)。
小学奥数中的牛吃草问题
一牧场,可供58头牛吃7天,或者可供50头牛吃9天,假设草的生长量每天相等,每头牛每天的吃草量也相等,那么,可供多少头牛吃6天?【思路】解决牛吃草的问题,我们可以分4步法来解答:①假设1头牛1天吃1份草;②计算每天的新长草;③计算原有草;④分牛讨论。
【解答】①假设1头牛1天吃1份草②每天的新长草:58×7=406(份),50×9=450(份)450-406=44(份),44÷(9-7)=22份,即每天新长草22份。
③原有草:406-7×22=252(份)④分牛讨论原有草原有草7天的新长草9天的新长草多出的2天新长草新长草:22份→22头(每天22头牛专门应付新长草)原有草:252份,252÷6=42(份)→42头合计22+42=64头牛答:可供64头牛吃6天(化动为静)有一片牧场,草每天都在迅速地生长(即草每天增长的量相等),如果放牧24头牛,则6天吃完牧草;如果放牧21头牛,则8天吃完牧草。
设每头牛每天吃草的量是相等的,如果放牧18头牛,几天可以吃完牧草?【思路】解决牛吃草的问题,我们可以分4步法来解答:①假设1头牛1天吃1份草;②计算每天的新长草;③计算原有草;④分牛讨论。
【解答】①假设1头牛1天吃1份草②每天的新长草:24×6=144(份),21×8=168(份)168-144=24(份),24÷(8-6)=12份,即每天新长草12份。
③原有草:144-6×12=72(份)④分牛讨论原有草原有草6天的新长草8天的新长草多出的2天新长草新长草:12份→12头(每天12头牛专门应付新长草)原有草:72份,72÷(18-12)=12(天)如果放牧18头牛,12天可以吃完牧草(化动为静)如果要使队伍10分钟消失,需要打开多少个检票口?【思路】其实这也是一道变形的牛吃草问题。
排队等候的人是“草”,检票口是“牛”,检票前若干分钟排队的人是“原有草”,每分钟新增的人是“新长草”。
奥数-牛吃草问题的行程解法
牛吃草问题的行程解法5分钟搞定牛吃草。
学习本身就是利用熟悉的东西去理解不熟悉的东西。
许多孩子学牛吃草时,都是按书上或者老师教的方法(下面4步是百度文库给出的):设定一头牛一天吃草量为“1”(1)草的生长速度=对应的牛头数×较多天数-相应的牛头数×较少天数÷(较多天数-较少天数);(2)原有草量=牛头数×吃的天数-草的生长速度×吃的天数;(3)吃的天数=原有草量÷(牛头数-草的生长速度);(4)牛头数=原有草量÷吃的天数+草的生长速度。
但是还是很难理解,如果直接背步骤,可能当时能照着做出来,过一段就忘了。
今天刘老师利用大家熟悉的行程问题来解释牛吃草,帮助一些孩子突破瓶颈(只需几分钟);已经掌握的孩子,帮你们开拓思路,加深理解。
这样再见到牛吃草,至少可以用行程的方法做出来,不用再怕忘记公式了。
自己做几次就自然理解书上牛吃草的解题步骤了。
我们天天都需要走路,坐车,每天都经历各种追及和相遇,但对牛和草........可能很多孩子都没见过牛,更别说见过真牛吃草了。
行程是小学书本上的知识,学奥数的孩子会学一些更难的行程问题。
对于基本的相遇和追及那是相当熟悉。
下面研究一下最常见的两种:长草型,消草型①长草型题目:牧场上有一片牧草,每天按一定速度生长,这片牧草可供10头牛吃20天,可供15头牛吃10天。
问可供25头牛吃几天?分析:转化成追及问题(草在跑,牛在追,原草量是追及距离)牛速度:牛的头数草速度:草的生长速度追及距离:原有草量忘掉牛吃草,专心做行程问题转化成:牛速度10米/天,则20天追上草;牛速度15米/天,则10天追上草。
求牛速度25米/天,几天追上草?⑴求草的速度。
(列方程更容易理解)牛速10,20天跑了:10×20=200米牛速15,10天跑了:15×10=150米草速=(200-150)÷(20-10)=5(米/天)⑵追及路程=速度差×追及时间=(15-5)×10=100米⑶追及时间=追及路程÷速度差=100÷(25-5)=5天②消草型题目:牧场上的草每天以均匀的速度减少。
奥数牛吃草知识点总结
奥数牛吃草知识点总结一、牛吃草问题的基本概念。
1. 定义。
- 牛吃草问题又称为消长问题或牛顿问题。
它描述的是在一片草地上,牛不断吃草,草又不断生长(或者草不断枯萎,是类似的情况但生长率为负)的动态过程,要根据给定的牛的数量、吃草天数等条件求出草地原有的草量、草的生长速度或者可供一定数量的牛吃的天数等问题。
2. 核心要素。
- 原有草量:草地一开始所拥有的草的总量。
- 草的生长速度:单位时间内草生长(或枯萎)的量。
- 牛的吃草速度:每头牛单位时间内吃草的量(通常假设每头牛每天吃草量为1份,方便计算)。
二、基本公式。
1. 草生长时的公式。
- 设原有草量为y,草的生长速度为x,牛的头数为n,吃的天数为t。
- 则y=(n - x)t。
这里n - x表示实际上每天净消耗原有草量的速度,因为牛在吃草的同时草也在生长,n头牛每天吃草n份,草每天生长x份,所以净消耗原有草量的速度就是n - x份/天。
2. 草枯萎时的公式。
- 如果草是不断枯萎的,设草的枯萎速度为x(此时x为正数,表示草量减少的速度)。
- 则y=(n + x)t。
这里n+x表示每天消耗原有草量的速度,因为牛吃草和草枯萎都在减少草量,n头牛每天吃草n份,草每天枯萎x份,所以总共消耗原有草量的速度就是n + x份/天。
三、解题步骤。
1. 求草的生长速度(或枯萎速度)和原有草量。
- 一般给出两种不同牛的数量和它们吃草的天数的情况。
- 例如:有一片草地,可供10头牛吃20天,可供15头牛吃10天。
设每头牛每天吃草量为1份。
- 根据公式y=(n - x)t列出方程组:- 对于10头牛吃20天的情况,y=(10 - x)×20。
- 对于15头牛吃10天的情况,y=(15 - x)×10。
- 然后将两个方程联立求解:- 由(10 - x)×20=(15 - x)×10,展开得到200 - 20x = 150 - 10x。
- 移项可得-20x+10x = 150 - 200,即-10x=-50,解得x = 5份/天。
牛吃草问题的一步解
z=(27-x)×6=(23-x)×9=(21-x)×n
转换上面的公式为x= 23×9-27×6 = 21×n-27×6 = 21×n-23×9
9-6 n-6 n-9
以上题为例,设长草速度为x,每头牛的吃草速度为y,草场总量为z,可供21头牛吃n天。
第一步:z=(y×27-x)×6,z=(y×23-x)×9
所以:(y×27-x)×6 =(y×23-x)×9 ,解得x=15y
第二步:z=(y×27-x)×6=72y
第三步:z=(y×21-x)×n
把x=15y和z=72y代入上面的等式z=(y×21-x)×n解得n=12
第一步:z=(27-x)×6=(23-x)×9,解得x=15
第二步:z=(23-15)×9=72
第三步:把x=15和z=72代入z=(21-x)×n,解得n=12
(三)解法三:以上方法我们假设了三个未知数,通过三步解答出来。有没有更简单一点的方法呢,能够只假设一个未知数,通过一个公式解答出来。我进行了如下思考:
二、运用公式
下面我们运用这个公式来解决一些常见的牛吃草问题:
(一)例2、有一块牧场,可供10头牛吃20天,15头牛吃10天,则它20×10-10×15 = 20×10-4×z
20-10 20-4
第一步:z=(27-x)×6=(23-x)×9,解得x=15
第二步:z=(23-15)×9=72
第三步:把x=15和z=72代入z=(21-x)×n,解得n=12
(三)解法三:以上方法我们假设了三个未知数,通过三步解答出来。有没有更简单一点的方法呢,能够只假设一个未知数,通过一个公式解答出来。我进行了如下思考:
牛吃草问题 五年级奥数
用“牛吃草”思路解题三步骤:1、求草速2、求原草量3、求问题等量关系:总草量=原草量+新长出的草例1:牧场上有一片青草,每天匀速生长,这片草地可供24头牛吃6周,或可供18头牛吃10周,问可供19头牛吃多少周?先求草速:再求原草量:最后求问题:①一片草地可供10头牛吃20天,或可供15头牛吃10天,问可供25头牛吃多少天?②一片草地可供27头牛吃6天,或可供23头牛吃9天,问可供21头牛吃多少天?例2:有一片青草,每天匀速生长,这片草地可供8头牛吃20天,或可供14头牛吃10天,问如果要在12天内吃完牧草,需要几头牛?①有一片青草,每天匀速生长,这片草地可供40头牛吃10天,或可供30头牛吃20天,那么可供几头牛吃12天?②由于天渐冷,牧场上的草不仅不长,反而以固定的速度减少,已知草地上的草可供20头牛吃5天,或可供15头牛吃6天,那么可供几头牛吃10天?③有口井连续不断涌出泉水,每分涌出水量相等,如果用4架抽水机来抽水,40分钟可抽完,如果用5架抽水机30分钟抽完,现在要在24分钟内抽完,需抽水机多少架?例3:有一片青草,每天匀速生长,这片草地可供20头牛吃12天,或可供60只羊牛吃24天,如果一头牛吃草量等于4只羊的吃草量,那么12头牛与88只羊在一起吃可以吃几天?①一片青草,每天匀速生长,这片草地可供10头牛吃20天,或可供60只羊吃10天,如果一头牛吃草量等于4只羊的吃草量。
那么10头牛与60羊一起吃,可以吃几天?②一只船有了漏洞,水以均匀的速度进入船内,当人们发现时,已经漏进了一些水。
此时如果派12人往外舀水,3小时可以舀完;如果派5人舀水,10小时才能舀完。
现在想用2小时把水舀完,需用多少人参加舀水?例4:有一牧场,17头牛30天可将草吃完,19头牛则24天可将草吃完,现有若干头牛吃了6天后卖了4头,余下的牛再吃2天便将草吃完,问有牛多少头?①有一牧场,8头牛20天可将草吃完,14头牛则10天可将草吃完,现有若干头牛吃了4天后又增加6头,这样又吃了2天便将草吃完,问原来有牛多少头?②某商店自动扶梯以均匀速度由下往上行驶,两个性急的孩子要从扶梯上楼,已知男孩每分钟走20级,女孩每分钟走15级,结果男孩用5分钟到楼上,女孩用6分钟到楼上,问扶梯共有多少级?例5:某公园早上7点开门,但开门前已来了不少人,游客还在以匀速增加,若每分钟进6人,则7点30分门口才没有人排队,若每分钟进9人,则到7点12分就没人排队,现要求开门后5分钟门口就没有人排队,每分钟应放多少人?①某体育馆举行篮球赛,晚上7点半比赛,但6点半开门时门口已有不少球迷排队,如果10个门都打开,每个门每分钟进9人,则30分钟后门口无人排队,如果10个门都打开,每个门每分钟进10人,则15分钟,无人排队,现在要求在开门5分钟后无人排队,每个门每分进几人?②假设地球上新生成的资源的增加速度是固定不变的,照这样计算,地球上的资源可供110亿人生活90年,或可供90亿人生活210年,为使人类有不断发展的潜力,问地球最多能养活多少人?中等难度:1、牧场上一片牧草,可供27头牛吃6周,或者供23头牛吃9周.如果牧草每周匀速生长,可供21头牛吃几周?解:可供21头牛吃12周27头牛6周吃的草可供多少头牛吃一周?27×6=16223头牛9周吃的草可供多少头牛吃一周?23×9=207(9-6)周新长的草可供多少头牛吃一周?207-162=45一周新长的草可供多少头牛吃一周?45÷3=15原有的草可供多少头牛吃一周?162-15×6=72 或207-15×9=7221头牛中的15头牛专吃新长的草,余下的(21-15=)6头牛去吃原有的草几周吃完?72÷(21-15)=122、有一片牧场,草每天都在均匀的生长。
小学奥数五年级奥数题牛吃草的问题【三篇】
小学奥数五年级奥数题牛吃草的问题【三篇】导读:本文小学奥数五年级奥数题牛吃草的问题【三篇】,仅供参考,如果觉得很不错,欢迎点评和分享。
【第一篇】有一牧场,已知养牛27头,6天把草吃尽;养牛23头,9天把草吃尽。
如果养牛21头,那么几天能把牧场上的草吃尽呢?并且牧场上的草是不断生长的。
一般方法:先假设1头牛1天所吃的牧草为1,那么就有:(1)27头牛6天所吃的牧草为:27×6=162 (这162包括牧场原有的草和6天新长的草。
)(2)23头牛9天所吃的牧草为:23×9=207 (这207包括牧场原有的草和9天新长的草。
)(3)1天新长的草为:(207-162)÷(9-6)=15(4)牧场上原有的草为:27×6-15×6=72(5)每天新长的草足够15头牛吃,21头牛减去15头,剩下6头吃原牧场的草:72÷(21-15)=72÷6=12(天)所以养21头牛,12天才能把牧场上的草吃尽公式解法:(1)草的生长速度=(207-162)÷(9-6)=15(2)牧场上原有草=(27-15)×6=72再把题目中的21头牛分成两部分,一部分15头牛去吃新长的草(因为新长的草每天长15份,刚好可供15头牛吃,剩下(21-15=6)头牛吃原有草:72÷(21-15)=72÷6=12(天))所以养21头牛,12天才能把牧场上的草吃完。
方程解答:设草的生长速度为每天x份,利用牧场上的原有草是不变的列方程,则有27×6-6x =23×9-9x解出x=15份再设21头牛,需要x天吃完,同样是根据原有草不变的量来列方程:27×6-6×15 =23×9-9×15=(21-15)x解出x=12(天)所以养21头牛。
12天可以吃完所有的草。
【第二篇】一只船发现漏水时,已经进了一些水,水匀速进入船内.如果10人淘水,3小时淘完;如5人淘水8小时淘完.如果要求2小时淘完,要安排多少人淘水? 分析与解答这类问题,都有它共同的特点,即总水量随漏水的延长而增加.所以总水量是个变量.而单位时间内漏进船的水的增长量是不变的.船内原有的水量(即发现船漏水时船内已有的水量)也是不变的量.对于这个问题我们换一个角度进行分析。
小学五六年级奥数学竞赛牛吃草问题精讲
【例5】(★★★★★) 一片匀速生长的牧草,如果让马和牛去吃,15天将草吃尽;如果让马和 羊去吃,20天将草吃尽;如果让牛和羊去吃,30天将草吃尽.已知牛和 羊每天的吃草量的和等于马每天的吃草量 现在让马 牛 羊 起去吃 羊每天的吃草量的和等于马每天的吃草量.现在让马、牛、羊一起去吃 草,几天可以将这片牧草吃尽?
【例6】(★★★★) 如图 一块正方形的草地被分成完全相等的四块和中间的阴影部分 如图, 块正方形的草地被分成完全相等的四块和中间的阴影部分,已知 已知 草在各处都是同样速度均匀生长.牧民带着一群牛先在①号草地上吃草, 两天之后把①号草地的草吃光(在这2天内其他草地的草正常生长).之后他 让一半牛在②号草地吃草,一半牛在③号草地吃草,6天后又将两个草地 的草吃光.然后牧民把 的牛放在阴影部分的草地中吃草,另外 的牛放 1 在④号草地吃草 在④号草地吃草,结果发现它们同时把草场上的草吃完.那么如果一开始 结果发现它们同时把草场上的草吃完 那么如果 开始 2 3 就让这群牛在整块草地上吃草,吃完这些草需要多少时间? 3
【例2】(★★) 进入冬季后,有一片牧场上的草开始枯萎,因此草会均匀地减少,现在 开始在这片牧场上放羊,如果有38只羊,把草吃完需要25天;如果有30 只羊,把草吃完需要 羊 把草吃完 30天,如果有 如 有20只羊,这片牧场可以吃多少天? 羊 片 吃多少
【例3】(★★★) 一个农夫有面积为2公顷、4公顷和6公顷的三块牧场.三块牧场上的草 长得一样密,而且长得一样快.农夫将8头牛赶到2公顷的牧场,牛5天 吃完 草 如 农夫将8头牛赶到4公顷的牧场,牛 吃完了草;如果农夫将 的牧场 牛15天可吃完草.问: 吃完草 若农夫将这8头牛赶到6公顷的牧场,这块牧场可供这些牛吃几天?
Hale Waihona Puke 2【例8】(★★★) 某建筑工地开工前运进一批砖,开工后每天运进相同数量的砖,如果派 250个工人砌砖墙,6天可以把砖用完,如果派160个工人,10天可以把砖 用完 现在派120名工人砌了10天后,又增加 用完,现在派 天后 又增加5名工人一起砌,还需要再 名工人 起砌 还需要再 砌几天可以把砖用完?
六年级奥数—牛吃草问题
六年级奥数——牛吃草问题牛吃草问题常用到四个基本公式;分别是:①草的生长速度=对应的牛头数×吃的较多天数-相应的牛头数×吃的较少天数÷吃的较多天数-吃的较少天数②原有草量=牛头数×吃的天数-草的生长速度×吃的天数③吃的天数=原有草量÷牛头数-草的生长速度④牛头数=原有草量÷吃的天数+草的生长速度这四个公式是解决牛吃草问题的基础..一般设每头牛每天吃草量不变;设为"1";解题关键是弄清楚已知条件;进行对比分析;从而求出每日新长草的数量;再求出草地里原有草的数量;进而解答题总所求的问题..练习1.牧场上长满牧草;草平均匀速生长;这片牧场可供10头牛吃20天;可供15头牛吃10天..问可供25头牛吃几天2.一块草地长满了草;草每天还在匀速生长..已知3头牛36天可把草吃光;5头牛20天可把草吃光..现在要求12天把草吃光;需要几头年牛去吃3.一块草地长满了草;草每天匀速生长..如果17头牛去吃;30天可把草吃光;如果19头牛去吃;24天可把草吃光..现在有若干头牛去吃草;吃了6天后;4头牛死亡;余下的牛继续吃了2天才将草吃光..问原来有多少头牛4.一个水池装有1根进水管和8根相同的排水管..先打开进水管给水池注入一定数量的水;然后同时打开排水管排水;当然进水管还在继续进水..如果打开全部排水管;则3个小时可将水池中的水排光;如果只打开3根排水管;则要18小时才能将水池中的水排光..问:想要8小时排光池中的水;至少需打开几根排水管5.三块草地长满草;草每天匀速生长..第一块草地33亩;可供22头牛吃54天;第二块草地28亩;可供17头牛吃84天;第三块草地40亩;可供多少头牛吃24天6.牧场上的青草每天都在匀生长..这片牧场可供27头牛吃6天;或者可供23头牛吃9天..那么可供21头牛吃几天7.有一片牧场;草每天都匀速生长草每天增长量相等;如果放牧24头牛;则6天吃完牧草;如果放牧21头牛;则8天可吃完牧草;假设每头牛吃草的量是相等的..1如果放牧16头牛;几天可以吃完牧草 2要使牧草永远吃不完;最多可放多少头牛8.有一水池;池底不断有泉水匀速涌出..用10台抽水机20小时可将水抽干;用15台相同的抽水机10小时可将水抽干..问用25台抽水机多少小时可将水抽干9.一块草地;草每天匀速生长..10头牛3天可吃光;5头牛8天可吃光..如果2天要吃光;需要多少头牛来吃10.一湖存有一定量的水;流入均匀入湖..5台抽水机20天可抽干..6台同样的抽水机15天可抽干..若要求6天抽干;需几台这样的抽水机11.一个水池有10根进水管和10根相同的排水管..先打开进水管给水池注入一定的水;然后同时打开排水管进水管不关闭..如果打开10根排水管;则3个小时可将水池里的水排光;如果打6根排水管;则6个小时可将水池里的水排光..问想要10个小时排空水池;则至少要开几根排水管12.一片牧场;可供18头牛吃4天;可供23头牛吃3天..现在有13头牛;放牧了3天后;又购进5头牛..问还吃几天;正好吃完全部的草13.由于天气逐渐冷起来;牧场上的草不仅不增加;反而以固定的速度在减少..已知某牧场的草可供20头牛吃5天或可供15头牛吃6天;照此计算可供多少头牛吃10天14.某车站在检票前若干分钟就开始排队;每分钟来的旅客人数一样多;从开始检票到等候检票的队伍消失;同时开4个检票口需30分钟;同时开5个检票口需20分钟;如果同时开7个检票口;那么需要多少分钟15.仓库里原有一批存货;后又陆续运货进仓;且每天运进的货一样多..用同样的汽车运货出仓;如果每天用4辆汽车;则9天恰好运完;如果每天用5辆汽车;则6天恰好运完..仓库原有的存货若用1辆汽车运;则需要多少天才能运完16.有快;中;慢三辆车同时从同一地点出发;沿同一公路追赶前面的一个骑车人;这三辆车分别有6他钟;10分钟和12分钟追上了骑车人..现在已知快车速度为24千米/小时;中速车速度为20千米/小时;那么慢速车每小时走多少千米。
五年级奥数牛吃草问题
牛吃草问题:牛吃草问题解题思路:1、将每头牛每天吃的草量设为单位“1"。
2、比较已知条件中的牛吃草的总量,算出新生草的生长速度。
3、计算草地原有草量。
4、把牛分成两部分:一部分去吃原有草,一部分去吃新生草。
5、最后再求解。
1、有一片牧场,草每天都在均匀生长,这片牧场可供22头牛吃6天,可供19头牛吃8天,要是使草永远吃不完,最多可以放养多少头牛?可供16头牛吃几天?2、一片牧场,牧场的草均匀生长,这片牧场可供8头牛吃15天,可供6头牛吃30天,那么可供7头牛吃多少天?3、一片牧场,牧草每天均匀生长,这片牧草可供10头牛吃20天,可供15头牛吃10天,那么可供25头牛吃几天?4、一水库水量一定,河水均匀入库,5台抽水机连续20天可以抽干,6台同样的抽水机连续15天可以抽干,若用12台抽水机几天可以抽干?5、一只船发现漏水时,已经进了一些水,现在水匀速进入船内,如果17人舀水,6小时可以舀完,13人舀水12小时可以舀完,如果要求4小时舀完,需要安排多少人舀水?6、进入冬季后,牧场的草开始枯萎,因此草会匀速减少,现在这片牧场可供38头牛吃25天,如果有30头牛,把草吃完要30天,那么可以供20头牛吃多少天?7、由于天气渐冷,牧场上的草在以固定的速度减少,已知某块草地上的草可供14头牛吃8天,或可供20头牛吃6天,计算:可供多少头牛吃12天?8、有一片均匀生长的草地,可供18头牛吃40天,或者供10头牛与28只羊吃25天,如果一头牛每天吃的草量相当于2只羊1天吃的草量,那么这片草地可供33头牛吃几天?9、有一片草场,草场的草匀速生长,若这片草地可供15头牛吃30天,可供40只羊吃20天,(2只羊一天吃的草量相当于1头牛一天吃的草量),那么可供35头牛吃多少天?10、有一个水池,池底有泉水不断涌出,想要把池水抽干,10台抽水机需要抽8小时,8台抽水机需要抽12个小时,如果用6台抽水机需要抽几个小时?11、进入冬季后,草场的草开始枯萎,因此草会均匀减少,现在这片牧场可以供27头牛吃6天,可以供16头牛吃9天,那么可以供12头牛吃几天?12、牧场的草均匀生长,这片牧场可以供20头牛和16只羊吃18天,(2只羊一天吃草量相当于1头牛一天的吃草量),可供31头牛吃15天,那么这片牧场可供23头牛吃几天?13、一块草地上的草以均匀的速度生长,如果20只羊5天可以将草地上的草和新长出的草全部吃光,而14只羊则要10天吃光,那么想用4天时间把这片草地的草吃光,需要多少只羊?14、一水池中原有一些水,装有若干跟进水管和若干跟抽水管。
牛吃草问题五年级奥数
牛吃草问题五年级奥数牛吃草问题解决问题的技巧:解决这个问题的关键是牧场上的饲料总量在不断变化。
因此,为了解决这类问题,我们必须首先分析清草量的变化,这通常被称为新量。
然后找出牧场上原始草的数量。
只要你注意这两点,你就能很好地解决问题。
例1牧场上有一片匀速生长的牧草,可供27头牛吃6天,或供23头牛吃9天,那么这片牧草可供多少头牛吃12天?练习1一个牧场可以饲养58头牛7天,或者50头牛9天。
假设每天草的生长量相等,每头牛的草消耗量相等,那么6天内能吃多少头牛?2.一片牧场长满牧草,每天牧草都匀速生长,这片牧场可供10头牛吃20天,或可供15头牛吃10天,问:可供多少头牛吃5天?一例2一只船发现漏水时,已经进了一些水,水匀速进入船内。
如果派10人淘水,6小时淘完;如果派6人淘水,18小时淘完。
如果派22人淘水,多少小时可以淘完?例3:一个车站在办理登机手续前几分钟开始排队,每分钟来的乘客人数相同。
从开始办理登机手续到等待办理登机手续的队伍消失,同时打开四个登机门需要30分钟,同时打开五个登机门需要20分钟。
如果同时打开七个登机口,需要多少分钟?例4由于天气逐渐冷起来,牧场上的草不仅不长大,反而以固定的速度在减少.已知某块草地上的草可供20头牛吃5天,或可供15头牛吃6天.照此计算,可供多少头牛吃10天?例5小军家的一片草地上长满了草,草每天都在以恒定的速度生长。
该牧场可饲养10头牛20天,12头牛15天。
如果小军有24头牛,他能吃多少天?2练习1牧场上有一片草地,6周内可供24头牛食用,10周内可供18头牛食用。
假设草的生长速度保持不变,19头牛需要多少周才能吃草?练习2一片均匀生长的牧草,如果9头牛吃,12天吃光所有的草,如果8头牛吃16天吃完所有的草。
如果13头牛吃,多少天可以把草吃完?练习3:20匹马可以在72天内吃掉32公顷的草,16匹马可以在54天内吃掉24公顷的草。
假设每公顷草地上有等量的草,每公顷草的生长速率每天都是相同的。
小学奥数专题牛吃草问题
小学奥数专题一牛吃草问题牛吃草概念及公式:设定一头牛一天吃草量为“1”1草的生长速度=对应的牛头数×吃的较多天数-相应的牛头数×吃的较少天数÷吃的较多天数-吃的较少天数;2原有草量=牛头数×吃的天数-草的生长速度×吃的天数;3吃的天数=原有草量÷牛头数-草的生长速度;4牛头数=原有草量÷吃的天数+草的生长速度一、奥数导引例1.一块牧场长满草,每天牧草都均匀生长;这片牧场可供10头牛吃20天,可供15头牛吃10天,那么1可供25头牛吃多少天 2可供多少头牛吃4天例1.解析:假设一头牛一天吃1份草,10天长出草10×20-15×10=50份,每天长出草50÷20-10=5份,原有草10×20-20×5=100份,25头牛吃的草,减去每天长的草,一天消耗草25-5=20份,够吃100÷25-5=5天;可供25头牛吃5天; 解法二:110-x×20=15-x×10=25-x×210-x×20=15-x×10= -x×4例2.如果22头牛吃33公亩牧场的草,54天后可以吃完,17头牛吃28公亩牧场的草,84天后可以吃完,那么要在24天内吃完40公亩牧场的草,需要多少头牛A.50B.46C.38D.35例2解法1:牧场的面积发生变化,所以每天长出的草量不再是常量;设每头牛每天的吃草量为1份,则每亩54天的总草量为:22×54÷33=36份;每亩84天的总草量为:17×84÷28=51份,那么每亩每天的新生长草量为51-36÷84-54=0.5份,每亩原有草量为36-0.5×54=9份,那么40亩原有草量为9×40=360份,40亩24天新生长草量为24×0.5×40=480份,40亩24天共有草量360+480=840,可供牛数为840÷24=35头;解法2:利用列方程解问题;二、历年真题三、奥数拔高训练100分1.一个牧场可供58头牛吃7天,或者可供50头牛吃9天;假设草的生长量每天相等,每头牛的吃草量也相等,那么可供多少头牛吃6天10分2.现要将一池塘水全部抽干,但同时又有水流进池塘;若用8台抽水机10天可以抽干;用6台抽水机20天可以抽干;若要5天抽干水,需要多少台同样的抽水机抽水 15分3.一个蓄水池装有9根水管,1根进水管,8根相同的出水管;先放进一些水再排水;排水时进水管不关;如果把8根出水管全部打开,需3小时把池内的水全部排光;如果仅打开5根出水管,需6小时把池内的水全部排光;要想在4.5小时内把池内的水全部排光,需同时打开几个出水管 15分4.旅客在车站候车室等车,并且排队的乘客按一定速度增加,检查速度也一定,当车站开放一个检票口,需用半小时把所有乘客解决完毕,当开放2个检票口时,只要10分钟就把所有乘客解决完毕;1求增加人数的速度;2原来的人数;30分5.有三块草地,面积分别是5、15、24亩;草地上的草一样厚,而且长得一样快;第一块草地可供10头牛吃30天,第二块草地可供28头牛吃45天,问第三块地可供多少头牛吃80天 30分1.解析:50×9-58×7÷9-7=22份,58×7-22×7=252份,252+6×22÷6=64头可供64头牛吃6天;2.解析:假设一台抽水机一天抽水1份;6×20-8×10÷20-10=4份,8×10-4×10=40份, 40+4×5÷5=12台,需要12台同样的抽水机抽水;3.解析:假设打开一根出水管每小时可排水“一份”,那么8根出水管开3小时共排出水8×3=24份;5根出水管开6小时共排出水5×6=30份;两种情况比较,可知3小时内进水管放进的水是30-24=6份;进水管每小时放进的水是6÷3=2份;3小时排水24份,3小时进水6份,可见打开排水管前,水池中有水24-6=18份;4.5小时再进水4.5×2=9份,4.5小时排完需打开18+9÷4.5=6根排水管;4.解析:设一个检票口一分钟通过一个人1个检票口30分钟30个人1个检票口10分钟20个人30-20÷30-10=0.5个人原有1×30-30×0.5=15人或者2×10-10×0.5=15人5.解析:设每头牛每天的吃草量为1份,则每亩30天的总草量为:10×30÷5=60份;每亩45天的总草量为:28×45÷15=84份,那么每亩每天的新生长草量为84-60÷45-30=1.6份,每亩原有草量为60-1.6×30=12份,那么24亩原有草量为12×24=288份,24亩80天新生长草量为24×1.6×80=3072,24亩80天共有草量3072+288=3360,可供牛数为3360÷80=42头;例 1 一片茂盛的草地,每天的生长速度相同,现在这片青草16头牛可吃15天,或者可供100只羊吃6天,而4只羊的吃草量相当于l头牛的吃草量,那么8头牛与48只羊一起吃,可以吃多少天例 22008年“陈省身杯”国际青少年五年级数学邀请赛有一个水池,池底存了一些水,并且还有泉水不断涌出;为了将水池里的水抽干,原计划调来8台抽水机同时工作;但出于节省时间的考虑,实际调来了9台抽水机,这样比原计划节省了8小时;工程师们测算出,如果最初调来10台抽水机,将会比原计划节省12小时;这样,将水池的水抽干后,为了保持池中始终没有水,还应该至少留下台抽水机;例3 甲、乙、丙三车同时从A地出发到B地去.甲、乙两车的速度分别是每小时60千米和每小时48千米.有一辆卡车同时从B地迎面开来,分别在它们出发后6小时、7小时、8小时先后与甲、乙、丙车相遇,求丙车的速度.巩固小新、正南、妮妮三人同时从学校出发到公园去.小新、正南两人的速度分别是每分钟20米和每分钟16米.在他们出发的同时,风间从公园迎面走来,分别在他们出发后6分钟、7分钟、8分钟先后与小新、正南、妮妮相遇,求妮妮的速度.例 4 一片匀速生长的牧草,如果让马和牛去吃,15天将草吃尽;如果让马和羊去吃,20天将草吃尽;如果让牛和羊去吃,30天将草吃尽.已知牛和羊每天的吃草量的和等于马每天的吃草量.现在让马、牛、羊一起去吃草,几天可以将这片牧草吃尽巩固现在有牛、羊、马吃一块草地的草,牛、马吃需要45天吃完,于是马、羊吃需要60天吃完,于是牛、羊吃需要90天吃完,牛、羊一起吃草的速度为马吃草的速度,求马、牛、羊一起吃,需多少时间。
小学奥数牛吃草问题的4个基本公式及经典题型
小学奥数牛吃草问题的4个基本公式及经典题型牛吃草问题,又称波动问题或牛顿牧场问题,是17世纪英国大科学家牛顿提出的。
放牛问题是小学奥数中经典的奥数题之一,也是小学奥数考试中经常涉及的考点。
在小学这类问题常用到四个基本公式,分别是:(1)草的生长速度=(对应的牛头数×吃的较多天数-相应的牛头数×吃的较少天数)÷(吃的较多天数-吃的较少天数);(2)原有草量=牛头数×吃的天数-草的生长速度×吃的天数;(3)吃的天数=原有草量÷(牛头数-草的生长速度);(4)牛头数=原有草量÷吃的天数+草的生长速度。
这四个公式是解决牛吃草问题的基础。
一般设每头牛每天吃草量不变,设为"1",解题关键是弄清楚已知条件,进行对比分析,从而求出每日新长草的数量,再求出草地里原有草的数量,进而解答题所求的问题。
小学奥数牛吃草问题:例1一片牧场南面一块15公顷的牧场上长满牧草,牧草每天都在匀速生长,这片牧场可供12头牛吃25天,或者供24头牛吃10天。
在牧场的西侧有一块60公顷的牧场,20天中可供多少头牛吃草?【解析】设1头牛1天的吃草量为"1",摘录条件,将它们转化为如下形式方便分析12头牛 25天12×25=300 :原有草量+25天自然减少的草量24头牛 10天24×10=240 :原有草量+10天自然减少的草量从上易发现:15公顷的牧场上25-10=15天生长草量=300-240=60,即1天生长草量=60÷15=4;那么15公顷的牧场上原有草量:300-25×4=200;则60公顷的牧场1天生长草量=4×(60÷15)=16;原有草量:200×(60÷15)=800.20天里,草场共提供草800+16×20=1120,可以让1120÷20=56(头)牛吃20天。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小学奥数牛吃草问题的解题方法
同一片牧场中的牛吃草问题,一般的解法可总结为:
1、草的生长速度=(对应牛的头数×较多天数-对应牛的头数×较少天数)÷(较多天数-较少天数)
2、原来的草量=对应牛的头数×吃的天数-草的生长速度×吃的天数
3、吃的时间=原来的草量÷(牛的头数-草的生长速度)
4、牛的头数=原来的草量÷吃的天数+的生长速度
例如:有一块1200平方米的牧场,每天都有一些草在匀速生长,这块牧场可供10头牛吃20天,或可供15头牛吃10天,另有一块3600平方米的牧场,每平方米的草量及生长量都与第一块牧场相同,问这片牧场可供75头牛吃多少天?
分析:设1头牛1天的吃草量为“1”,摘录条件,将它们转化为如下形式方便分析
10头牛 20天10×20=200 :原有草量+20天生长的草量
15头牛 10天15×10=150 :原有草量+10天生长的草量
从上易发现:1200平方米牧场上20-10=10天生长草量=200-150=50,即1天生长草量=50÷10=5;
那么1200平方米牧场上原有草量:200-5×20=100或150-
5×10=100。
则3600平方米的牧场1天生长草量=5×(3600÷1200)=15;原有草量:100×(3600÷1200)=300.
75头牛里,若有15头牛去吃每天生长的草,剩下60头牛需要300÷60=5(天)可将原有草吃完,即它可供75头牛吃5天。