基于MATLAB仿真的数字信号调制的性能比较和分析

合集下载

基于MATLAB的模拟信号频率调制与解调分析

基于MATLAB的模拟信号频率调制与解调分析

基于MATLAB的模拟信号频率调制与解调分析信号频率调制(FM)是一种将信息信号调制到载频波形上以便在传输过程中保持信号质量的技术。

本文将基于MATLAB对信号频率调制与解调进行分析与模拟。

首先,我们需要生成一个调制信号。

以正弦信号为例,通过改变该信号的频率来模拟调制信号。

我们可以使用MATLAB的信号处理工具箱中的`fmmod(`函数来实现这一点。

以下是一个示例代码:```matlabt = 0:1/fs:1; % 时间向量fc = 2000; % 载频频率fm = 100; % 调制信号频率m = sin(2*pi*fm*t); % 调制信号modulatedSignal = fmmod(m, fc, fs); % 使用fmmod进行调频调制subplot(2,1,1);plot(t, m);title('调制信号');xlabel('时间');ylabel('振幅');subplot(2,1,2);title('调制后信号');xlabel('时间');ylabel('振幅');```上述代码中,我们定义了采样频率、时间向量、载频频率和调制信号频率,并生成了调制信号。

然后,我们使用`fmmod(`函数将调制信号调制到载频波形上。

最后,我们用两个子图分别显示调制信号和调制后信号。

接下来,我们将对调制后的信号进行解调以还原原始信号。

我们可以使用MATLAB的信号处理工具箱中的`fmdemod(`函数。

以下是一个示例代码:```matlabdemodulatedSignal = fmdemod(modulatedSignal, fc, fs); % 使用fmdemod进行解调subplot(2,1,1);plot(t, modulatedSignal);title('调制后信号');xlabel('时间');ylabel('振幅');subplot(2,1,2);title('解调后信号');xlabel('时间');ylabel('振幅');```上述代码中,我们使用`fmdemod(`函数对调制后的信号进行解调。

基于matlab的QAM信号性能仿真

基于matlab的QAM信号性能仿真

基于matlab的QAM信号性能仿真引言正交振幅调制,这是近年来被国际上移动通信技术专家十分重视的一种信号调制方式。

QAM是数字信号的一种调制方式,在调制过程中,同时以载波信号的幅度和相位来代表不同的数字比特编码,把多进制与正交载波技术结合起来,进一步提高频带利用率。

单独使用振幅和相位携带信息时,不能最充分利用信号平面,这可由矢量图中信号矢量端点的分布直观观察到。

多进制振幅调制时,矢量端点在一条轴上分布;多进制相位调制时,矢量点在一个圆上分布。

随着进制数M的增大,这些矢量端点之间的最小距离也随之减少。

但如果充分利用整个平面,将矢量端点重新合理地分布,则可能在不减小最小距离的情况下,增加信号的端点数。

基于上述概念引出的振幅与相位结合的调制方式被称为数字复合调制方式,一般的复合调制称为幅相键控(APK),2个正交载波幅相键控称为正交振幅调制。

随着通信业迅速的发展,传统通信系统的容量已经越来越不能满足当前用户的要求,而可用频谱资源有限,也不能靠无限增加频道数目来解决系统容量问题。

另外,人们亦不能满足通信单一的语音服务,希望能利用移动电话进行图像等多媒体信息的通信。

但由于图像通信比电话需要更大的信道容量。

高效、可靠的数字传输系统对于数字图像通信系统的实现很重要,正交幅度调制是数字通信中一种经常利用的数字调制技术,尤其是多进制QAM具有很高的频带利用率,在通信业务日益增多使得频带利用率成为主要矛盾的情况下,正交幅度调制方式是一种比较好的选择。

一、现代数字调制技术概述所有无线通信的基础,调制是一个将数据传送到无线电调制是载波用于发射的过程。

如今的大多数无线传输都是数字过程,并且可用的频谱有限,因此调制方式变得前所未有地重要。

如今的调制的主要目的是上将尽可能多的数据压缩到最少的频谱中。

此目标被称为频谱效率,量度数据在分配的带宽中传输的速度。

此度量的单位是比特每秒每赫兹(b/s/Hz)。

现在已现出现了多种用来实现和提高频谱效率的技术,下面将常用的几种数字调制技术进行简单介绍。

基于matlab仿真的数字调制与解调设计本科毕业设计(论文)

基于matlab仿真的数字调制与解调设计本科毕业设计(论文)

摘要数字调制是通信系统中最为重要的环节之一,数字调制技术的改进也是通信系统性能提高的重要途径。

本文首先分析了数字调制系统的几种基本调制解调方法,然后,运用Matlab设计了这几种数字调制解调方法的仿真程序,主要包括PSK,DPSK和16QAM。

通过仿真,分析了这三种调制解调过程中各环节时域和频域的波形,并考虑了信道噪声的影响。

通过仿真更深刻地理解了数字调制解调系统基本原理。

最后,对三种调制解调系统的性能进行了比较。

关键词:数字调制;分析与仿真;Matlab。

AbstractDigital modulation is one of the most important part in communication system, and the improvement of digital modulation technology is an important way for the improvement of communication system capability. In this paper, some usual methods of digital modulation are introduced firstly. Then their simulation programs are built by using MATLAB, they mainly include PSK,DPSK,16QAM. Through simulation, we analyzed the time and frequency waveform for every part of these three modulations, and also consider the effect of the channel noise. Through the simulation, we understand the basic theory of modulation and demodulation more clearly. At last, the capability of these digital modulations have been compared.Keywords: Digital modulation; analysis; simulation; MATLAB.目录第一章引言 (1)1.1研究背景 (1)1.2通信的发展现状和趋势 (1)1.3研究目的与意义 (2)1.4本文内容安排 (2)第二章数字调制解调相关原理 (3)2.1二进制相移键控(2P S K) (3)2.2二进制差分相移键控(2D P S K) (5)2.3正交振幅调制(Q A M) (8)第三章数字调制解调仿真 (10)3.12PSK调制和解调仿真 (10)3.22DPSK调制和解调仿真 (14)3.316QAM调制和解调仿真 (18)3.4各种调制比较 (24)第四章结束语 (25)参考文献 (26)致谢 (27)附录 (28)第一章引言1.1 研究背景随着通信系统复杂性的增加,传统的手工分析与电路板试验等分析设计方法已经不能适应发展的需要,通信系统计算机模拟仿真技术日益显示出其巨大的优越性。

基于MATLAB的通信系统仿真及多种调制方式性能比较

基于MATLAB的通信系统仿真及多种调制方式性能比较

通信原理课程系统综合设计与实现基于MATLAB的通信系统仿真及多种调制方式性能比较2013年06月28日目录目录...................................................................................................................................................摘要...................................................................................................................................................第一章引言 (1)1.1 仿真的通信系统 (1)1.2 主要工作 (2)第二章基于MATLAB的通信系统仿真原理概述 (2)2.1 PCM调制系统工作原理 (2)2.1.1抽样 (2)2.1.2量化 (3)2.1.3编码 (3)2.1.4 PCM译码 (4)2.2 纠错编码译码原理 (4)2.2.1卷积码编码 (4)2.2.2维特比译码 (5)2.3同步提取载波 (5)2.4 2ASK信号的调制与解调原理 (7)2.4.1 2ASK信号的调制与解调原理 (7)2.4.2仿真思路 (10)2.5 2FSK信号的调制与解调原理 (10)2.5.1调制解调原理 (10)2.5.2 仿真思路 (11)2.6 2PSK信号的调制与解调原理 (12)2.6.1调制解调原理 (12)2.6.2 仿真思路 (13)第三章实验结果分析 (13)3.1实验结果波形 (13)3.1.1原始信号和PCM量化编码后的信号 (13)3.1.2 2ASK调制系统仿真结果 (14)3.1.3 2FSK调制系统仿真结果 (16)3.1.4 2PSK信号调制解调结果 (17)3.1.5加同步技术后2PSK调制系统 (19)3.2实验结果分析 (21)参考文献 (22)摘要本文主要介绍了基于MATLAB的通信系统的仿真,并着重比较了2ASK、2FSK、2PSK三种数字频带传输方式对声音信号传输的影响。

基于matlab的QPSK与BPSK信号性能比较仿真

基于matlab的QPSK与BPSK信号性能比较仿真

┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊目录第一章概述 (1)第二章QPSK通信系统原理与仿真 (1)2.1 QPSK系统框图介绍 (1)2.2QPSK信号的调制原理 (2)2.2.1QPSK信号产生方法 (2)2.2.2QPSK星座图 (2)2.3QPSK解调原理及误码率分析 (3)2.3.1QPSK解调方法 (3)2.3.2QPSK系统误码率 (3)2.4QPSK信号在AWGN信道下仿真 (4)第三章BPSK通信系统原理与仿真 (4)3.1BPSK信号的调制原理 (4)3.2BPSK解调原理及误码率分析 (4)第四章QPSK与BPSK性能比较 (5)4.1QPSK与BPSK在多信道下比较仿真 (5)4.1.1纵向比较分析 (5)4.1.2横向比较分析 (7)4.2仿真结果分析 (7)4.2.1误码率分析 (7)4.2.2频带利用率比较 (7)附录 (8)代码1 (8)代码2 (8)代码3 (10)代码4 (12)┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊第一章概述QPSK是英文Quadrature Phase Shift Keying的缩略语简称,意为正交相移键控,是一种数字调制方式。

它以其抗干扰性能强、误码性能好、频谱利用率高等优点,广泛应用于数字微波通信系统、数字卫星通信系统、宽带接人、移动通信及有线电视系统之中。

BPSK是英文Binary Phase Shift Keying的缩略语简称,意为二相相移键控,是利用偏离相位的复数波浪组合来表现信息键控移相方式的一种。

它使用了基准的正弦波和相位反转的波浪,使一方为0,另一方为1,从而可以同时传送接受2值(1比特)的信息。

本文所研究的QPSK系统与二进制的BPSK系统相比,具有以下特点:1.在传码率相同的情况下,四进制数字调制系统的信息速率是二进制系统的2倍。

2.在相同信息速率条件下,四进制数字调制系统的传码率是二进制系统的1/4倍,这一特点使得四进制码元宽度是二进制码元宽度的2倍,码元宽度的加大,可增加每个码元的能量,也可减小码间串扰的影响。

基于MATLAB仿真的数字信号调制的性能比较和分析

基于MATLAB仿真的数字信号调制的性能比较和分析

2ASK、2FSK、2PSK数字调制系统的Matlab实现及性能分析比较指导教师:班级:学号:姓名:引言:数字信号有两种传输方式,分别是基带传输方式和调制传输方式,即带通,在实际应用中,因基带信号含有大量低频分量不利于传送,所以必须经过载波和调制形成带通信号,通过数字基带信号对载波某些参量进行控制,使之随机带信号的变化而变化,这这一过程即为数字调制。

数字调制为信号长距离高效传输提供保障,现已广泛应用于生活和生产中。

另外根据控制载波参量方式的不同,数字调制主要有调幅(ASK ),调频(FSK),调相(PSK) 三种基本形式。

本次课题针对于二进制的2ASK 、2FSK 、2PSK 进行讨论,应用Matlab 矩阵实验室进行仿真,分析和修改,通过仿真系统生成一个人机交互界面,以利于仿真系统的操作。

通过对系统的仿真,更加直观的了解数字调制系统的性能及影响其性能的各种因素,以便于比较,评论和改进。

关键词: 数字,载波,调制,2ASK ,2FSK ,2PSK ,Matlab ,仿真,性能,比较,分析正文:一 .数字调制与解调原理1.1 2ASK(1)2ASK2ASK 就是把频率、相位作为常量,而把振幅作为变量,信息比特是通过载波的幅度来传递的。

由于调制信号只有0或1两个电平,相乘的结果相当于将载频或者关断,或者接通,它的实际意义是当调制的数字信号"1时,传输载波;当调制的数字信号为"0"时,不传输载波。

表达式为:⎩⎨⎧===001,cos )(2k k c ASK a a t A t s 当,当ω1.2 2FSK2FSK可以看做是2个不同频率的2ASK的叠加,其调制与解调方法与2ASK差不多,主要频率F1和F2,不同的组合产生所要求的2FSK调制信号。

公式如下:⎩⎨⎧===cos1,cos)(212kk FSK atAatAts当,当ωω1.3 2PSK2PSK以载波的相位变化为基准,载波的相位随数字基带序列信号的1或者0而改变,通常用已经调制完的载波的0或者π表示数据1或者0,每种相位与之一一对应。

基于Matlab的数字调制系统仿真与分析

基于Matlab的数字调制系统仿真与分析

基于Mat lab的数字调制系统仿真与分析摘要数字调制是通信系统中最为重要的环节之一,数字调制技术的改良也是通信系统性能提高的重要途径。

本文第一分析了数字调制系统的五种大体调制解调方式,然后,运用Matlab及附带的图形仿真工具——Simulink设计了这几种数字调制方式的仿真模型。

通过仿真,观察了调制解调进程中各环节时域和频域的波形,并结合这几种调制方式的调制原理,跟踪分析了各个环节对调制性能的影响及仿真模型的靠得住性。

最后,在仿真的基础上分析比较了各类调制方式的性能,并通过比较仿真模型与理论计算的性能,证明了仿真模型的可行性。

关键词:数字调制;分析与仿真;Matlab;Simulink;GUI图形界面。

ABSTRACTIn this paper, five usual methods of digital modulation are introduced firstly. Then their simulation models are built by using MATLAB’s simulation tool, SIMULINK. Through observing the results of simulation, the factors that affect the capability of the digital modulation system and the reliability of the simulation models are analyzed. And then, the capability of three digital modulation simulation models, 2-FSK, 2-DPSK and MSK,have been compared, as well as comparing the results of simulation and theory.Keywords:Digital modulation; analysis; simulation; MATLAB; SIMULINK.目录1引言 (1)数字调制系统概述 (1)1.1.1数字通信系统的组成 (1)1.1.2数字通信系统的特点 (2)数字调制的意义 (5)Matlab在通信系统仿真中的应用 (6)2数字调制系统的相关原理 (7)二进制幅度键控(2-ASK) (7)二进制频移键控(2-FSK) (7)二进制相移键控(2-PSK) (8)多进制数字调制 (8)3数字调制系统的仿真设计 (9)数字调制系统各个环节分析 (9)3.1.1仿真框图 (10)3.1.2信号源仿真及参数设置 (11)3.1.3调制与解调模块 (11)3.1.4信道 (12)仿真模型的设计及结果分析 (13)2-ASK (13)2-FSK (18)2-DPSK (22)2-MSK (25)3.2.5M-DPSK (27)数字调制的性能比较 (30)3.3.1各类仿真模型的性能比较 (30)3.3.2仿真模型性能与理论性能的比较 (32)4结论 (33)致谢 (3)4参考文献 (35)基于Matlab的数字调制系统仿真与分析1引言数字调制系统概述数字载波调制(简称数字调制)与模拟调制没有本质上的区别,它是用数字基带信号作为原始信号,去控制高频正弦载波信号的振幅、频率和相位,相应的有三种大体的调制方式:数字振幅调制(ASK)、数字频率调制(FSK)、数字相位调制(PSK)。

实验三 Matlab的数字调制系统仿真实验(参考)..

实验三 Matlab的数字调制系统仿真实验(参考)..

成都理工大学实验报告课程名称:数字通信原理姓名:__________________学号:______________ 成绩:____ ___ 实验三Matlab的数字调制系统仿真实验(参考)1 数字调制系统的相关原理数字调制可以分为二进制调制和多进制调制,多进制调制是二进制调制的推广,主要讨论二进制的调制与解调,简单讨论一下多进制调制中的差分相位键控调制(M-DPSK)。

最常见的二进制数字调制方式有二进制振幅键控(2-ASK)、移频键控(2-FSK)和移相键控(2-PSK 和2-DPSK)。

下面是这几种调制方式的相关原理。

1.1 二进制幅度键控(2-ASK)幅度键控可以通过乘法器和开关电路来实现。

载波在数字信号1 或0 的控制下通或断,在信号为1 的状态载波接通,此时传输信道上有载波出现;在信号为0 的状态下,载波被关断,此时传输信道上无载波传送。

那么在接收端我们就可以根据载波的有无还原出数字信号的1 和0。

幅移键控法(ASK)的载波幅度是随着调制信号而变化的,其最简单的形式是,载波在二进制调制信号控制下通断,此时又可称作开关键控法(OOK)。

多电平MASK调制方式是一种比较高效的传输方式,但由于它的抗噪声能力较差,尤其是抗衰落的能力不强,因而一般只适宜在恒参信道下采用。

2-ASK 信号功率谱密度的特点如下:(1)由连续谱和离散谱两部分构成;连续谱由传号的波形g(t)经线性调制后决定,离散谱由载波分量决定;(2)已调信号的带宽是基带脉冲波形带宽的二倍。

1.2 二进制频移键控(2-FSK)数字频率调制又称频移键控(FSK),二进制频移键控记作2FSK。

数字频移键控是用载波的频率来传送数字消息,即用所传送的数字消息控制载波的频率。

2FSK信号便是符号“1”对应于载频f1,而符号“0”对应于载频f2(与f1不同的另一载频)的已调波形,而且f1与f2之间的改变是瞬间完成的。

从原理上讲,数字调频可用模拟调频法来实现,也可用键控法来实现。

基于MATLAB的2ASK数字调制与解调的系统仿真

基于MATLAB的2ASK数字调制与解调的系统仿真

基于MATLAB的2ASK数字调制与解调的系统仿真一、本文概述随着信息技术的飞速发展,数字通信在现代社会中扮演着日益重要的角色。

作为数字通信中的关键技术之一,数字调制技术对于提高信号传输的可靠性和效率至关重要。

在众多的数字调制方式中,2ASK (二进制振幅键控)因其实现简单、抗干扰能力强等优点而备受关注。

本文旨在通过MATLAB软件平台,对2ASK数字调制与解调系统进行仿真研究,以深入理解和掌握其基本原理和性能特点。

本文首先介绍了数字调制技术的基本概念,包括数字调制的基本原理、分类和特点。

在此基础上,重点阐述了2ASK调制与解调的基本原理和实现方法。

通过MATLAB编程,本文实现了2ASK调制与解调系统的仿真模型,并进行了性能分析和优化。

在仿真研究中,本文首先生成了随机二进制信息序列,然后利用2ASK调制原理对信息序列进行调制,得到已调信号。

接着,对已调信号进行信道传输,模拟了实际通信系统中的噪声和干扰。

在接收端,通过2ASK解调原理对接收到的信号进行解调,恢复出原始信息序列。

通过对比分析原始信息序列和解调后的信息序列,本文评估了2ASK 调制与解调系统的性能,并讨论了不同参数对系统性能的影响。

本文的仿真研究对于深入理解2ASK数字调制与解调原理、优化系统性能以及指导实际通信系统设计具有重要意义。

通过MATLAB仿真平台的运用,本文为相关领域的研究人员和实践工作者提供了一种有效的分析和优化工具。

二、2ASK数字调制技术原理2ASK(二进制振幅键控)是一种数字调制技术,主要用于数字信号的传输。

它的基本思想是将数字信号(通常是二进制信号,即0和1)转换为模拟信号,以便在模拟信道上进行传输。

2ASK调制的关键在于根据数字信号的不同状态(0或1)来控制载波信号的振幅。

在2ASK调制过程中,当数字信号为“1”时,载波信号的振幅保持在一个较高的水平;而当数字信号为“0”时,载波信号的振幅降低到一个较低的水平或者为零。

基于MATLAB的数字调制性能仿真与比较

基于MATLAB的数字调制性能仿真与比较

基于MATLAB的数字调制性能仿真与比较作者姓名:专业名称:指导老师:摘要利用Matlab作为编程工具,对二进制数字调制系统进行了分析,设计了二进制数字调制系统模型,并对模型的仿真流程以及仿真结果进行具体分析,加强对理论知识的学习和掌握。

随着通信系统的不断发展,通信技术越来越受到重视,其中二进制数字调制系统也得到了全面的发展,作为通信专业的学生更应该熟练地掌握通信的知识,但是仅仅通过书面的知识难免太过于抽象。

Matlab是一款功能强大的应用工具软件,Matlab提供了可视化的系统仿真环境,可以方便、灵活的建立各种形象的仿真模型,让抽象的理论通过图形形象的呈现在我们眼前。

本文即利用Matlab建立通信仿真模型对理论知识加深学习。

经过最近对通信原理的学习,本文中对通信系统中的二进制数字调制系统进行编程和仿真,并对结果进行比较和分析。

数字信号有两种传输方式,分别是基带传输方式和调制传输方式,即带通,在实际应用中,因基带信号含有大量低频分量不利于传送,所以必须经过载波和调制形成带通信号,通过数字基带信号对载波某些参量进行控制,使之随基带信号的变化而变化,这一过程即为数字调制。

数字调制为信号长距离高效传输提供保障,现已广泛应用于生活和生产中。

另外根据控制载波参量方式的不同,数字调制主要有振幅键控(ASK),频移键控(FSK),相移键控(PSK) 三种基本形式。

本次设计针对二进制的2ASK、2FSK、2PSK进行讨论,应用Matlab矩阵实验室进行仿真,分析和修改,通过仿真系统生成一个人机交互界面,以利于仿真系统的操作。

通过对系统的仿真,更加直观的了解数字调制系统的性能及影响其性能的各种因素,以便于比较,评论和改进。

关键词:MATLAB 数字调制振幅键控频移键控相移键控AbstractUsing Matlab as a programming tool , the binary digital modulation system analysis, design binary digital modulation system model , a specific analysis and model simulation process and simulation results strengthen the theoretical knowledge to learn and master.With the continuous development of communication systems , communication technology is more and more attention , in which the binary digital modulation system been fully developed as a communications professional students should be proficient in the communication of knowledge , but only through the written knowledge inevitably too too abstract . Matlab is a powerful application tools , Matlab provides a visualization system simulation environment , Convenient and flexible simulation model, the establishment of a variety of image abstract theories through graphic image in front of us . This article namely the use of the Matlab to to establish communication simulation model to to deepen learning the theoretical knowledge . After a recent study on the communication principle , this paper binary digital modulation communication system programming and simulation , and the results were analyzed .Digital signal there are two transmission modes , respectively, baseband transmission manner and modulation transmission mode , i.e. , band-pass , in practical applications , a baseband signal containing a large number of low - frequency component is not conducive to transmission , so must be after the carrier and the modulation is formed with a communication number , through the digital baseband signal to control certain parameters of the carrier , so that the signal with random changes , this process is known as the digital modulation . Digital modulation signals over long distances efficient transmission to provide protection , is now widely used in the life and production . Further , different ways according tothe parameters of the control carrier , digital modulation and amplitude modulation ( ASK ) , frequency modulation (FSK), phase modulation (PSK) are three basic forms . The topics for discussion of the application of Matlab Matrix Laboratory on binary 2ASK, 2FSK, 2PSK simulation , analysis and modification , A man-machine interface generated by the simulation system , in order to facilitate the operation of the simulation system . Simulation system , a more intuitive understanding of digital modulation system performance and affect the performance of a variety of factors , in order to compare , review and improve .Keywords: MATLAB, Digital modulation, ASK, FSK, PSK目录摘要 (I)Abstract (II)目录.............................................................................................................. I V 前言. (1)1 绪论 (3)1.1 通信技术的历史和发展 (3)1.1.1 通信的概念 (4)1.1.2 通信的发展史简介 (4)1.2 数字调制技术 (5)1.3 数字调制的发展现状和趋势 (7)1.4 数字调制方式 (8)2 MATLAB仿真技术 (10)2.1 通信系统仿真简介 (10)2.2 MATLAB简介 (11)2.3 Simulink建模环境简介 (12)3 二进制数字调制系统原理分析 (14)3.1 二进制振幅键控(2ASK) (14)3.2 二进制频移键控(2FSK) (15)3.3 二进制相移键控(2PSK) (16)4 数字调制系统仿真的编程实现 (18)4.1 2ASK系统的编程实现 (18)4.2 2FSK系统的编程实现 (19)4.3 2PSK系统的编程实现 (21)4.4 时域特性的比较 (23)5 数字调制系统的Simulink仿真 (24)5.1 基带频移键控 (24)5.2 基带相移键控 (27)5.3 性能比较 (29)总结 (30)致谢 (32)参考文献 (33)前言通信就是克服距离上的障碍,从一地向另一地传递和交换消息。

基于matlab的AM、FM、PM调制

基于matlab的AM、FM、PM调制
参考文献
[1]樊昌信.通信原理(第6版).国防工业出版社,2006,09
[2]黎洪松.数字通信原理.西安电子系科技大学出版社,2005,07
[3]任嘉伟.数字频带通信系统计算机仿真[J].电脑知识与技术,2008,07
[4]吕跃广通信系统仿真.电子工业出版社,2010.03
[5]席在芳等基于SIMULINK的现代通信系统仿真分析[J].系统仿真学报2006,18(10)
subplot(2,1,1);
plot(t,y4);
title('高斯白噪声时域波形')
y5=fft(y4,N);
q2=(0:N/2-1)*fs/N;
mx2=abs(y5(1:N/2));
subplot(2,1,2),plot(q2,mx2),title('高斯白噪声频域波形')
y6=y2+y4;
figure(5)
根据调制后载波瞬时相位偏移的大小,可将频率调制分为宽带调频(WBFM)与窄带调频(NBFM)。宽带与窄带调制的区分并无严格的界限,但通常认为由调频所引起的最大瞬时相位偏移远小于30°时,
(2-2)
称为窄带调频。否则,称为宽带调频。
为方便起见,无妨假设正弦载波的振幅A=1,则由式(2-1)调频信号的一般表达式,得
例如, 为正弦型信号。综合前面的分析,可总结各种模拟调制方式的信号带宽、制度增益、输出信噪比、设备(调制与解调)复杂程度、主要应用等如表3.2.0所示。表中还进一步假设了AM为100%调制。
表3.2
3.3几种模拟调制的性能比较
就抗噪性能而言,WBFM最好,DSB、SSB、VSB次之,AM最差。NBFM与AM接近。示出了各种模拟调制系统的性能曲线,图中的圆点表示门限点。门限点以下,曲线迅速下跌;门限点以上,DSB、SSB的信噪比比AM高4.7dB以上,而FM(=6)的信噪比比AM高22dB。

MATLAB平台下数字信号优化处理及其仿真分析

MATLAB平台下数字信号优化处理及其仿真分析

• 175•当前我国数字信号处理技术和仿真技术正在不断发展,并成为一门新兴学科,该技术的研发与应用关系到国民经济的稳定发展,使人们的生产生活发生变化。

基于此,本文基于MATLAB 平台探究数字信号的优化处理,根据MATLAB 平台的应用优势与系统构成情况健全数字信号处理平台架构,并完成对MATLAB 平台下的数字信号滤波仿真分析。

数字信号就是幅度与时间上处于离散状态的一种信号,数字信号处理和仿真是一门新兴学科,所涉及到的领域十分广泛。

基于MATLAB 平台进行数字信号的处理和仿真,就是采用数字化方法分析信号,检测信号内容,实现对信号的仿真分析,以此完成信号滤波,测量其他连续模拟信号,试着从仿真数字信号中得到有利信息。

1 MATLAB平台的应用优点与系统构成1.1 应用优点当前信息技术的发展主要体现在数字化和智能网络化两方面。

人们在日常生活中会遇到各类信号,比如电视信号、导航信号以及广播信号,这些信号有数字信号,也有模拟信号。

MATLAB 平台是一款商业化计算软件,该软件支持链接库模块封装,具有高效率编程的特点,初学者通过MATLAB 平台可以简单的控制C 语言,提高学习效率。

与此同时,MATLAB 平台在人机交互过程中也会带来较好的体验,MATLAB 平体,为用户提供一个可交互的环境界面。

不同软件有着不同的开发环境,MATLAB 软件由一系列工具组成,减少用户软件使用障碍,提高使用效率,方便MATLAB 平台在市场中的推广。

随着MATLAB 软件的更新,用户操作界面也在改进,交互作用越来越突出,MATLAB 语言系统作为平台的关键部分,软件采用了矩阵语言建立复杂而快捷的程序,提高用户对MATLAB 平台的使用满意度。

2 MATLAB平台下数字信号的优化处理2.1 数字信号处理算法理论MATLAB 平台在数字信号优化处理方面有着较好的应用。

MATLAB 平台对于数字信号或语音信号的处理过程主要是利用MATLAB 仿真软件进行信号频域和视域分析。

基于matlab的两种数字调制方式仿真与分析

基于matlab的两种数字调制方式仿真与分析
从而去实现数字信息
包含许多跟 C 语言相 同 格 式 的 函 数 库,可 以 直 接 调
的传输,
并且该数字信息来自于两路且是并行的.
QAM 调制主要是针 对 一 个 拥 有 正 交 幅 度 的 信
号所进行的 调 制,
QAM 调 制 不 同 于 其 他 的 调 制 方
式,
其采用两个分别独立的正交载波,
i
nk 模 块 绘 制 通 信 系
统框 图,
运 用 其 丰 富 的 绘 图 功 能 还 可 以 进 行 2D、
3D
图形的 绘 制. MATLAB 因 为 其 强 大 的 功 能,目 前
已经被各个大学所青睐.
收稿日期:
2019-09-09
作者简介:张志浩(
1992- ),男,河北沧州人,硕士,主要研究方向:通信与信息系统.
为使接收端误码率
最小 化,双 比 特 码 元 (
a,
b)通 常 按 格 雷 码 (
Gr
a
y
方式排列,
即任意两个相邻的双 比 特 码 元 之 间
c
o
d
e)
只有一个比特发生变化.
图 1 QPSK 接收信号星座图
QPSK 调制区别 于 其 他 的 调 制 方 式,利 用 的 信
号的相移对数字信 号 进 行 调 制,其 调 制 信 号 的 类 型
调制作为通信系统组成必不可缺的一部分,
主要用于将基带信号进行一定的处理加到载波
摘 要:
上,
使其变为适合于信道传输的形式.传统的调制 分 为 调 幅、
调 频、
调 相 3 种 方 式,
在 数 字 通 信 系 统 中,
采用 QPSK 调制和 QAM 调制较多,

基于matlab的QPSK与BPSK信号性能比较仿真

基于matlab的QPSK与BPSK信号性能比较仿真

┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊目录第一章概述 (2)第二章QPSK通信系统原理与仿真 (2)2.1 QPSK系统框图介绍 (2)2.2 QPSK信号的调制原理 (3)2.2.1 QPSK信号产生方法 (3)2.2.2 QPSK星座图 (4)2.3 QPSK解调原理及误码率分析 (4)2.3.1 QPSK解调方法 (4)2.3.2 QPSK系统误码率 (5)2.4 QPSK信号在AWGN信道下仿真 (5)第三章BPSK通信系统原理与仿真 (6)3.1 BPSK信号的调制原理 (6)3.2 BPSK解调原理及误码率分析 (7)第四章QPSK与BPSK性能比较 (8)4.1 QPSK与BPSK在多信道下比较仿真 (8)4.1.1 纵向比较分析 (8)4.1.2 横向比较分析 (10)4.2 仿真结果分析 (10)4.2.1 误码率分析 (10)4.2.2 频带利用率比较 (10)附录 (11)代码1 (11)代码2 (11)代码3 (14)代码4 (16)┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊第一章概述QPSK是英文Quadrature Phase Shift Keying的缩略语简称,意为正交相移键控,是一种数字调制方式。

它以其抗干扰性能强、误码性能好、频谱利用率高等优点,广泛应用于数字微波通信系统、数字卫星通信系统、宽带接人、移动通信及有线电视系统之中。

BPSK是英文Binary Phase Shift Keying的缩略语简称,意为二相相移键控,是利用偏离相位的复数波浪组合来表现信息键控移相方式的一种。

它使用了基准的正弦波和相位反转的波浪,使一方为0,另一方为1,从而可以同时传送接受2值(1比特)的信息。

本文所研究的QPSK系统与二进制的BPSK系统相比,具有以下特点:1.在传码率相同的情况下,四进制数字调制系统的信息速率是二进制系统的2倍。

基于MATLAB的模拟信号频率调制(FM)与解调分析.

基于MATLAB的模拟信号频率调制(FM)与解调分析.

课程设计任务书学生姓名:专业班级:电信指导教师:工作单位:武汉理工大学题目:信号分析处理课程设计-基于MATLAB的模拟信号频率调制(FM)与解调分析初始条件:1.Matlab6.5以上版本软件;2.先修课程:通信原理等;要求完成的主要任务:(包括课程设计工作量及其技术要求,以及说明书撰写等具体要求)1、利用MATLAB中的simulink工具箱中的模块进行模拟频率(FM)调制与解调,观察波形变化2、画出程序设计框图,编写程序代码,上机运行调试程序,记录实验结果(含计算结果和图表等),并对实验结果进行分析和总结;3、课程设计说明书按学校统一规范来撰写,具体包括:⑴目录;⑵理论分析;⑶程序设计;⑷程序运行结果及图表分析和总结;⑸课程设计的心得体会(至少800字,必须手写。

);⑹参考文献(不少于5篇)。

时间安排:周一、周二查阅资料,了解设计内容;周三、周四程序设计,上机调试程序;周五、整理实验结果,撰写课程设计说明书。

指导教师签名: 2013 年 7月 2 日系主任(或责任教师)签名: 2013年 7月 2日目录1 Simulink简介 (1)1.1 Matlab简介······················································错误!未定义书签。

基于Matlab数字调制系统的仿真

基于Matlab数字调制系统的仿真

基于Matlab数字调制系统的仿真【摘要】数字调制是通信系统中最为重要的环节之一,数字调制技术的改进也是通信系统性能提高的重要途径。

本文首先分析了数字调制系统的几种基本调制解调方法,然后,运用Matlab及附带的图形仿真工具——Simulink设计了这几种数字调制方法的仿真模型。

通过仿真,观察了调制解调过程中各环节时域和频域的波形,并结合这几种调制方法的调制原理,跟踪分析了各个环节对调制性能的影响及仿真模型的可靠性。

最后,在仿真的基础上分析比较了各种调制系统的误码率、信号传输速率、信噪比、占用频带宽度等因素,综合衡量各系统的性能指标,并通过比较仿真模型与理论计算的性能,证明了仿真模型的可行性。

【关键词】数字调制,分析与仿真,Matlab,Simulink1.引言1. 1 数字调制的意义数字调制是指用数字基带信号对载波的某些参量进行控制,使载波的这些参量随基带信号的变化而变化。

根据控制的载波参量的不同,数字调制有调幅、调相和调频三种基本形式,并可以派生出多种其他形式。

由于传输失真、传输损耗以及保证带内特性的原因,基带信号不适合在各种信道上进行长距离传输。

为了进行长途传输,必须对数字信号进行载波调制,将信号频谱搬移到高频处才能在信道中传输。

因此,大部分现代通信系统都使用数字调制技术。

因此,对数字通信系统的分析与研究越来越重要,数字调制作为数字通信系统的重要部分之一,对它的研究也是有必要的。

1. 2 Matlab在通信系统仿真中的应用Matlab是一种交互式的、以矩阵为基础的软件开发环境,它用于科学和工程的计算与可视化。

Matlab的编程功能简单,并且很容易扩展和创造新的命令与函数。

应用Matlab可方便地解决复杂数值计算问题。

Matlab具有强大的Simulink动态仿真环境,可以实现可视化建模和多工作环境间文件互用和数据交换。

用户可以在Matlab和Simulink两种环境下对自己的模型进行仿真、分析和修改。

基于MATLAB仿真的数字信号调制的性能比较和分析

基于MATLAB仿真的数字信号调制的性能比较和分析

2ASK、2FSK、2PSK数字调制系统的Matlab实现及性能分析比较指导教师:班级:学号:姓名:引言:数字信号有两种传输方式,分别是基带传输方式和调制传输方式,即带通,在实际应用中,因基带信号含有大量低频分量不利于传送,所以必须经过载波和调制形成带通信号,通过数字基带信号对载波某些参量进行控制,使之随机带信号的变化而变化,这这一过程即为数字调制。

数字调制为信号长距离高效传输提供保障,现已广泛应用于生活和生产中。

另外根据控制载波参量方式的不同,数字调制主要有调幅(ASK ),调频(FSK),调相(PSK) 三种基本形式。

本次课题针对于二进制的2ASK 、2FSK 、2PSK 进行讨论,应用Matlab 矩阵实验室进行仿真,分析和修改,通过仿真系统生成一个人机交互界面,以利于仿真系统的操作。

通过对系统的仿真,更加直观的了解数字调制系统的性能及影响其性能的各种因素,以便于比较,评论和改进。

关键词: 数字,载波,调制,2ASK ,2FSK ,2PSK ,Matlab ,仿真,性能,比较,分析正文:一 .数字调制与解调原理1.1 2ASK(1)2ASK2ASK 就是把频率、相位作为常量,而把振幅作为变量,信息比特是通过载波的幅度来传递的。

由于调制信号只有0或1两个电平,相乘的结果相当于将载频或者关断,或者接通,它的实际意义是当调制的数字信号"1时,传输载波;当调制的数字信号为"0"时,不传输载波。

表达式为: ⎩⎨⎧===001,cos )(2k k c ASK a a t A t s 当,当ω1.2 2FSK2FSK 可以看做是2个不同频率的2ASK 的叠加,其调制与解调方法与2ASK 差不多,主要频率F1和F2,不同的组合产生所要求的2FSK 调制信号。

公式如下:⎩⎨⎧===0cos 1,cos )(212k k FSK a t A a t A t s 当,当ωω1.3 2PSK2PSK以载波的相位变化为基准,载波的相位随数字基带序列信号的1或者0而改变,通常用已经调制完的载波的0或者π表示数据1或者0,每种相位与之一一对应。

毕业设计毕业论文基于matlab的数字调制信号的仿真及识别[管理资料]

毕业设计毕业论文基于matlab的数字调制信号的仿真及识别[管理资料]

本科生毕业设计基于MATLAB的数字调制信号的仿真及识别独创性声明本人郑重声明:所呈交的毕业论文(设计)是本人在指导老师指导下取得的研究成果。

除了文中特别加以注释和致谢的地方外,论文(设计)中不包含其他人已经发表或撰写的研究成果。

与本研究成果相关的所有人所做出的任何贡献均已在论文(设计)中作了明确的说明并表示了谢意。

签名:年月日授权声明本人完全了解许昌学院有关保留、使用本科生毕业论文(设计)的规定,即:有权保留并向国家有关部门或机构送交毕业论文(设计)的复印件和磁盘,允许毕业论文(设计)被查阅和借阅。

本人授权许昌学院可以将毕业论文(设计)的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存、汇编论文(设计)。

本人论文(设计)中有原创性数据需要保密的部分为(如没有,请填写“无”):签名:年月日指导教师签名:年月日摘要本文对数字调制信号的基础知识进行了详细介绍,并利用M文件编程的方法做出了调制过程的仿真波形,接着又利用Simulink平台建立了功率谱密度的仿真模型,并得到了预期的仿真结果,从而作为信号频域识别的理论依据。

另外,本文实际上还对现实中用FFT 提取功率谱密度的识别方法进行了仿真并且简单介绍了三种数字调制信号时域识别的理论方法。

关键词:数字调制信号的仿真;M文件;Simulink;识别ABSTRACTIn this paper,the basic knowledge of digital modulation signal is introduced in detail,and M-file is used to get the emulated wave of the process of the platform of Simulink is used toform the model of power spectrum density,and the emulated results are expected,thus the results can be the theory basis of frenquency domain identity of digital modulation addition,actually this paper also emulates FFT identity method picking up the power spectrum density which is used in reality,and it introduces the theory method of time domain identity of three digital modulation signal simplely as well.Key words:The emulation of digital modulation signal;M-file;Simulink;Identity目录1 绪论 (1)数字调制信号仿真和识别的背景 (1)数字调制信号仿真和识别的目的及意义 (2)数字调制信号仿真和识别的发展现状 (2)本章小结 (3)2 MATLAB简介 (4)MATLAB/M文件 (4)MATLAB/Smiulink (4)本章小结 (5)3 数字调制信号的理论及仿真 (6)数字调制系统的原理 (6)三种基本的数字调制信号 (6)(2ASK) (6)二进制移频键控(2FSK) (8)二进制移相键控(2PSK) (10)二进制数字调制信号的功率谱密度 (12)本章小结 (15)4 数字调制信号调制样式的识别 (16)调制样式识别模块的建立 (16)特征参数的提取 (17)基于Simulink的功率谱密度的仿真 (18)FFT提取功率谱密度的仿真 (24)本章小结 (26)5 结论 (27)参考文献 (28)附录 (28)致谢 (33)1 绪论数字调制信号仿真和识别的背景通信系统的任务是完成消息的传递、转化,而通信的目的是通过信道快速有效、安全准确的传输信息。

模拟调制技术性能比较讲诉

模拟调制技术性能比较讲诉

课题:模拟调制技术性能比较院(系):专业:班级:学生姓名:学号:指导教师:摘要调制,在通信系统中的作用至关重要。

所谓调制,就是把信号转换成适合在信道中传输的形式的一种过程。

而模拟调制技术是非常重要的一种调制方式。

本文主要运用MATLAB 软件,通过写程序完成模拟调制技术(本文主要侧重线性调制)的仿真,并对仿真结果进行分析,比较模拟调制技术性能。

关键字:线性调制 AM 调制 DSB 调制 SSB 调制 MATLAB 仿真一、通信系统仿真设计的目的和要求1、目的:以MATLAB 作为编程和通信仿真的工具,通过仿真,加深对通信原理知识的理解,同时,掌握利用MATLAB 来进行通信仿真设计的基本方法。

2、具体要求如下:模拟调制技术性能比较的仿真设计给定单音信号t t m π2cos 2)(=,载波t A t s π20cos )(=;请按原理及给定条件和要求,借助MATLAB 设计一模拟通信系统:①当采用AM 调制时,A 取2;②当采用DSB 和SSB 调制时,A 取1;③解调时,加入经接收端带通滤波后,功率为0.1的窄带高斯白噪声。

④AM 解调时要用相干解调与包络检波;⑤包络检波时:取R=50Ω,C 分别为2μF ,20μF 和0.2μF ;电路结构见下图。

⑥按要求仿真并画出各种调制及解调后的信号波形图;⑦分析比较各种技术的性能;⑧调用的子程序必须能运行并与主程序能有效连接。

二、幅度调制(线性调制)的原理幅度调制是用调制信号去控制高频正弦载波的幅度,使其按调制信号的规律变化的过程。

幅度调制器的一般模型如图1所示。

图中,为调制信号,为已调信号,为滤波器的冲激响应,则已调信号的时域和频域一般表达式分别为式中,为调制信号的频谱,为载波角频率。

由以上表达式可见,对于幅度调制信号,在波形上,它的幅度随基带信号规律而变化;在频谱结构上,它的频谱完全是基带信号频谱在频域内的简单搬移。

由于这种搬移是线性的,因此幅度调制通常又称为线性调制,相应地,幅度调制系统也称为线性调制系统。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2ASK、2FSK、2PSK数字调制系统的Matlab实现及性能分析比较指导教师:班级:学号:姓名:引言:数字信号有两种传输方式,分别是基带传输方式和调制传输方式,即带通,在实际应用中,因基带信号含有大量低频分量不利于传送,所以必须经过载波和调制形成带通信号,通过数字基带信号对载波某些参量进行控制,使之随机带信号的变化而变化,这这一过程即为数字调制。

数字调制为信号长距离高效传输提供保障,现已广泛应用于生活和生产中。

另外根据控制载波参量方式的不同,数字调制主要有调幅(ASK ),调频(FSK),调相(PSK) 三种基本形式。

本次课题针对于二进制的2ASK 、2FSK 、2PSK 进行讨论,应用Matlab 矩阵实验室进行仿真,分析和修改,通过仿真系统生成一个人机交互界面,以利于仿真系统的操作。

通过对系统的仿真,更加直观的了解数字调制系统的性能及影响其性能的各种因素,以便于比较,评论和改进。

关键词: 数字,载波,调制,2ASK ,2FSK ,2PSK ,Matlab ,仿真,性能,比较,分析正文:一 .数字调制与解调原理1.1 2ASK(1)2ASK2ASK 就是把频率、相位作为常量,而把振幅作为变量,信息比特是通过载波的幅度来传递的。

由于调制信号只有0或1两个电平,相乘的结果相当于将载频或者关断,或者接通,它的实际意义是当调制的数字信号"1时,传输载波;当调制的数字信号为"0"时,不传输载波。

表达式为: ⎩⎨⎧===001,cos )(2k k c ASK a a t A t s 当,当ω1.2 2FSK2FSK 可以看做是2个不同频率的2ASK 的叠加,其调制与解调方法与2ASK 差不多,主要频率F1和F2,不同的组合产生所要求的2FSK 调制信号。

公式如下:⎩⎨⎧===0cos 1,cos )(212k k FSK a t A a t A t s 当,当ωω1.3 2PSK2PSK以载波的相位变化为基准,载波的相位随数字基带序列信号的1或者0而改变,通常用已经调制完的载波的0或者π表示数据1或者0,每种相位与之一一对应。

二.数字调制技术的仿真实现本课程设计需要借助MATLAB的M文件编程功能,对2ASK.2PSK.2FSK进行调制与解调的设计,并绘制出调制与解调后的波形,误码率的情况分析,软件仿真可在已有平台上实现。

1.2ASK代码主函数close allclear alln=16;fc=1000000; bitRate=1000000;N=50;%noise=ti;noise=10;signal=source(n,N); %生成二进制代码transmittedSignal=askModu(signal,bitRate,fc,N);%调制后信号signal1=gussian(transmittedSignal,noise);%加噪声configueSignal=demoASK(signal1,bitRate,fc,n,N);source代码function sendSignal=source(n,N)sendSignal=randint(1,n)bit=[];for i=1:length(sendSignal)if sendSignal(i)==0bit1=zeros(1,N);elsebit1=ones(1,N);endbit=[bit,bit1];endfigure(1)plot(1:length(bit),bit),title('transmitting of binary'),grid on;axis([0,N*length(sendSignal),-2,2]);endaskModu代码function transmittedSignal=askModu(signal,bitRate,fc,N)%signal为输入信号,bitrate为bit速率,fc调制信号频率,N %signal=[0 0 1 0 1 1 0 1];% bitRate=1000000;% fc=1000000;% N=32; t=linspace(0,1/bitRate,N);c=sin(2*pi*t*fc);transmittedSignal=[];for i=1:length(signal)transmittedSignal=[transmittedSignal,signal(i)*c];endfigure(2) %画调制图plot(1:length(transmittedSignal),transmittedSignal);title('Modulation of ASK');grid on;figure(3)%画频谱实部m=0:length(transmittedSignal)-1;F=fft(transmittedSignal);plot(m,abs(real(F))),title('ASK_frequency-domain analysis real');grid on;%figure(4)画频谱虚部%plot(m,imag(F));title('ASK_frequency-domain analysis imag');%grid on;endCheckRatePe代码function PeWrong=CheckRatePe(signal1,signal2,s)rights=0;wrongs=0;for ki=1:s-2if(signal1(ki)==signal2(ki))rights=rights+1;elsewrongs=wrongs+1;endendPeWrong=wrongs/(wrongs+rights);enddemoASK代码function bitstream=demoASK(receivedSignal,bitRate,fc,n,N)load numsignal1=receivedSignal;signal2=abs(signal1); %ÕûÁ÷signal3=filter(num1,1,signal2); %LPF,°üÂç¼ì²¨IN=fix(length(num1)/2); %ÑÓ³Ùʱ¼äbitstream=[];LL=fc/bitRate*N;i=IN+LL/2;while (i<=length(signal3)) %Åоöbitstream=[bitstream,signal3(i)>=0.5];i=i+LL;endfigure(6)subplot(3,1,1); %接收波形plot(1:length(signal1),signal1);title('Wave of receivingterminal(including noise)');grid on;subplot(3,1,2);%接收整流后波形plot(1:length(signal2),signal2);title('Wave of commutate');grid on; subplot(3,1,3);%包络检波波形plot(1:length(signal3),signal3);title('Wave of LPF');grid on;bit=[];for i=1:length(bitstream)if bitstream(i)==0bit1=zeros(1,N);elsebit1=ones(1,N);endbit=[bit,bit1];endfigure(7)%解调后的二进制波形plot(bit),title('binary of receiving terminal'),grid on;axis([0,N*length(bitstream),-2.5,2.5]);endgussian代码%加高斯白噪声function signal=gussian(transmittedSignal,noise)signal=sqrt(2)*transmittedSignal;signal=awgn(signal,noise);figure(5)plot(1:length(signal),signal);title('Wave including noise'),grid on;endfsk主函数代码close allclear alln=16;%二进制代码长度f1=18000000;%频率1f2=6000000;%频率2bitRate=1000000;%bit速率N=50;%码元宽度%noise=ti;noise=10;%家性噪声大小signal=source(n,N);%产生二进制代码transmittedSignal=fskModu(signal,bitRate,f1,f2,N);%调制signal1=gussian(transmittedSignal,noise);%加噪声configueSignal=demoFSK(signal1,bitRate,f1,f2,N);%解调source代码%二进制信号产生函数function sendSignal=source(n,N)sendSignal=randint(1,n)bit=[];for i=1:length(sendSignal)if sendSignal(i)==0bit1=zeros(1,N);elsebit1=ones(1,N);endbit=[bit,bit1];endfigure(1)plot(bit),title('transmitting of binary'),grid on;axis([0,N*length(sendSignal),-2.5,2.5]);endfskModu代码%频率调制函数function transmittedSignal=fskModu(signal,bitRate,f1,f2,N)t=linspace(0,1/bitRate,N);c1=sin(2*pi*t*f1);%调制信号1c2=sin(2*pi*t*f2);%调制信号2transmittedSignal=[];for i=1:length(signal)%调制if signal(i)==1transmittedSignal=[transmittedSignal,c1];elsetransmittedSignal=[transmittedSignal,c2];endendfigure(2) %画调制后波形图plot(1:length(transmittedSignal),transmittedSignal);title('Modulation of FSK');grid on;figure(3) %画调制后频谱图m=0:length(transmittedSignal)-1;F=fft(transmittedSignal);plot(m,abs(real(F))),title('ASK_frequency-domain analysis real');grid on;enddemoFSK代码function bitstream=demoFSK(receivedSignal,bitRate,f1,f2,N)load numsignal1=receivedSignal;signal2=filter(gaotong,1,signal1); %通过HPF,得到高通分量signal3=abs(signal2); %整流signal3=filter(lowpass,1,signal3); %通过低通,形成包络bitstream=[];IN1=fix(length(lowpass)/2)+fix(length(gaotong)/2); %延迟时间bitstream1=[];LL=N; %每个bit的抽样点数i=IN1 +LL/2;while (i<=length(signal3)) %判决bitstream1=[bitstream1,signal3(i)>=0.5];i=i+LL;endbitstream1figure(5)subplot(3,1,1);plot(1:length(signal1),signal1);title('Wave of receivingterminal(including noise)');grid on;subplot(3,1,2);plot(1:length(signal2),signal2);title('After Passing HPF');grid on; subplot(3,1,3);plot(1:length(signal3),signal3);title('After Passing LPF');grid on;signal4=filter(daitong,1,signal1); %通过BPF得到低频分量signal5=abs(signal4); %整流signal5=filter(lowpass,1,signal5); %通过LPF,形成包络IN2=fix(length(lowpass)/2)+fix(length(daitong)/2); %延迟时间 bitstream2=[];LL=N; %每个bit的的抽样点数i=IN2 +LL/2;while (i<=length(signal5)) %判决bitstream2=[bitstream2,signal5(i)>=0.5];i=i+LL;endbitstream2figure(6)subplot(3,1,1);plot(1:length(signal1),signal1);title('Wave of receivingterminal(including noise)');grid on;subplot(3,1,2);plot(1:length(signal4),signal4);title('After Passing BPF');grid on; subplot(3,1,3);plot(1:length(signal5),signal5);title('After Passing LPF');grid on;for i=1:min(length(bitstream1),length(bitstream2)) %判决if(bitstream1(i)>bitstream2(i))bitstream(i)=1;elsebitstream(i)=0;endendbitstreambit=[]; %接收端波形for i=1:length(bitstream)if bitstream(i)==0bit1=zeros(1,N);elsebit1=ones(1,N);endbit=[bit,bit1];endfigure(7)plot(bit),title('binary of receiving terminal'),grid on;axis([0,N*length(bitstream),-2.5,2.5]);endCheckRatePe代码function PeWrong=CheckRatePe(signal1,signal2,s)rights=0;wrongs=0;for ki=1:s-2if(signal1(ki)==signal2(ki))rights=rights+1;elsewrongs=wrongs+1;endendPeWrong=wrongs/(wrongs+rights);endgussian代码function signal=gussian(transmittedSignal,noise)signal=sqrt(2)*transmittedSignal;signal=awgn(signal,noise);figure(4)plot(1:length(signal),signal),title('Adding Noise');grid on;end2psk主函数代码close allclear alln=16;%二进制码长fc=1000000;%载波频率bitRate=1000000;信息频率N=50;%码宽noise=10;%信道加性噪声大小signal=source(n,N);生成二进制代码transmittedSignal=bpskModu(signal,bitRate,fc,N);对信号进行调制并进行频谱分析signal1=gussian(transmittedSignal,noise)%加信道噪声configueSignal=demoBPSK(signal1,bitRate,fc,n,N);%信号解调source代码function sendSignal=source(n,N)sendSignal=randint(1,n)bit=[];for i=1:length(sendSignal)if sendSignal(i)==0bit1=zeros(1,N);elsebit1=ones(1,N);endbit=[bit,bit1];endfigure(1)plot(bit),title('transmitting of binary'),grid on;axis([0,N*length(sendSignal),-2.5,2.5]);endbpskModu代码function transmittedSignal=bpskModu(signal,bitRate,fc,N)t=linspace(0,1/bitRate,N);c1=sin(2*pi*t*fc);c2=sin(2*pi*t*fc + pi);transmittedSignal=[];for i=1:length(signal)if signal(i)==1transmittedSignal=[transmittedSignal,c1];elsetransmittedSignal=[transmittedSignal,c2];endendfigure(2) % 画调制图plot(1:length(transmittedSignal),transmittedSignal);title('Modulation of BPSK');grid on;figure(3)%画频谱图m=0:length(transmittedSignal)-1;F=fft(transmittedSignal);plot(m,abs(real(F))),title('BPSK_frequency-domain analysis real');grid on;endCheckRatePe代码function PeWrong=CheckRatePe(signal1,signal2,s)rights=0;wrongs=0;for ki=1:s-2if(signal1(ki)==signal2(ki))rights=rights+1;elsewrongs=wrongs+1;endendPeWrong=wrongs/(wrongs+rights);enddemoBPSK代码function bitstream=demoBPSK(receivedSignal,bitRate,fc,n,N)load num%读取num存储的低通滤波用的数据signal1=receivedSignal;t=linspace(0,1/bitRate,N);c=sin(2*pi*t*fc);signal=[];for i=1:nsignal=[signal,c];endsignal2=signal1.*signal; %乘同频同相sinsignal3=filter(num1,1,signal2); %LPF,包络检波3IN=fix(length(num1)/2); %Ñ延迟时间bitstream=[];LL=fc/bitRate*N;i=IN+LL/2;while (i<=length(signal3)) %判决bitstream=[bitstream,signal3(i)>=0];i=i+LL;endfigure(5)subplot(3,1,1);%画接收的包含噪声的波形plot(1:length(signal1),signal1);title('Wave of receiving terminal(including noise)');grid on;subplot(3,1,2);%相干解调波形plot(1:length(signal2),signal2);title('After Multipling sin Fuction');grid on;subplot(3,1,3);%包络检波波形plot(1:length(signal3),signal3);title('Wave of LPF');grid on;bit=[];for i=1:length(bitstream)if bitstream(i)==0bit1=zeros(1,N);elsebit1=ones(1,N);endbit=[bit,bit1];endfigure(6)二进制接收信号波形plot(bit);title('binary of receiving terminal');grid on;axis([0,N*length(bitstream),-2.5,2.5]);endgussian代码function signal=gussian(transmittedSignal,noise)signal=sqrt(2)*transmittedSignal;signal=awgn(signal,noise);figure(4)plot(1:length(signal),signal),grid on;title('Adding noise')end三种调制方式的性能比较:load PeRate;load PeRatep;%补偿误差fpeask(15)=1e-3;fpefsk(9)=1e-3;fpepsk(24)=0.002;fpepsk(26)=1e-3;figure(1)semilogy(-6:length(fpeask)-7,fpeask,-6:length(fpefsk)-7,fpefsk,-30:le ngth(fpepsk)-31,fpepsk),grid on;title('Analysis Of Bit Error Rate');legend('ASK','FSK','PSK');xlabel('r/dB');ylabel('Pe');figure(2)semilogy(-6:length(fpefsk)-7,fpeask);grid on;title('Bit Error Rate Of ASK');xlabel('r/dB');ylabel('PeASK');figure(3)semilogy(-6:length(fpefsk)-7,fpefsk);grid on;title('Bit Error Rate Of FSK');xlabel('r/dB');ylabel('PeFSK');figure(4)semilogy(-16:length(fpepsk)-17,fpepsk);grid on;title('Bit Error Rate Of PSK');axis([-16,10,1e-3,1]);xlabel('r/dB');ylabel('PePSK');三.程序与调制解调波形3.1 2ASK波形1随机信号产生2ASK信号调制3信号噪声附加4接受信号解调5解调出的基带信号3.2.FSK1随机信号产生2FSK信号调制3信号噪声附加4接受信号解调5解调出的基带信号3.3PSK1.随机信号产生2.FSK信号调制3信号噪声附加4接受信号解调5解调出的基带信号3.4误码率分析1.2ASK误码率分析2.2FSK误码率分析3.2PSK误码率分析4性能比较四.课程设计心得体会通过本次的课程设计受益匪浅,感触良多。

相关文档
最新文档