一次函数的专题复习-最经典最全

合集下载

(完整版)一次函数复习专题

(完整版)一次函数复习专题

一次函数复习专题【基础知识回顾】 一、 一次函数的定义:一般的:如果y= ( ),那么y 叫x 的一次函数特别的:当b= 时,一次函数就变为y=kx(k ≠0),这时y 叫x 的 【名师提醒:正比例函数是一次函数,反之不一定成立,是有当b=0时,它才是正比例函数】二、一次函数的同象及性质:1、一次函数y=kx+b 的同象是经过点(0,b )(-bk,0)的一条 ,正比例函数y= kx 的同象是经过点 和 的一条直线。

【名师提醒:因为一次函数的同象是一条直线,所以画一次函数的图象只需选取 个特殊的点,过这两个点画一条直线即可】2、正比例函数y= kx(k ≠0),当k >0时,其同象过 、 象限,此时时y 随x 的增大而 ;当k<0时,其同象过 、 象限,时y 随x 的增大而 。

3、 一次函数y= kx+b ,图象及函数性质①、k >0 b >0过 象限②、k >0 b<0过 象限y 随x 的增大而y随x的增大而③、k<0 b>0过象限④、k<0 b>0过象限4、若直线l1:y= k1x+ b1与l2:y= k2x+ b2平行,则k1 k2,若k1≠k2,则l1与l2【名师提醒:y随x的变化情况,只取决于的符号与无关,而直线的平移,只改变的值的值不变】三、用待定系数法求一次函数解析式:关键:确定一次函数y= kx+ b中的字母与的值步骤:1、设一次函数表达式2、将x,y的对应值或点的坐标代入表达式3、解关于系数的方程或方程组4、将所求的待定系数代入所设函数表达式中四、一次函数与一元一次方程、一元一次不等式和二元一次方程组1、一次函数与一元一次方程:一般地将x= 或y 代入y= kx+ b 中解一元一次方程可求求直线与坐标轴的交点坐标。

2、一次函数与一元一次不等式:kx+ b>0或kx+ b<0即一次函数图象位于x 轴上方或下方时相应的x的取值范围,反之也成立3、一次函数与二元一次方程组:两条直线的交点坐标即为两个一次函数所列二元一次方程组的解,反之根据方程组的解可求两条直线的交点坐标【名师提醒:1、一次函数与三者之间的关系问题一定要结合图象去解决2、在一次函数中讨论交点问题即是讨论一元一次不等式的解集或二元一次方程组解的问题】五、一次函数的应用一般步骤:1、设定问题中的变量2、建立一次函数关系式3、确定自变量的取值范围4、利用函数性质解决问题5、作答【名师提醒:一次函数的应用多与二元一次方程组或一元一次不等式(组)相联系,经常涉及交点问题,方案设计问题等】【重点考点例析】考点一:一次函数的图象和性质例1 (2015•大庆)对于函数y=-3x+1,下列结论正确的是()A.它的图象必经过点(-1,3)B.它的图象经过第一、二、三象限C.当x>1时,y<0D.y的值随x值的增大而增大对应训练1.(2015•徐州)下列函数中,y随x的增大而减少的函数是()A.y=2x+8 B.y=-2+4x C.y=-2x+8 D.y=4x考点二:一次函数的图象和系数的关系例2 (2015•莆田)如图,一次函数y=(m-2)x-1的图象经过二、三、四象限,则m的取值范围是()A.m>0 B.m<0 C.m>2 D.m<2点,下列判断中,正确的是()A.y1>y2B.y1<y2C.当x1<x2时,y1<y2D.当x1<x2时,y1>y2对应训练2.(2015•眉山)若实数a,b,c满足a+b+c=0,且a<b<c,则函数y=cx+a 的图象可能是()A.B.C.D.3.(2015•福州)A,B两点在一次函数图象上的位置如图所示,两点的坐标分别为A(x+a,y+b),B(x,y),下列结论正确的是()A.a>0 B.a<0 C.b=0 D.ab<0考点三:一次函数解析式的确定例4 (2015•常州)已知一次函数y=kx+b(k、b为常数且k≠0)的图象经过对应训练4.(2013•重庆)已知正比例函数y=kx(k≠0)的图象经过点(1,-2),则这个正比例函数的解析式为()A.y=2x B.y=-2x C.y= 12x D.y=-12x考点四:一次函数与方程(组)、不等式(组)的关系例5 (2015•黔西南州)如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式2x<ax+4的解集为()A.x<32B.x<3 C.x>32D.x>3例6 (2015•荆州)体育课上,20人一组进行足球比赛,每人射点球5次,已知某一组的进球总数为49个,进球情况记录如下表,其中进2个球的有x人,进3个球的有y人,若(x,y)恰好是两条直线的交点坐标,则这两条直线的解A.y=x+9与y=23x+223B.y=-x+9与y=23x+223C.y=-x+9与y=- 23x+223D.y=x+9与y=-23x+223对应训练5.(2015•武汉)直线y=2x+b经过点(3,5),求关于x的不等式2x+b≥0的解集.6.(2015•青岛)如图,一个正比例函数图象与一次函数y=-x+1的图象相交于点P,则这个正比例函数的表达式是.考点五:一次函数综合题例7 (2015•绥化)如图,直线MN与x轴,y轴分别相交于A,C两点,分别过A,C两点作x轴,y轴的垂线相交于B点,且OA,OC(OA>OC)的长分别是一元二次方程x2-14x+48=0的两个实数根.(1)求C点坐标;(2)求直线MN的解析式;(3)在直线MN上存在点P,使以点P,B,C三点为顶点的三角形是等腰三角(1)C(0,6);(2)∴直线MN的解析式为y=-34x+6;(3)∵A(8,0),C(0,6),对应训练7.(2015•齐齐哈尔)如图,平面直角坐标系中,直线l分别交x轴、y轴于A、的两个根,点C在x轴负半轴上,且AB:AC=1:2(1)求A、C两点的坐标;(2)若点M从C点出发,以每秒1个单位的速度沿射线CB运动,连接AM,设△ABM的面积为S,点M的运动时间为t,写出S关于t的函数关系式,并写出自变量的取值范围;(3)点P是y轴上的点,在坐标平面内是否存在点Q,使以A、B、P、Q为顶点的四边形是菱形?若存在,请直接写出Q点的坐标;若不存在,请说明理由.例8 (2015•株洲)某生物小组观察一植物生长,得到植物高度y(单位:厘米)与观察时间x(单位:天)的关系,并画出如图所示的图象(AC是线段,直线CD平行x轴).(1)该植物从观察时起,多少天以后停止长高?(2)求直线AC的解析式,并求该植物最高长多少厘米?对应训练8.(2015•湛江)周末,小明骑自行车从家里出发到野外郊游.从家出发1小时后到达南亚所(景点),游玩一段时间后按原速前往湖光岩.小明离家1小时50分钟后,妈妈驾车沿相同路线前往湖光岩,如图是他们离家的路程y(km)与小明离家时间x(h)的函数图象.(1)求小明骑车的速度和在南亚所游玩的时间;(2)若妈妈在出发后25分钟时,刚好在湖光岩门口追上小明,求妈妈驾车的速度及CD所在直线的函数解析式.【聚焦山东中考】1.(2015•菏泽)一条直线y=kx+b,其中k+b=-5、kb=6,那么该直线经过()A.第二、四象限B.第一、二、三象限C.第一、三象限D.第二、三、四象限个点,当x1<x2<0时,y1<y2,则一次函数y=-2x+k的图象不经过的象限是()A.第一象限B.第二象限C.第三象限D.第四象限3.(2015•潍坊)一次函数y=-2x+b中,当x=1时,y<1,当x=-1时,y>0.则b的取值范围是.4.(2015•泰安)把直线y=-x+3向上平移m个单位后,与直线y=2x+4的交点在第一象限,则m的取值范围是()A.1<m<7 B.3<m<4 C.m>1 D.m<45.(2015•威海)甲、乙两辆摩托车同时从相距20km的A,B两地出发,相向而行.图中l1,l2分别表示甲、乙两辆摩托车到A地的距离s(km)与行驶时间t(h)的函数关系.则下列说法错误的是()A.乙摩托车的速度较快B.经过0.3小时甲摩托车行驶到A,B两地的中点C.经过0.25小时两摩托车相遇D.当乙摩托车到达A地时,甲摩托车距离A地503km6.(2015•临沂)某工厂投入生产一种机器的总成本为2000万元.当该机器生产数量至少为10台,但不超过70台时,每台成本y与生产数量x之间是一次函(1)求y与x之间的函数关系式,并写出自变量x的取值范围;(2)求该机器的生产数量;(3)市场调查发现,这种机器每月销售量z(台)与售价a(万元∕台)之间满足如图所示的函数关系.该厂生产这种机器后第一个月按同一售价共卖出这种机1(3)通过观察(1)(2)中的两个函数表达式可知,当两直线互相垂直时,它们的函数表达式中自变量的系数互为负倒数关系,∴过原点且与直线y=-15x垂直的直线l5的函数表达式为y=5x.∴x=0时,y=4,y=0时,x=8,∴4182 BOAO==,当t秒时,QO=FQ=t,则EP=t,∵EP∥BO,∴12 BO EPAO AP==,∴AP=2t,∵动点Q以每秒1个单位长度的速度从点O出发向点A做匀速运动,∴点P运动的速度是每秒2个单位长度;(2)如图1,当PQ=PE时,矩形PEFQ为正方形,则∵OQ=FQ=t,PA=2t,∴QP=8-t-2t=8-3t,∴8-3t=t,解得:t=2,综上所述,当t=4时,S矩形PEFQ的最大值为:16.【备考真题过关】一、选择题1.(2015•湖州)若正比例函数y=kx的图象经过点(1,2),则k的值为()A.-12B.-2 C.12D.22.(2015•陕西)如果一个正比例函数的图象经过不同象限的两点A(2,m),B (n,3),那么一定有()A.m>0,n>0 B.m>0,n<0 C.m<0,n>0 D.m<0,n<0的图象过()A.第一、二、四象限B.第一、三、四象限C.第二、三、四象限D.第一、二、三象限4.(2015•黔东南州)直线y=-2x+m与直线y=2x-1的交点在第四象限,则m 的取值范围是()A.m>-1 B.m<1 C.-1<m<1 D.-1≤m≤1 5.(2015•十堰)张师傅驾车从甲地到乙地,两地相距500千米,汽车出发前油箱有油25升,途中加油若干升,加油前、后汽车都以100千米/小时的速度匀速行驶,已知油箱中剩余油量y(升)与行驶时间t(小时)之间的关系如图所示.以下说法错误的是()A.加油前油箱中剩余油量y(升)与行驶时间t(小时)的函数关系是y=-8t+25B.途中加油21升C.汽车加油后还可行驶4小时D.汽车到达乙地时油箱中还余油6升6.(2015•天门)小文、小亮从学校出发到青少年宫参加书法比赛,小文步行一段时间后,小亮骑自行车沿相同路线行进,两人均匀速前行.他们的路程差s(米)与小文出发时间t(分)之间的函数关系如图所示.下列说法:①小亮先到达青少年宫;②小亮的速度是小文速度的2.5倍;③a=24;④b=480.其中正确的是()A.①②③B.①②④C.①③④D.①②③④二、填空题7.(2015•资阳)在一次函数y=(2-k)x+1中,y随x的增大而增大,则k的取15.(2015•温州)如图,在平面直角坐标系中,△ABC的两个顶点A,B的坐标分别为(-2,0),(-1,0),BC⊥x轴,将△ABC以y轴为对称轴作轴对称变换,得到△A′B′C′(A和A′,B和B′,C和C′分别是对应顶点),直线y=x+b 经过点A,C′,则点C′的坐标是.16.(2015•孝感)如图,一个装有进水管和出水管的容器,从某时刻开始的4分钟内只进水不出水,在随后的8分钟内既进水又出水,接着关闭进水管直到容器内的水放完.假设每分钟的进水量和出水量是两个常数,容器内的水量y(单位:升)与时间x(单位:分)之间的部分关系.那么,从关闭进水管起分钟该容器内的水恰好放完.17.(2015•随州)甲乙两地相距50千米.星期天上午8:00小聪同学在父亲陪同下骑山地车从甲地前往乙地.2小时后,小明的父亲骑摩托车沿同一路线也从甲地前往乙地,他们行驶的路程y(千米)与小聪行驶的时间x(小时)之间的函数关系如图所示,小明父亲出发小时时,行进中的两车相距8千米.三、解答题18.(2015•厦门)一个有进水管与出水管的容器,从某时刻开始的3分内只进水不出水,在随后的9分内既进水又出水,每分的进水量和出水量都是常数.容器内的水量y(单位:升)与时间x(单位:分)之间的关系如图所示.当容器内的水量大于5升时,求时间x的取值范围.18.解:①0≤x<3时,设y=mx,则3m=15,解得m=5,所以,y=5x,②3≤x≤12时,设y=kx+b,∵函数图象经过点(3,15),(12,0),20.(2015•盐城)水果店王阿姨到水果批发市场打算购进一种水果销售,经过还价,实际价格每千克比原来少2元,发现原来买这种水果80千克的钱,现在可买88千克.(1)现在实际购进这种水果每千克多少元?(2)王阿姨准备购进这种水果销售,若这种水果的销售量y(千克)与销售单价x(元/千克)满足如图所示的一次函数关系.①求y与x之间的函数关系式;②请你帮王阿姨拿个主意,将这种水果的销售单价定为多少时,能获得最大利润?最大利润是多少?(利润=销售收入-进货金额)20.解:(1)设现在实际购进这种水果每千克x元,则原来购进这种水果每千克(x+2)元,由题意,得80(x+2)=88x,解得x=20.故现在实际购进这种水果每千克20元;(2)①设y与x之间的函数关系式为y=kx+b,将(25,165),(35,55)代入,得251653555k bk b+=⎧⎨+=⎩,解得11440kb=-⎧⎨=⎩,故y与x之间的函数关系式为y=-11x+440;②设这种水果的销售单价为x元时,所获利润为w元,则w=(x-20)y=(x-20)(-11x+440)=-11x2+660x-8800=-11(x-30)2+1100,所以当x=30时,w有最大值1100.即将这种水果的销售单价定为30元时,能获得最大利润,最大利润是1100元.21.(2015•河北)如图,A(0,1),M(3,2),N(4,4).动点P从点A出发,沿y轴以每秒1个单位长的速度向上移动,且过点P的直线l:y=-x+b也随之移动,设移动时间为t秒.(1)当t=3时,求l的解析式;(2)若点M,N位于l的异侧,确定t的取值范围;(3)直接写出t为何值时,点M关于l的对称点落在坐标轴上.21.解:(1)直线y=-x+b交y轴于点P(0,b),由题意,得b>0,t≥0,b=1+t.当t=3时,b=4,故y=-x+4.(2)当直线y=-x+b过点M(3,2)时,2=-3+b,解得:b=5,5=1+t,解得t=4.当直线y=-x+b过点N(4,4)时,4=-4+b,解得:b=8,8=1+t,解得t=7.故若点M,N位于l的异侧,t的取值范围是:4<t<7.(3)如图,过点M作MF⊥直线l,交y轴于点F,交x轴于点E,则点E、F为点M在坐标轴上的对称点.过点M作MD⊥x轴于点D,则OD=3,MD=2.已知∠MED=∠OEF=45°,则△MDE与△OEF均为等腰直角三角形,∴DE=MD=2,OE=OF=1,∴E(1,0),F(0,-1).∵M(3,2),F(0,-1),∴线段MF中点坐标为(32,12).。

一次函数经典复习题

一次函数经典复习题

函数复习题(一)1. 已知一次函数的图象经过点(1,-1)和点(-1,2)。

求这个函数的解析式。

2 一条直线过点A(0,3),B(2,0),求直线的解析式3 已知一次函数y=kx+b中,当x=1时,y=3,当x=-1时,y=7。

求这个函数的解析式。

且求当x=3时,y的值。

4 一次函数的图象经过点(2,1)和(1,5),求出它的解析式5 已知直线y=kx+b经过(9,0)和点(24,20),求这个函数的解析式6 已知直线y=kx+b经过点A(2,5)、(-3,0)。

求这个函数的解析式7 已知一次函数y=kx+b,当x=0时,y=1;当x=1时,y=-1。

求这个函数的解析式8 已知一次函数的图像过点(3,5)与(-4,-9),求这个一次函数的解析式9 某个一次函数的图象分别过点(3,5)和(-4,-9),求这个一次函数的解析式10 已知一次函数y=kx+b ,图像经过点A(2,4),B(0,2)两点,且与x 轴交于点C 。

(1).求这个函数的解析式。

(2).求三角形AOC 的面积11 已知直线L 的图象,能否求出它的解析式?12 如图所示,直线l 是一次函数的图象. (1) 求这个函数的解析式; (2) 当x =4时,y 的值为多少?13 如图,在平面直角坐标系中,已知长方形OABC 的两个顶点坐标为A (3,0),B (3,2),对角线AC 所在的直线为l ,求直线l 的解析式.14 已知一次函数的图象如图所示,求出它的函数关系15 若点A(-4,0)、B(0,5)、C(m,-5)在同一条直线上,求m的值16 若点A(6,-1)、B(1,4)、C(2,m)在一条直线上,则m的值为17 已知点(3,5)、(m,9)、(-4,-9)在同一直线上,(1)求经过以上三点的直线解析式(2)求m的值18 已知一次函数 y=kx+2,当x=5时,y的值为4,求k的值。

19 一次函数y=k x+b的图象过点(1,-1),且与直线y=—2x+5平行,则此一次函数的解析式20 一个一次函数平行于y=2x,且过点(1,5),求其解析式。

(完整版)一次函数知识点复习总结

(完整版)一次函数知识点复习总结
5、函数的解析式:用含有表示自变量的字母的代数式表示因变量的式子叫做函数的解析式
6、函数的图像
一般来说,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象.
7、描点法画函数图形的一般步骤
第一步:列表(表中给出一些自变量的值及其对应的函数值);
一次函数
(1)函数
1、变量:在一个变化过程中可以取不同数值的量。
常量:在一个变化过程中只能取同一数值的量。
2、函数:一般的,在一个变化过程中,如果有两个变量x和y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就把x称为自变量,把y称为因变量,y是x的函数。
*判断Y是否为X的函数,只要看X取值确定的时候,Y是否有唯一确定的值与之对应
⑶当 , 时,它不是一次函数.
⑷正比例函数是一次函数的特例,一次函数包括正比例函数.
2、正比例函数及性质
一般地,形如y=kx(k是常数,k≠0)的函数叫做正比例函数,其中k叫做比例系数.
注:正比例函数一般形式y=kx (k不为零) k不为零 x指数为1 b取零
当k>0时,直线y=kx经过三、一象限,从左向右上升,即随x的增大y也增大;当k<0时, 直线y=kx经过二、四象限,从左向右下降,即随x增大y反而减小.
k<0,y随x的增大而减小。(从左向右下降)
倾斜度
|k|越大,越接近y轴;|k|越小,越接近x轴
图像的
平 移
b>0时,将直线y=kx的图象向上平移 个单位;
b<0时,将直线y=kx的图象向下平移 个单位.
6、直线 ( )与 ( )的位置关系
(3)走向:k>0,图象经过第一、三象限;k<0,图象经过第二、四象限

一次函数专题复习

一次函数专题复习

一次函数专题复习专题一、函数定义1、判断下列变化过程存在函数关系的是( )A.y x ,是变量,x y 2±=B.人的身高与年龄C.三角形的底边长与面积D.速度一定的汽车所行驶的路程与时间2、已知函数12+=x x y ,当a x =时,y = 1,则a 的值为( ) A.1 B.-1 C.3 D.21 3、下列各曲线中不能表示y 是x 的函数是( )。

专题二、正比例函数1、下列各函数中,y 与x 成正比例函数关系的是(其中k 为常数)( )A 、y=3x -2B 、y=(k+1)xC 、y=(|k|+1)xD 、y= x 22、如果y=kx+b ,当 时,y 叫做x 的正比例函数3、一次函数y=kx+k+1,当k= 时,y 叫做x 正比例函数专题三、一次函数的定义1、下列函数关系中,是一次函数的个数是( )①y=1x ②y=x 3 ③y=210-x ④y=x 2-2 ⑤ y=13x +1 A 、1 B 、2 C 、3 D 、42、若函数y=(3-m)x m -9是正比例函数,则m= 。

3、当m 、n 为何值时,函数y=(5m -3)x 2-n +(m+n)(1)是一次函数 (2)是正比例函数专题四、函数的增加性1.已知点A(x 1,y 1)和点B(x 2,y 2)在同一条直线y=kx+b 上,且k <0.若x 1>x 2,则y 1与y 2的关系是( )A.y 1>y 2B.y 1=y 2C.y 1<y 2D.y 1与y 2的大小不确定2、下列函数中,y 随x 的增大而减小的有( )①12+-=x y ②x y -=6③31x y +-=④x y )21(-= A.1个 B.2个 C.3个 D.4个O x y O x y O x y O x y专题五、一次函数与坐标系1.对于一次函数y=-2x+4,y 的值随x 的值增大而 (增大或减少)图象与x 轴交点坐标是 ,与y 轴的交点坐标是 .2. 已知y+4与x 成正比例,且当x=2时,y=1,则当x=-3时,y= .3、若函数y=-x+m 与y=4x -1的图象交于y 轴上一点,则m 的值是( )A. 1-B. 1C. 41- D. 41 4.直线y=x-1与坐标轴交于A 、B 两点,点C 在坐标轴上,△ABC 为等腰三角形,则满足条件的点C 最多有( )个 A .4 B .5 C .7 D .85、已知一次函数y=ax+4与y=bx -2的图象在x 轴上相交于同一点,求的值?6、已知一次函数y=(a -2)x +2a 2-8求:(1)a 为何值时,一次函数的图象经过原点.(2)a 为何值时,一次函数的图象与y 轴交于点(0,10).专题六、待定系数法求一次函数解析式1. 若一次函数的图象经过点A(-3,0),B(0,1),则这个函数的解析式为 .2.如图,一次函数y=kx+b 的图象经过A 、B 两点,与x 轴相交于C 点.求: (1)直线AC 的函数解析式; (2)设点(a ,-2)在这个函数图象上,求a 的值;3、(2007甘肃陇南) 如图,两摞相同规格的饭碗整齐地叠放在桌面上,请根据图中给的数据信息,解答下列问题:(1)求整齐摆放在桌面上饭碗的高度y (cm )与饭碗数x (个)之间的一次函数解析式;(2)把这两摞饭碗整齐地摆成一摞时,这摞饭碗的高度是多少?4、(2007福建晋江)东从A 地出发以某一速度向B 地走去,同时小明从B 地出发以另一速度向A 地而行,如图所示,图中的线段1y 、2y 分别表示小东、小明离B 地的距离(千米)与所用时间(小时)的关系。

期末复习 《一次函数》常考题与易错题精选(50题)(解析版)

期末复习 《一次函数》常考题与易错题精选(50题)(解析版)

期末复习- 《一次函数》常考题与易错题精选(52题)一.常量与变量(共2小题)1.在圆锥体积公式中(其中,r表示圆锥底面半径,h表示圆锥的高),常量与变量分别是( )A.常量是,变量是V,hB.常量是,变量是h,rC.常量是,变量是V,h,rD.常量是,变量是V,h,π,r【分析】根据圆锥体积公式中(其中,r表示圆锥底面半径,h表示圆锥的高),即可得常量与变量.【解答】解:由圆锥体积公式中(其中,r表示圆锥底面半径,h表示圆锥的高),可知:常量是,变量是V,h,r.故选:C.【点评】本题考查了常量与变量、认识立体图形,解决本题的关键是掌握常量与变量的概念.2.小李驾车以70km/h的速度行驶时,他所走的路程s(km)与时间t(h)之间可用公式s=70t来表示,则下列说法正确的是( )A.数70和s,t都是变量B.s是常量,数70和t是变量C.数70是常量,s和t是变量D.t是常量,数70和s是变量【分析】根据常量与变量的定义判断.【解答】解:由题意得:70是常数,其值恒定不变,是常量,行驶过程中时间不断增加,t的值不断变化,是变量,路程随时间t的不合而变化,s也是变量,∴A,B,D均不合题意,C合题意.故选:C.【点评】本题考查常量与变量,理解题意,搞清变与不变是求解本题的关键.二.函数的概念(共2小题)3.下列各图象中,不能表示y是x的函数的是( )A.B.C.D.【分析】根据函数的概念:对于自变量x的每一个值,因变量y都有唯一的值与它对应,逐一判断即可解答.【解答】解:A、对于自变量x的每一个值,因变量y都有唯一的值与它对应,所以能表示y是x的函数,故A不符合题意;B、对于自变量x的每一个值,因变量y都有唯一的值与它对应,所以能表示y是x的函数,故B不符合题意;C、对于自变量x的每一个值,因变量y不是都有唯一的值与它对应,所以不能表示y是x的函数,故C符合题意;D、对于自变量x的每一个值,因变量y都有唯一的值与它对应,所以能表示y是x的函数,故D不符合题意;故选:C.【点评】本题考查了函数的概念,熟练掌握函数的概念是解题的关键.4.下列说法正确的是( )A.变量x,y满足,则y是x的函数B.变量x,y满足y2=x,则y是x的函数C.变量x,y满足|y|=x,则y是x的函数D.在中,常量是,r是自变量,V是r的函数【分析】根据函数的概念,对于自变量x的每一个值,y都有唯一的值与它对应,即可解答.【解答】解:A、变量x,y满足,对于自变量x的每一个值,y都有唯一的值与它对应,则y 是x的函数,故A符合题意;B、变量x,y满足y2=x,对于自变量x的每一个值,y都有两个值与它对应,则y不是x的函数,故B不符合题意;C、变量x,y满足|y|=x,对于自变量x的每一个值,y都有两个值与它对应,则y不是x的函数,故C不符合题意;D、在中,π是常量,r是自变量,对于自变量r的每一个值,V都有唯一的值与它对应,则V是r的函数,故D不符合题意,故选:A.【点评】本题考查了函数的概念,常量与变量,熟练掌握函数的概念是解题的关键.三.函数关系式(共3小题)5.物理学告诉我们,液体的压强只与液体的密度和深度有关,其公式为p=ρgh.已知水的密度为ρ=1×103kg/m3,g=9.8N/kg,水的压强p随水的深度h的变化而变化,则p与h之间满足的关系式为 p=9.8×103h .【分析】根据已知条件求出一次函数的系数,确定一次函数的解析式.【解答】解:∵ρ=1×103kg/m3,g=9.8N/kg,∴ρ×g=1×103×9.8=9.8×103,p=9.8×103h;故答案为:p=9.8×103h.【点评】考查一次函数解析式,关键掌握待定系数法求函数解析式.6.一艘轮船装载2800吨货物,写出平均卸货速度v(单位:吨/天)与卸货天数t之间的关系式为 v= .【分析】根据题中等量关系直接列出函数关系式.【解答】解:由题意得:2800=vt.∴v=.故答案为:v=.【点评】本题考查求函数关系式,理解题意,找到等量关系是求解本题的关键.7.如图,在矩形中截取两个相同的圆作为圆柱的上、下底面,剩余的矩形作为圆柱的侧面,刚好能组合成圆柱.设矩形的长和宽分别为y和x,求y关于x的函数解析式 y=x .【分析】根据组成圆柱后,底面圆的周长等于剩余长方形的长列出方程,再化成函数关系式即可.【解答】解:由题意得:=y﹣,∴y=,即y=x,故答案为:y=x.【点评】本题考查了函数关系式,展开图折叠成几何体,根据题目的已知条件并结合图形找到等量关系是解题的关键.四.函数自变量的取值范围(共3小题)8.函数y=﹣(x+1)0中自变量x的取值范围是( )A.x≥﹣2B.x>﹣2C.x>﹣2且x≠﹣1D.x≥﹣2且x≠﹣1【分析】根据二次根式(a≥0),以及a0=1(a≠0)可得x+2≥0且x+1≠0,然后进行计算即可解答.【解答】解:由题意得:x+2≥0且x+1≠0,∴x≥﹣2且x≠﹣1,故选:D.【点评】本题考查了函数自变量的取值范围,零指数幂,熟练掌握二次根式(a≥0),以及a0=1(a≠0)是解题的关键.9.在函数中,自变量x的取值范围是( )A.x≥﹣3B.x>﹣3C.x≥﹣3且x≠0D.x≠0且x≠﹣3【分析】根据分式有意义的条件和二次根式有意义的条件,可得,然后进行计算即可解答.【解答】解:根据题意可得:,解得:x≥﹣3且x≠0,故选:C.【点评】本题考查了函数自变量的取值范围,熟练掌握分式有意义的条件和二次根式有意义的条件是解题的关键.10.函数的自变量x的取值范围是( )A.x≥﹣3B.x>﹣3C.x≠0且x≠﹣3D.x≥﹣3且x≠0【分析】根据二次根式(a≥0)且分母不为0,可得x+3≥0且x≠0,然后进行计算即可解答.【解答】解:由题意得:x+3≥0且x≠0,解得:x≥﹣3且x≠0,故选:D.【点评】本题考查了函数自变量的取值范围,熟练掌握二次根式(a≥0)且分母不为0是解题的关键.五.函数值(共3小题)11.根据如图所示的程序计算函数y的值,若输入x的值是3,则输出y的值是﹣3.若输入x的值是﹣5,则输出y的值是( )A.5B.7C.13D.16【分析】根据题意把x=3,y=﹣3代入y=中,从而求出b的值,然后再把x=﹣5,b=﹣3代入y=﹣2x+b中,进行计算即可解答.【解答】解:由题意得:把x=3,y=﹣3代入y=中可得:﹣3=,解得:b=﹣3,把x=﹣5,b=﹣3代入y=﹣2x+b中可得:y=﹣2×(﹣5)+(﹣3)=10﹣3=7,故选:B.【点评】本题考查了函数值,根据题意把x=3,y=﹣3代入y=中求出b值是解题的关键.12.当x=﹣1时,函数y=的值是( )A.1B.﹣1C.D.【分析】把x=﹣1代入函数解析式求得相应的y值即可.【解答】解:当x=﹣1时,y===.故选:D.【点评】本题主要考查了函数值的求解,把自变量的值代入函数解析式计算即可,是基础题,比较简单.13.有下列四个函数:①y=x;②y=﹣x﹣5;③y=;④y=x2+4x﹣1.当自变量满足﹣4≤x≤﹣1时,函数值满足﹣4≤y≤﹣1的函数有( )A.①②B.①②③C.①③④D.①②③④【分析】根据一次函数的增减性,反比例函数的增减性以及二次函数的增减性分别作出判断即可得解.【解答】解:①y=x,x=﹣4时y取最小值﹣4,x=﹣1时,y取最大值﹣1,符合,②y=﹣x﹣5,x=﹣4时y取最大值﹣1,x=﹣1时y取最小值﹣4,符合,③y=,x=﹣4时y取最大值﹣1,x=﹣1时y取最小值﹣4,符合,④y=x2+4x﹣1=(x+2)2﹣5,对称轴是直线x=﹣2,x=﹣4时,y取最大值﹣1,x=﹣2时y取最小值﹣5,x=﹣1时y=﹣4,不是最小值,不符合.综上所述,符合条件的函数有①②③共3个.故选:B.【点评】本题考查了二次函数的性质,一次函数的性质,反比例函数的性质,熟练掌握各函数的增减性是解题的关键.六.函数的图象(共6小题)14.晚饭后彤彤和妈妈散步到小区旁边的公园,在公园中央的休息区聊了会天,然后一起跑步回家,下面能反映彤彤和妈妈离家的距离y与时间x的函数关系的大致图象是( )A.B.C.D.【分析】根据在每段中,离家的距离随时间的变化情况即可进行判断.【解答】解:图象应分三个阶段,第一阶段:散步到离家较远的公园,在这个阶段,离家的距离随时间的增大而增大;第二阶段:在公园中央的休息区聊了会天,这一阶段离家的距离不随时间的变化而改变.故D错误;第三阶段:跑步回家,这一阶段,离家的距离随时间的增大而减小,故A错误,并且这段的速度大于第一阶段的速度,则B错误.故选:C.【点评】本题考查了函数的图象,解题的关键是理解路程y的含义,理解直线的倾斜程度与速度的关系,属于中考常考题型.15.将一圆柱形小水杯固定在大圆柱形容器底面中央,小水杯中有部分水,现用一个注水管沿大容器内壁匀速注水,如图所示,则小水杯水面的高度h(cm)与注水时间t(min)的函数图象大致是( )A.B.C.D.【分析】根据将一盛有部分水的圆柱形小玻璃杯放入事先没有水的大圆柱形容器内,现用一注水管沿大容器内壁匀速注水,即可求出小水杯内水面的高度h(cm)与注水时间t(min)的函数图象.【解答】解:将一盛有部分水的圆柱形小玻璃杯放入事先没有水的大圆柱形容器内,小玻璃杯内的水原来的高度一定大于0,则可以判断A、D一定错误,用一注水管沿大容器内壁匀速注水,水开始时不会流入小玻璃杯,因而这段时间h不变,当大杯中的水面与小杯水平时,开始向小杯中流水,h随t的增大而增大,当水注满小杯后,小杯内水面的高度h不再变化.故选:B.【点评】本题考查了函数的图象.正确理解函数图象横纵坐标表示的意义,理解问题的过程,能够通过图象得到函数是随自变量的增大,知道函数值是增大还是减小.16.如图,图中折线表示张师傅在某天上班途中的情景:骑车离家行了一段路,由于车子出现故障,于是停下修车,修好车子后继续骑行,按时赶到单位.下列关于图中信息的说法中,错误的是( )A.张师傅修车用了15分钟B.张师傅的单位距他家2000米C.张师傅从家到单位共用了20分钟D.修车后的骑行速度是修车前的2倍【分析】根据题意和函数图象中的数据可以判断各个选项中的结论是否正确,从而可以解答本题.【解答】解:由图可得,张师傅修车用了15﹣10=5(分钟),故选项A符合题意;张师傅上班处距他家2000米,故选项B不合题意;张师傅路上耗时20分钟,故选项C不合题意,修车后张师傅骑车速度是修车前的:=2(倍),故选项D不合题意,故选:A.【点评】本题考查函数的图象,解答本题的关键是明确题意,利用数形结合的思想解答.17.某自行车厂甲、乙两名工人组装自行车,2小时后,甲的机器出现故障进行维修,乙加速组装.他们每人组装自行车y(辆)与生产时间t(小时)的关系如图所示.根据图象回答:(1)2小时后,乙每小时组装几辆自行车?当t为多少小时,乙组装自行车25辆?(2)甲维修好机器后,每小时组装几辆自行车?(3)甲维修好机器后,t的值为多少时,甲与乙组装的车辆一样多?【分析】(1)根据图象,用车辆数÷时间可得出每小时组装车辆;再根据车辆总数÷速度可得出时间;(2)根据图象,用车辆数÷时间可得出每小时组装车辆;(3)根据函数图象和图象中的数据可以求得甲乙对应的函数解析式,从而可以解答本题.【解答】解:(1)由图象可知:2小时后,乙每小时组装(40﹣4)÷(8﹣2)=6(辆)自行车,(25﹣4)÷6=3.5,∴t=3.5+2=5.5(小时).(2)甲维修好机器后,每小时组装(40﹣10)÷(7﹣5)=15辆.(3)设甲维修好机器后,经过x小时,甲与乙组装的车辆一样多.由题意可知,10+15x=4+6(3+x),10+15x=6x+22;解得:.此时,.【点评】本题考查一次函数的应用、函数图象,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.18.为迎接体质监测,小明和小军进行了1000米跑练习.如图是两人的路程s(米)与时间t(分钟)之间关系的图象,根据图象解答下列问题:(1)2分钟时,谁跑在前面?(2)谁先跑到终点?(3)小军的平均速度是多少?(4)起跑后两人第一次相遇时距离终点多少米?【分析】(1)由图象可直接得出结论.(2)根据图象可知,小明用的时间小,所以小明先跑到终点.(3)利用速度=路程÷时间,可得出小军的速度.(4)利用总路程﹣走过的路程=剩下的路程可得出结论.【解答】解:(1)由图象可知,2分钟时,小军跑在前面.(2)由图象可知,小明用时3.8分钟,小军用时4分钟,∴小明先跑到终点.(3)小军的平均速度为:1000÷4=250(米/分钟).∴小军的平均速度为:250米/分钟.(4)起跑后两人第一次相遇时距离终点:1000﹣250×3.4=150(米).∴起跑后两人第一次相遇时距离终点150米.【点评】本题考查函数图象的应用,借助函数图象表达题目中的信息,读懂图象是关键.注意图中的时间﹣路程的函数图象意义.19.甲、乙两人在笔直的公路AB上从起点A地以不同的速度匀速跑向终点B地,先到B地的人原地休息,已知A、B两地相距1500米,且甲比乙早出发,甲、乙两人之间的距离y(米)与甲出发的时间x(秒)的关系如图所示.(1)甲早出发 30 秒,乙出发时两人距离 75 米;(2)甲的速度是 2.5 米/秒,甲从A地跑到B地共需 600 秒;(3)乙出发 150 秒时追上了甲;(4)甲出发 420或552 秒时,两人相距120米.【分析】(1)根据图象解答即可;(2)根据题意和图象中的数据即可求出甲的速度,进而求出甲从A地跑到B地共需要的时间;(3)根据题意可知,当y=0时,乙追上甲,由图象可得出结果;(4)根据题意列方程解答即可.【解答】解:(1)由图象可知,甲早出发30秒,乙出发时两人距离75米;故答案为:30;75.(2)根据题意得,甲的速度为:75÷30=2.5米/秒,1500÷2.5=600(秒).即甲从A地跑到B地共需600秒.故答案为:2.5;600.(3)180﹣30=150(秒),∴乙出发150秒时追上了甲.故答案为:150;(4)设甲出发x秒时,两人相距120米,根据题意得:3(x﹣30)﹣2.5x=120或2.5x=1500﹣120,解得x=420或552.即甲出发420秒或552秒时,两人相距120米.故答案为:420或552.【点评】本题考查函数图象的应用,解答本题的关键是明确题意,利用数形结合的思想和时间﹣距离图象进行解答.七.动点问题的函数图象(共3小题)20.小明在一个半圆形的花园的周边散步,如图1,小明从圆心O出发,按图中箭头所示的方向,依次匀速走完下列三条线路:(1)线段OA;(2)半圆弧AB;(3)线段BO后,回到出发点.小明离出发点的距离S(小明所在位置与O点之间线段的长度)与时间t之间的图象如图2所示,请据图回答下列问题(圆周率π的值取3):(1)请直接写出:花园的半径是 100 米,小明的速度是 50 米/分,a= 8 ;(2)若沿途只有一处小明遇到了一位同学停下来交谈了2分钟,并且小明在遇到同学的前后,始终保持速度不变,请你求出:①小明遇到同学的地方离出发点的距离;②小明返回起点O的时间.【分析】(1)由t在2﹣a变化时,S不变可知,半径为100米,速度为50米/分,再求出在半圆上的运动时间即可;(2)①由(1)根据图象,第11分时,小明继续行走,则小明之前行走9分,可求出已经行走路北,用全程路程减去已走路程即可;②可求全程时间为500用时10分钟,再加上停留2分钟即可.【解答】解:(1)由图象可知,花园半径为100米,小明速度为100÷2=50米/分,半圆弧长为100π=300米,则a=2+=8故答案为:100,50,8.(2)①由已知,第11分时小明继续前进,则行进时间为9分钟,路程为450米全程长100+300+100=500米,则小明离出发点距离为50米;②小明返回起点O的时间为分【点评】本题为动点问题的函数图象探究题,考查了通过函数图象探究图象代表的实际意义,运用数形结合的数学思想.21.如图①所示,在△ABC中,AD是三角形的高,且AD=6cm,E是一个动点,由B向C移动,其速度与时间的变化关系如图②所示,已知BC=8cm(1)由图②,E点运动的时间为 2 s,速度为 3 cm/s(2)求当E点在运动过程中△ABE的面积y与运动时间x之间的关系式;(3)当E点停止后,求△ABE的面积.【分析】(1)根据图象解答即可;(2)根据三角形的面积公式,可得答案;(3)根据三角形的面积公式,可得答案.【解答】解:(1)根据题意和图象,可得E点运动的时间为2s,速度为3cm/s.故答案为:2;3;(2)根据题意得y=×BE×AD==9x,即y=9x(0<x≤2);(3)当x=2时,y=9×2=18.故△ABE的面积为18cm2.【点评】本题主要考查了动点问题的函数图象,涉及求函数解析式,求函数值问题,能读懂函数图象是解决问题的关键.22.已知动点P以2cm/s的速度沿图1所示的边框从B﹣C﹣D﹣E﹣F﹣A的路径运动,记△ABP的面积为S (cm2),S与运动时间t(s)的关系如图2所示,若AB=6cm,请回答下列问题:(1)图1中BC= 8 cm,CD= 4 cm,DE= 6 cm(2)求出图1中边框所围成图形的面积;(3)求图2中m、n的值;(4)分别求出当点P在线段BC和DE上运动时S与t的关系式,并写出t的取值范围.【分析】(1)因为点P速度为2,所以根据右侧的时间可以求出线段BC,CD和DE的长度.(2)对多边形采取切割的方法求面积,将多边形切割为两个长方形即可.(3)m代表的是点P在C时对应图形面积,n代表的是点P运动到A时对应的时间,由图象都可以求出.(4)表示出点P到AB的水平距离作为高,以AB为底求出面积.【解答】解:(1)由右侧图象可知,点P在BC线段运动4秒,BC=8,点P在CD线段运动2秒,CD =4cm,点P在DE线段运动3秒,DE=6cm,(2)∵AB=6cm,CD=4cm,∴EF=2cm,∴图形的面积可以看作是两个长方形面积之和6×8+6×2=60(cm2)(3)当点P到C时,△ABP的面积为24(cm2)∴m=24BC+CD+DE+EF+AF=34cm∴n=34×=17cm(4)当点P在BC上运动时0≤t≤4S==6t(cm2)当点P在DE上运动时6≤t≤9S==6t﹣12(cm2)【点评】本题考查了数形结合的数学思维,通过图象找出对应图形的线段长度,很好的考查了学生分析问题和看图的能力.八.一次函数的定义(共2小题)23.已知函数y=(m+1)x2﹣|m|+4,y是x的一次函数,则m的值是( )A.1B.﹣1C.1或﹣1D.任意实数【分析】根据一次函数的定义:形如y=kx+b(k,b为常数且k≠0),可得2﹣|m|=1且m+1≠0,然后进行计算即可解答.【解答】解:由题意得:2﹣|m|=1且m+1≠0,∴m=±1且m≠﹣1,∴m=1,故选:A.【点评】本题考查了一次函数的定义,熟练掌握一次函数的定义是解题的关键.24.已知函数y=(m﹣2)+1是一次函数,则m的值为( )A.±B.C.±2D.﹣2【分析】根据一次函数的定义,自变量的次数为1列方程求出m的值,再根据比例系数k≠0求解得到m ≠2,从而得解.【解答】解:由题意得,m2﹣3=1且m﹣2≠0,解得m=±2且m≠2,所以m=﹣2.故选:D.【点评】本题主要考查了一次函数的定义,一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1.九.正比例函数的定义(共2小题)25.若y关于x的函数y=(a﹣2)x+b是正比例函数,则a,b应满足的条件是( )A.a≠2B.b=0C.a=2且b=0D.a≠2且b=0【分析】直接利用正比例函数的定义分析求出答案.【解答】解:∵y=(a﹣2)x+b是y关于x的正比例函数,∴b=0,a﹣2≠0,解得:b=0,a≠2.故选:D.【点评】此题主要考查了正比例函数的定义,正确把握正比例函数一般形式是解题关键.26.若函数y=(k﹣2)x+2k+1是正比例函数,则k的值是( )A.k≠2B.k=2C.k=﹣D.k=﹣2【分析】根据正比例函数的定义得出k﹣2≠0且2k+1=0,再求出k即可.【解答】解:∵函数y=(k﹣2)x+2k+1是正比例函数,∴k﹣2≠0且2k+1=0,解得:k=﹣,故选:C.【点评】本题考查了正比例函数的定义,能熟记正比例函数的定义是解此题的关键,注意:形如y=kx+b (k、b为常数,k≠0)的函数,叫一次函数,当b=0时,函数y=kx+b叫正比例函数.一十.一次函数的图象(共3小题)27.在平面直角坐标系中,已知m为常数,且m≠2,m≠3,则关于x的一次函数y=(m﹣3)x+4﹣2m 与y=(4﹣2m)x+m﹣3的图象可能是( )A.B.C.D.【分析】根据一次函数的图象和性质判断即可.【解答】解:当m﹣3>0,4﹣2m<0时,一次函数y=(m﹣3)x+4﹣2m图象都过第一、三、四象限,y=(4﹣2m)x+m﹣3的图象过第一、二、四象限,无选项符合题意;当m﹣3<0,4﹣2m<0时,一次函数y=(m﹣3)x+4﹣2m与y=(4﹣2m)x+m﹣3的图象都过第二、三、四象限,选项D符合题意;当m﹣3<0,4﹣2m>0时,一次函数y=(m﹣3)x+4﹣2m图象都过第一、二、四象限,y=(4﹣2m)x+m﹣3的图象过第一、三、四象限,无选项符合题意.故选:D.【点评】本题考查了一次函数图象:一次函数y=kx+b(k、b为常数,k≠0)是一条直线,当k>0,图象经过第一、三象限,y随x的增大而增大;当k<0,图象经过第二、四象限,y随x的增大而减小;图象与y轴的交点坐标为(0,b).28.在同一平面直角坐标系中,一次函数y=kx+b(k≠0)与y=bx﹣k(b≠0)的大致图象可以是( )A.B.C.D.【分析】根据一次函数经过的象限与系数的关系进行求解即可.【解答】解;当k>0,b>0时,一次函数y=kx+b经过第一、二、三象限,一次函数y=bx﹣k经过第一、三、四象限;当k>0,b<0时,一次函数y=kx+b经过第一、三、四象限,一次函数y=bx﹣k经过第二、三、四象限;当k<0,b>0时,一次函数y=kx+b经过第一、二、四象限,一次函数y=bx﹣k经过第一、二、三象限;当k<0,b<0时,一次函数y=kx+b经过第二、三、四象限,一次函数y=bx﹣k经过第一、二、四象限;∴四个选项只有C符合题意.故选:C.【点评】本题主要考查了一次函数图象与系数的关系,熟知对于一次函数y=kx+b,当k>0,b>0时,一次函数y=kx+b经过第一、二、三象限,当k>0,b<0时,一次函数y=kx+b经过第一、三、四象限,当k<0,b>0时,一次函数y=kx+b经过第一、二、四象限,当k<0,b<0时,一次函数y=kx+b经过第二、三、四象限是解题的关键.29.在同一平面直角坐标系中,一次函数y=ax+a2与y=a2x+a的图象可能是( )A.B.C.D.【分析】利用一次函数的性质进行判断.【解答】解:∵y=ax+a2与y=a2x+a,∴x=1时,两函数的值都是a2+a,∴两直线的交点的横坐标为1,若a>0,则一次函数y=ax+a2与y=a2x+a都是增函数,且都交y轴的正半轴,图象都经过第一、二、三象限;若a<0,则一次函数y=ax+a2经过第一、二、四象限,y=a2x+a经过第一、三、四象限,且两直线的交点的横坐标为1;故选:D.【点评】此题主要考查了一次函数的图象性质,要掌握它的性质才能灵活解题.一次函数y=kx+b的图象有四种情况:①当k>0,b>0时,函数y=kx+b的图象经过第一、二、三象限;②当k>0,b<0时,函数y=kx+b的图象经过第一、三、四象限;③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限;④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限.一十一.一次函数的性质(共4小题)30.若一次函数y=(a﹣2)x﹣b的图象中y值随x值的增大而增大,则a的值可以是( )A.4B.2C.﹣2D.﹣6【分析】由一次函数y=(a﹣2)x﹣b的图象中y值随x值的增大而增大,可得出a﹣2>0,解之即可得出a的取值范围,再对照四个选项即可得出结论.【解答】解:∵一次函数y=(a﹣2)x﹣b的图象中y值随x值的增大而增大,∴a﹣2>0,∴a>2.故选:A.【点评】本题考查了一次函数的性质,牢记“k>0,y随x的增大而增大;k<0,y随x的增大而减小”是解题的关键.31.若点A(﹣3,a)和点B(4,b)都在直线y=﹣2x+m上,则a与b的大小关系是( )A.a>b B.a<bC.a=b D.与m的值有关【分析】由k=﹣2<0,利用一次函数的性质可得出y随x的增大而减小,结合﹣3<4,即可求出a>b.【解答】解:∵k=﹣2<0,∴y随x的增大而减小,又∵点A(﹣3,a)和点B(4,b)都在直线y=﹣2x+m上,且﹣3<4,∴a>b.故选:A.【点评】本题考查了一次函数的性质,牢记“k>0,y随x的增大而增大;k<0,y随x的增大而减小”是解题的关键.32.直线y=﹣3x+2图象不经过下列哪个象限( )A.第一象限B.第二象限C.第三象限D.第四象限【分析】先根据一次函数的解析式判断出k、b的符号,再根据一次函数的性质进行解答即可.【解答】解:∵解析式y=﹣3x+2中,k=﹣3<0,b=2>0,∴图象过第一、二、四象限,∴图象不经过第三象限.故选:C.【点评】本题考查的是一次函数的性质,即一次函数y=kx+b(k≠0)中,当k<0时,函数图象经过第二、四象限,当b>0时,函数图象与y轴相交于正半轴.33.若a、b为实数,且,则直线y=ax+b不经过的象限是( )A.第一象限B.第二象限C.第三象限D.第四象限【分析】依据,即可得到a=,b=﹣5,进而得到直线y=x﹣5不经过的象限.【解答】解:∵,∴,解得a=,∴b=﹣5,∴直线y=x﹣5经过第一,三,四象限,∴不经过的象限是第二象限,故选:B.【点评】本题主要考查了一次函数的性质,解决问题的关键是掌握二次根式中被开方数的取值范围:二次根式中的被开方数是非负数.一十二.一次函数图象与系数的关系(共2小题)34.已知正比例函数y=(2m+1)x,y随x的增大而减小,则m的取值范围是( )A.m>﹣B.m C.m D.m【分析】根据正比例函数图象与系数的关系列出关于m的不等式2m+1<0,然后解不等式即可.【解答】解:∵正比例函数y=(2m+1)x中,y的值随自变量x的值增大而减小,∴2m+1<0,解得m<﹣,故选:B.【点评】本题主要考查正比例函数图象在坐标平面内的位置与k的关系.解答本题注意理解:直线y=kx 所在的位置与k的符号有直接的关系.k>0时,直线必经过一、三象限,y随x的增大而增大;k<0时,直线必经过二、四象限,y随x的增大而减小.35.两条直线y=ax+b与y=bx+a在同一直角坐标系中的图象位置可能是( )A.B.C.D.【分析】根据一次函数的图象与系数的关系,逐一判断即可解答.【解答】解:A、当经过第一、二、三象限的直线为y=ax+b,则a>0,b>0,∴直线y=bx+a应该经过第一、二、三象限,故A不符合题意;B、当经过第一、三、四象限的直线为y=ax+b,则a>0,b<0,∴直线y=bx+a应该经过第一、二、四象限,故B符合题意;C、当经过第一、二、三象限的直线为y=ax+b,则a>0,b>0,∴直线y=bx+a应该经过第一、二、三象限,故C不符合题意;D、当经过第一、三、四象限的直线为y=ax+b,则a>0,b<0,∴直线y=bx+a应该经过第一、二、四象限,故D不符合题意;故选:B.【点评】本题考查了一次函数的图象与系数,熟练掌握一次函数的图象与系数的关系是解题的关键.一十三.一次函数图象上点的坐标特征(共2小题)36.一次函数y=2x+3的图象与y轴的交点是( )A.(2,3)B.(0,2)C.(0,3)D.(﹣,0)【分析】代入x=0,求出y值,进而可得出一次函数y=2x+3的图象与y轴的交点坐标.【解答】解:当x=0时,y=2×0+3=3,∴一次函数y=2x+3的图象与y轴的交点是(0,3).故选:C.【点评】本题考查了一次函数图象上点的坐标特征,牢记“直线上任意一点的坐标都满足函数关系式y=kx+b”是解题的关键.37.若点(﹣3,y1)、(2,y2)都在函数y=﹣4x+b的图象上,则y1与y2的大小关系( )。

专题 一次函数-2023年中考数学第一轮总复习课件(全国通用)

专题 一次函数-2023年中考数学第一轮总复习课件(全国通用)

一次函数
知识梳理
强化 训练
当堂训练
一次函数的图象与性质
查漏补缺
1.直线y=kx+b满足kb>0,且y随x的增大而减小,则此函数的图象不经过( C )
A.第四象限 B.第三象限 C.第一象限 D.第二象限
2.一次函数y=kx-1的图象经过点P,且y的值随x值的增大而增大,则点P的坐
标可以为( C ) A.(-5,3)
①k1x+b1=0 ②k2x+b2=1 ③k1x+b1=k2x+b2
x=2 x=3 x=3
y D(0,4) y1=k1x+b1
A(3,1)
④k1x+b1≤-2 ⑤k2x+b2<4 ⑥k1x+b1>k2x+b2
x≤0 x>0 x>3
E(4,0)
O B(2,0)
x
C(0,-2) y2=k2x+b2
典例精讲 一次函数与方程(不等式) 知识点三
【例3】(1)如图,一次函数y=ax+b的图象与x轴交于点(2,0),与y轴相交于
点(0,4),结合图象可知,关于x的方程ax+b=0的解是_x_=_2__.
y
解:∵一次函数y=ax+b的图象与x轴相交于点(2,0), ∴关于x的方程ax+b=0的解是x=2.
4 y=ax+b
O2 x
01 一次函数的图象及性质
把两组对应值(自变量与函数的对应值)代入解析式,得到关 于系数k,b的二元一次方程组;
步骤 解 解二元一次方程组,求出系数k,b的值;
还原 将求得的待定系数的值代入y=kx+b.
已知两点坐标确定函数解析式 常见 已知两组函数对应值确定函数解析式 类型 经过直线与平移规律确定函数解析式.

一次函数的全章复习课件

一次函数的全章复习课件

例如,速度、加速度和时间的关系,重力 等。
一次函数在工程学中的应用
例如,机械运动、流体力学等。
一次函数在日常生活中的应用
例如,时间与速度的关系、距离与速度的 关系等。
一次函数在数学问题中的应用
一次函数在代数问题中的应用
例如,解一元一次方程、一元一次不等式等。
一次函数在几何问题中的应用
例如,求直线方程、求两点之间的距离等。
解得 k = 3, b = -2。所以解析式 为 y = 3x - 2。
THANKS
感谢观看

对于一次函数,解析式可以用来 表示 $k$ 和 $b$ 的值,进而确
定函数的图像和性质。
通过解析式可以计算出任意自变 量 $x$ 对应的函数值 $y$。
解析式与函数图像的关系
解析式是绘制函数图像的基础。 通过解析式可以确定函数的开口方向、顶点坐标和对称轴等特性。
解析式与函数图像的对应关系是一一对应的,即一个解析式对应一个确定的图像。
y = 3x - 2
答案
解答题
题目
已知一次函数 y = kx + b,当 x = 1 时,y = -2;当 x = -1 时,y = 4。 求 k 和 b 的值。
答案
k = -3, b = 1
选择题解析
01
02
03
04
对于选项A,y = 2x,是一次 函数也是正比例函数,不符合
题意。
对于选项B,y = 3 - 5x,是 一次函数但不是正比例函数,
虽然一次函数在微积分中不是主要研 究对象,但其在导数和积分中的应用 仍不可忽视。
一次函数与三角函数
三角函数可以看作是周期性的一次函 数,两者在图像和性质上有许多相似 之处。

一次函数经典例题20题

一次函数经典例题20题

一次函数经典例题20题(最新版)目录1.题目概述2.一次函数的基本概念3.一次函数的性质4.例题解析5.总结正文一次函数经典例题 20 题一次函数是数学中的基本概念之一,它在各个领域的数学问题中都有广泛的应用。

本文将通过 20 个经典例题,介绍一次函数的基本概念和性质,并解析如何解决一次函数的题目。

一、一次函数的基本概念一次函数是指形如 y=ax+b 的函数,其中 a 和 b 是常数,且 a 不等于 0。

在这个函数中,x 的次数为 1,因此称为一次函数。

其中,y 表示函数的输出,x 表示函数的输入,a 表示斜率,b 表示截距。

二、一次函数的性质1.斜率斜率是指函数图像在坐标系中的倾斜程度。

在一次函数 y=ax+b 中,斜率 a 表示函数图像的倾斜程度。

当 a>0 时,函数图像是向上倾斜的;当 a<0 时,函数图像是向下倾斜的。

2.截距截距是指函数图像与坐标轴的交点。

在一次函数 y=ax+b 中,截距 b表示函数图像与 y 轴的交点。

当 b>0 时,函数图像与 y 轴的交点在 y 轴的正半轴上;当 b<0 时,函数图像与 y 轴的交点在 y 轴的负半轴上。

3.函数的单调性一次函数的单调性是指函数值随着自变量的增大或减小而单调增加或单调减少的性质。

当斜率 a>0 时,函数图像是向上倾斜的,函数值随着 x 的增大而单调增加;当斜率 a<0 时,函数图像是向下倾斜的,函数值随着 x 的增大而单调减少。

三、例题解析以下是 20 个一次函数的经典例题及其解析:1.已知函数 y=2x+3,求当 x=2 时的函数值。

解:将 x=2 代入函数 y=2x+3 中,得到 y=2×2+3=7。

2.已知函数 y=-x+7,求当 x=5 时的函数值。

解:将 x=5 代入函数 y=-x+7 中,得到 y=-5+7=2。

3.已知函数 y=3x-2,求函数的斜率。

解:函数的斜率是 3。

一次函数专题复习ppt课件

一次函数专题复习ppt课件
y=0时
y=kx+b
方程kx+b=0直线 与的y 1k1
x
b1
y k b 交点 x
2
2
2
y=kx+b
y>0时
y<0时
方程 组
y k b 1
x
1
1 的解
y 2
k
2
x
b2
kx+b>0
kx+b<0
已知y=(m-2)x-(m-4)是y关于x的一次函数。 (1)求m的取值范围
(2) 若2<m<4,函数图像经过哪几个象限?
本节课你学会了哪些方法? 学会了哪些知识?
1、(2015•陕西)设正比例函数y=mx的图像经过点A(m, 4),且y随x的增大而减小,则m=() A、2 B、-2 C、4 D、-4 2、(2016•陕西)已知一次函数y=kx+5和y= x+7,假设k>0,
<0,则这两个一次函数图像交点在() A、第一象限 B、第二象限 C、第三象限 D、第四象限
(6) 若此函数图像经过点(2,5),请画出此一次
函数图像,根据图像回答下列问题:
y
① 求出一次函数与两坐标轴的交点;
② 不解方程求出(m-2)x-(m-4)=0时方
程的解;
③ 求不等式(m-2)x-(m-4)>-1的解;
O
x
④ 求出图像与两坐标轴围成的面积。
(7)一次函数y=kx+b与(6)中一次函数交点坐标为(1, y),与y轴交点坐标为(0,4)
5、(2016•陕西)昨天早晨7点,小明乘车从家出发,去西安参加中学生科 技创新大赛,赛后,他当天按原路返回,如图,是小明昨天出行的过程中, 他距西安的距离y(千米)与他离家的时间x(时)之间的函数图象. 根据下面图象,回答下列问题: (1)求线段AB所表示的函数关系式; (2)已知昨天下午3点时,小明距西安112千米,求他何时到家?

一次函数知识点及分类练习题(绝对经典全面)

一次函数知识点及分类练习题(绝对经典全面)

一次函数知识点及分类练习题一、一次函数的定义1.若函数y=(k+1)x+k2-1是正比例函数,则k的值为()A. 0B. ﹣1C. ±1D. 12.若函数是一次函数,则m的值为( )A. B. -1 C. 1 D. 23.下列函数:①y= x,②y=2x-1,③ ,④y=-x中,是一次函数的有( )A. 4个B. 3个C. 2个D. 1个4.已知函数y=(k-1)x+k2-1,当k________时,它是一次函数,当k________时,它是正比例函数.二、一次函数的性质5.已知一次函数. 若随的增大而增大,则的取值范围是()A. B. C. D.6.已知一次函数的图象经过第二、三、四象限,则的取值范围在数轴上表示为(). A. B.C. D.7.已知(-1,y1),(1.8,y2),(- , y3)是直线y = -3x + m (m 为常数)上的三个点,则y1,y2,y3的大小关系是( )A. y3>y1>y2B. y1>y3>y2C. y1>y2>y3D. y3>y2>y18.下列图象中,哪个是一次函数的大致图象()A. B. C. D.9.在一次函数y=kx+2中,若y随x的增大而增大,则k________0.(填“>”或“<”),它的图象不经过第________象限.10.若点P(-3,),Q(2,)在一次函数的图象上,则与的大小关系是________三、一次函数图像的平移11.直线y=2x+2向下平移4个单位后与x轴的交点坐标是()A. (0,1)B. (0,-1)C. (-1,0)D. (1,0)12、一次函数的图像先向下平移5个单位后再向右平移4个单位,其函数关系式为13、一次函数能过平移后变为y=-5x+6,其平移过程是14.将一次函数y=﹣2x﹣1的图象沿y轴向上平移3个单位后,得到的图象对应的函数关系式为________.四、一次函数的求值15.若点A(2,-3)、B(4,3)、C(5,a)在同一条直线上,则a的值是( )A. 6或-6B. 6C. -6D. 6或316.下列哪一个点在直线y=-2x-5上()A. (2,-1)B. (3,1)C. (-2,1)D. (-1,-3)17.当x=-1时,一次函数y=kx+3的值为5,则k的值为________ .18.一次函数y=﹣2x+6的图象与x轴交点坐标是________,与y轴交点坐标是________.19.在一次函数中,随的增大而________(填“增大”或“减小”),当时,y的最小值为________.20.在函数y=﹣3x+7中,如果自变量x大于2,那么函数值y的取值范围是________.五、一次函数的解析式21.已知一次函数的图象过点(3,5) 与(-4, -9),那么这个函数的解析式是________,则该函数的图象与轴交点的坐标为________.22.已知直线经过点﹙1,2﹚和点﹙3,0﹚,这条直线的解析式.23.已知y是x的一次函数,当x=3时,y=1;当x=﹣2时,y=﹣4,求此一次函数的解析式.六、一次函数与方程及不等式的关系24.如图,直线l1的解析式是y=2x-1,直线l2的解析式是y=x+1,则方程组的解是________.25.如图,直线与直线交于P ,则方程组的解是________.26.如图,直线y=x+b与直线y=kx+6交于点P(3,5),则关于x的不等式x+b>kx+6的解集是________.27.已知二元一次方程组的解是,直线y=2x与y=﹣3x+b的交点坐标是________.24题25题26题28.已知二元一次方程组的解是,直线y=2x与y=﹣3x+b的交点坐标是________.七、一次函数的应用29.一次函数y=x+4与坐标轴所围成的三角形的面积为________30、如图,直线y=﹣x+3与坐标轴分别交于点A、B,与直线y=x交于点C,线段OA上的点Q以每秒1个长度单位的速度从点O出发向点A作匀速运动,运动时间为t秒,连接CQ.若△OQC是等腰直角三角形,则t的值为________.31.一个一次函数的图象与直线y=﹣2x+1平行,且经过点(﹣2,﹣6),则这个一次函数的解析式为________.32.某养猪专业户利用一堵砖墙(长度足够)围成一个长方形猪栏,围猪栏的栅栏一共长40m ,设这个长方形的相邻两边的长分别为x (m)和y(m).(1)求y关于x的函数表达式和自变量的取值范围;(2)若长方形猪栏砖墙部分的长度为5m ,求自变量x 的取值范围.33.如图,直线y=kx+6(k≠0)与x轴,y轴分别交于点E,F,点E的坐标为(-8,0),点A 的坐标为(-6,0),点P(x,y)是线段EF上的一个动点(1)求k的值;(2)求点P在运动过程中△OPA的面积S与x的函数关系式,并写出自变量x的取值范围;(3)当△OPA的面积为9时,求点P的坐标.34.如图,在平面直角坐标系中,直线与轴交于点A,直线与轴交于点B,与直线y=2x+3交于点C(-1,n).(1)求n、k的值;(2)求△ABC的面积.。

一次函数的复习资料

一次函数的复习资料

一次函数的复习资料一次函数的复习资料一次函数是数学中的基础概念之一,也是初中数学中最早接触到的函数类型之一。

它的表达形式为y = ax + b,其中a和b是常数,x是自变量,y是因变量。

在这篇文章中,我们将以复习资料的形式,回顾一次函数的定义、性质和应用。

定义:一次函数是指函数的表达式中只包含一次幂的项,即x的最高次数为1。

它可以表示为y = ax + b的形式,其中a和b为常数。

一次函数的图像通常是一条直线,斜率a决定了直线的倾斜方向和程度,截距b决定了直线与y轴的交点。

性质:1. 斜率:一次函数的斜率表示了直线的倾斜程度。

斜率为正时,直线向右上方倾斜;斜率为负时,直线向右下方倾斜;斜率为零时,直线水平。

斜率的绝对值越大,直线的倾斜程度越大。

2. 截距:一次函数的截距表示了直线与y轴的交点。

当x=0时,直线与y轴的交点坐标为(0, b)。

截距可以为正、负或零,它决定了直线与y轴的位置关系。

3. 解析式:一次函数的解析式y = ax + b中,a称为一次函数的系数,b称为常数项。

系数a的绝对值决定了直线的斜率,常数项b决定了直线与y轴的交点。

应用:一次函数在实际生活中有广泛的应用。

以下是一些典型的应用场景:1. 直线运动:一次函数可以用来描述物体的直线运动。

例如,一个物体以恒定的速度匀速直线运动,其位移与时间的关系可以用一次函数来表示。

2. 成本与产量:在经济学中,一次函数可以用来描述成本与产量之间的关系。

成本通常包括固定成本和变动成本,其中固定成本可以看作是常数项,变动成本与产量成正比。

3. 温度变化:一次函数可以用来描述温度的变化规律。

例如,一个物体在一定时间内的温度变化可以用一次函数来表示,斜率表示了温度的变化速率。

4. 人口增长:一次函数可以用来描述人口的增长情况。

例如,一个城市每年的人口增长率可以看作是常数,通过一次函数可以推断未来的人口数量。

总结:一次函数是数学中的基础概念,它的定义、性质和应用都是我们需要掌握的知识点。

一次函数中考总复习原创课件

一次函数中考总复习原创课件

【考点3】求直线与坐标轴的交点,分类思想
【例3】过点A(2,0)的两条直线l1,l2分别交y轴于 点B,C,其中点B在原点上方,已知AB= (1)求点B的坐标; (2)若△ABC的面积为4,求直线l2的解析式.
解:(1)(3,0) (2)
【变式3】直线 与x轴、y轴分别交于A,B两点,C是OB的中点,D是直线AB上一动点,若BD=BC,求△OAD的面积.
2.直线y=ax+b过点A(0,2)和点B(-3,0),则方程ax+b=0的解是( ) A.x=2 B.x=0 C.x=-1 D. x=-3
4.如图,一次函数y=-x-2与y=2x+m的图象 相交于点P(n,-4),则关于x的不等 式2x+m>-x-2的解集为______________.
解:(1)(4,3) (2) 28
第三章 函数第11课 一次函数
1.一次函数y=kx+b(k≠0)的图象是经过(0,______)和(______,0)的一条直线,特别地,当b=0时,一次函数y=kx也叫正比例函数,它的图象是经过______的一条直线.

2.一次函数y=kx+b(k≠0)的图象、性质如下表:
b
原点
经典例题
【例1】已知一次函数的图象经过(0,6),(-1,4)两点.(1)求一次函数的解析式;(2)当-2<x<1时,求y的取值范围;(3)当-3≤x≤2时,求 y的最大值与最小值.
【考点1】待定系数法,一次函数的性质
解:(1)y=2x+6 (2)2<y<8 (3)最大值为10,最小值为0.
【变式1】已知一次函数的图象与正比例函数y=3x 的图象平行且经过点(1,-3). (1)求一次函数的解析式; (2)若这个一次函数的图象与两坐标轴分别交于A,B 两点,求线段AB的长度.

一次函数知识点汇总

一次函数知识点汇总

一次函数知识点汇总一、一次函数的概念。

1. 定义。

- 一般地,形如y = kx + b(k,b是常数,k≠0)的函数,叫做一次函数。

当b = 0时,y=kx(k为常数,k≠0),y = kx叫做正比例函数,它是一种特殊的一次函数。

2. 自变量的取值范围。

- 自变量x的取值范围是全体实数。

但在实际问题中,要根据具体情况确定自变量的取值范围。

例如,在计算长方形周长y = 2(x + 3)(设长为x,宽为3),x的取值范围是x>0。

二、一次函数的图象。

1. 图象的形状。

- 一次函数y = kx + b(k≠0)的图象是一条直线。

- 由于两点确定一条直线,所以画一次函数图象时,只要先描出两点,再连成直线即可。

通常选取(0,b)和(-(b)/(k),0)(k≠0)这两点。

2. 图象的性质。

- k的作用。

- 当k>0时,直线y = kx + b从左向右上升,y随x的增大而增大。

例如y = 2x+1,k = 2>0,当x = 1时,y=3;当x = 2时,y = 5,y随着x的增大而增大。

- 当k<0时,直线y = kx + b从左向右下降,y随x的增大而减小。

例如y=-3x + 2,k=-3<0,当x = 1时,y=-1;当x = 0时,y = 2,y随着x的增大而减小。

- b的作用。

- b是直线y = kx + b与y轴交点的纵坐标。

当b>0时,直线与y轴交于正半轴;例如y = x+3,b = 3,直线与y轴交于点(0,3)。

- 当b<0时,直线与y轴交于负半轴;例如y = 2x - 1,b=-1,直线与y轴交于点(0, - 1)。

- 当b = 0时,直线过原点,此时函数为正比例函数。

例如y = 3x,图象过原点(0,0)。

三、一次函数的解析式的确定。

1. 待定系数法。

- 一般步骤:- 设出含有待定系数的函数解析式,例如设一次函数解析式为y = kx + b。

- 把已知条件(自变量与函数的对应值)代入解析式,得到关于待定系数的方程(组)。

一次函数期末总复习资料

一次函数期末总复习资料

一次函数期末总复习资料第12章《一次函数》期末总复习资料(一)函数1、变量:在一个变化过程中可以取不同数值的量。

常量:在一个变化过程中只能取同一数值的量。

2、函数:一般的,在一个变化过程中,如果有两个变量x和,并且对于x在允许范围内的每一个值,都有唯一确定的值与其对应,那么我们就把x称为自变量,把称为因变量,是x的函数。

*判断是否为X的函数,只要看X取值确定的时候,是否有唯一确定的值与之对应3、自变量取值范围:一般的,一个函数的自变量允许取值的范围,叫做这个函数的定义域。

4、确定函数自变量取值范围的方法:(1)关系式为整式时,函数定义域为全体实数;(2)关系式含有分式时,分式的分母不等于零;(3)关系式含有二次根式时,被开放方数大于等于零;(4)关系式中含有指数为零的式子时,底数不等于零;(5)实际问题中,函数定义域还要和实际情况相符合,使之有意义。

5、函数的解析式:用含有表示自变量的字母的代数式表示因变量的式子叫做函数的解析式6、函数的图像一般来说,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象.7、描点法画函数图形的一般步骤第一步:列表(表中给出一些自变量的值及其对应的函数值);第二步:描点(在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点);第三步:连线(按照横坐标由小到大的顺序把所描出的各点用平滑曲线连接起来)。

8、函数的表示方法列表法:一目了然,使用起来方便,但列出的对应值是有限的,不易看出自变量与函数之间的对应规律。

解析式法:简单明了,能够准确地反映整个变化过程中自变量与函数之间的相依关系,但有些实际问题中的函数关系,不能用解析式表示。

图象法:形象直观,但只能近似地表达两个变量之间的函数关系。

(二)一次函数1、一次函数的定义一般地,形如=x+b(是常数,≠0)的函数叫做一次函数,其中x 是自变量。

一次函数知识点汇总

一次函数知识点汇总

一次函数知识点汇总一次函数是数学中的重要概念,在解决实际问题和数学运算中都有着广泛的应用。

下面我们来详细梳理一下一次函数的相关知识点。

一、一次函数的定义一般地,形如$y = kx + b$($k$,$b$是常数,$k≠0$)的函数,叫做一次函数。

当$b = 0$时,即$y = kx$($k$为常数,$k≠0$),这时称$y$是$x$的正比例函数。

二、一次函数的图像一次函数$y = kx + b$($k≠0$)的图像是一条直线。

当$k>0$时,直线从左到右上升;当$k<0$时,直线从左到右下降。

$b$的值决定了直线与$y$轴的交点位置。

当$b>0$时,直线与$y$轴交于正半轴;当$b<0$时,直线与$y$轴交于负半轴;当$b =0$时,直线经过原点。

例如,函数$y = 2x + 1$,$k = 2 > 0$,直线从左到右上升,$b = 1 > 0$,直线与$y$轴交于正半轴。

三、一次函数的性质1、当$k>0$时,$y$随$x$的增大而增大;当$k<0$时,$y$随$x$的增大而减小。

2、直线$y = kx + b$($k≠0$)与$x$轴的交点坐标为$(\frac{b}{k}, 0)$。

四、求一次函数解析式的方法通常使用待定系数法来求一次函数的解析式。

步骤如下:1、设出一次函数的解析式$y = kx + b$。

2、根据已知条件列出关于$k$,$b$的方程组。

3、解方程组,求出$k$,$b$的值。

4、将$k$,$b$的值代入解析式,得到一次函数的表达式。

例如,已知一次函数的图像经过点$(1, 3)$和$(-2, -3)$,设该一次函数的解析式为$y = kx + b$,将两点坐标代入可得:$\begin{cases}k + b = 3 \\-2k + b =-3\end{cases}$解这个方程组,得到$k = 2$,$b = 1$,所以该一次函数的解析式为$y = 2x + 1$。

第12章一次函数期末复习一次函数的图象及其性质课件

第12章一次函数期末复习一次函数的图象及其性质课件
一条 直线 .特别地,正比例函数y=kx(k≠0)的图象 是一条过 原点 的直线.
复习要点 3.正比例函数y =kx的图象及其性质
当k>0时,y随着x的增大而增大;图象经过第三、一象限.
当k<0时,y随着x的增大而减小;图象经过第二、四象限.
y
y
y=kx
O
x
y=kx
O
x
复习要点
4.一次函数y=kx+b与正比例函数y=kx图象的关系
A.y=-2x+3
B.y=-2+3x
C.y=-3x-2
D.y=3-2x
4.一次函数y=mx+|m-1|的图象过点(0,2),且y
随x的增大而增大,则m=( B ).
A.-1 B.3 C.1 D.-1或3
练习巩固
5.点A(4,m) ,B(4.7,n)都在直线y=2.3x-5上,则
m与n之间的关系是( B ).
Ox
∴ m+1=-1<0
A.
B.
y
即k<0
y
∵ m<-2 ∴-m>2
O x∴ 1-m>1 +2>0
C.
即b>0
Ox
D.
10.直线y=kx+2与y=2x+k在同一坐标系内的
大致图象是( D ).
y
k>0
k<0
O
x
y k>0
k<0
O
x
A. y k<0 k>0
O
x
B.
y k<0 k<0
b>0
O
x
C.
D.
y
y=kx+b y=kx
O
x
y=kx+b
复习要点 8.用待定系数法求一次函数解析式一般步骤: (1)先设出一次函数解析式为y=kx+b; (2)将已知两点的坐标代入所设的解析式,建立

一次函数复习资料 基础知识

一次函数复习资料 基础知识

一次函数复习资料——基础知识一、确定自变量的取值范围:①、使函数关系式有意义 ,常见的形式:x1(x ≠0) x (x ≧0)x1(x >0)(这里的x 可以代表多项式),若解析式是由以上多种形式组合时,应让各部分都有意义,在求它们的公共部分。

②、使实际问题有意义,例如长度不能是负数,笔的枝数要取正整数等等。

1.函数11-=x y 中,自变量x 的取值范围是 . 2函数2-=x y 中,自变量x 的取值范围是 .3、函数y =x 的取值范围是 4、函数y =x 的取值范围是_________。

5. 函数2x x4y --=中,自变量x 的取值范围是________. 二、根据题意列函数关系式①书写格式:因变量=含有自变量的代数式 ② 如果题中要求写自变量的取值范围,注意使实际问题有意义。

③列完关系式,若要求值,书写格式:当x= 时,y= 。

当y= 时,x= 。

6、用x 和y 表示等腰三角形的顶角和底角的度数, y 与x 之间的函数解析式为 ,x 的取值范围7、用10米长的绳子围长方形,设长方形的长为x 米,面积为s 米2,写出s 与x 的函数关系式 x 的取值范围8、用10米长的绳子围三角形,设三角形的腰长为x 米,底边长为y 米,写出y 与x 的函数关系式 x 的取值范围9.小明将1000元存入银行,年利率为2%,利息税为20%,那么x 年后的本息和y (元)与年数x 的函数关系式是 ________ .10、某礼堂共有25排座位,第一排有20个座位,后面每一排都比前一排多1个座位,写出每排的座位数m 与这排的牌数n 的函数关系式 _____并写出x 的取值范围11 市场上一种豆子每千克售2元,即单价是2元/千克,豆子总的售价y (元)与所售豆子的数量x kg 之间的关系为_______,当售出豆子5kg 时,豆子总售价为______元;当售出豆子10kg 时,豆子总售价为______元. 12.已知等式24x y +=,则y 关于x 的函数关系式为________________. 三、一次函数(自变量x 的次数是一次)①形如y=kx+b (k ,b 为常数,k ≠0)的函数叫一次函数;(图像是一条直线)特别的当b=0时,y=kx (k 为常数,k ≠0)叫正比例函数(图像是一条经过原点的直线) ②k 影响图像的上升、下降k>0时,y 随x 的增大而增大(图像从左向右上升),图像必过一、三象限 k<0时,y 随x 的增大而减小(图像从左向右下降),图像必过二、四象限③b 影响图像与y 轴交点的位置,图像必过(0,b)点 (当b=0时,过(0,0)原点) b>0时,与y 轴交点在y 轴正半轴;b<0时, 与y 轴交点在y 轴负半轴④图像的平移:上+下—(直接+—在解析式后面) 左+右—(直接+—在x 的后面) ⑤画函数图象四步:列表、描点、连线、写解析式13、若23y x b =+-是正比例函数,则b 的值是14、若函数y= -2x m+2 +n-2的图像是过原点的直线,则m 的值是 ,n 的值为________。

专题09 一次函数的定义、图象和性质压轴题九种模型全攻略(解析版)

专题09 一次函数的定义、图象和性质压轴题九种模型全攻略(解析版)

专题09一次函数的定义、图象和性质压轴题九种模型全攻略【考点导航】目录【典型例题】 (1)【考点一判别是否一次函数】 (1)【考点二根据一次函数的定义求参数的值】 (3)【考点三画一次函数的图象】 (4)【考点四一次函数的图象和性质】 (9)【考点五根据一次函数经过的象限求参数问题】 (11)【考点六根据一次函数的增减性求参数问题】 (12)【考点七一次函数的图象与坐标轴的交点问题】 (14)【考点八两个一次函数图象共存问题】 (15)【考点九一次函数中的规律探究问题】 (17)【过关检测】 (20)【典型例题】【考点一判别是否一次函数】【变式训练】【考点二根据一次函数的定义求参数的值】【变式训练】【考点三画一次函数的图象】(1)请在所给的平面直角坐标系中画出该函数的图象.(2)结合所画图象,分别求出在函数图象上满足下列条件的点的坐标:①横坐标是4-;②和x轴的距离是2个单位长度.【答案】(1)见解析(2)①横坐标是4-的点是()45-,;②和x轴的距离是;(2)解:①当4x =-时,()143232y =-⨯-+=+=∴横坐标是4-的点是()45-,;② 和x 轴的距离是2个单位长度,2y ∴=或=2y -,当2y =时,1322x -+=,解得:2x =,此时点的坐标为1【变式训练】1.(2023上·福建漳州·八年级福建省漳州第一中学校考阶段练习)已知,一次函数24y x =-+的图像分别与x 轴,y 轴交于点A ,B .(1)请直接写出,A B 两点坐标:A :__________(2)在直角坐标系中画出函数图象(不用列表,直接描点、连线)(3)点P 是一次函数24y x =-+上一动点,则【答案】(1)()()2,0,0,4(2)见解析(3)455【分析】本题考查了一次函数的图象,一次函数与坐标轴交点问题,勾股定理.(3)解:如图所示,当OP 与一次函数此时,1122ABO S OA OB AB OP =⋅=⋅ 2,4OA OB == ,2225AB OA OB ∴=+=,11242522OP ∴⨯⨯=⨯,455OP ∴=,故答案为:45.(2)设直线与x 轴交于点A ,与y 轴交于点B ,求出AOB (3)直线AB 上是否存在一点C (C 与B 不重合),使AOC 存在,请说明理由.【答案】(1)图象见解析,2x <(2)4(3)存在,点C 的坐标为()2,8-或()68-,【分析】本题考查了一次函数图象上点的坐标特征、一次函数的图象以及一次函数的性质,利用一次函数图象上点的坐标特征,求出点A ,B 的坐标并画出函数图象是解题的关键.(1)利用一次函数图象上点的坐标特征,描点、连线,即可画出一次函数的图象,观察函数图象,即可得由图象可知:当2x <时,0y >.故答案为:2x <;(2)解:∵点A 的坐标为()2,0,点B 的坐标为(0,∴2OA =,4OB =,AOB 的面积为1124422OA OB =⨯⨯= ;(3)存在点C ,使AOC 的面积等于8,理由如下:设点C 的纵坐标为a ,根据题意可得:1282a ⨯⨯=,解得:8a =±,【考点四一次函数的图象和性质】例题:(2023上·广东深圳·八年级校考期中)下列关于函数32y x =+的结论中,错误的是()A .图象经过点()1,1--B .点()11,A x y ,()22,B x y 在该函数图象上,若12x x >,则12y y >C .将函数图象向下平移2个单位长度后,经过点()0,1D .图象不经过第四象限【答案】C【分析】本题考查的是一次函数的性质,一次函数图象的平移,根据一次函数图象上点的坐标特点可判断A ,根据一次函数的增减性可判断B ,根据一次函数图象的平移可判断C ,根据一次函数系数与经过的象限的关系可判断D ,熟记一次函数的性质是解本题的关键.【详解】解:A 、当=1x -时,32321y x =+=-+=-,故图象经过点(1,1)--,故本选项正确,不合题意;B 、 函数32y x =+中,30k =>,y ∴随x 的增大而增大,∵12x x >,12y y ∴>,故本选项正确,不合题意;C 、根据平移的规律,函数32y x =+的图象向下平移2个单位长度得解析式为3y x =,所以当0x =时,0y =,则图象经过点()0,0,故本选项错误,符合题意;D 、32y x =+,30k =>,20b =>,函数经过第一,二,三象限,不经过第四象限,故本选项正确,不符合题意.故选:C .【变式训练】1.(2023下·广西南宁·八年级校考阶段练习)对于一次函数2y x =+,下列说法正确的是()A .图象不经过第三象限B .当2x >时,4y <C .图象由直线y x =向上平移2个单位长度得到D .图象与x 轴交于点()2,0【答案】C【分析】根据一次函数的图象与性质即可解答.【详解】解:∵一次函数解析式为2y x =+,∴图象经过第一、二、三象限,故A 不符合题意;当2x >时,224y >+=,故B 不符合题意;直线y x =向上平移2个单位得到的新解析式为2y x =+,故C 符合题意;对于2y x =+,令0y =,则2x =-,∴图象与x 轴交于点()2,0-,故D 不符合题意.故选C .【点睛】本题考查一次函数的图象与性质.熟练掌握一次函数的图象与性质是解题关键.2.(2023上·安徽六安·八年级校考阶段练习)一次函数24y x =-+,下列结论错误..的是()A .若两点A (11,x y ),B (22,x y )在该函数图象上,且12x x <,则12y y >B .函数的图象不经过第三象限C .函数的图象向下平移4个单位长度得到2y x =-的图象D .函数的图象与x 轴的交点坐标是()04,【答案】D【分析】分别根据一次函数的性质及函数图象平移的法则进行解答即可.【详解】A 、因为一次函数24y x =-+中20k =-<,因此函数值随x 的增大而减小,故A 选项正确;B 、因为一次函数24y x =-+中20k =-<,40b =>,因此此函数的图象经过一、二、四象限,不经过第三象限,故B 选项正确;C 、由“上加下减”的原则可知,函数的图象向下平移4个单位长度得2y x =-的图象,故C 选项正确;D 、令0y =,则2x =,因此函数的图象与x 轴的交点坐标是()2,0,故D 选项错误.故选:D .【点睛】本题考查的是一次函数的性质及一次函数的图象与几何变换,熟知一次函数的性质及函数图象平移的法则是解答此题的关键.【考点五根据一次函数经过的象限求参数问题】【变式训练】【考点六根据一次函数的增减性求参数问题】【分析】本题考查一次函数的性质,根据y 随x 的增大而减小,则0m <,据此写出m 的值即可,答案不唯一.解题的关键是掌握:一次函数()0y kx b k =+≠中,若0k >,则y 随x 的增大而增大;若0k <,则y 随x 的增大而减小,反过来也成立.【详解】解:∵在一次函数5y mx =+中,y 随x 的增大而减小,∴0m <,不妨设1m =-,∴m 的值可以是1-.故答案为:1-.【变式训练】故答案为:01k ≤<.【考点七一次函数的图象与坐标轴的交点问题】【变式训练】【考点八两个一次函数图象共存问题】例题:(2023上·陕西西安·八年级统考期末)直线y kx k =-+与直线y kx =在同一坐标系中的大致图象可能是图中()A .B .C .D .【答案】B【分析】本题考查了根据一次函数解析式判断其经过的象限,对于一次函数y kx b =+,当0k >时,图象必过一、三象限;当0k <时,图象必过二、四象限;当0b >时,图象必过一、二象限;当0b <时,图象必过三、四象限;熟记相关结论即可求解.【详解】解:若0k >,则0k -<,此时直线y kx k =-+经过一、二、四象限;直线y kx =经过一、三象限;无此种情况的选项;若0k <,则0k ->,此时直线y kx k =-+经过一、三、四象限;直线y kx =经过二、四象限;选项B 符合题意;故选:B 【变式训练】.B .C .D .【答案】B【分析】本题考查一次函数的图像,根据函数图像所在象限可判断出k ,b 的取值范围.一次函数y =图像的性质:当0k >,b >时,图像经过一、二、三象限;当0k >,0b <时,图像经过一、三、四象限;.B .C .D .【答案】A【分析】本题考查了一次函数的图象与性质;根据一次函数图象的升降及直线与y 轴交点的位置即可确定m 、n 的符号,从而确定mn 的符号,再与正比例函数的一次项系数mn 的符号比较.【详解】解:A 、由一次函数图象知,00m n <>,,则0mn <,由正比例函数图象知,0mn <,故正确;B 、由一次函数图象知,00m n <>,,则0mn <,由正比例函数图象知,0mn >,矛盾,故不正确;C 、由一次函数图象知,00m n >>,,则0mn >,由正比例函数图象知,0mn <,矛盾,故不正确;D 、由一次函数图象知,00m n ><,,则0mn <,由正比例函数图象知,0mn >,矛盾,故不正确;故选:A .【考点九一次函数中的规律探究问题】【答案】()1,1(20232【分析】本题考查了勾股定理,到点B 1的坐标,然后利用等腰直角三角形的性质得到点得到点Bn 的坐标.【详解】解:∵12OB =,点【答案】6527,44⎛⎫⎪⎝⎭1232n n --【分析】本题考查等腰直角三角形的性质,一次函数的应用,规律型问题等知识.分别求出4C ,……,探究规律,利用规律解决问题即可.【详解】解:当=1x -时,()141133y =⨯-+=,【答案】()202320222,2【分析】先根据一次函数方程式求出律便可求出点2023C 的坐标.【详解】解:直线y x =,点1A 坐标为()10,,过点1A 作x 轴的垂线交直线于点1B ,可知1B 点的坐标为()11,;∴以11A B 为边作正方形1112A B C A ,则11121A B A A ==,∴2112OA =+=,点2A 的坐标为()20,,1C 的坐标为()21,,根据这种方法可求得2B 的坐标为()22,,故点3A 的坐标为()40,,2C 的坐标为()42,,以此类推便可求出点n C 的坐标为()122n n -,,∴点2023C 的坐标为()202320222,2.故答案为:()202320222,2.【点睛】本题主要考查了一次函数的应用,做题时要注意数形结合思想的运用,是各地的中考热点,学生在平常要多加训练,属于中档题.【过关检测】一、单选题1.(2024上·福建三明·八年级统考期末)在下列函数中,正比例函数是()A .21y x =-B .21y x =-+C .2y x=D .221y x =+【答案】C【分析】本题考查正比例函数的识别.熟练掌握正比例函数的定义,是解题的关键.根据正比例函数的定义:形如()0y kx k =≠,这样的函数叫做正比例函数,进行判断即可.【详解】解:A 、21y x =-,是一次函数,不是正比例函数;B 、21y x =-+,是一次函数,不是正比例函数;C 、2y x =,是正比例函数;...D.【分析】本题主要考查了正比例函数图像与一次函数图像,解题关键是运用分类讨论的思想分析问题.分k>时,分析两函数图像经过的象限;两种情况讨论:当0②当0k <时,正比例函数y kx =的图像过原点、且过第二、四象限,而一次函数y x k =-的图像经过第一、二、三象限,选项D 符合.故选:D .二、填空题【答案】20232【分析】本题考查了一次函数图象上点的坐标特征以及规律型.根据一次函数图象上点的坐标特征结合正方形的性质,可得出点11A B 、的坐标,同理可得出234A A A 、、、…的坐标,进而得到234B B B 、、、…的横坐标,根据点的坐标变化可找出变化规律,依此规律即可得出结论.【详解】解:当0y =时,有10x -=,解得:1x =,∴点1A 的坐标为()10,.∵四边形111A B C O 为正方形,∴点1B 的坐标为11(,).同理,可得出:()221A ,,()343A ,,()487A ,,…,∴2B 的横坐标为2,3B 的横坐标为4,4B 的横坐标为8,…,∴n B 的横坐标为12n -(n 为正整数),∴点2024B 的横坐标是20232.故答案为:20232.三、解答题【答案】(1)4-,2(2)点()3,1A 不在该函数的图象上,理由见解析【分析】(1)分别将0x =,0y =代入函数解析式中,求出与之对应的y ,x 的值,再描点,连线,即可画出函数图象;(2)将3x =代入函数解析式中,求出对应的y 值,再与1y =进行比较即可得出结论.【详解】(1)解:当0x =时,2044y =⨯-=-,当0y =时,240x -=,解得:2x =,画出函数图象,如图所示,故答案为:4-,2;(2)解:点()3,1A 不在该函数的图象上,理由如下:(1)求点C的坐标;(2)求AOB的面积;(3)点D在直线122y x=+上且在点【答案】(1)()2,3△的面积;(1)求点A、点B、点C的坐标,并求出COB(2)在y轴右侧有一动直线平行于y轴,分别与l1,2l交于点MN=,请求出此时点N的坐标;①若线段 1.590GNQ GQN ∠+∠=︒ ,GQN ∠+MQH GNQ ∴∠=∠,NGQ QHM ∠=∠()AAS NGQ QHM ∴ ≌,GN QH ∴=,GQ HM =,即:132m m n ⎧=--⎪⎨,则MN QN =,即:132m m --解得:65m =,16123255N n y ==-⨯=;则MN QM =,即:132m --解得:65m =,65n m ==;。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

大大而而减小小;(2)m、n 分别为何值时,图像与 y 轴的交点在 x 轴下方方;(3)m、n 分别为何值
时,函数图像经过原点;(4)m=1,n=-2 时,求这个一一次函数的图像与两个坐标轴的交点。
解:
考点 3、一一次函数的图象
例例 5.(1)已知直线 y=kx+b,若 k+b=﹣5,kb=6,那么该直线不不经过( )
y O x
A (2)两个一一次函数
y O
x
(3) 已知一A一次函数
y
O x
y
O x
y O x
B 与
y O


,它们在同一一直⻆角坐标系中的图象可能是( )
y
y
x

x

x
,B其在直⻆角坐标系中的图象C大大体是( ) D
(4)在同一一坐标系内,如图所示,直线 L1∶ y=(k-2)x+k 和 L2∶ y=kx 的位置不不可能为 (
例例题精讲
考点 1.函数的概念 例例 1.下列列图象中,表示 y 是 x 的函数的个数有( )
A.1 个
B.2 个
C.3 个
考点 2.函数的表示法
D.4 个
例例 2.如图是广广州市某一一天内的气气温变化图, 根据图象,下列列说法中错误的是( ) A.这一一天中最高高气气温是 24℃ B.这一一天中最高高气气温与最低气气温的差为 16℃ C.这一一天中 2 时至至 14 时之间的气气温在逐渐升高高 D.这一一天中只有 14 时至至 24 时之间的气气温在逐渐降低
-5≠0。 ②要使函数是正比比例例函数,除了了满足足上述条件外,还需加上 m+1=0 这个条件。 解:
考点 2、过定点问题
例例 3.(1)若一一次函数
的图象过原点,则 的值为

(2)如果函数
的图象经过点
,则它经过 轴上的点的坐标为

(3)若正比比例例函数的图象经过点(-1,2),则这个图象必经过点(
单位而而得到;直线 y=-3x+2 可以由直线 y=-3x
经过
而而得到;直线 y=x+2 可以由直线 y=x-3 经过
而而得到。
求一一次函数解析式的专项练习
待定系数法是求解一一次函数表达式的基本方方法,但在一一些问题中,往往给出多样的条件 让你求解,体现了了函数表达式与其性质、图象以及其它相关知识的联系.下面面举例例说明之, 供参考. 考点 1、已知两点
例例题精讲
考点 1、概念题 例例 1. 下列列函数哪些是 y 关于 x 的一一次函数?哪些是 y 关于 x 的正比比例例函数?
分析:①判断一一个函数关系式是否是一一次函数或正比比例例函数,应紧扣定义。 ②无无论是正比比例例函数还是一一次函数的自自变量量和因变量量的指数只能为 1。 解:
例例 2.
例例函数,求 m 的值。 分析:①要使函数是一一次函数,根据一一次函数的定义,x 的指数 m2-24=1,且系数 m
例例 3.(1)已知一一次函数图象经过 A(-2,-3),B(1,3)两点. ①求这个一一次函数解析式. ②试判断点 P(-1,1)是否在这个一一次函数的图象上? 解:
(2)已知某个一一次函数的图像与 x 轴、y 轴的交点坐标分别是(-2,0)、(0,4),则这 个函数的解析式为_____________。


(5)如果点 P(a,b)关于 x 轴的对称点 p,在第三象限,那么直线 y=ax+b 的图像不不经过 ( )
A.第一一象
B.第二二象限
C.第三象限
D.第四象限
(6)已知一一次函数 y=(m-1)x+n+1 的图像不不经
过第三象限,求 m,n 的取值范围。
解:
例例 6 .( 1 ) . 下 列列 图 象 中 不不 可 能 是 一一 次 函 数 的图象的是( )
考点 5、图像平移
例例 10.(1)直线
ห้องสมุดไป่ตู้

的位置关系是
,直线
可以分别看作是直线

平移
个单位得到的;

平移
个单位得到的。
(2)将直线 y=-2x+3 向下平移 5 个单位,得到直线

(3)函数 y=kx-4 的图象平行行行于直线 y=-2x,求函数若直线
的解析式为

(4)直线 y=2x-3 可以由直线 y=2x 经过
(4)已知一一次函数 y=kx+b 的图象经过点(-1, -5),且与正比比例例函数 y= 1 x 的图象相交于点(2,a), 2
求(1)a 的值(2)k,b 的值(3)这两个函数图象与 x 轴所围成的三⻆角形面面积.
例例 9.(1).已知直线 y=2x-6 和直线 y=-2x+2,①求两条直线与 x 轴围成的三⻆角形的面面积;② 求两条直线与 y 轴围成的三⻆角形的面面积。
例例 10. (1)如图,已知直线 经过点
和点
,另一一条直
线 经过点 ,且与 轴相交于点
.若
的面面积为 3,
求 的值.
l1
(2)一一个一一次函数的图象经过点 A(-3,0),且和 y 轴相交于点 B,当函数图象与坐标轴围成 的三⻆角形面面积为 6 时,求点B的坐标.
(3)如图,在平面面直⻆角坐标系中,一一次函数 两点. ①求点A、B的坐标;
(2)已知直线 l1: y=2x-6 和直线 l2: y=kx+b 交于点(2,m),两直线与 x 轴围成的三⻆角形 的面面积 2,求直线 l2 的解析式.
(3)已知直线 l1: y=2x-6 与 x 轴、y 轴分别交于点 A、B,直线 l2: y=kx+b 过(2,-2)将△ABO 的面面积分为 2:7,求:直线 l2 的解析式.
的图象与x轴、y 轴分别交于A、B
②点 C 在 y 轴上,当
时,求点 C 的坐标.
(4)已知直线
经过点 M(2,1),且与 x 轴交于点 A,与 y 轴交于点 B.
①求 k 的值; ②求 A、B 两点的坐标; ③过点 M 作直线 MP 与 y 轴交于点 P,且△MPB 的面面积为 2,求点 P 的 坐标.
解:
考点 2、已知一一点 例例 4.(1)已知一一次函数 的图像过点(2,-1),求这个函数的解析式。
解:
(2)已知直线 与直线 平行行行,
且经过(1,2)函数解析式为__

(3)直线
在 y 轴上的截距为 2,且经过点(1,-2),其解析式为
考点 3、已知图像 例例 5.⑴一一次函数的图像如图所示,则该函数的解析式为__________。
(2)求 x 的取值范围;
(3)求 y 的取值范围.
4.下列列函数中,自自变量量 x 的取值范围是 x ≥ 2 的是(

A.y=
B.y=
C.y=
D.y=
·
知识点
一一次函数的性质和图像
1. 理理解一一次函数和正比比例例函数的定义:
一一般地,如果 y=kx+b(k,b 是常数,k≠0),那么 y 叫做 x 的一一次函数。
A.第一一象限 B.第二二象限 C. 第三象限
D. 第四象限
(2)直线
经过一一、二二、三象限,则 0, 0,经过二二、三、四象限,
则有
0, 0,经过一一、二二、四象限,则有
0,
0.
(3)若直线
经过第二二、三、四象限,则 的取值范围是( )
A.
B.
(4)一一次函数
C.
D.
的图象经过一一、三、四象限,则 的取值范围
考点 6、交点及直线围成的面面积问题 例例 8. (1)已知直线 y=2x+b 与 x 轴、y 轴分别交于点 A、B,且△AOB 的面面积是 9,求 b 的 值.
(2)已知直线 y=kx-6 与 x 轴、y 轴分别交于点 A、B,且△AOB 的面面积是 9,求 k 的值.
(3)一一次函数 y=kx+b 的图象过点 A(3,0)且与两坐标轴围成的三⻆角形的面面积是 9,求该一一次 函数的解析式.
特别地,当一一次函数 y=kx+b 中 b 为 0 时,y=kx(k 为常数,k≠0),这时,y 叫做 x
的正比比例例函数。
强调指出:
①一一次函数的解析式为 y=kx+b(b 为常数,k≠0)。
②正比比例例函数的解析式为 y=kx(k 为常数,k≠0)。
③正比比例例函数与一一次函数的关系是:正比比例例函数是一一次函数的特例例,一一次函数包含正比比
考点 3.求自自变量量的取值范围
例例 3.(2014•上海海)函数 y= 的自自变量量的取值 范围是

例例 4.(2014 四川省内江市)在函数
中,自自变量量 x 的取值范围是
.
例例 5.等腰△ABC 周⻓长为 10cm,底边 BC ⻓长为 ycm,腰 AB ⻓长为 xcm.
(1)写出 y 与 x 的函数关系式;
)
考点 4、一一次函数的性质
例例 7.(1)已知一一次函数 y=(1﹣m)x+m﹣2,当 m
时,y 随 x 的增大大而而增大大.
(2)已知点 A(-4, a),B(-2,b)都在一一次函数 y= x+k(k 为常数)的图像上,则 a 与 b 的大大小小
关系是 a____b(填”<””=”或”>”) (3)已知一一次函数 y=(1-2m)x+m-1,若函数 y 随 x 的增大大而而减
(1)正比比例例函数 y=kx 的性质:
当 k>0 时,y 随 x 的增大大而而增大大;
当 k<0 时,y 随 x 的增大大而而减小小。
(2)一一次函数的性质:
当 k>0 时,y 随 x 的增大大而而增大大;
当 k<0 时,y 随 x 的增大大而而减小小。
相关文档
最新文档