管式换热器设计
列管式换热器设计步骤

列管式换热器设计步骤1.确定换热要求:首先确定需要处理的流体类型、温度、流量和所需的换热效率。
这些参数将指导后续设计过程。
2.选择适当的管壳材料:根据流体的特性和工作温度范围,选择合适的材料来制造管壳,确保其耐腐蚀性和耐高温性。
3.确定热负荷和传热系数:计算需要传递的热负荷,并根据传热系数的公式计算出换热器所需的传热面积。
4.确定流体模式和换热方式:根据流体的性质和流量,确定流体在换热器中的流动模式(并行流、逆流或交叉流)。
此外,还需要确定热量传递的方式(对流、辐射或对流辐射耦合)。
5.确定管束布局:根据热负荷和流体流量,确定管束的布局和排列方式。
典型的布局包括单排管束、多排管束、螺旋管束等。
6.计算管壳侧传热系数:根据流体模式和管壳的几何形状,通过经验公式或计算方法计算出管壳侧的传热系数。
7.设计管束:根据换热器的尺寸和传热面积,设计合适的管束。
这涉及到确定管道的直径、长度和布局,以及管板的尺寸和孔眼的布置。
8.选择适当的传热介质:根据流体类型和工况要求,选择合适的传热介质,例如水、蒸汽、空气或其他流体。
根据传热介质的性质,确定其流速和温度范围。
9.设计支承和固定方式:确定适当的支承和固定方式,以确保换热器的稳定性和可靠性。
这包括支架的设计、支柱的安装和管束的固定方法。
10.进行热力学分析:通过进行热力学分析,确定换热过程中的压力损失和流体流速。
这将有助于确定流体的流动行为和整个热交换系统的性能。
11.进行结构强度分析:进行结构强度分析,确保换热器能够承受压力和温度的影响,并满足相关的安全标准和规范。
12.完善设计并制作图纸:根据上述步骤和计算结果,对列管式换热器的设计进行改进和完善,并制作相应的图纸和技术文件。
13.进行设备加工和制造:根据设计图纸,进行设备的加工和制造。
这包括制作管子、管板、支管、支撑件等组件,并对其进行加工和组装。
14.进行设备安装与调试:将制造好的换热器安装到系统中,并进行相关的调试和测试,以确保其正常运行。
列管式换热器的设计与计算

列管式换热器的设计与计算设计步骤如下:第一步:确定换热器的需求首先需要明确换热器的设计参数,包括流体的性质、流量、进出口温度、压力等。
这些参数将在后续的计算中使用。
第二步:选择合适的换热器型号根据设计参数和换热需求,选择合适的列管式换热器型号。
常见的型号包括固定管板式、弹性管板式、钢套铜管式等。
第三步:计算表面积根据流体的热传导计算表面积。
换热器的表面积是根据热传导定律计算得到的,公式为:Q=U×A×ΔT,其中Q为换热量,U为传热系数,A为表面积,ΔT为温差。
根据这个公式,可以计算出所需的表面积。
第四步:确定管子数量和尺寸根据所需的表面积和型号,确定换热器中管子的数量和尺寸。
根据流体的流速和换热需求,计算出每根管子的长度和直径。
第五步:确定管板和管夹的尺寸根据管子的尺寸,确定管板和管夹的尺寸。
管板和管夹是固定管子的重要部分,负责把管子固定在换热器中,保证流体的正常流动。
第六步:确定换热器的材质和厚度根据流体的性质和工作条件,确定换热器的材质和厚度。
常见的材质有不锈钢、碳钢、铜等。
通过计算流体的温度、压力和腐蚀性等参数,选择合适的材质和厚度。
第七步:校核换热器的强度对换热器的强度进行校核。
根据国家相关标准和规范,对换热器的强度进行计算和验证,确保其能够承受工作条件下的压力和温度。
第八步:制定施工方案和图纸根据设计结果,制定换热器的施工方案和详细图纸。
包括换热器的总体布置,管子的连接方式,焊接和安装步骤等。
上述是列管式换热器的设计步骤,下面将介绍列管式换热器的计算方法。
首先,需要计算流体的传热系数。
传热系数的计算包括对流传热系数和管内传热系数两部分。
对于对流传热系数,可以使用已有的经验公式或经验图表进行估算。
对于管内传热系数,可以使用流体的性质和流速等参数进行计算。
其次,根据传热系数和管子的尺寸,计算管子的传热面积。
管子的传热面积可以根据管子的长度和直径进行计算。
然后,根据热传导定律,计算换热器的传热量。
列管式换热器设计

列管式换热器设计列管式换热器是一种常见的换热设备,广泛应用于化工、石油、制药等行业中。
本文将从列管式换热器的设计原理、设计步骤和设计考虑因素三个方面进行详细介绍。
一、设计原理列管式换热器是通过管内的换热流体和管外的换热流体之间的换热传递来实现热量的传递。
它的基本原理是利用换热流体在管内和管外的对流,通过管壁的传导传热作用,使热量从高温流体传递给低温流体。
二、设计步骤1.确定换热器的使用条件:包括换热流体的性质、入口温度、出口温度等。
2.确定换热器的换热面积:根据换热流体的热负荷和传热系数来计算所需的换热面积。
3.选择管子的尺寸和材料:根据换热流体的性质和流量来选择合适的管子尺寸和材料。
4.确定管子的数量和布置方式:根据换热面积和换热流体的流量来确定管子的数量和布置方式,一般采用多行多列的方式。
5.设计管束的尺寸:根据换热面积和管子的数量来确定管束的尺寸,包括管束的直径、长度和布置方式等。
6.计算换热器的传热系数:根据换热面积、流体的性质和传热方式来计算换热器的传热系数。
7.计算换热器的压降:根据流体的流量、管束的阻力和流体的性质来计算换热器的压降。
8.进行换热器的热力学计算:包括换热器的热力学效率、有效传热面积和温差效益等。
三、设计考虑因素1.热负荷:根据换热流体的热负荷来确定换热器的换热面积和管子的数量。
2.材料选择:根据换热流体的性质和工艺要求来选择合适的材料,包括管子的材料和管壳的材料。
3.温度差:根据换热流体的温度差来确定管束的数量和换热器的传热系数。
4.流体压降:根据流体的流量和管束的阻力来计算换热器的压降,并确定合适的管束布置方式和管束的尺寸。
5.清洗和维护:考虑到换热器的清洗和维护,要选择易于清洗和维护的结构设计。
综上所述,列管式换热器的设计是一个复杂的工程,需要考虑多个因素。
设计者需要根据具体的使用条件和要求来确定换热器的换热面积、管子的尺寸和材料、管束的数量和布置方式等。
同时,还需要计算换热器的传热系数、压降和热力学参数等。
列管式换热器的设计

物性数据ρ2=879 kg/m3
CP2=1.813 kJ/kg·K
μ2=4.4×10-4N·S/m2
λ2= =1.384×10-4kW/m·K
2、水蒸汽(下标1表示)的物性数据
定性温度 蒸汽压力200Kpa下的沸点为Ts=119.6℃
物性数据ρ1=1.1273 kg/m3
γ1=2206.4 kJ/kg
蒸汽体积流量V=Gν=0.564×0.903=0.510 m3/s
取蒸汽流速u’=20 m/s
=0.180m=180mm
选用无缝热轧钢管(YB231-64)Φ194×6mm,长200mm。
3、冷凝水排出口
选用水煤气管 即Φ42.25×3.25mm,长100mm。
(七)、校核流体压力降
1、管程总压力降
1、列管式换热器是目前化工生产中应用最广泛的一种换热器,它的结构简单、坚固、容易制造、材料范围广泛,处理能力可以很大,适应性强。但在传热效率、设备紧凑性、单位传热面积的金属消耗量等方面还稍次于其他板式换热器。此次设计所采用的固定管板式换热器是其中最简单的一种。
2、由于水蒸汽的对流传热系数比苯侧的对流传热系数大得多,根据壁温总是趋近于对流传热系数较大的一侧流体的温度实际情况,壁温与流体温度相差无几,因此本次设计不采用热补偿装置。
实际管数n=NT-NTb-n3=169-23=146根,每程73根排列管
实际流速
m/s
与初假设苯的流速u’2=0.55m/s相近,可行。
3、换热器长径比
符合要求( )
(五)、校核计算
1、校核总传热系数K值
(1)管内对流传热系数α2
W/m2·℃
(2)管外对流传热系数α1
式中:n为水平管束垂直列上的管数,n=7;
化工原理课程设计---列管式换热器的设计

化工原理课程设计---列管式换热器的设计列管式换热器是一种常用的换热器类型,其结构简单、传热效率高、维修方便等优点使其在工业生产中得到广泛应用。
该换热器由多个平行排列的管子组成,热流体和冷流体分别流过管内外,通过管壁传递热量,实现热量交换。
根据不同的流体流动方式,列管式换热器又可分为纵向流式和横向流式两种形式。
其中,横向流式换热器传热效率更高,但结构较为复杂,维修难度较大,因此在实际应用中需要根据具体情况进行选择。
浮头式换热器的特点是管板和壳体之间没有固定连接,只有一个浮头,管束和浮头相连。
浮头可以在壳体内自由移动,以适应管子和壳体的热膨胀。
这种结构适用于温差较大或壳程压力较高的情况。
但是,由于管束和浮头的连接是松散的,因此需要注意防止泄漏。
U型管式换热器:U型管式换热器的管子呈U形,两端分别焊接在管板上,形成一个U型管束。
壳体内的流体从一端进入,从另一端流出,管内的流体也是如此。
这种结构适用于流体腐蚀性较强的情况,因为管子可以很容易地更换。
多管程换热器:多管程换热器是将管束分成多个组,每组管子单独连接到管板上,形成多个管程。
这种结构可以提高传热效率,但也会增加流体阻力。
因此,需要根据具体情况来选择多管程的数量。
总之,列管式换热器是一种广泛应用于化工及酒精生产的换热器。
不同的结构适用于不同的工艺条件,需要根据具体情况来选择合适的换热器。
在使用过程中,需要注意保养和维护,及时清洗和更换损坏的部件,以保证换热器的正常运行。
换热器的一块管板与外壳用法兰连接,另一块管板不与外壳连接,这种结构称为浮头式换热器。
浮头式换热器的优点是管束可以拉出以便清洗,管束的膨胀不受壳体约束,因此在两种介质温差大的情况下,不会因管束与壳体的热膨胀量不同而产生温差应力。
但其缺点是结构复杂,造价高。
填料式换热器的管束一端可以自由膨胀,结构比浮头式简单,造价也较低。
但壳程内介质有外漏的可能,因此不应处理易挥发、易燃、易爆和有毒的介质。
列管式换热器设计方案和选用

列管式换热器设计方案和选用设计方案和选用列管式换热器导论:设计方案:1.确定换热器的工作条件:在进行列管式换热器的设计时,首先需要确定换热器的工作条件,包括工作介质的流量、温度、压力等参数。
这些参数将对换热器的尺寸和换热效率等性能产生影响。
2.选择合适的管束类型:列管式换热器一般由多个管子组成的管束和螺纹固定在两个壳体上的结构组成,因此需要选择合适的管束类型。
常用的管束类型有单管、单排管束、多排管束、隔室管束等。
选择合适的管束类型可以提高换热效率,并满足不同的换热要求。
3.确定换热面积和管束长度:换热器的性能主要取决于换热面积和管束长度。
根据工作条件和换热要求,确定合适的换热面积和管束长度。
一般来说,换热面积越大,换热效果越好,但是也会增加成本和体积。
4.确定流体流动方式和传热方式:列管式换热器的流体流动方式包括顺流、逆流和交叉流等,传热方式包括对流传热和辐射传热等。
根据换热要求和经济性,选择合适的流动方式和传热方式。
5.确定壳程流动分配方式:壳程流动分配方式包括平行流动和逆流动等。
在设计中,需要根据换热要求和经济性选择合适的流动分配方式。
选用:1.根据工艺要求选择合适的材料:列管式换热器的材料对于其耐用性和可靠性有着重要影响。
根据介质的性质和工艺要求,选择合适的材料,如不锈钢、碳钢、铜等。
2.确定换热器的维护和清洗方式:列管式换热器由于结构复杂,清洗和维护较为困难。
因此,在选用时需要考虑清洗和维护的方便性,选择易于清洗和维护的设计。
3.考虑能量利用率和经济性:在选用列管式换热器时,还需要考虑能量利用率和经济性。
换热器的能量利用率越高,所需热交换面积就越小,经济性就越好。
因此,选择高效能量利用的换热器是非常重要的。
4.参考其他用户的反馈和评价:在选用列管式换热器时,可以参考其他用户对于不同品牌和型号的反馈和评价。
这些反馈和评价可以提供有关换热器性能和可靠性的宝贵信息。
总结:列管式换热器的设计方案和选用需要考虑多个因素,包括工作条件、管束类型、换热面积、管束长度、流体流动方式、传热方式、壳程流动分配方式、材料选择、维护和清洗方式以及能量利用率和经济性等。
翅片管式换热器设计标准

翅片管式换热器设计标准
翅片管式换热器是一种常见的换热设备,广泛应用于化工、石油、电力、冶金
等行业。
其设计标准对于保证换热器的性能和安全具有重要意义。
本文将从设计标准的角度出发,对翅片管式换热器的设计要点进行详细介绍。
首先,翅片管式换热器的设计应符合国家相关标准,如《换热设备设计规范》GB 50661-2011等。
在设计过程中,应充分考虑换热器的工作条件、介质特性、换
热面积、流体流速等因素,确保设计符合标准要求。
其次,对于翅片管式换热器的翅片设计,应注意翅片的材质选择、形状结构、
间距等参数。
翅片的材质应具有良好的导热性能和耐腐蚀性能,常见的材质有铝合金、不锈钢等。
翅片的形状结构应合理设计,以增大传热面积,提高换热效率。
同时,翅片之间的间距也需经过合理计算,以确保介质在换热过程中的流体动力学性能。
另外,换热器管束的设计也是关键的一环。
管束的布置应符合流体介质的流动
特性,避免出现流阻过大、流动不均匀等问题。
管束的材质选择和尺寸设计也需要根据实际工况进行合理的选择,以确保管束在工作过程中具有良好的强度和稳定性。
此外,在翅片管式换热器的设计过程中,还需要考虑换热器的清洗和维护便利性。
合理的设计应考虑到换热器内部的结构,以便于清洗设备、维修设备等工作的进行,保证换热器的长期稳定运行。
总之,翅片管式换热器的设计标准涉及多个方面,需要综合考虑换热器的工作
条件、介质特性、材质选择、结构设计等因素。
只有严格按照设计标准进行设计,才能保证换热器具有良好的换热性能和安全稳定的运行。
U型管式换热器设计

U型管式换热器设计摘要本文介绍了U型管换热器的整体结构设计计算。
U型管换热器仅有一个管板,管子两端均固定于同一管板上,管子可以自由伸缩,无热应力,热补偿性能好;管程采用双管程,流程较长,流速较高,传热性能较好,承压能力强,管束可从壳体内抽出,便于检修和清洗,且结构简单,造价便宜。
U型管式换热器的主要结构包括管箱、筒体、封头、换热管、接管、折流板、防冲板和导流筒、防短路结构、支座及管壳程的其他附件等。
本次设计为二类压力容器,设计温度和设计压力都较高,因而设计要求高。
换热器采用双管程,不锈钢换热管制造。
设计中主要进行了换热器的结构设计,强度设计以及零部件的选型和工艺设计。
关键词:U型管换热器,结构,强度,设计计算U-TUBE HEAT EXCHANGER DESIGNABSTRACTThis paper introduces the U-tube heat exchanger design and calculation. U-tube heat exchanger has only one tube sheet, tubes are fixed at both ends of boards in the same tube, and tubes could telescopic freely, non-thermal stress, thermal performance and compensation; use of double-tube process, the process is longer, higher speed, better heat transfer performance, pressure capacity, and control can be extracted from the shell with easy maintenance and cleaning, and simple structure cost less. The main structure of U-tube heat exchanger, includes Equipment control, shell, head, exchanger tubes, nozzles, baffled, impingement baffle, guide shell, anti-short-circuit structure, support and other shell-tube accessories.This time I designed a second category pressure vessel, which has high design temperature and high design pressure. Thus the design demands are strict. It has dual heat exchanger tube, stainless steel heat exchanger manufacturers. I mainly carried out the design of heat exchanger structural design, strength of design and parts selection and process design.KEYWOEDS: U-tube heat exchanger, frame, intensity, design and calculation目录中文摘要.................................... 错误!未定义书签。
套管式换热器工程设计方案

套管式换热器工程设计方案一、项目背景套管式换热器是一种常用的换热设备,用于在工业生产中进行热量传递。
通过将两种流体进行交换,实现热量的传递和利用。
套管式换热器广泛应用于化工、石油、食品加工等领域,是确保工业生产过程中稳定运行的关键设备之一。
我公司接到一家化工厂的委托,需要设计一台新的套管式换热器,用于加工过程中的热力交换。
该换热器需要具有高效、稳定、安全的特点,能够满足化工厂在生产中的需求。
二、设计要求基于客户的需求和工艺要求,我们设计的套管式换热器需要具备以下特点:1. 高热效率:能够有效地进行热量传递,提高生产效率。
2. 耐腐蚀性:适应化工厂复杂的工艺流体,具有良好的耐腐蚀性能。
3. 易于维护:结构简单,易于清洗和维护,减少停机时间。
4. 安全可靠:具备完善的安全保护措施,保证设备的安全运行。
5. 节能环保:减少能源消耗,减少对环境的影响。
三、设计方案为了满足客户的需求,我们设计了一种新型的套管式换热器,具备高效、稳定、安全的特点。
1. 设计原理我们选用了传统的套管式换热器设计方案,根据热量传递的原理,将工艺流体和冷却介质分别流经两端管道,在换热管内外形成相对流动,实现热量传递。
同时,我们采用了壳程、管程两种流体分别流动,实现了两种流体的有效分离和换热。
2. 结构设计我们设计的套管式换热器采用了不锈钢材质制造,具有良好的耐腐蚀性能。
同时,我们采用了先进的螺旋管设计,增大了壳程和管程之间的流体接触面积,提高了热效率。
另外,我们在设计中增加了清洗通道,便于维护和清洗。
3. 安全保护为了保证设备的安全运行,我们在设计中增加了多种安全保护装置,包括压力传感器、温度传感器、流量传感器等,能够实时监测设备运行状态,并在发生异常时及时报警停机。
4. 节能环保我们在设计过程中考虑了能源消耗和环境影响,采用了高效的换热器管道布局设计,减少了能源消耗,并符合环保要求。
四、技术参数设计的套管式换热器技术参数如下:1. 设计流量:1000m³/h2. 设计压力:0.6MPa3. 设计温度:200℃4. 材质:不锈钢5. 清洗通道:有6. 安全保护装置:完善五、施工实施根据设计方案,我们将组织施工团队进行施工实施,包括材料采购、加工制造、设备安装等工作。
管式换热器设计计算

列管式换热器的设计计算1.流体流径的选择哪一种流体流经换热器的管程,哪一种流体流经壳程,下列各点可供选择时参考(以固定管板式换热器为例)(1) 不洁净和易结垢的流体宜走管内,以便于清洗管子。
(2) 腐蚀性的流体宜走管内,以免壳体和管子同时受腐蚀,而且管子也便于清洗和检修。
(3) 压强高的流体宜走管内,以免壳体受压。
(4) 饱和蒸气宜走管间,以便于及时排除冷凝液,且蒸气较洁净,冷凝传热系数与流速关系不大。
(5) 被冷却的流体宜走管间,可利用外壳向外的散热作用,以增强冷却效果。
(6) 需要提高流速以增大其对流传热系数的流体宜走管内,因管程流通面积常小于壳程,且可采用多管程以增大流速。
(7) 粘度大的液体或流量较小的流体,宜走管间,因流体在有折流挡板的壳程流动时,由于流速和流向的不断改变,在低Re(Re>100)下即可达到湍流,以提高对流传热系数。
在选择流体流径时,上述各点常不能同时兼顾,应视具体情况抓住主要矛盾,例如首先考虑流体的压强、防腐蚀及清洗等要求,然后再校核对流传热系数和压强降,以便作出较恰当的选择。
2. 流体流速的选择增加流体在换热器中的流速,将加大对流传热系数,减少污垢在管子表面上沉积的可能性,即降低了污垢热阻,使总传热系数增大,从而可减小换热器的传热面积。
但是流速增加,又使流体阻力增大,动力消耗就增多。
所以适宜的流速要通过经济衡算才能定出。
此外,在选择流速时,还需考虑结构上的要求。
例如,选择高的流速,使管子的数目减少,对一定的传热面积,不得不采用较长的管子或增加程数。
管子太长不易清洗,且一般管长都有一定的标准;单程变为多程使平均温度差下降。
这些也是选择流速时应予考虑的问题。
3. 流体两端温度的确定若换热器中冷、热流体的温度都由工艺条件所规定,就不存在确定流体两端温度的问题。
若其中一个流体仅已知进口温度,则出口温度应由设计者来确定。
例如用冷水冷却某热流体,冷水的进口温度可以根据当地的气温条件作出估计,而换热器出口的冷水温度,便需要根据经济衡算来决定。
列管式换热器课程设计

列管式换热器 课程设计一、课程目标知识目标:1. 让学生掌握列管式换热器的基本结构和工作原理,理解换热过程中的热量传递机制。
2. 使学生了解列管式换热器的类型、特点及应用场景,能够区分不同类型的换热器。
3. 引导学生掌握换热器设计的基本原则和步骤,学会运用相关公式计算换热器的传热系数和换热面积。
技能目标:1. 培养学生运用所学知识分析实际换热问题,具备解决换热器设计问题的能力。
2. 提高学生运用计算工具(如Excel、计算器等)进行换热器相关计算的速度和准确性。
3. 培养学生团队合作意识,提高沟通与协作能力,通过小组讨论、汇报等形式,共同完成换热器设计任务。
情感态度价值观目标:1. 培养学生对换热器设计及工程应用的兴趣,激发创新意识和探索精神。
2. 引导学生关注换热器在能源、环保等领域的重要性,培养节能环保意识和社会责任感。
3. 培养学生严谨、踏实的科学态度,养成认真负责的工作作风。
本课程针对高年级学生,结合学科特点和教学要求,将目标分解为具体的学习成果。
课程注重理论与实践相结合,以实际工程案例为载体,引导学生通过自主学习、小组合作等方式,掌握换热器设计的基本知识和技能。
在教学过程中,关注学生的个体差异,鼓励提问和讨论,以提高学生的思维能力和解决问题的能力。
通过本课程的学习,使学生能够具备独立设计换热器的能力,为未来从事相关工作打下坚实基础。
二、教学内容1. 列管式换热器的基本概念:介绍换热器的作用、分类及其在工业中的应用。
教材章节:第二章 换热器的基本概念与分类2. 列管式换热器的工作原理:讲解列管式换热器中的热量传递过程,包括对流传热和导热。
教材章节:第三章 列管式换热器的工作原理与热量传递3. 列管式换热器的设计原则与步骤:阐述换热器设计的基本原则,介绍设计步骤及注意事项。
教材章节:第四章 列管式换热器的设计原则与步骤4. 列管式换热器传热系数的计算:分析影响换热器传热系数的因素,介绍相关计算公式。
U型管式换热器设计

U型管式换热器设计
首先,U型管式换热器的结构设计要考虑到流体在管内的流动情况以及换热管的换热能力。
由于U型管式换热器采用U型管作为热交换管,其双管道设计可以使两种不同介质在管内同时进行换热。
因此,在设计U型管式换热器时要保证两种介质的流量分别在两个管道内均匀分布,并且流体之间不能相互混合。
为了实现这一目的,可以在管道内部加入隔板或者采用平行的管道。
其次,选择合适的换热管材料也是U型管式换热器设计中必不可少的一项工作。
换热管材料需要满足介质的特性以及工艺要求。
一般来说,常用的换热管材料包括不锈钢、碳钢、铜及铜合金等。
选择合适的换热管材料可以提高换热效率并且延长换热器的使用寿命。
另外,在U型管式换热器的热工计算中,需要考虑到换热面积、热载荷以及热媒等因素。
换热面积可以根据实际需要进行计算,一般使用单位面积的对流换热系数与换热器的换热面积进行乘积来计算总换热面积。
热载荷是指每小时热媒需要吸收或释放的热量,根据实际生产过程中的需求进行合理选取。
最后,根据热媒流体的特性确定热媒的出口温度和入口温度,进而计算出所需的冷却水量或者加热水量。
在设计U型管式换热器时还需要考虑到管壳两侧的介质流动阻力及换热媒体的温度降低。
为了降低介质流动阻力,可以合理设计进出口管道的位置,保证流体在管内的流动速度均匀,减小流动阻力。
同时,为了充分利用能量,减小换热媒体的温度降低,可以采用多级换热器或者增加管道长度来提高换热效果。
综上所述,U型管式换热器的设计需要综合考虑结构设计、换热管材料的选择以及热工计算等多个因素。
合理的设计可以提高换热效率,满足工业生产中的热交换需求。
列管式换热器课程设计

2、教Байду номын сангаас内容
1.列管式换热器的类型及适用场合;
2.热力学第一定律和第二定律在列管式换热器中的应用;
3.列管式换热器中常见流动及换热问题的解决方法;
4.列管式换热器设计过程中需考虑的安全、经济和环保因素;
5.结合实际案例,分析列管式换热器的设计过程及注意事项。
3、教学内容
1.列管式换热器内流体流动的压降与流速的关系;
2.传热过程中的对数平均温差计算及应用;
3.列管式换热器设计中常用的换热系数关联式和选取方法;
4.列管式换热器的设计软件应用及模拟分析;
5.实验教学:列管式换热器性能测试实验,包括数据采集、处理与分析。
4、教学内容
1.列管式换热器的制造工艺及其对换热性能的影响;
2.列管式换热器的安装、维护及常见故障排除方法;
3.列管式换热器在工业应用中的节能技术与案例分析;
4.列管式换热器设计方案的评估与优化,包括成本分析、效能比较;
5.列管式换热器课程设计报告撰写要求及评价标准。
5、教学内容
1.列管式换热器在环保和可持续发展方面的考虑;
2.列管式换热器设计中的创新思维与案例分析;
列管式换热器课程设计
一、教学内容
本章节内容源自《热工学》教材第四章“换热器”,重点探讨列管式换热器的课程设计。内容包括:
1.列管式换热器的基本结构和工作原理;
2.列管式换热器的设计计算方法,包括换热面积、流体流动及传热系数的计算;
3.列管式换热器中壳程和管程的流动与换热特点;
4.列管式换热器的选材和结构设计;
3.学生分组讨论:探讨不同行业对列管式换热器性能要求及设计差异;
化工原理课程设计列管式换热器

可用旳场合:
1)管程走清洁流体;
2)管程压力尤其高;
3)管壳程金属温差很大,固定管板换热器连设置膨胀节都无法 满足要求旳场合.
2、流动空间旳选择
3、流速旳拟定
4、流动方式旳选择
除逆流和并流之外,在列管式换热器中冷、 热流体还能够作多种多管程多壳程旳复杂 流动。当流量一定时,管程或壳程越多, 表面传热系数越大,对传热过程越有利。 但是,采用多管程或多壳程必造成流体阻 力损失,即输送流体旳动力费用增长。所 以,在决定换热器旳程数时,需权衡传热 和流体输送两方面旳损失。
5、流体出口温度旳拟定
若换热器中冷、热流体旳温度都由工艺条件所要求,则不存在 拟定流体两端温度旳问题。若其中一流体仅已知进口温度,则 出口温度应由设计者来拟定。例如用冷水冷却一热流体,冷水 旳进口温度可根据本地旳气温条件作出估计,而其出口温度则 可根据经济核实来拟定:为了节省冷水量,可使出口温度提升 某些,但是传热面积就需要增长;为了减小传热面积,则需要 增长冷水量。两者是相互矛盾旳。一般来说,水源丰富旳地域 选用较小旳温差,缺水地域选用较大旳温差。但是,工业冷却 用水旳出口温度一般不宜高于45℃,因为工业用水中所含旳部 分盐类(如CaCO3、CaSO4、 MgCO3和MgSO4等)旳溶解度 随温度升高而减小,如出口温度过高,盐类析出,将形成传热 性能很差旳污垢,而使传热过程恶化。假如是用加热介质加热 冷流体,可按一样旳原则选择加热介质旳出口温度。
取管长应根据出厂旳钢管长度合理截用。 我国生产系列原则中管长有1.5m,2m, 3m,4.5m,6m和9m六种,其中以3m和 6m更为普遍。同步,管子旳长度又应与管 径相适应,一般管长与管径之比,即L/D约 为4~6
u型管式换热器结构设计及温度控制

u型管式换热器结构设计及温度控制下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by the editor. I hope that after you download them, they can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, our shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!U型管式换热器是一种常见的换热设备,广泛应用于工业生产中的热交换过程。
翅片管式换热器设计标准

翅片管式换热器设计标准引言翅片管式换热器是一种常用的换热设备,广泛应用于工业生产和能源领域。
其设计标准的制定对于确保设备的性能和安全具有重要意义。
本文将介绍翅片管式换热器的设计标准,包括结构设计、材料选择、工艺要求等方面的内容。
结构设计翅片管式换热器主要由管束、固定器、进出口法兰、防腐层等组成。
在设计过程中,需要确定换热器的尺寸、翅片形状和布置、管束排列方式等结构参数。
尺寸设计换热器的尺寸设计是基于所需换热面积和流体流量来确定的。
在设计中,需要考虑流体的流动情况以及翅片和管束的热力学性能,以确保换热效果和运行安全。
翅片形状和布置翅片的形状和布置对于换热器的性能具有重要影响。
在设计过程中,翅片的材料、厚度、高度和间距等参数需要根据换热器的使用条件和流体的性质进行合理选择。
管束排列方式管束的排列方式可以影响流体的流动情况和热力学性能。
常见的管束排列方式有对流式、交叉式和平行式等。
在设计中,需要根据具体的换热要求和使用条件选择合适的排列方式。
材料选择翅片管式换热器的材料选择主要考虑其耐腐蚀性、导热性和强度等方面的要求。
常用的材料有不锈钢、铜、铝、钛等。
在选择材料时,需要根据实际情况综合考虑各项要求,并进行性能测试和评估。
工艺要求翅片管式换热器的制造和安装工艺对于设备的性能和安全同样重要。
在制造过程中,需要遵循相关的制造标准和规范,确保换热器的质量和可靠性。
制造标准和规范制造标准和规范是指导换热器制造和安装过程的依据,确保设备符合相关的技术要求和安全标准。
常用的制造标准和规范有GB/T2887、ASME VIII等。
检测和测试在换热器的制造和安装过程中,需要进行各项检测和测试,确保设备的性能和安全。
常见的检测和测试项目有材料检验、焊缝检测、压力试验等。
安装和调试换热器的安装和调试是保证设备正常运行的关键步骤。
在安装过程中,需要注意安装位置、固定方式、连接管道等方面的要求。
在调试过程中,需要进行温度和压力等参数的监测和调整,确保设备达到设计要求。
固定管板式换热器课程设计

固定管板式换热器课程设计
设计要求:
1.设计一台固定管板式换热器,工作流体为液体A和液体B,A的流量为1000m3/h,B的流量为800m3/h。
2.液体A的入口温度为120°C,出口温度为80°C;液体B的入口温度为50°C,出口温度为70°C。
3. 换热器的管子和板的材料为不锈钢,厚度为2 mm,管子直径为25 mm,板的间距为35 mm。
4.液体A和液体B之间的换热系数为1800W/(m2·°C)。
5.计算换热器的传热面积、换热面积密度和热负荷。
设计步骤:
1.确定换热器的传热面积:根据液体A和液体B的流量和温度差计算平均传热面积,公式为:
A=Q/(U×ΔΤ),其中Q为传热量,U为换热系数,ΔΤ为温度差。
Q=m×Cp×ΔΤ,其中m为质量流量,Cp为比热容,ΔΤ为温度差。
将上述公式代入第一公式中,即可得到传热面积A。
2.计算换热器的传热面积密度:换热面积密度为传热面积与设备有效体积的比值,公式为:
AD=A/V,其中V为设备有效体积。
3.计算换热器的热负荷:热负荷为单位面积的传热量,公式为:
Q/A。
4.优化设计:根据所得的热负荷和传热面积密度,结合实际需求和经验,对设计进行优化,调整管子和板的数量、尺寸等参数。
以上为固定管板式换热器的课程设计步骤,通过计算和优化设计,可以得到符合实际应用要求的换热器。
希望本设计能帮助你更好地理解和应用固定管板式换热器。
列管式换热器课程设计(含有CAD格式流程图和换热器图)

检查并调整图纸中的线条、颜色、字体等细节,确保图纸清晰易读, 符合规范要求。
关键节点参数设置与调整
设备参数设置
根据换热器、泵等设备的性能参 数,设置相应的CAD图纸中的属 性,如设备尺寸、处理能力、扬 程等。
管道参数调整
根据工艺流程需求和管道设计规 范,调整管道的直径、壁厚、材 质等参数,确保管道系统的安全 性和经济性。
阀门与控制点设置
在关键位置设置阀门以控制物料 流动,并根据控制需求设置相应 的控制点,如温度传感器、压力 传感器等。
流程图在课程设计中的作用
明确工艺流程
通过流程图可以清晰地展示物料在换热器中的流动过程, 帮助学生理解工艺流程和设备的相互关系。
指导设备布局与管道设计
流程图可以作为设备布局和管道设计的依据,有助于优化 设备布局和减少管道长度,提高系统的效率。
方式和换热器图纸中的局部结构。
建议措施
03
加强CAD制图技能的训练,提高图纸的准确性和规范
性。
经验教训分享与未来展望
经验教训
在课程设计过程中,应注重团队协作,合理分配任务,及时沟通交流,确保设计进度和 质量。
未来展望
随着CAD技术的不断发展,应积极探索新的设计理念和方法,提高课程设计的创新性 和实用性。同时,鼓励学生参与实际工程项目,将理论知识与实践相结合,提升综合素
流程图绘制步骤及规范
确定流程图的类型和范围
根据课程设计需求,明确要绘制的流程图类型(如工艺流程图、控制 流程图等)和所涵盖的范围。
绘制主要设备和管道
使用CAD软件中的绘图工具,按照比例和规范要求,绘制出换热器、 泵、阀门等主要设备以及连接它们的管道。
添加流向箭头和标注
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
管式换热器该怎么设计
换热器在化工生产中有非常关键的作用,因此换热器的选择与设计十分的有意义。
管式换热器设计的核心是计算换热器的传热面积,进而确定换热器的其他尺寸或选择换热器的型号。
管式换热器的基本参数包括:1、公称换热面积S N;2、公称直径D N;3、公称压力P N;
4、换热器管长度L;
5、换热管规格和排列;
6、管程数N P 。
例如型号为G800Ⅱ-1.0-110的管式换热器代表DN800mm、pn1.0MPa、两管程、换热面积为110m²的固定管板式换热器。
在设计管式换热器的时候应该考虑几个问题:
1、如何选择流体流径?不洁净和易结垢、腐蚀性、压力高的流体应该走管内;饱和蒸汽、被冷却的、粘度大或流量小的流体应走管间;有毒流体应走管内。
如果选择流体流径不能兼顾是,赢抓住主要矛盾。
例如首先考虑流体的压力,防腐蚀和清洗等要求,然后在校核对流传热系数和压力降。
做出最优的选择。
2、如何选择流体流速?增加流体在换热器中的流速,将加大对流传热系数,减少污垢在管子表面上沉积的可能,但是动力消耗变大,流动阻力变大。
因此,适宜的流速要进过经济衡算才能确定。
在选择流速是还需考虑结构上的要求。
如:选择高的流速,使管子的数目减少,对一定的传热面积,不得不采用较长的管子或增加程数。
管子太长不易清洗,且单程变多程使平均温度下降。
3、如何确定流体两端温度?加入用冷水冷却某热流体,冷却水的进口温度可以根据当地的气温条件作出估计,二换热器的出口的冷水温度就需要根据经济衡算来决定一般来说,设计时冷却水两端温度差可取5-10℃。
缺水地区选用较大的温度差,水源丰富地区选用较小的温度差。
4、怎么确定管子的规格和怎么排列?选择管径时,尽可能使流速高些,但不能超过规定的流速。
管长的选择以清洗方便及合理使用管材为原则。
管子在管板上的排列方法有等边三角形、正方形直列和正方形错列等。
当流体对流传热系数高,走短路时用等边三角形,流体易产生污垢时用正方形直列排列。
5、怎么确定管程和壳程数?为了提高管内流速,大多采用多管程结构有时候也把两个换热器串联使用
6、为什么要加入折流挡板?可以加大壳程流体的速度,使湍动程度加剧,以提高壳程对流传热系数。
7、怎么确定外壳直径?换人气壳体的内径应等于或稍大于管板的直径。
在确定管式换热器的要求后,在设计中赢尽量做到以下几点:1、增大传热系数。
在综合考虑流体阻力及不发生流体诱发振动的情况下,尽量选择较高的流速;2、提高平均温差。
对于无相变的流体,采用逆流的传热方式,不仅可提高平均温差,还有助于减少结构中的温差应力;3、妥善布置传热面。
本设计采用合适的管间距和排列方式,不仅可以加大单位空间内的传热面积,还可以改善流体的流动特性。
并且错列管束的传热方式比并列的好。