2.3 平方根(第1课时)

合集下载

北师大版八年级上册数学 第1课时 算术平方根精选 优质教案

北师大版八年级上册数学  第1课时 算术平方根精选 优质教案

上埠二中《农村中小学信息技术与数学教学有效整合的实践研究》课题组2.2 平方根第1课时算术平方根第一环节:问题情境方法一:问题导入内容:上节课学习了无理数,了解到无理数产生的实际背景和引入的必要性,掌握了无理数的概念,知道有理数和无理数的区别是:有理数是有限小数或无限循环小数,无理数是无限不循环小数.比如上一节课我的小正方形,通过剪一剪,1们做过的:由两个边长为a的大的正方形,那么有拼一拼,得到一个边长为2aa是无理数.在2是有理数,,,2?a2aaxx 叫的平方,叫前面我们学过若,则反过来ax?的什么呢?本节课我们一起来学习.方法二:问题导入前面我们学习了勾股定理,请大家根据勾股定理,结内容:合图形完成填空:222,,,?z?x?y2?w.让学生体会到学习算目的:方法一和二都是带着问题进入到这节课的学习,术平方根的必要性.2222,但不能求得,,;能求得效果:能表示,4z?5w?2?x3?y2?z wx ,,的值.y方法一的引入是由上节课“数怎么又不够用了”的例子,起到了承前说明:启后的作用,方法二的引入是由学生学习了第一章“勾股定理”后的应用,说明学习这节课的必要性.相对而言,建议选用方法二.上埠二中《农村中小学信息技术与数学教学有效整合的实践研究》课题组第二环节:初步探究1:情境引出新概念内容2222x,你能求出来,,已知幂和指数,求底数,,4z?5?2w?x3y?吗?让学生体验概念形成过程,感受到概念引入的必要性.目的:wx之间的数但无是2到效果:学生可以估算出之间的数,,是1到23y wx,从而激发学生继续往下学习的兴趣,进而引入新的运算——,,法表示y开方.都是激发学生继续往下学习说明:无论是用方法一引入,还是方法二引入,x ,你能求出来吗?”的兴趣,都可以提出同样的问题“已知幂和指数,求底数2:在上面思考的基础上,明晰概念:内容2axxa就叫做,那么这个正数,如果一个正数一般地,即的平方等于ax?a的算术平方.特别地,我们规定的算术平方根,记为“”,读作“根号0”a0?0 ,即0.根是目的:对算术平方根概念的认识.知道平方运算和求正数的算术平方根是互逆效果:了解算术平方根的概念,的.巩固概念3:简单运用内容求下列各数的算术平方根:1 例49 (4) 14.;(3) ;(1) 900;(2) 1 64利用平方运算求一个正数的算体验求一个正数的算术平方根的过程,目的:有的正数的算让学生明白有的正数的算术平方根可以开出来,术平方根的方法,的算术平方根是.术平方根只能用根号表示,如1414效果:会求一个正数的算术平方根,更进一步了解算术平方根的性质:一个,负数没有算术平方根.0的算术平方根是0正数的算术平方根是正数,上埠二中《农村中小学信息技术与数学教学有效整合的实践研究》课题组2,即30;答案:解:(1)因为,所以900的算术平方根是30900?90030?2 1;,即(2)因为,所以1的算术平方根是11?11?4977494972?()即;的算术平方根是,所以因为(3) ,?648648864 的算术平方根是.(4)1414内容4:回解课堂引入问题2222x?,,,,.,那么5w?5?2w?x3?y3y?第三环节:深入探究t)(与下落时间自由下落物体的高度(米)秒例内容1:2h2米高的建筑物上自由下落,的关系为19.6.有一铁球从t94h?.到达地面需要多长时间?目的:用算术平方根的知识解决实际问题.2t94.h?进行变形,再效果:学生多能利用等式的性质将用求算术平方根的方法求得题目的解.224?4.9tt?h,所以正数解:将,得代入公式6h.?192??t4 .(秒) 即铁球到达地面需要2秒.t是正数,用的是算术平方根,此题是为得出下面的结说明:强调实际问题论作铺垫的.观察我们刚才求出的算术平方根有什么特点.内容2:aa是一个非负让学生认识到算术平方根定义中的两层含义:中的目的:aa也是一个非负数,负数没有算术平方根.这也是算术平的算术平方根数,方根的性质——双重非负性.上埠二中《农村中小学信息技术与数学教学有效整合的实践研究》课题组明确只有非负数才有算术平方再一次深入地认识算术平方根的概念,效果:根.第四环节:反馈练习一、填空题:;1.若一个数的算术平方根是,那么这个数是7;2 .的算术平方根是922)(;的算术平方根是3.32.4,则.若2?2?m??2)(m二、求下列各数的算术平方根:121504?)(,,.36 ,,0.64,15,102251446向地面拉三、如图,从帐篷支撑竿AB的顶部A米,地固定帐篷.若绳子的长度为AC5.5一根绳子则米,4.5C到帐篷支撑竿底部B的距离是面固定点帐篷支撑竿的高是多少米?23;二、4;.答案:一、17;2..3;.163112?151510.;;6;1;;0.8;12△ABC米,∠4.5ABC=90°,在Rt米,三、解:由题意得AC=5.5BC=2222.所以帐篷支撑竿(中,由勾股定理得米)10?5.5?4.5?BC?ABAC?10 的高是米.以便根据学生目的:旨在检测学生对算术平方根的概念和性质的掌握情况,.情况调整教学进程一步步加深对算术平方根的概练习注意了问题的梯度性,效果:由浅入深,.念以及性质的认识对学生的回答,教师要给予评价和点评.上埠二中《农村中小学信息技术与数学教学有效整合的实践研究》课题组第五环节:学习小结是为以后的学习做铺垫内容:这节课学习的算术平方根是本章的基本概念,的.通过这节课的学习,我们要掌握以下的内容:,二是≥0.0算术平方根的概念,式子中的双重非负性:一是a≥(1) a a(2)算术平方根的性质:一个正数的算术平方根是一个正数;0的算术平方根是0;负数没有算术平方根.(3)求一个正数的算术平方根的运算与平方运算是互逆的运算,利用这个互逆运算关系求非负数的算术平方根.目的:依照本节课的教学目标引导学生自己小结本节课的知识要点,强化算术平方根的概念和性质.第六环节:作业布置习题2.3四、教学设计反思1.细讲概念、强化训练要想让学生正确、牢固地树立起算术平方根的概念,需要由浅入深、不断深化的过程.概念是由具体到抽象、由特殊到一般,经过分析、综合去掉非本质特征,保持本质属性而形成的.概念的形成过程也是思维过程,加强概念形成过程的教学,对提高学生的思维水平是很有必要的.概念教学过程中要做到:讲清概念,加强训练,逐步深化.“讲清概念”就是通过具体实例揭露算术平方根的本质特征.算术平方根2ax ax,那的本质特征就是定义中指出的:“如果一个正数,即的平方等于xax”,即被开方数是正的,由的算术平方根,”的“正数么这个正数就叫做a也是正数,因此算术平方根也必须是正的.当然零的算术平方根平方的意义,是零.“加强训练”不但指要加强求算术平方根的基本训练,使练习题达到一定的不是直接写出算也包括书写格式的训练,如在求正数的算术平方根时,质和量,上埠二中《农村中小学信息技术与数学教学有效整合的实践研究》课题组非平方数的算术平方根只能用根而是通过平方运算来求算术平方根,术平方根,. 号来表示组“逐步深化”是指利用算术平方根的概念和性质的题目按不同的“梯度”.成题组,在教学的不同阶段按由浅入深的原则加以使用.发展思维、适度拓展2在教学中,根据学生的实际情况,在学有余力的情况下,可以对的双重a非负性的知识进行适当的拓展.。

初中数学八年级2.2平方根(1)

初中数学八年级2.2平方根(1)

2.2平方根(1)教师寄语:踏破铁鞋无觅处,得来全不费功夫学习目标:1、了解算术平方根的概念。

2、会用根号表示一个数的算术平方根。

3、培养学生自主学习、合作交流、探索发现的学习方式学习过程:(一)前置准备小明家购置一套住房,其卧室地面是一个正方形,正好铺上长30cm,宽25cm的地砖160块,请求出他卧室的边长是多少?讨论问题:1)小明卧室的面积是多少平方米?2)设小明卧室的边长为x米,则x满足什么条件?3)小明卧室的边长为多少米?(二)自主学习1、引例中的式子x2= ,已知幂和指数,求其底数x,你能求出x吗?2、独立完成课本P32的练习。

感受无理数与有理数的区别,并尝试如何表示无理数?3、解读探究:(算术平方根的概念)(三)自我训练1、课本P32例12、回扣引例,你会表示出引例中的x了吗?(四)合作交流1、解读课本P33例2,并与同学们进行交流。

2、当堂训练:课本P33,随堂练习第1、2题。

(五)归纳总结结合刚才的例题与练习,在遇到类似题目时,你应该注意什么?(六)当堂训练1、课本P34第1题2、课本P34第2题3、课本P34第3题学习笔记:通过本节课的学习,你的收获是什么?课下训练:1、a读作,它表示2、求下列各类的算术平方根:144,4/25,13,(2/3)0,(2/3)-2,.0 = 。

3、若3 =1.732,30 =5.477,则0034、16的算术平方根为。

中考真题:(2004海淀)1/4的算术平方根是()A、1/2B、-1/2C、1/16 D±1/22.2平方根(2)教师寄语:纸上得来终觉浅,绝知此事要躬行学习目标:1、了解平方根的概念和表示方法2、一个正数有两个平方根;0只有一个平方根是它本身;负数没有平方根。

3、理解算术平方根与平方根的区别。

学习过程:(一)前置准备1、求下列各数的算术平方根:144,4/25,0,1,13,(2/3)-2,2、热身训练:()2=144,()2=4/25,()2=0.64(二)自主学习1、独立研究课本P34,了解平方根的概念2、一般地,(三)合作交流1、分别求出16,0,-9的平方根2、讨论:①一个正数有几个平方根?它们又有何关系?②0有几个平方根?③负数有几个平方根?两者的区别与联系是(四)自主训练1、课本P35例32、课本P36,随堂练习第1、2题(五)想一想课本P36(六)当堂训练:(稳中求胜,初试牛刀)1、课本P36,第1、2题2、课本P36,第3、4题学习笔记:通过本节课的学习,你有何收获?课下训练:a一定等于a吗?1、对于任意数a,22、49的平方根是,算术平方根是。

2.3 平方根(第2课时)

2.3 平方根(第2课时)
b 1 4

=0,则
a b
的平方根
• 6、 64 36 的平方根是 ,算术平方 根是 。 • 7、已知△ABC的三边分别是a、b、c, • 且 a 1 b² -4b+4=0,求c的取值范围。


• 8、已知y= x 2 + 2 x +3,求xy的算 术平方根。 • 9、在△ABC中,∠C=90°. • (1)如果AC=5,BC=12,求AB; • (2)如果AC=2,BC=1,求AB; • (3)如果AB=25,BC=24,求AC; • (4)如果AC=5,AB=12,求BC;


1.16的算术平方根的平方根是什么? 5的算术平方根是什么? 2、0的算术平方根是什么? 0的算术平方根有几个? 3、-2、-5、-6有算术平方根吗?为什么?

• • • •

例1:求下列各数的算术平方根: (1)625; (2)0.81; (3)6; (4)(-2)² (5) 256 (6) ( 0 . 25 ) 2
初中数学八年级上册 (苏科版)
2.3平方根


正数a有2个平方根,其 中正数a的正的平方根,也叫 做a的算术平方根。 例如,4的平方根是±2, 2叫做4的算术平方根。


• 4的平方根是±2,2叫做4的算术 平方根,记作 4 =2, • 2的平方根是“± 2 ”, 2 叫做 2的算术平方根, • 0只有一个平方根,0的平方根也叫 做0的算术平方根,即 0 =0
h
d


• 例2:“欲穷千里目,更上一层楼”。说的是登 的高看得远。若观测点的高度为h,观测者视线 能达到的最远距离为d≈2 hR ,其中R是地球半 径(通常取6400km),小丽站在海边一块岩石 上,眼睛离地面的高度为20M,她观测到远处一 艘船刚露出海平面,此时该小船离小丽有多远?

§2.3平方根1研究课

§2.3平方根1研究课

平方根(1)—— 研究课班级________姓名____________学习目标:1.了解平方根的概念,会用根号表示数的平方根.2.了解开平方与平方互为逆运算,会用平方根的概念求某些非负数的平方根.学习重点:了解开方与乘方互为逆运算,能熟练地用平方根求某些非负数的平方根. 学习难点:平方根的意义 自主学习(一)回顾旧知:1.填空:5的平方是 ;34的平方是 ;0的平方是 ;(-3)2= ;(-35)2= .总结:观察上述结果,发现:任意有理数.....的平方是 数. 2.我们知道:4的平方是16, 的平方也是16,所以 的平方是16.类似的: 的平方是25; 的平方是121; 的平方是2549;的平方是179; 的平方是0; 的平方是-4.3.一个正方形的边长为3 cm ,则它的面积为 cm 2,计算面积的过程是 运算.4. “如图①,已知这个正方形的面积为225,你能求出这个正方形的边长吗?”小明拿到这个问题后感觉很新鲜..,思考之后, (1)提出了一个问题:知道正方形面积求正方形边长的过程与上面第3题的过程有何关系?你能回答吗?(2)提供了一种思路:(3)小明解决上面问题之后,提出了一个新问题,“如图②,已知这个正方形的面积为2,你能求出这个正方形的边长吗?”,你能解决吗?初步感悟:225(图①) 2(图②)① 因为25= , 2)5(-= ,所以 ±5是 的平方根 . ② 平方得81的数是 ,因此81的平方根是 . ③ 9的平方根是 ;49的正的平方根是 ;1.44的负的平方根是 .讨论提高:① 3有 个平方根,它们互为 数,记作 . ② 0有 个平方根,0的平方根是 . ③ -4、-8、-36有平方根吗?为什么? 总结:一个数的平方根有几个?应用:1.如果 a 的一个平方根是 4,则它的另一个平方根是 .2.若 1+a 平方根是 ±5 ,则 a = ; 若 1+a 平方根是 0 ,则 a = ; 若1+a 没有平方根,那么 a .3.明辨是非:下列叙述正确的打“√” ,错误的打“×”:①4是16的平方根; ( ) ② 16的平方根是4; ( ) ③ 0的平方根是0; ( ) ④1的平方根是1; ( ) ⑤9的平方根是3; ( ) ⑥ 只有一个平方根的数是0;( ) ⑦2)3(-的平方根是3. ( ) (二)例题研讨例1.求下列各数的平方根: (1)0.25; (2)8116; (3)15; (4)()22- (5)210-.例2.求下列各式中的x 的值⑴1962=x ; ⑵01052=-x ; ⑶()2336-x -25=0.例3.下列各数有平方根吗?若有,求出它们的平方根;若没有,请说明理由. (1)64- ; (2) 2)4(-; (3)25-- ; (4)81.四.课堂反馈1.121的平方根是11±的数学表达式是………………………………………………( ) A.11121= B.11121±= C. 11121=± D.11121±=±2.下列说法中正确的是…………………………………………………………………( ) A.24-的平方根是 4± B.把一个数先平方再开平方得原数 C.a -没有平方根 D.正数a 的平方根是a ±3.能使5-x 有平方根的是………………………………………………………………( ) A.0≥x B.0>x C. 5>x D. 5≥x4.一个数如果有两个平方根,那么这两个平方根之和是………………………………( ) A.大于0 B.等于0 C.小于0 D.大于或等于0 5.749±=±的意义是 .6.正数a 的两个平方根的商为 ;若正数a 的两个平方根的积为-259,则a = .7.下列各数:-8,()23-,25-,4.0-,52,0,()2--中有平方根的数有 个.8.平方为16的数是 ,将16开平方得 ,因此平方与 互为逆运算. 9.289的平方根是 ,2)4(-的平方根是 ,7的平方根是 .10.若223=y ,则=y ;若22)7(-=x ,则=x .五、课后练习1. 下列各数:-8,()23-,25-,4.0-,52,0,()2--中有平方根的数有 个2.如果一个数的平方根等于它本身,那么这个数是 .3.-9是数a 的一个平方根,那么数a 的另一个平方根是 ,数a 是 . 4.如果一个数的平方根是1+a 与132-a ,那么这个数是 . 5. 225±= ,2516±= ,=-972,=---)3)(27( .6.若-b 是a 的平方根,则下列各式中正确的是………………………………………( )A. 2a b = B. 2b a = C.2a b -= D.2b a -= 7.已知 5x -1的平方根是 ±3 ,4x +2y +1的平方根是 ±1,求4x -2y 的平方根8.求下列各式中的x .(1)492=x ; ⑵25)1(42=-x ; (3)09)12(42=-+x17.教室的地面面积为722m ,地面恰由800块相同的正方形地转铺成,每块地转的边长是多少?18.已知:()()7233=-+++y x y x ,求y x +的值.。

2.3 平方根(第1课时)

2.3 平方根(第1课时)
理解了吗?
你真棒!


1.9的平方根是什么?25的平方
根是什么? 2、0的平方根是什么?0的平方 根有几个? 3、-4、-8、-36有平方根吗?为 什么?
结论
一个正数有两个平方根,它 们互为相反数; 0只有一个平方根,它是0本 身; 负数没有平方根。 求一个数a的平方根的运算, 叫做开平方.

熟记
一个正数的平方根有2个,它们互为相反
数。一个正数a的正的平方根, 记作“ ”一个正数a的负的平方根 a 记作“- a ”,这两个平方根合起来 记作“± a ”,读作“正负根号a”。 例如,2的平方根记作“± 2 ”,读作 “正负根号2”。81的平方根记作 “± 81 ”,读作“正负根号81”

求下列各数的平方根: (1)25; (3)15;

(2)0.81; (4)(-2)² (6)0 (8) 10² ² (10)
16 (5) 81
1 (7) 2 4



(9)
9
(4)
2

(1)∵ (±5)² =25; 即± (2)

= ±5;
∴25的平方根等于±5;



如果一个数的平方等于9,这 个数是几?
一个数的平方等于2呢? 想知道这个数的结果吗? 我们来学习——平方根
新 知
一般地,如果一个数的平方等于a,那么这个
数叫做a的平方根,也称为二次方根。 也就是说,如果x² =a,那么x叫做a的平方根。
例如,2² =4,(-2)² =4,±2叫做4的平方根。 =100,(-10)² =100,±10叫做100的平方根 10² 13² =169,(--13)² =169,±13叫做169的平方根。

算术平方根的定义教案

算术平方根的定义教案

算术平方根的定义教案【篇一:算术平方根公开课教案】2 平方根第1课时算术平方根教学目标【知识与技能】理解并掌握算术平方根的定义,会求一个数的算术一平方根.【过程与方法】掌握求一个数的算术平方根的方法.【情感、态度与价值观】培养同学们热爱代数的兴趣.教学重难点重点算术平方根的概念及其符号表示.难点求一个数的算术平方根.教学过程一、创设情境,引入新课师:请同学们看图片.出示多媒体课件:二、讲授新课师:请同学们填空:师:上面的问题,实际上是已知一个正数的平方,求这个正数的问题.师:一般地,如果一个正数x的平方等于a,即x=a,那么这个正数x叫做a的算术平方根.记作,读作“根号a”, a x. 2规定:0的算术平方根是0,即=0.师:我们一起来做题.三、例题讲解【例1】求下列各数的算术平方根: (1)900;(2)1;(3)师生共同完成.【例2】已知|x-3|+(y+4)2+z+5=0. 求x+y+z的值.师生共同完成三、学生练习1、求下列各数的算术平方根:36,学生口答过程。

2、填空题:(1).若一个数的算术平方根是,那么这个数是; 121,15,0.64,169,81,361 . 1444964;(4)14.(2). 的算术平方根是;(3).(-4)2的算术平方根是(4).若a+2=3,则 (a+2)2=师生共同完成3、如图,从帐篷支撑竿ab的顶部a向地面拉一根绳子ac固定帐篷.若绳子的长度为6米,地面固定点c到帐篷支撑竿底部b的距离是5米,则帐篷支撑竿的高是多少米?师生共同完成四、课堂小结师:本节课你学到了哪些知识?与同伴交流.师生共同归纳算术平方根的定义及其表示方法及性质等。

五、课后作业习题2.3【篇二:算术平方根教案】初中数学《 6.1.1算术平方根》教学设计一、教学目标知识与技能:1. 了解算术平方根的概念.2. 会求一个正数的算术平方根并会用符号表示. 过程与方法:通过学习算术平方根,建立初步的数感和符号感,发展抽象思维. 情感态度与价值观:1. 通过学习算术平方根,认识数学与人类生活的密切联系.2. 通过探究活动,锻炼克服困难的意志,建立自信心,提高学习热情. 二、重点难点重点:算术平方根的意义及求法. 难点:算术平方根的概念,对符号三、教学过程设计(一)、复习巩固,探究新知师:同学们,小学你们学过哪些运算?七年级上学期,我们又学习了哪种新的运算?生:加、减、乘、除,乘方. 师:下面来做两道练习题. 练习题:1、72 = (-7)2 = 0.52 = (-0.5)2 = 02 =42、()2= 1 ()2=9 ()2=16 ()2= 36 ()2=25观察一下1、2题有什么联系? 3、的理解.设计意图:从学生已有的求一个数平方的经验出发,问题由浅入深,使学生积极主动地投入到数学活动中,为引入一种新的运算做好铺垫归纳总结:算术平方根的定义:(1)一般地,一个正数x的平方等于a,即x2=a那么,这个正数x就叫做a的算术平方根. a的算术平方根记作a,读作:“根号a”, a叫做被开方数.(2)规定:0的算术平方根为0.设计意图:让学生用自己的语言阐述,提高语言表达能力. (二)、自学例题,巩固训练同学们自学书中40页的例题.49(3)0.0001 64设计意图:这道例题是算术平方根定义的直接应用,例题解析详细,浅显易懂.所以例1.求下列各数的算数平方根.(1)100 (2)这个环节,安排学生自学,可以提高学生的自主学习的能力.巩固练习: 1、求下列各数的算数平方根9(1)81 (2)(3)1.44(4)32491(5)(-5)2 (6)242、说一说下列各式表示的意义,并分别求值.9(-2)2 25设计意图:让学生及时巩固应用算术平方根的定义和法则解决问题的方法,规范解题格式,同时使学生注意解题的关键进一步加深对概念的理解将学生对知识的理解转化为数学技能,使学生获得成功的体验. (三)深入探究,交流归纳 1. a中的a是什么数? 2、a是什么数?练习:下列各式中哪些有意义?哪些无意义?为什么?4-4 -4 (-4)2思考:b++(c-2)2=0,求a+b+c的值.设计意图:通过对a的研究进一步巩固概念,突出本节课的重点(四)当堂检测,有效反馈(组内互相批阅,通过组内讨论,总结出现的问题)设计意图:通过检测练习,检查学生对新知识的掌握情况.另外在当堂检测中,充分发挥小组的作用,以小组为单位,互批互改,在批改的过程中学生知道自己结果的对错,有利于培养学生的判断能力,形成良好学习习惯和学习方法,也能激起学生的学习兴趣.(五)回顾小结,整体感知通过这节课的学习,你有什么收获呢?还有哪些困惑?设计意图:学生通过对学习过程的小结,梳理所学内容,形成完整知识结构,培养归纳概括能力.(六)布置作业,巩固加深课本第47页复习巩固第1、2题.设计意图:及时应用,加深对知识的理解和记忆,提高思维能.【篇三:《算术平方根》教学设计与反思】《算术平方根》教学设计与反思永善县教育局教研室陈昭一、教材分析《算术平方根》是人教版八年级上第十三章第一节内容,隶属于“数与代数”领域,重点结合实际问题情景认识算术平方根、平方根的意义,能够对算术平方根进行符号表示,能够利用概念的本质探获求算术平方根、平方根的方法,理解算术平方根、平方根的性质。

初中平方根与立方根(教案)

初中平方根与立方根(教案)

初中平方根与立方根(教案)第一章:平方根的概念与计算1.1 平方根的定义解释平方根的概念,让学生理解一个数的平方根是指与其相乘后得到该数的数值。

通过举例说明平方根的求法。

1.2 平方根的性质介绍平方根的性质,如正数的平方根有两个,零的平方根是零,负数的平方根不存在等。

引导学生理解平方根的符号表示法,如√9表示9的平方根。

1.3 平方根的计算方法教授平方根的计算方法,包括分解因数法和试除法。

让学生通过实际例题练习计算平方根,并解释计算过程中的关键步骤。

第二章:平方根的应用2.1 平方根的实际应用通过实际问题引入平方根的应用,如计算面积、体积等。

引导学生理解平方根在解决实际问题中的重要性。

2.2 平方根的逆运算介绍平方根的逆运算,即平方根的平方等于原数。

让学生通过例题理解并掌握平方根的逆运算。

2.3 平方根的估算教授平方根的估算方法,如平方根的整数部分和十分之一的整数部分的平均值。

第三章:立方根的概念与计算3.1 立方根的定义解释立方根的概念,让学生理解一个数的立方根是指与其相乘后得到该数的数值。

通过举例说明立方根的求法。

3.2 立方根的性质介绍立方根的性质,如正数的立方根是正数,零的立方根是零,负数的立方根是负数等。

引导学生理解立方根的符号表示法,如³√8表示8的立方根。

3.3 立方根的计算方法教授立方根的计算方法,包括分解因数法和试除法。

让学生通过实际例题练习计算立方根,并解释计算过程中的关键步骤。

第四章:立方根的应用4.1 立方根的实际应用通过实际问题引入立方根的应用,如计算体积、求解方程等。

引导学生理解立方根在解决实际问题中的重要性。

4.2 立方根的逆运算介绍立方根的逆运算,即立方根的立方等于原数。

让学生通过例题理解并掌握立方根的逆运算。

4.3 立方根的估算教授立方根的估算方法,如立方根的整数部分和十分之一的整数部分的平均值。

第五章:平方根与立方根的综合应用5.1 平方根与立方根的比较引导学生比较平方根和立方根的概念和计算方法。

北师版八上算术平方根说课稿6篇

北师版八上算术平方根说课稿6篇

北师版八上算术平方根说课稿6篇北师版八上算术平方根说课稿6篇作为一位杰出的老师,时常要开展说课稿准备工作,编写说课稿是提高业务素质的有效途径。

下面是小编为大家整理的北师版八上算术平方根说课稿,如果大家喜欢可以分享给身边的朋友。

北师版八上算术平方根说课稿1教学目标(一)知识目标:1.了解算术平方根的概念,会用根号表示一个正数的算术平方根。

2.了解一个正数的算术平方根与平方是互逆的运算,会利用这个互逆关系求某些非负数的算术平方根。

3.了解算术平方根的性质。

(二)能力目标:1.加强概念形成的教学,提高学生的思维水平。

2.鼓励学生进行探索和交流,培养他们的创新意识和合作精神。

(三)情感态度价值观:1.让学生积极参与教学活动,培养他们对数学的好奇心和求知欲。

2.训练学生动脑,动口和动手的能力。

2学情分析了解算术平方根的概念,会用根号表示一个正数的算术平方根;了解一个正数的算术平方根与平方是互逆的运算,会利用这个互逆关系求某些非负数的算术平方根。

加强概念形成的教学,提高学生的思维水平;.鼓励学生进行探索和交流,培养他们的创新意识和合作精神。

让学生积极参与教学活动,培养他们对数学的好奇心和求知欲。

3重点难点1.重点:算术平方根的概念.性质,会用根号表示一个正数的算术平方根。

2.难点:算术平方根的概念.性质。

4教学过程4.1第一学时教学活动活动1【导入】一.情境导入情境导入1.从身边小事儿说起,请同学们欣赏本课导图,并回答问题。

学校为了趣味接力比赛,要在运动场上圈出一个面积为100平方米的正方形场地,这个正方形场地的边长应为多少2.学校要举行美术作品比赛,小鸥很高兴,她想裁出一块面积为25分米的正方形画布,画上自己的得意之作参加比赛,这块正方形画布的边长应取多少?(谁来说这块正方形画布的边长应取多少分米?你是怎么算出来的?)活动2【讲授】合作探究1.完成下表:正方形的面积191636边长这个实例中的问题、填表中的问题实际上是一个问题,什么问题?它们都是已知正方形面积求边长的问题.(通过解决这个问题,我们就引出了算术平方根的概念.)正数3的平方等于9,我们把正数3叫做9的算术平方根.正数4的平方等于16,我们把正数4叫做16的算术平方根.说说6和36这两个数?……(多让几位同学说,学生说得不正确的地方教师随即纠正)说说1和1这两个数?说了这么多,同学们大概已经知道了算术平方根的意思.那么什么是算术平方根呢?揭示课题2.什么是算术平方根呢?(出示算术平方根的定义)请大家把算术平方根概念理解着读两遍.(生读)3.学习68页的例1(1)其中第1题示范写法,第2.3题在示范的基础上学生说出答案,并且从这3道题中总结出规律。

2.3一元二次方程根的判别式++课件 2024—2025学年湘教版数学九年级上册

2.3一元二次方程根的判别式++课件 2024—2025学年湘教版数学九年级上册

板书设计
2.3一元二次方程根的判别式
根的判别式∆:
∆>0:
∆=0:
∆<0:
习题讲解书写部分
作业布置
【知识技能类作业】必做题:
1.对于一元二次方程 2 + + = 0 ≠ 0 , 下列说法:①当 =
+ 时,则方程 2 + + = 0一定有一根为 = −1;②若 > 0
B. 2 + 3 + 6 = 0
C. 2 + 8 + 16 = 0
D.( − 1)2 = 9
3.已知关于x 的一元二次方程 2 − = 2 有两个不相等的实数根,
则m的取值范围是( A )
A.m>-1 B.m<-2 C.m ≥0 D.m<0
课堂练习
【知识技能类作业】选做题:
4.已知关于 的方程 2 + (1 − ) − 1 = 0 ,下列说法正确的是( C )
2 − 4 − 2 + 4 = 0
( − 1) 2 − 4 + 4 = 0
∵方程有两个不相等的实数根,
∴k−1≠0,即k≠1,且△>0,即(-4)2−4×(k−1)×4>0,
解得k<2,则k<2且k≠1,
∴k<2且k≠1;
作业布置
【综合拓展类作业】
已知关于x的方程 ( − 4) − 2 + 4 = 0
新知导入
用配方法解二次项系数不为1的一元二次方程的一般步骤:
1.二次项系数化为1:左右俩边同时除以二次项系数;
2.移项:将常数项移至右边,含未知数的项移至左边;
3.配方:左、右两边同时加上一次项系数一半的平方;

2.3二次根式

2.3二次根式

比较两个二次根式大小时要注意: (1)负号不能移到根 号内; (2)根号外的正因数要平方后才能从根号外移到根号 内.
归类示例
► 类型之五 二次根式的大小比较
命题角度: 1. 二次根式 a的非负性的意义; 2. 利用二次根式 a的非负性进行化简.
例6 已知实数 x ,y 满足 |x -4|+ y-8= 0,则以 x , y 的值为两边长的等腰三角形的周长( A. 20 或 16 B.20 C .16 D.以上答案均不对
4-2 3 解:原式= + 2+1+ 3- 2 2 =2- 3+ 2+1+ 3- 2=3.
利用二次根式的性质,先把每个二次根式化简,然 后进行运算;在中考中二次根式常与零指数、负指数结 合在一起考查.
归类示例
► 类型之三
二次根式的化简与计算
例4 先化简,再求值: 1 1 x x 2+2x +1 - 1 x x +1 · ,其中 x = . 2 x +1 2- x -1 2
归类示例
► 类型之四 二次根式的大小比较
[解析 ] 本题可先估算无理数 15 , 17 , 19 的整数部 分的最大值和最小值,再求出甲,乙,丙的取值范围,进而 可以比较其大小. ∵ 3= 9< 15< 16= 4, ∴ 8< 5+ 15< 9,∴ 8<甲< 9. ∵ 4= 16< 17< 25= 5, ∴ 7< 3+ 17< 8,∴ 7<乙< 8. ∵ 4= 16< 19< 25= 5, ∴ 5< 1+ 19< 6, ∴丙<乙<甲.故选 A项.
B
)
[解析 ] 根据题意得 x-4=0,y-8=0,解得 x=4,y=8. (1)若 4是腰长,则三角形的三边长为: 4、 4、 8,不 能组成三角形; (2)若 4是底边长,则三角形的三边长为: 4、 8、 8, 能组成三角形,周长为 4+ 8+ 8= 20.故选 B.

2024年北师大版八年级上册教学设计第二章2.2 平方根

2024年北师大版八年级上册教学设计第二章2.2   平方根

第1课时算术平方根课时目标1.理解算术平方根的概念,会用根号表示一个数的算术平方根.2.会求非负数的算术平方根,并初步了解算术平方根具有双重非负性.3.经历学习算术平方根概念的过程,理解概念的本质,体会求非负数的算术平方根的运算与平方运算的互逆性.4.通过对实际生活中问题的解决,感受数学与实际生活的紧密联系,激发学生学习数学的兴趣.学习重点理解算术平方根的概念,会用根号表示一个数的算术平方根.学习难点会求非负数的算术平方根,了解算术平方根具有双重非负性.课时活动设计回顾引入1.将下列各数分类.,18,3.141 59,π.0.351,1.414 213 56…,-17,18,3.141 59;有理数:0.351,-17无理数: 1.414 213 56…,π.无理数:无限不循环小数称为无理数.判断一个数是不是无理数,关键就是看它能不能写成无限不循环的小数.2.(1)根据图填空:x2=2,y2=x2+1=3,z2=y2+1=4,w2=z2+1=5.(2)x,y,z,w中哪些是有理数?哪些是无理数?你能表示它们吗?上节课我们学习了无理数,了解到了无理数产生的实际背景和引入的必要性,掌握了无理数的概念,知道有理数和无理数的区别是有理数是有限小数或无限循环小数,无理数是无限不循环小数,比如在a2=2中,2是有理数,而a是无理数.在前面我们学过若x2=a,则a叫x的平方,反过来x叫a的什么呢?本节课我们就一起来研究这个问题.设计意图:回顾无理数的定义以及如何判断一个数是否为有理数,为本节课的学习打下基础.从平方入手,为学生下面学习算术平方根找到突破口,让他们对算术平方根的求法与平方的计算这种互逆的关系形成初步认识.探究算术平方根的概念教师提出问题,学生先思考,最后教师给出答案.我们知道,如果x2=a,那么a叫做x的平方,那么x叫做a的什么呢?如何用符号表示x呢?总结:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x就叫做a 的算术平方根,记作√a,读作“根号a”.例如,32=9,则3是9的算术平方根;x2=3(x>0),则x是3的算术平方根.现在你能说出教学活动1中x,y,z,w中哪些是有理数,哪些是无理数吗?解:x=√2是无理数,y=√3是无理数,z=√4=2是有理数,w=√5是无理数.设计意图:给出算术平方根的定义并举例说明,通过追问引出算术平方根的符号表示,让学生明白平方和求非负数的算术平方根的运算的互逆关系,为求算术平方根作铺垫.探究算术平方根的性质教师提出问题,学生了讨论交流并总结.问题1:一个正数有几个算术平方根?负数有算术平方根吗?0有算术平方根吗?一个正数的算术平方根只有一个,且一定为正数;负数没有算术平方根,即当√a 有意义时,a 一定表示一个非负数;特别地,我们规定:0的算术平方根是0,即√0=0.注意:算术平方根等于它本身的数只有0和1.问题2:√a 是什么数?其中a 可以取任何数吗?总结:算术平方根具有双重非负性.也就是说,非负数的“算术平方根”是非负数,负数不存在算术平方根,即当a <0时,√a 无意义.设计意图:再一次深入理解算术平方根的概念,明确只有非负数才有算术平方根.给出问题,激发学生思考,并讨论交流,引导学生从数学现象背后发现数学规律.典例精讲教师提出问题,学生先独立思考,教师指名学生上台板演.例1 求下列各数的算术平方根:(1)900;(2)1;(3)4964;(4)14.解:(1)因为302=900,所以900的算术平方根是30,即√900=30;(2)因为12=1,所以1的算术平方根是1,即√1=1;(3)因为(78)2=4964,所以4964的算术平方根为78,即√4964=78;(4)14的算术平方根是√14.例2 如图,自由下落物体下落的距离s (m)与下落时间t (s)的关系为s =4.9t 2.有一铁球从19.6 m 高的建筑物上自由下落,到达地面需要多长时间?解:将s =19.6代入公式s =4.9t 2,得t 2=4,解得t =√4=2(s ).即铁球到达地面需要2 s.设计意图:进一步熟悉求一个正数的算术平方根的过程,体会平方和求非负数的算术平方根的运算的互逆关系,明确有的正数的算术平方根开方开得尽,有的正数的算术平方根只能用根号表示.利用算术平方根解决实际问题,感受数学与实际生活的密切关系.巩固训练1.9的算术平方根是( A )A.3B.-3C.81D.-812.√4的算术平方根是( C )A.2B.2C.√2D.±√23.求下列各数的算术平方根.(1)100; (2)2536; (3)0.000 1.解:(1)因为102=100,所以100的算术平方根是10,即√100=10.(2)因为(56)2=2536,所以2536的算术平方根是56,即√2536=56.(3)因为0.012=0.000 1,所以0.000 1的算术平方根是0.01,即√0.0001=0.01.设计意图:通过巩固训练及时巩固本节课所学内容,并考查学生的知识应用能力,培养独立完成练习的习惯.课堂小结1.本节课我们学习的内容是什么?2.我们学到了哪些呢?设计意图:通过小结,使学生梳理本节课所学的内容,同学们互帮互助,解决困惑;充分发挥学生的主体意识,培养学生的语言概括能力和发散思维能力.课堂8分钟.1.教材第27页习题2.3第1,2,3,4题.2.七彩作业.教学反思第2课时平方根课时目标1.了解平方根的概念、开平方的概念,进一步明确平方与开方互为逆运算.2.会求一个数的平方根,明确算术平方根与平方根的联系与区别.3.通过学习平方和开方互为逆运算的过程,提高分析问题和解决问题的能力.4.通过学生在学习中互相帮助、相互合作,并能对不同概念进行区分,培养大家的团队精神.学习重点了解平方根和开平方的概念,会求一个数的平方根.学习难点平方根和算术平方根的联系与区别.课时活动设计回顾引入1.算术平方根的概念:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x就叫做a的算术平方根,记为“√a”,读作“根号a”.2.√a的含义:a的算术平方根.3.算术平方根的性质:一个正数的算术平方根是一个正数;0的算术平方根是0;负数没有算术平方根.4.求下列各式的值.36的算术平方根=6;17的算术平方根=√17;√81的算术平方根=3;√4的算术平方根=√2.上节课我们学习了算术平方根的概念、性质,知道若一个正数x的平方等于a,即x2=a则x叫a的算术平方根,记作x=√a,而且a也是非负数,比如正数22=4,则2叫4的算术平方根,4叫2的平方,但是(-2)2=4,那么-2叫4的什么根呢?下面我们就来讨论这个问题.设计意图:回顾算术平方根的概念、性质及简单运算,为学习平方根作铺垫;通过回顾算术平方根是一个正数正的平方根,从而顺其自然引出还有一个负数的平方等于这个正数,为下面学习平方根做了心理准备.探究 平方根的概念教师提出问题,学生思考并解答.1.3的平方等于9,那么9的算术平方根是 3 .2.25的平方等于425,那么425的算术平方根是 25 .3.0.8的平方等于0.64,那么0.64的算术平方根是 0.8 .问题1:平方等于9,425,0.64的数还有吗?追问1:如果一个数的平方等于9,这个数是多少?学生可能很快回答出这个数可以是3,由于(-3)2=9,那么这个数也可以是-3,教师提示学生注意本题中没有限制所求的数是正数.追问2:3和-3有什么特征?互为相反数,同样的,平方等于425的数有25和-25,平方等于0.64的数有0.8和-0.8,两组数也分别互为相反数.问题2:找出对应的x 的平方的数.解:追问:如果我们把±1、±4、±0.8分别叫做1,16,0.64的平方根,你能类比算术平方根的概念给出平方根的概念吗?总结:一般地,如果一个数x的平方等于a,即x2=a,那么这个数x就叫做a的平方根(也叫做二次方根).例如,3和-3是9的平方根,简记为±3是9的平方根.注意:一个正数有两个平方根,不要丢掉负的平方根.设计意图:让学生感受一个正数的平方根有两个,进而对平方根有一定的认识,为归纳平方根的概念作铺垫;在此基础上,引导学生用文字语言仿照算术平方根的概念得到平方根的概念,使学生的学习形成正迁移.探究新知探究1平方根的个数教师提出问题,学生讨论交流并总结.议一议:(1)一个正数有几个平方根?(2)0有几个平方根?(3)负数呢?解:(1)正数有两个平方根,它们互为相反数.例如:9的平方根是+3和-3.(2)0只有一个平方根,是0本身.(3)负数没有平方根.总结:一个正数有两个平方根;0只有一个平方根;负数没有平方根.探究2平方根与算术平方根的联系与区别正数a的平方根表示为正数a有两个平方根,一个是a的算术平方根√a,另一个是-√a,它们互为相反数.这两个平方根合起来记作±√a,读作“正、负根号a”.归纳平方根与算术平方根的联系与区别:联系:(1)包含关系:平方根包含算术平方根,算术平方根是平方根的一种;(2)只有非负数才有平方根和算术平方根;(3)0的平方根是0,算术平方根也是0.区别:(1)个数不同:一个正数有两个平方根,但只有一个算术平方根;(2)表示方法不同:平方根表示为±√a,而算术平方根表示为√a.探究3平方与开平方已知一个数,求它的平方的运算,叫做平方运算.反之,已知一个数的平方,求这个数的运算叫什么?找出对应的x的平方的数.总结:求一个数a的平方根的运算,叫做开平方,其中a叫做被开方数.平方与开平方互为逆运算.探究4(√a)2=?√a2=?问题1:(1)(√64)2等于多少?(√49121)2等于多少?(2)(√7.2)2等于多少?(3)对于正数a,(√a)2等于多少?解:(1)64;49121.(2)7.2.(3)a.归纳:(√a)2=a(a≥0).问题2:计算下列各题:(1)√22= 2 ;(2)√(-2)2= 2 ;(3)√a 2= a (a ≥0);(4)√a 2= -a (a <0).归纳:√a 2=|a |(a 为任意实数).设计意图:通过讨论交流,加深学生对平方根的性质,平方根与算术平方根的联系与区别的理解,了解平方与并平方互为逆运算;通过探究,培养学生的归纳概括能力.典例精讲教师提出问题,学生先独立思考,然后再小组交流探讨.教师板书一道例题书写过程,其余题目可由学生代表板书完成,最终教师展示答题过程.例 求下列各数的平方根:(1)64;(2)49121;(3)0.000 4;(4)(-25)2;(5)11.解:(1)因为(±8)2=64,所以64的平方根是±8,即±√64=±8.(2)因为(±711)2=49121,所以49121的平方根是±711,即±√49121=±711.(3)(±0.02)2=0.000 4,所以0.000 4的平方根是±0.02,即±√0.0004=±0.02.(4)因为(±25)2=(-25)2,所以(-25)2的平方根是±25,即±√(-25)2=±25.(5)11的平方根是±√11.设计意图:通过例题的讲解,帮助学生正确掌握平方根的文字说理及符号化的表达,熟练地求出一个数的平方根,强化学生对平方根性质的认识与应用.巩固训练1.关于平方根,下列说法正确的是( B )A.任何一个数都有两个平方根,并且它们互为相反数B.负数没有平方根C.任何一个数只有一个算术平方根D.以上都不对2.求下列各数的算术平方根和平方根.(1)(-11)2;(2)√(-4)2.解:(1)(-11)2=121,它的算术平方根是11,平方根是±11.(2)√(-4)2=4,它的算术平方根是2,平方根是±2.设计意图:通过巩固训练及时巩固本节课所学内容,并考查学生的知识应用能力,培养学生独立完成练习的习惯.课堂小结1.本节课我们学习的内容是什么?2.我们学到了哪些呢?设计意图:通过小结,使学生梳理本节课的所学内容,同学们互帮互助,解决困惑;充分发挥学生的主体意识,培养学生的语言概括能力和发散思维能力.课堂8分钟.1.教材第29页习题2.4第1,2,3,4,5,6题.2.七彩作业.教学反思。

23平方根

23平方根

课题 §2.3 平方根一、学习目标:1.利用勾股定理和平方的意义理解平方根和平方根的性质.2.明确平方根和算术平方根之间的联系和区别;3. 能用符号正确地表示一个数的平方根,理解开平方运算和乘方运算之间的互逆关系;4. 培养学生的探究能力和归纳问题的能力.二、预习交流:1. 叫幂?2.如果一个数的平方等于16,这个数是几?答:这个数是 ;如果一个数的平方等于169,这个数是几? 答:这个数是 ;如果一个数的平方等于3,这个数是几?一般在,如果一个数的平方等于a ,那么这个数叫做a 的平方根,也称为二次方根,也就是说,如果x 2=a ,那么x 就叫做a 的 .归纳小结:一个正数的平方根有 个,它们互为相反数..一个正数a 的正的平方根,记为“a ”,正数a 的负的平方根记为“-a ”,这两个平方根合起来记为“ ”,读作“ 、 .”平方根的性质:(1)一个正数的平方根有两个,它们互为相反数;(2)0只有一个平方根;(3)负数没有平方根.三、典型例题例1 求下列各数的平方根:(1)36; (2)4925; (3)17; (4)(-5)2.例2 求下列各数的算术平方根:(1)625; (2)0.0064; (3)7.例3(略)P.65四、巩固练习 课本练习.补充练习1、3的平方根是 ( )A 9B 3C -3D ±32. 0.25的算术平方根是 ( )A ±0.5B ±5.0C 0.5D 0.053. 下列说法中正确的是 ( )A 1的平方根是1B -1的平方根是-1C 1的算术平方根是1D 一个数的算术平方根是它本身,这个数是14. 下列各式中正确的是 ( )A 749±=B 12)12(2-=-C 19361=D 13169-=-5. 16的平方根是 ,算术平方根是 .6.91是 的平方根,-5是 的平方根. 7. 2)4(-的平方根是 . 9的算术平方根是 .8. 已知:x 2=36,则x = .9. 一直角三角形的两直角边分别为2和4,则斜边是 .10.求下列各数的平方根和算术平方根.(1)104; (2)81 (3)221213-;11.6的整数部分是 ,小数部分是 .主备人:汪茂巧 校对人:汪茂巧。

【苏科版】八年级数学上册2.3.1 平方根(1)练习题(含答案)

【苏科版】八年级数学上册2.3.1 平方根(1)练习题(含答案)

2.3.1 平方根(1)目标与方法1.知道平方根的概念,会求出一个正数的平方根.2.能在数轴上表示一个正数的平方根.此外,进一步体会“数形结合”的思想.基础与巩固1.(1)因为22=_____,(-2)2=______,所以2和-2都是_____的平方根.(2)3有______个平方根,它们互为______数,记作_______.(3)9的平方根是_______,49的正的平方根是______;1.44的负的平方根是_____. (4)若a.b 分别是98的2个平方根,则a+b=_______.2.(1)下列说法正确的是( )(A )1的平方根是1 (B )-1的平方根是-1(C )1的平方根是-1 (D )1的平方根是±1(2)(-3)2的平方根是( ).(A )-3 (B )±3 (C )3 (D )±93.求下列各数的平方根:(1)144,225; (2)2.56,116,25121; (3)5,13.4.求下列各式中的x :(1)x 2=36; (2)x 2=1681.拓展与延伸5.已知一个正方形的面积是11cm 2,求它的边长.6.一个圆的面积为2 cm 2,求这个圆的半径.7.如图,小芳量得长方形横板ABCD 中,AB=5cm ,BC=8cm ,求对角线AC 的长.DC A B后花园智力操 上一次小明出了一个题目,让小芳伤透了脑筋,幸亏有其他同学的帮忙,才解决了问题.“来而不往非礼也”,小芳决定自己出个题目也来考考小明.小芳的题目如下: 如果a 是2.25的平方根,b 是6.25的平方根,求a+b 的值.对于此题,小芳可有时间限制:30s.你能按时完成吗?答案1.(1)4,4,4;(2)2;(3)±3,23,-1.2;(4)0 2.(1)D (2)B3.(1)±12,•±15;(2)±1.6,±14,±511;(3 4.(1)x=±6;(2)x=±49cm cm。

2.3平方根(1)

2.3平方根(1)

5、 (1)错 (2)对 (3)错.
6、 3 .
4
课题 学 习 目标 学 习 重 难 点
2.3 平方根(1)
了解数的平方根的概念,会用根号表示一个数的平方根。了解开方与 乘方互为逆运算,体会转换的思想。 会用平方根求某些非负数的平方根
自主空间
教学流程 1、口答 ( ( ) =9
2 2
(
) =25 ) =81
2
2
( )=
2
2
1 4
2
) =16 (
( ) =0 ( ) =121
,因此 36 的平方根是

3、 144 的平方根是_____。 4、一个数如果有两个平方根,那么这两个平方根的和是( ). A.大于 0 B..等于 0 C.小于 0 D.大于或等于 0 5、下列说法正确的是( ) . A. 81 的平方根是 9 B.任何数的平方是非负数,因而任何数的平方根也是非负数 C.任何一个非负数的平方根都不大于这个数 D.2 是 4 的平方根 6、求下列各式中的 x 的值 ⑴ x 196
2
例如:2 =4,(-2) =4,±2 叫做 4 的平方根 3 =9,(-3) =9,±3 叫做 9 的平方根 1、问题一:观察下面的式子: ① 1 =1, (-1) =1 ② 0.5 =0.25, (-0.5) =0.25
2 2 2 2 2 2
2
2
合 作 探 究
③ (
1 3
)=
2
1 9
,
(-
1 3
2
⑵ 5 x 10 0
2
四、提炼总结 (1)若 x =a(a>0) ,那么 a 叫做 x 的 的 ,记为 。
2
,x 叫做 a

2.2 神秘的数组,2.3平方根(共3课时)教案

2.2  神秘的数组,2.3平方根(共3课时)教案

怀文中学2012---2013学年度第一学期教学设计初二数学(2.2神秘的数组)主备:张银审校:马玉峰日期:2012-9-28 学习目标:1.会阐述直角三角形的判定条件(勾股定理的逆定理)2.会应用直角三角形的判定条件判定一个三角形是直角三角形3.经历探索一个三角形是直角三角形的条件的过程,发展合情推理能力,体会“形”与“数”的内在联系.教学重点:利用“三角形的三边a、b、c满足a2+b2=c2,那么这个三角形是直角三角形“这一条件进行直角三角形的判定.教学难点:了解勾股数的由来,并能用直角三角形的判定条件解决一些简单的实际问题教学过程:一.自主学习(导学部分)1. 知识回顾:(1)已知一个直角三角形的两条边长分别为3和4,那么以第三条边为边长的正方形的面积为_________(2)在直角三角形ABC中,∠C=90°,AB比AC长1cm,BC=7cm,则AC=_________(3)等腰三角形的周长为16,底边上的中线为4,则此等腰三角形的面积为2.探秘:古巴比伦泥板:3.操作:请你以3cm、4cm、5cm为三条边画三角形,再用量角器量出这个三角形各角的度数,与你的同桌交流一下,你发现了什么?再以6cm、8cm、10cm呢?这些三角形的三边之间有什么关系?把你的发现用语言表达出来。

4. 猜想:三角形的三边之间满足怎样数量关系时,此三角形是直角三角形?5.结论:(1)那么这个三角形是直角三角形符号语言:∵a2+b2=c2∴ΔABC为RtΔ问题:这个结论与勾股定理有什么关系?(2)我们还把满足a2+b2=c2的三个正整数a,b,c称为勾股数 a例如, ,,,都是勾股数二.合作、探究、展示1.将下列长度的三根木条,首尾顺次连接,能组成直角三角形的是()A.1,2,3 B.4,6,8 C.6,8,10 D.5,5,42.一个三角形的三边比为3:4:5,则这个三角形三边上的高的比为()A.3:4:5 B.5:4:3 C.20:15:12 D.10:8:23.观察下列几组数据:①8、15、17;②7、12、15;③12,15,20;④7,24,25。

2.3平方根(1)教学案

2.3平方根(1)教学案

主备:耿恒考 时间:2011.9.25一、学习目标:1、通过自学课本内容了解数的平方根的概念,会用根号表示一个非负数的平方根。

2、了解开平方与平方是互逆的运算,会用平方运算求某些非负数的平方根。

二、学习重难点:重点:理解平方根的意义,会用平方运算求某些非负数的平方根。

难点:对平方根意义的理解三、自学质疑:请你认真阅读课本P 51~52内容,回答下面问题,并记下你的困惑和问题。

1.想一想,填一填:(1)一个正数的平方根 ,0的平方根是 ,负数的平方根 。

(2)5±表示 ,7表示 ,9-表示 。

(3)-25的平方根是 ,理由是 。

(4)因为22=_____,(-2)2=______,所以2和-2都是_____的平方根. (5)3有______个平方根,它们互为_____ _数,记作___ ____.(6)9的平方根是___ _, 的正的平方根是__ __;1.44的负的平方根是___ __.2.求下列各数的平方根(按课本例题的格式和要求做):(1)144 (2) 0 (3)2.56 (4) (5)3. 通过自学我的困惑和问题是16941972课型:新授课年级:八年级 科目:数学 主备:耿恒考 时间:2011.9.25.一、教学目标:1、使学生能理解数的平方根的概念,会用根号表示一个非负数的平方根。

2、使学生了解开平方与平方是互逆的运算,会用平方运算求某些非负数的平方根。

二、教学重难点:重点:理解平方根的意义,会用平方运算求某些非负数的平方根。

难点:学生对平方根意义的理解 三、教学过程(一)自学质疑(课前完成)请认真阅读课本P 51~52内容,回答下面问题,并记下你的困惑和问题。

1.想一想,填一填:(1)一个正数的平方根 ,0的平方根是 ,负数的平方根 。

(2)5±表示 ,7表示 ,9-表示 。

(3)-25的平方根是 ,理由是 。

(4)因为22=_____,(-2)2=______,所以2和-2都是_____的平方根. (5)3有______个平方根,它们互为_____ _数,记作___ ____.(6)9的平方根是___ _, 的正的平方根是__ __;1.44的负的平方根是___ __. 2.求下列各数的平方根(按课本例题的格式和要求做):(1)144 (2) 0 (3)2.56 (4) (5)(二)交流展示(课内完成) 个 人 备 课1.组内交流“自学质疑环节”中的疑难问题和困惑。

苏科版初二数学上册平方根练习题(带答案)

苏科版初二数学上册平方根练习题(带答案)

苏科版初二数学上册平方根练习题(带答案)苏科版初二数学上册平方根练习题(带答案)练习反馈 1.下列语句正确的是() A.一个数的平方根一定是两个数 B.一个非负数的非负平方根一定是它的算术平方根 C.一个正数的平方根一定是它的算术平方根 D.一个非零的正的平方根是它的算术平方根 2.若有意义,则a能取的最小整数为(). A.0 B.1 C.-1 D.-4 3.若,则x+y 的值是(). A.-2 B.-3 C.-4 D.无法确定 4.一个数的算术平方根只要存在,那么这个算术平方根(). A.只有一个,并且是正数 B.不可能等于零 C.一定小于这个数 D.必定是非负数 5.若a是有理数,下列说法正确的是(). A. a2的算术平方根是a B. a2的平方根是a C. a2的算术平方根是�Oa�O D. a2的平方根是�Oa�O 6.一个数如果有两个平方根,那么这两个平方根的和是(). A.大于0 B..等于0 C.小于0 D.大于或等于0 7.若a≥0,则4a2的算术平方根是(). A.2a B.±2a C. D.�O2a�O 8. 的算术平方根是(). A.4 B.±4 C.2 D.±2 9.25的平方根记作,结果是 . 10.361的平方根是,64的算术平方根是。

11.(-4)2的算术平方根是。

12.-9是数a的一个平方根,那么数a的另一个平方根是,数a是。

13.若,则y= . 14.求下列各式的值:⑴ = ⑵ = ⑶ = . ⑷ = ⑸ = ⑹ = . 15.求下列各式中的x. ⑴若x2=49,则x= . ⑵若4(x-1)2=25,则x= . ⑶若9(x2+1)=10,则x= . ⑷若 =3,则x= . 16.求下列各数的平方根和算术平方根。

⑴�O-1�O⑵1452-1442⑶4.9×103 ⑷a2(a>0)17.计算. ⑴ ⑵⑶拓展提高 18.已知与互为相反数,求(x-y)2的平方根。

2.3.教案王斌doc1

2.3.教案王斌doc1

华杰双语学校构建式生态课堂八年级数学教案比一比,看谁表现最好!拼一拼,力争人人过关!总编号:017 备课日期:2012-9-20 上课时间:2012-9-23 主备人:王斌审核人:王晓艳课题:2.3平方根(第1课时)一.自研课(时段:晚自习时间: 10 分钟)新知自研:自研教材P48-P49的内容。

二.展示课(时段:正课时间: 45 分钟)教学目标(1min):1、了解平方根的概念,会用根号表示数的平方根。

2、了解开平方与平方互为逆运算,会用平方根的概念求某些非负数的平方根。

训练课(时段:晚自习 , 时间: 30分钟)“日日清巩固达标训练题” 基础题: 1、判断题⑴把一个数先平方再开平方得原数。

( ) ⑵正数a 的平方根是a ±。

( )⑶-a 没有平方根 。

( ) 2、填空题⑴若x 2=a (a >0),那么a 叫做x 的 ,x 叫做a 的 ,记为 , 0的平方根是 。

⑵平方为16的数是 ,将16开平方得 ,因此平方与 互为逆运算.⑶∵( )2=121,∴121的平方根是3.求下列各式中的x.⑴若x 2=49,则x= . ⑵若4(x-1)2=25,则x= .⑶若9(x 2+1)=10,则x= . ⑷若x =3,则x= .4.下列各数有平方根吗?如果有,写出它的平方根;如果没有,请说明理由。

(1)41;(2)()23.4-;(3)9-;(4)25-。

拓展延伸:1、已知2a-1的平方根是±3,3a+b-1的平方根为±4,求a+2b 的平方根。

2、如果一个直角三角形的两边长分别是5㎝和12㎝,那么这个三角形的斜边上的高是多少?3、如图,AD=3,AB=4,∠A=90°,BC=12,CD=13,求四边形ABCD 的面积。

【教师寄语】新课堂,我展示,我快乐,我成功………今天你展示了吗!!!。

湘教版2024七年级数学下册2.1 第1课时 平方根和算术平方根 课件

湘教版2024七年级数学下册2.1 第1课时 平方根和算术平方根 课件

例2 已知一个正数的两个平方根分别是 2a-2 和 a-4,则 a 的值是___2_____.
解析:因为一个正数的两个平方根分别是 2a-2 和 a-4, 所以2a-2+a-4=0,解得 a=2.
方法总结:本题考查了平方根的概念.一个正数有 两个平方根,它们是互为相反数,两个数互为相反数, 它们的和为 0.
这块正方形画布的边长应取多少?
请你说一说解决问题的思路.
填一填: (1)若正方形画布的面积如下,请填表:
正方形的面积/dm2 1
4 9 16 36
25
正方形的边长/dm 1
3
4
2
6
5
(2)你能指出它们的共同特点吗?
都是已知一个数的平方, 求这个数的问题.
问题 如果一个数的平方等于 9,那么这个数是多少?
0 的平方根 →(就是 0 本身)
负数的平方根 →(没有)
解:每块正方形地垫的面积是 10.8÷30 = 0.36 (m2). 即边长×边长 = 0.36. 由于 0.62 = 0.36, 因此面积为 0.36 m2 的正方形地垫的边长是 0.6 m.
探究新知
1 平方根
问题引导
学校要举行美术作品比赛,小鸥想裁出一块面积为
25 dm2 的正方形画布,画上自己的得意之作参加比赛,
类似地,边长小于 2 的正方形,
它的面积一定小于 4,因此, 比 2 小的正数都不是 4 的平方根.
<>
边长为 2 边长为 4
总结归纳
如果 r 是正数 a 的一个平方根,那么 a 的平方 根有且只有两个:r 与 -r.
我们把正数 a 的正平方根记作 a ,读作“根号a”;
把正数 a 的负平方根记作 - a,读作“负根号 a”.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

25
(略)



1、一个数的平方等于它本身,这个数是
一个数的平方根等于它本身, 这个数是 。 2、若3a+1没有平方根,那么a一定 。3、 若4a+1的平方根是±5,则a= 。 4、一个数x的平方根等于m+1和m-3,则 m= 。x= 。

2.求下列各式中的x: 25 (1) x² =16 (2) x² =



如果一个数的平方等于9,这 个数是几?
一个数的平方等于2呢? 想知道这个数的结果吗? 我们来学习——平方根
新 知
一般地,如果一个数的平方等于a,那么这个
数叫做a的平方根,也称为二次方根。 也就是说,如果x² =a,那么x叫做a的平方根。
例如,2² =4,(-2)² =4,±2叫做4的平方根。 =100,(-10)² =100,±10叫做100的平方根 10² 13² =169,(--13)² =169,±13叫做169的平方根。

求下列各数的平方根: (1)25; (3)15;

(2)0.81; (4)(-2)² (6)0 (8) 10² ² (10)
16 (5) 81
1 (7) 2 4


(9)
9
(4)
2

(1)∵ (±5)² =25; 即± (2)

= ±5;
∴25的平方根等于±5;
a 1.若|a-9|+(b-4)² =0,则 b


的平方根是 。
49
(3)
x² =15
(4) 4x² =81
小结本课收获
???????????


算术平方根
初中数学八年级上册 (苏科版)
2.3平方根
问题1:设图中的小方格的边长 为1,你能分别说出两个长方形 的对角线AB、A′B′的长吗?
B′ A′ C′ B
A
C


由勾股定理可知AB²=12² =169, 由勾股定理可知 由勾股定理可知AB² =12²+5² +5²=169,
AB² =12² +5² AB=13 =169, AB=13 AB=13 A′B′=1²+2² A′B′=1² =5,那么A′B′=? +2²=5,那么A′B′=? A′B′=1² =5,那 +2² 么A′B′=?
理解了吗?
你真棒!


1.9的平方根是什么?25的平方
根是什么? 2、0的平方根是什么?0的平方 根有几个? 3、-4、-8、-36有平方根吗?为 什么?
结论
一个正数有两个平方根,它 们互为相反数; 0只有一个平方根,它是0本 身; 负数没有平方根。 求一个数a的平方根的运算, 叫做开平方.
ቤተ መጻሕፍቲ ባይዱ
熟记
一个正数的平方根有2个,它们互为相反
数。一个正数a的正的平方根, 记作“ ”一个正数a的负的平方根 a 记作“- a ”,这两个平方根合起来 记作“± a ”,读作“正负根号a”。 例如,2的平方根记作“± 2 ”,读作 “正负根号2”。81的平方根记作 “± 81 ”,读作“正负根号81”
相关文档
最新文档