MQ-8气体传感器
MQ-8氢气传感器 气体传感器 传感器
MQ-8 氢气传感器产品描述MQ-8气体传感器所使用的气敏材料是在清洁空气中电导率较低的二氧化锡(SnO 2)。
当传感器所处环境中存在氢气时,传感器的电导率随空气中氢气浓度的增加而增大。
使用简单的电路即可将电导率的变化转换为与该气体浓度相对应的输出信号。
MQ-8气体传感器对氢气的灵敏度高,对其他含氢气体的监测也很理想。
这种传感器可检测多种含氢气体,特别是城市煤气,是一款适合多种应用的低成本传感器。
传感器特点在较宽的浓度范围内对氢气有良好的灵敏度。
长寿命、低成本。
简单的驱动电路即可。
主要应用广泛适用于家庭用气体泄漏报警器,工业用氢气报警器以及便携式气体检测器。
技术指标 传感器示意图Vc V HGNDR LV RL基本电路图 MQ-8测试电路说明:上图是传感器的基本测试电路。
该传感器需要施加2个电压:加热器电压(V H )和测试电压(V C )。
其中 V H 用于为传感器提供特定的工作温度。
V RL 是传感器串联的负载电阻(RL )上的电压。
V C 是为V RL 提供测试的电压,这种传感器具有轻微的极性,V C 需用直流电源。
在满足传感器电性能要求的前提下,V C 和V H 可以共用同一个电源电路。
传感器特性描述图1 传感器典型的灵敏度特性曲线 图2 传感器典型的温度、湿度特性曲线 图中纵坐标为传感器的电阻比(Rs/Ro ),横坐标为气体 图中纵坐标是传感器的电阻比(Rs/Ro )。
Rs 表示在含 浓度。
Rs 表示传感器在不同浓度气体中的电阻值,Ro 表示 1000ppm 氢气、不同温/湿度下传感器的电阻值。
Ro 值传感器在洁净空气中的电阻值。
图中所有测试都是在标 表示在1000ppm 氢气、20℃/55%RH 环境条件下传感器准试验条件下完成的。
的电阻。
注意事项1 必须避免的情况1.1 暴露于有机硅蒸汽中如果传感器的表面吸附了有机硅蒸汽,传感器的敏感材料会被包裹住,抑制传感器的敏感性,并且不可恢复。
mqn气敏电阻可测量 的浓度。
MQ-7气敏电阻可测量甲醛气体的浓度。
1. MQ-7气敏电阻简介MQ-7气敏电阻是一种常用的气体传感器,可以用于检测一氧化碳(CO)、甲烷(CH4)、甲醛(HCHO)等有毒气体。
MQ-7气敏电阻采用半导体敏感材料制成,具有灵敏度高、响应速度快、稳定性好等特点。
2. MQ-7气敏电阻的工作原理MQ-7气敏电阻的工作原理是基于气敏材料的电阻值随目标气体浓度发生变化而变化。
当目标气体通过传感器时,气敏材料吸附目标气体分子,导致电阻值发生变化。
通过测量电阻值的变化,可以间接测量目标气体的浓度。
3. MQ-7气敏电阻测量甲醛气体浓度的原理甲醛是一种挥发性有机化合物,常见于家具、装饰材料、化妆品等产品中。
甲醛对人体健康有害,长期接触会引发呼吸道疾病、皮肤过敏等问题。
MQ-7气敏电阻可通过敏感材料对甲醛气体进行检测,从而测量出甲醛的浓度。
4. MQ-7气敏电阻测量甲醛气体浓度的应用在室内空气质量监测、家具装饰材料甲醛释放检测、化妆品甲醛含量检测等领域,都可以应用MQ-7气敏电阻进行甲醛浓度的测量。
通过实时监测甲醛浓度,可以及时采取措施保护人体健康。
5. MQ-7气敏电阻测量甲醛气体浓度的优势与传统的甲醛检测方法相比,MQ-7气敏电阻具有检测灵敏度高、响应速度快、成本低廉、操作简便等优势。
在实际应用中,可以方便快捷地进行甲醛浓度的监测和控制。
6. 结语总结来说,MQ-7气敏电阻作为一种常用的气体传感器,可以可靠地测量甲醛气体的浓度。
在环境监测、健康保护等方面具有重要的应用前景。
希望未来能够进一步完善气敏电阻技术,提高测量精度和稳定性,为甲醛浓度监测提供更多有效的手段。
由于甲醛对人体健康的危害,甲醛的监测和控制备受关注。
而MQ-7气敏电阻作为一种能够测量甲醛浓度的传感器,在相关领域具有广泛的应用前景。
下面将会继续探讨MQ-7气敏电阻在监测甲醛浓度方面的优势,并对其在不同领域的应用进行更详细的介绍。
1. MQ-7气敏电阻在甲醛监测中的优势MQ-7气敏电阻在测量甲醛浓度方面具有以下优势:一是灵敏度高。
甲烷传感器(MQ-4)
图 7:长期稳定性曲线 图中所有测试都是在标准试验条件下完成的,横坐标为观察时间,纵坐标为 VRL 值。
注意事项 1 必须避免的情况 1.1 暴露于可挥发性硅化合物蒸气中
传感器要避免暴露于硅粘接剂、发胶、硅橡胶、腻子或其它存在可挥发性硅化合物的场所。如 果传感器的表面吸附了硅化合物蒸气,传感器的敏感材料会被硅化合物分解形成的二氧化硅包裹, 抑制传感器的敏感性,并且不可恢复。 1.2 高腐蚀性的环境
传感器暴露在高浓度的腐蚀性气体(如 H2S,SOX,Cl2,HCl 等)中,不仅会引起加热材料及传 感器引线的腐蚀或破坏,并会引起敏感材料性能发生不可逆的劣变。 1.3 碱、碱金属盐、卤素的污染
以诚为本、信守承诺
创造完美、服务社会
半导体气体传感器系列
传感器被碱金属尤其是盐水喷雾污染后,或暴露在卤素如氟利昂中,也会引起性能劣变。
以诚为本、信守承诺
郑州炜盛电子科技有限公司 地址: 郑州市高新技术开发区金梭路 299 号 电话:0371-60932955/60932966/60932977 传真:0371-60932988 微信号:winsensor E-mail:sales@
助焊剂:含氯最少的松香助焊剂 恒温烙铁 温度: 250℃ 时间:不大于 3 秒 2.7.2 使用波峰焊时应满足以下条件: 助焊剂:含氯最少的松香助焊剂 速度:(1-2)米/分钟 预热温度:(100±20)℃ 焊接温度:(250±10)℃ 1 次通过波峰焊机
违反以上使用条件将使传感器特性下降。
MQ-4 气体传感器对甲烷灵敏度高,对酒精及其 他一些干扰性气体有较强的抗干扰能力。 传感器特点
本品在较宽的浓度范围内对甲烷有良好的灵敏度,具有长寿命、低成本、驱动电路简单等优点。 主要应用
mq-7的公式
MQ-7是一种气体传感器,用于检测和测量空气中的气体浓度。
其工作原理基于燃料电池技术,通过测量气体在电化学反应中的电流来计算气体浓度。
MQ-7的公式通常用于将传感器的输出电流转换为对应的浓度值。
这个公式是基于传感器的响应曲线和已知的气体浓度标定值来确定的。
具体的公式可能因不同的应用和实验条件而有所不同,但通常可以用以下数学表达式来表示:C=(I-I0)/(S*T)
其中:
C表示气体浓度(单位可能是ppm、%等,具体取决于应用)
I表示传感器输出电流(单位为A)
I0表示参考电流(单位为A)
S表示传感器的灵敏度(单位可能是ppm/A或%/A,具体取决于应用)
T表示测量时间(单位为s)
需要注意的是,MQ-7的公式是一个经验公式,它基于实验数据和拟合曲线来计算气体浓度。
因此,公式的准确性和可靠性取决于实验数据的准确性和代表性。
此外,由于传感器的工作原理和制造工艺等方面的原因,公式可能还会受到温度、湿度、压力等环境因素的影响。
因此,在实际应用中,需要根据具体的应用条件和实验数据进行适当的校准和调整。
总之,MQ-7的公式是一种用于将传感器输出电流转换为气体浓度的数学模型。
在实际应用中,需要综合考虑各种因素,包括实验数据的准确性、环境因素的影响等,以确保公式的准确性和可靠性。
MQ-2烟雾传感器手册
MQ-2 气体传感器特点广泛的探测范围 高灵敏度/快速响应恢复 优异的稳定性/寿命长 简单的驱动电路 应用可用于家庭和工厂的气体泄漏监测装置, 适宜于液化气、丁烷、丙烷、甲烷、酒精、氢气、烟雾等的探测。
规格A. 标准工作条件符号 参数名称 技术条件 备注 Vc 回路电压 ≤15V AC or DC V H 加热电压 5.0V±0.2 V AC or DC R L 负载电阻 可调 R H 加热电阻 31Ω±3Ω 室温 P H加热功耗≤900mWB. 环境条件符号 参数名称 技术条件 备注 Tao 使用温度 -10℃-50℃ Tas 储存温度 -20℃-70℃ RH 相对湿度 小于 95%RHO 2氧气浓度21%(标准条件) 氧气浓度会影响灵敏度特性最小值大于2% C. 灵敏度特性符号 参数名称技术参数 备注 Rs敏感体表面电阻3KΩ-30KΩ (1000ppm 异丁烷 )α(3000/1000) 异丁烷 浓度斜率 ≤0.6标准工作条件 温度: 20℃±2℃ Vc:5.0V±0.1V 相对湿度: 65%±5% Vh: 5.0V±0.1V 预热时间不少于24小时探测浓度范围 100ppm-10000ppm 液化气和丙烷300ppm-5000ppm 丁烷 5000ppm-20000ppm 甲烷 300ppm-5000ppm 氢气 100ppm-2000ppm 酒精D. 结构 外形 测试电路图1:结构A 结构B部件 材料 1 气体敏感层 二氧化锡 2 电极 金(Au )3 测量电极引线铂(Pt )4 加热器 镍铬合金(Ni-Cr )5 陶瓷管 三氧化二铝6 防爆网 100目双层不锈钢(SUB316)7 卡环 镀镍铜材(Ni-Cu ) 8 基座 胶木9针状管脚镀镍铜材(Ni-Cu )图2:测量电路MQ-2气敏元件的结构和外形如图1所示(结构 A or B), 由微型AL 2O 3陶瓷管、SnO 2 敏感层,测量电极和加热器构成的敏感元件固定在塑料或不锈钢制成的腔体内,加热器为气敏元件提供了必要的工作条件。
mq-2烟雾传感器工作原理
mq-2烟雾传感器工作原理MQ-2烟雾传感器工作原理。
MQ-2烟雾传感器是一种常用的气体传感器,主要用于检测烟雾、甲醛、丙酮、一氧化碳等有毒有害气体。
它的工作原理基于半导体气敏元件的变化,当检测到目标气体时,传感器的电阻值会发生变化,通过测量电阻值的变化来判断目标气体的浓度。
MQ-2烟雾传感器主要由气敏元件、加热元件和电路板组成。
气敏元件是传感器的核心部件,它采用半导体氧化物材料制成,具有对特定气体敏感的特性。
在正常工作状态下,气敏元件会受到加热元件的加热,使其保持在一定的温度下,以确保传感器的稳定性和灵敏度。
当目标气体进入传感器内部时,它会与气敏元件发生化学反应,导致气敏元件的电阻值发生变化。
传感器的电路板会实时监测气敏元件的电阻值,并将其转换成对应的电信号输出。
这些电信号经过放大、滤波和AD转换等处理后,最终被传输到微处理器或单片机进行进一步的处理和判断。
通过对电信号的分析,可以准确地判断目标气体的浓度,并输出相应的信号进行报警或显示。
在实际应用中,MQ-2烟雾传感器通常与其他电路和设备配合使用,例如单片机、蜂鸣器、显示屏等。
当传感器检测到烟雾或其他有毒有害气体时,会通过输出信号触发蜂鸣器发出警报,并在显示屏上显示相关的信息,提醒人们及时采取措施,保障人身和财产安全。
总的来说,MQ-2烟雾传感器是一种简单、高效的气体检测器,其工作原理基于半导体气敏元件的电阻值变化。
通过与其他电路和设备配合使用,可以实现对烟雾、甲醛、丙酮、一氧化碳等有毒有害气体的快速、准确检测,为人们的生活和工作提供了重要的保障。
mq气体传感器 计算
mq气体传感器计算
MQ气体传感器是一种常用的气体检测装置,能够检测多种气体浓度,包括烟雾、甲醛、一氧化碳等。
在使用MQ气体传感器的过程中,需要进行一些计算,以便获得准确的气体浓度数据。
1. 电阻值计算
MQ气体传感器在检测气体时,会受到气体浓度的影响,进而改变其电阻值。
因此,通过测量MQ气体传感器的电阻值,可以确定当前气体浓度。
电阻值计算公式如下:
Rs = (Vc - VRL)/IL
其中,Rs为传感器的电阻值,Vc为电路的驱动电压,VRL为电路中的负载电阻值,IL为电路中的电流值。
2. 气体浓度计算
根据MQ气体传感器的电阻值,可以通过查找传感器的响应曲线,计算出当前气体浓度。
气体浓度计算公式如下:
C = a(Rs/Ro)^b
其中,C为气体浓度,a和b为传感器响应曲线的参数,Rs为MQ气体传感器的电阻值,Ro为传感器在纯净空气中的电阻值。
需要注意的是,由于不同气体对MQ气体传感器的响应曲线不同,因此需要根据具体的气体类型选择相应的响应曲线和参数进行计算。
以上是MQ气体传感器常用的计算方法,能够帮助用户准确检测气体浓度,提高气体安全性。
MQ-4甲烷、天然气传感器设计原理图及其程序
MQ-4甲烷、天然气传感器模块使用说明书简要说明:一、尺寸:32mm X22mm X27mm 长X宽X高二、主要芯片:LM393、ZYMQ-4气体传感器三、工作电压:直流5伏四、特点:1、具有信号输出指示。
2、双路信号输出(模拟量输出及TTL电平输出)3、TTL输出有效信号为低电平。
(当输出低电平时信号灯亮,可直接接单片机)4、模拟量输出0~5V电压,浓度越高电压越高。
5、对甲烷气体,天然气有较好的灵敏度。
6、具有长期的使用寿命和可靠的稳定性7、快速的响应恢复特性五、应用:适用于家庭或工厂的甲烷气体,天然气等监测装置。
【标注说明】【原理图】【测试方式】1、传感器先预热20秒左右。
2、将传感器放在无被测气体的地方,顺时针调节电位器,调节到指示灯亮,然后逆时针转半圈,调到指示灯不亮,然后接近被测气体,指示灯亮,离开被测气体,指示灯熄灭,就证明传感器是好的!【测试程序】实现功能:1、当测量浓度大于设定浓度时,单片机IO口输出低电平/********************************************************************实现功能:此版配套测试程序使用芯片:AT89S52晶振:11.0592MHZ波特率:9600编译环境:Keil作者:zhangxinchun淘宝店:汇诚科技【声明】此程序仅用于学习与参考,引用请注明和作者信息!*********************************************************************//********************************************************************说明:1、当测量浓度大于设定浓度时,单片机IO口输出低电平*********************************************************************/#include<reg52.h> //库文件#define uchar unsigned char//宏定义无符号字符型#define uint unsigned int //宏定义无符号整型/********************************************************************I/O定义*********************************************************************/sbit LED=P1^0; //定义单片机P1口的第1位(即P1.0)为指示端sbit DOUT=P2^0; //定义单片机P2口的第1位(即P2.0)为传感器的输入端/********************************************************************延时函数*********************************************************************/void delay()//延时程序{uchar m,n,s;for(m=20;m>0;m--)for(n=20;n>0;n--)for(s=248;s>0;s--);}/********************************************************************主函数*********************************************************************/void main(){while(1) //无限循环{LED=1; //熄灭P1.0口灯if(DOUT==0)//当浓度高于设定值时,执行条件函数{delay();//延时抗干扰if(DOUT==0)//确定浓度高于设定值时,执行条件函数{LED=0; //点亮P1.0口灯}}}}/********************************************************************结束*********************************************************************/【测试程序】*********************************************************************/#include <reg52.h> //头文件#define uchar unsigned char //宏定义无符号字符型#define uint unsigned int //宏定义无符号整型code uchar seg7code[10]={ 0xc0,0xf9,0xa4,0xb0,0x99,0x92,0x82,0xf8,0x80,0x90}; //显示段码数码管字跟uchar wei[4]={0XEf,0XDf,0XBf,0X7f}; //位的控制端 //位控制码sbit ST=P3^0; //A/D启动转换信号sbit OE=P3^1; //数据输出允许信号sbit EOC=P3^2; //A/D转换结束信号sbit CLK=P3^3; //时钟脉冲uint z,x,c,v,AD0809, date;//定义数据类型/******************************************************************延时函数******************************************************************/void delay(uchar t){uchar i,j;for(i=0;i<t;i++){for(j=13;j>0;j--);{ ;}}}/**********************************************************************数码管动态扫描*********************************************************************/void xianshi() //显示函数{uint z,x,c,v;z=date/1000; //求千位x=date%1000/100; //求百位c=date%100/10; //求十位v=date%10; //求个位P2=0XFF;P0=seg7code[z]&0x7f;P2=wei[0];delay(80);P2=0XFF;P0=seg7code[x];P2=wei[1];delay(80);P2=0XFF;P0=seg7code[c];P2=wei[2];delay(80);P2=0XFF;P0=seg7code[v];P2=wei[3];delay(80);P2=0XFF;}/************************************************************************* CLK振荡信号**************************************************************************/ void timer0( ) interrupt 1 //定时器0工作方式1{TH0=(65536-2)/256; //重装计数初值TL0=(65536-2)%256; //重装计数初值CLK=!CLK; //取反}/*************************************************************************主函数**************************************************************************/ void main(){TMOD=0X01; //定时器中断0CLK=0; //脉冲信号初始值为0TH0=(65536-2)/256; //定时时间高八位初值TL0=(65536-2)%256; //定时时间低八位初值EA=1; //开CPU中断ET0=1; //开T/C0中断TR0=1;while(1) //无限循环{ST=0;//使采集信号为低ST=1;//开始数据转换ST=0;//停止数据转换while(!EOC);//等待数据转换完毕OE=1;//允许数据输出信号AD0809=P1; //读取数据OE=0;//关闭数据输出允许信号if(AD0809>=251)//电压显示不能超过5VAD0809=250;date=AD0809*20;//数码管显示的数据值,其中20为采集数据的毫安值xianshi();//数码管显示函数}}【ADC0809资料】ADC0809中文资料1.主要特性1)8路8位A/D转换器,即分辨率8位。
MQ系列气体传感器通用说明书.
通用说明书工作原理MQ系列气体传感器的敏感材料是活性很高的金属氧化物半导体,最常用的如SnO2。
金属氧化物半导体在空气中被加热到一定温度时,氧原子被吸附在带负电荷的半导体表面,半导体表面的电子会被转移到吸附氧上,氧原子就变成了氧负离子,同时在半导体表面形成一个正的空间电荷层,导致表面势垒升高,从而阻碍电子流动(见图1。
在敏感材料内部,自由电子必须穿过金属氧化物半导体微晶粒的结合部位(晶界才能形成电流。
由氧吸附产生的势垒同样存在于晶界而阻碍电子的自由流动,传感器的电阻即缘于这种势垒。
在工作条件下当传感器遇到还原性气体时,氧负离子因与还原性气体发生氧化还原反应而导致其表面浓度降低,势垒随之降低(图2和图3。
导致传感器的阻值减小。
在给定的工作条件下和适当的气体浓度范围内,传感器的电阻值和还原性气体浓度之间的关系可近似由下面方程表示:其中:Rs:传感器电阻A:常数[C]:气体浓度α:Rs曲线的斜率传感器特性1氧气分压的影响图4所示为大气中氧分压(PO2和MQ气体传感器在清洁空气中阻值之间的典型关系。
2气敏特性根据前述方程,在某一气体浓度范围内(从几十ppm 至几千ppm,在工作条件下,传感器的电阻同气体浓度呈对数线性关系。
如图5所示。
传感器对多种还原气体具有敏感性,对指定气体的相对灵敏度,取决于敏感材料的构成及其工作温度。
图1-晶粒间势垒模型(洁净空气实际上,每个传感器的电阻值和相对灵敏度都不完全相同,图5中描述的敏感特性为传感器在不同气体浓度下的阻值(Rs与待检测气体的一定浓度下的阻值(R0的比值与浓度的对数关系。
3传感器响应特性在工作条件下传感器先被放入还原性气体中,其电阻急剧下降,待其稳定后,再将其置入洁净空气中,传感器的电阻经过很短的时间即恢复到它的初始值。
这个过程中传感器典型的动作如图6所示。
传感器的响应速度和恢复速度与传感器型号、材料种类及所测气体的种类相关。
4初始动作如图7所示,当传感器不通电存放后,再在空气中通电,无论是否存在还原性气体,传感器通电后的最初几秒钟,其阻值都会(Rs急剧下降,然后逐渐达到一个平稳的水平,即为传感器的初始动作。
MQ-2,MQ-4,MQ-5,MQ-6.MQ-8半导体式烟雾传感器
MQ-2,MQ-4,MQ-5,MQ-6.MQ-8半导体式烟雾传感器烟雾传感器的一般检测目标及检测范围MQ-2可燃气体、烟雾300 to 10000ppmMQ-4天然气、甲烷300 to 10000ppmMQ-5液化气、甲烷、煤制气300 to 5000ppmMQ-6液化气、异丁烷、丙烷100 to 10000ppmMQ-8氢气、煤制气50 to 10000ppm其它电化学传感器ME2-C0 一氧化碳CO 0-1000ppmME3-CO 一氧化碳CO 0-500ppm,0-1000ppm,0-2000ppmME4-CO 一氧化碳CO 0-500ppm,0-1000ppm,0-2000ppmME3-H2S 硫化氢H2S 0-200ppmME4-H2S 硫化氢H2S 0-200ppmME3-H2 氢气H2 0-200ppmME4-H2 氢气H2 0-1000ppmME3-NH3 氨气NH3 0-1000ppmME4-NH3 氨气NH3 0-50ppmME3-CL2 氯气CL2 0-50ppmME4-CL2 氯气CL2 0-20ppmME3-PH3 磷化氢PH3 0-20ppmME4-PH3 磷化氢PH3 0-20ppmME3-O2 氧气O2 0-25% max:30%ME2-O2 氧气O2 0-25% max;30%ME3-C2H5OH 酒精C2H5OH 0-1000ppmME4-C2H5OH 酒精C2H5OH 0-1000ppm催化燃烧式可燃气体MC101 甲烷、液化气、丙烷等可燃性气体 0-100%LELMC102 甲烷、液化气、丙烷等可燃性气体 0-100%LEL MC105 甲烷、液化气、丙烷等可燃性气体 0-100%LEL MC106 甲烷、液化气、丙烷等可燃性气体 0-100%LEL MC108 氢气、可燃气体 0-100%LELMC112 甲烷、液化气、丙烷等可燃性气体 0-100%LEL MC112D 甲烷、液化气、丙烷等可燃性气体 0-100%LEL MC113 甲烷、液化气、丙烷等可燃性气体 0-100%LEL MC114 甲烷、液化气、丙烷等可燃性气体 0-100%LEL MJC4/3.OL 甲烷、瓦斯 0-4%VOLMJC4/3.OJ 甲烷、瓦斯 0-4%VOLMJC4/2.8J 甲烷、瓦斯 0-4%VOLMJC4/2.5L 甲烷、瓦斯 0-4%VOLMC201 甲烷、液化气、丙烷等可燃性气体 0-100%LEL MC115 甲烷、液化气、丙烷等可燃性气体 0-100%LEL MC116 甲烷、液化气、丙烷等可燃性气体 0-100%LEL MC117 甲烷、液化气、丙烷等可燃性气体 0-100%LEL MC118 甲烷、液化气、丙烷等可燃性气体 0-100%LEL MC202 甲烷、液化气、丙烷等可燃性气体 0-100%LEL 半导体式传感器MQ-2 可燃气体、烟雾 300 to 10000ppmMQ-4 天然气、甲烷 300 to 10000ppmMQ-5 液化气、甲烷、煤制气 300 to 5000ppmMQ-6 液化气、异丁烷、丙烷 100 to 10000ppmMQ-8 氢气、煤制气 50 to 10000ppmMQ306A 液化气、甲烷、煤制气 300 to 5000ppmMQ214 甲烷 300 to 5000ppmMQ216 液化气、甲烷、煤制气 100 to 10000ppmMQ-7 一氧化碳CO 10 to 1000ppmMQ307A 一氧化碳CO 10 to 500ppmMQ217 一氧化碳CO 10-1000ppmMQ-9 一氧化碳、可燃气体 10 to 1000ppm CO、100 to 10000ppm可燃气体MQ309A 一氧化碳、可燃气体 10 to 500ppm CO、300 to 5000ppm可燃气体臭氧O3 0.01-2ppmO3/10-500ppmO3氨气、苯、酒精、烟雾 10-300ppmNH3、10-1000ppm苯、10-600ppm酒精、1%/-10%/m3烟雾MQ136 硫化氢 1-200ppmMQ137 氨气 10-300ppmMQ138 醇类、苯类、醛类、酮类、酯类等有机挥发物 5-5000ppm酒精(乙醇) 10 to 1000ppmMQ303A 酒精(乙醇) 20 to 1000ppmMQ213 酒精 10-1000ppmMP-4 天然气 300 to 10000ppmMP-6 液化气 300 to 5000ppmMP-7 一氧化碳 10 to 1000ppmMP-8 氢气 50 to 10000ppmMP135 氢气、酒精、CO一氧化碳 10-100ppmH2、10-500ppm CO、10-1000ppm酒精离子烟雾传感器 HIS-07二氧化碳气体敏感元件 MG811 0 to 10000ppm热传导气体敏感元件 MD61 天然气、液化气、煤气、烷类等可燃气体及汽油、醇、酮、苯、四氟化碳、氟里昂 0-100%VOL热传导气体敏感元件 MD62 二氧化碳CO2 0-100%VOL热线型酒精气体敏感元件 MR513 酒精(乙醇) 0 to 1000ppm热线型可燃气体敏感元件 MR511 甲烷、丁烷 0 to 10000ppm。
各类传感器分类与详情
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
94 95 96 9பைடு நூலகம் 98 99 100 101 102 103 104 105 106 107 108
109 110 111 112 113 114 115 116
117 118 119 120 121
122
123
124 125 126 127 128 129 130 131
132 133 134
135 136 137 138 139 140 141
142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
序号
1 2 3 4 5 6 7 8 9 10 11 12 13
14 15 16 17 18 19 20 21 22 23 24 25 26
27 28 29 30 31 32
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70
(SKU:SEN0005)SRF02超声波测距传感器 (SKU:SEN0006)SRF05超声波测距传感器 (SKU:SEN0007)SRF08超声波测距传感器 (SKU:SEN0008)SRF10超声波测距传感器 (SKU:SEN0149)URM06-RS485 大功率超声波测距模块 (SKU:SEN0150)URM06-UART 大功率超声波测距模块 (SKU:SEN0151)URM06-PULSE 大功率超声波测距模块 (SKU:SEN0152)URM06-ANALOG 大功率超声波测距模块 (SKU:SEN0153)URM07-UART单探头超低功耗超声波测距传感器 (SKU:SEN0246)URM08-RS485 Waterproof Sonar Range Finder (SKU:SEN0243)URM08-UART Waterproof Sonar Range Finder (SKU:SEN0304)URM09 Ultrasonic Sensor(Gravity I²C)(V1.0)超声波传感器 (SKU:SEN0300)Water-proof Ultrasonic Sensor (ULS) (SKU:SEN0301)Water-proof Ultrasonic Sensor (ULA) (SKU:SEN0307)URM09 Ultrasonic Sensor(Gravity Analog)(V1.0)超声波传感器 (SKU:SEN0311)A02YYUW 防水超声波传感器 (SKU:SEN0312)ME007YS 防水超声波传感器 (SKU:SEN0313)A01NYUB 防水超声波传感器 (SKU:SEN0310)URM12 ultrasonic sensor(1500cm&RS485)
mq-2工作原理
mq-2工作原理
MQ-2是一种烟雾传感器,它用于检测空气中的可燃气体和烟雾。
它的工作原理是通过电化学和光学的方法来检测气体浓度的变化。
在MQ-2中,有两个关键组件:感应层和电阻。
感应层是由金属氧化物半导体(MOS)材料构成的。
当空气
中的可燃气体或烟雾进入感应层时,它们会与感应层上的氧气反应,并导致感应层表面的电导性发生变化。
电阻是连接到感应层的部件,它的电阻值取决于感应层的电导性。
当感应层表面的电导性发生变化时,电阻值也会相应地改变。
通过测量电阻的变化,可以确定空气中可燃气体或烟雾的浓度。
具体来说,当气体浓度增加时,感应层的电导性会提高,导致电阻值下降;当气体浓度减少时,感应层的电导性会降低,导致电阻值增加。
MQ-2还通过光学方法来检测烟雾。
它包含一个发光二极管(LED)和一个光敏电阻器。
LED会发出一个特定频率的光,当光撞击到光敏电阻器上时,其电阻会发生变化。
当空气中有烟雾时,烟雾会吸收光的能量,导致光敏电阻器的电阻值发生变化。
通过测量光敏电阻器的电阻值变化,可以判断烟雾的存在与否。
总的来说,MQ-2的工作原理是基于感应层和电阻的变化来检测可燃气体和烟雾的浓度。
它既可以通过电化学方法检测可燃气体,也可以通过光学方法检测烟雾。
这使得MQ-2成为一种重要的安全设备,可以在电子设备、家庭和工业环境中广泛应用。
MQ-8 氢气气体传感器
TEL:86-371-65333056 65333076
FAX:86-371-65333066
Email:winsensor@
郑州炜盛电子科技有限公司
MQ-8
Rs/Ro
MQ-8 气敏元件的结构和外形如图 1 所示(结构 A or B), 由微型 AL2O3 陶瓷管、SnO2 敏感层,测量电极和加 热器构成的敏感元件固定在塑料或不锈钢制成的腔体内,加热器为气敏元件提供了必要的工作条件。封装 好的气敏元件有6只针状管脚,其中4个用于信号取出,2个用于提供加热电流。
郑州炜盛电子科技有限公司
技器
特点
* 对氢气高灵敏度
* 可抗乙醇蒸汽、LPG、烹饪油烟的干扰
* 具有长期的使用寿命和可靠的稳定性
应用
适用于家庭或工业上对氢气泄漏的监测装置,可不受乙醇蒸汽、LPG、油烟、一氧化碳等气体的干扰。
测量电路如图2所示
E. 灵敏度特性曲线
100
MQ-8
10
1
0.1
0.01 100
H2 LPG CH4 CO alcohol air
1000
ppm 10000
图3给出了MQ-8 型气敏元件 的灵敏度特性。
其中: 温度:20℃、 相对湿度:65% 、 氧气浓度:21% RL=5k Ω Rs:元件在不同气体,不同浓度下 的电阻值。 R0:元件在洁净空气中的电阻值。
郑州炜盛电子科技有限公司
MQ-8
当精确测量时,报警点的设定应考虑温湿度的影响。
TEL:86-371-65333056 65333076
FAX:86-371-65333066
Email:winsensor@
预热时间
温度: 20℃±2℃ Vc:5.0V±0.1V 相对湿度: 65%±5% Vh: 5.0V±0.1V
MQ-7
MQ—7型一氧化碳气体传感器规格:A、标准工作条件B、环境条件C、灵敏度特性D、结构、外形、测试电路MQ—7型气敏元件的结构和外形如图1所示(结构A或B),由微型AL2O 3陶瓷管、SnO2敏感层,测量电极和加热器构成的敏感元件固定在塑料或不锈钢制成的腔体内,加热器为气敏元件提供了必要的工作条件。
填充活性炭的过滤腔体,进一步减弱了氮氧化物、烷类等气体的干扰。
封装好的气敏元件有6只针状管脚,其中4个用于信号取出,2个用于提供加热电流。
E:灵敏度特性曲线F:基本测试回路:D:工作原理:传感器的表面电阻Rs,是对过与其它串联的负载电阻RL上的有效电压信号V RL 输出而获得的。
二者之间的关系为:RS/RL=(VC-VRL)/VRL图5 为利用图2回路测得在传感器由洁净空气转移至一氧化碳气氛中时,RL上的信号输出变化情况,输出信号的测定是在一个完整的加热周期(由高电压至低电压2.5分钟)或在两个完整的加热周期内测得。
MQ—7型气敏元件的敏感是用非常稳定的二氧化锡制成的,因此,它具有优秀的长期稳定性,在正常使用条件下,其使用寿命可达5年。
灵敏度调整:MQ—7型气敏器件对不同种类,不同浓度的气体有不同的电阻值。
因此,在使用此类型气敏器件时,灵敏度的调整是很重要的。
我们建议您用200ppmCO校正传感器。
当精确测量时:报警点的设定应考温、湿度的影响。
灵敏度的调整程序:a、将传感器连接在应用回路中。
b、接通电源,通电老化48小时以上。
c、调整负载电阻RL至获得对应于某一个一氧化碳浓度时所需要的信号值。
MQ-7一氧化碳传感器设计原理图及pcb图程序
MQ-7一氧化碳传感器模块设计原理图及其程序一氧化碳中毒的概述 CO为无色、无味、无臭的气体,凡是碳或含碳物质在氧不充分时燃烧,均可产生CO。
在使用柴炉、煤炉时,如通风系统不畅通,尤其是近年来煤气取暖器和煤气热水器使用不当使CO中毒大为增加。
因为CO是无色、无味的气体,所以称之为“沉默的杀手”。
人体吸入CO后,往往毫无知觉,甚至出现严重的症状后仍不知何故,从而继续处在高浓度的CO环境中,直至死亡。
CO进入体内后,一部分与血红蛋白结合,引起血红蛋白氧运输量明显减少;另一部分直接与细胞线粒体内的细胞色素a3结合,抑制组织细胞内呼吸。
故CO中毒时临床表现与血中HbCO水平可能不一致。
简要说明:一、尺寸:32mm X22mm X27mm 长X宽X高二、主要芯片:LM393、MQ-7气体传感器三、工作电压:直流5伏四、特点:1、具有信号输出指示。
2、双路信号输出(模拟量输出及TTL电平输出)3、TTL输出有效信号为低电平。
(当输出低电平时信号灯亮,可直接接单片机)4、模拟量输出0~5V电压,浓度越高电压越高。
5、对一氧化碳具有很高的灵敏度和良好的选择性。
6、具有长期的使用寿命和可靠的稳定性五、应用:用于家庭、环境的一氧化碳探测装置。
适宜于一氧化碳、煤气等的探测。
【标注说明】【原理图】【测试方式】1、传感器先预热20秒左右。
2、将传感器放在无被测气体的地方,顺时针调节电位器,调节到指示灯亮,然后逆时针转半圈,调到指示灯不亮,然后接近被测气体,指示灯亮,离开被测气体,指示灯熄灭,就证明传感器是好的!【测试程序】实现功能:1、当测量浓度大于设定浓度时,单片机IO口输出低电平/********************************************************************实现功能:此版配套测试程序使用芯片:AT89S52晶振:11.0592MHZ波特率:9600编译环境:Keil作者:zhangxinchun淘宝店:汇诚科技【声明】此程序仅用于学习与参考,引用请注明版权和作者信息!*********************************************************************//********************************************************************说明:1、当测量浓度大于设定浓度时,单片机IO口输出低电平*********************************************************************/#include<reg52.h> //库文件#define uchar unsigned char//宏定义无符号字符型#define uint unsigned int //宏定义无符号整型/********************************************************************I/O定义*********************************************************************/sbit LED=P1^0; //定义单片机P1口的第1位(即P1.0)为指示端sbit DOUT=P2^0; //定义单片机P2口的第1位(即P2.0)为传感器的输入端/********************************************************************延时函数*********************************************************************/void delay()//延时程序{uchar m,n,s;for(m=20;m>0;m--)for(n=20;n>0;n--)for(s=248;s>0;s--);}/********************************************************************主函数*********************************************************************/void main(){while(1) //无限循环{LED=1; //熄灭P1.0口灯if(DOUT==0)//当浓度高于设定值时,执行条件函数{delay();//延时抗干扰if(DOUT==0)//确定浓度高于设定值时,执行条件函数{LED=0; //点亮P1.0口灯}}}}/********************************************************************结束*********************************************************************/【测试程序】*********************************************************************/#include <reg52.h> //头文件#define uchar unsigned char //宏定义无符号字符型#define uint unsigned int //宏定义无符号整型code uchar seg7code[10]={ 0xc0,0xf9,0xa4,0xb0,0x99,0x92,0x82,0xf8,0x80,0x90}; //显示段码数码管字跟uchar wei[4]={0XEf,0XDf,0XBf,0X7f}; //位的控制端//位控制码sbit ST=P3^0; //A/D启动转换信号sbit OE=P3^1; //数据输出允许信号sbit EOC=P3^2; //A/D转换结束信号sbit CLK=P3^3; //时钟脉冲uint z,x,c,v,AD0809, date;//定义数据类型/******************************************************************延时函数******************************************************************/ void delay(uchar t){uchar i,j;for(i=0;i<t;i++){for(j=13;j>0;j--);{ ;}}}/**********************************************************************数码管动态扫描*********************************************************************/ void xianshi() //显示函数{uint z,x,c,v;z=date/1000; //求千位x=date%1000/100; //求百位c=date%100/10; //求十位v=date%10; //求个位P2=0XFF;P0=seg7code[z]&0x7f;P2=wei[0];delay(80);P2=0XFF;P0=seg7code[x];P2=wei[1];delay(80);P2=0XFF;P0=seg7code[c];P2=wei[2];delay(80);P2=0XFF;P0=seg7code[v];P2=wei[3];delay(80);P2=0XFF;}/*************************************************************************CLK振荡信号**************************************************************************/ void timer0( ) interrupt 1 //定时器0工作方式1{TH0=(65536-2)/256; //重装计数初值TL0=(65536-2)%256; //重装计数初值CLK=!CLK; //取反}/*************************************************************************主函数**************************************************************************/void main(){TMOD=0X01; //定时器中断0CLK=0; //脉冲信号初始值为0TH0=(65536-2)/256; //定时时间高八位初值TL0=(65536-2)%256; //定时时间低八位初值EA=1; //开CPU中断ET0=1; //开T/C0中断TR0=1;while(1) //无限循环{ST=0;//使采集信号为低ST=1;//开始数据转换ST=0;//停止数据转换while(!EOC);//等待数据转换完毕OE=1;//允许数据输出信号AD0809=P1; //读取数据OE=0;//关闭数据输出允许信号if(AD0809>=251)//电压显示不能超过5VAD0809=250;date=AD0809*20;//数码管显示的数据值,其中20为采集数据的毫安值xianshi();//数码管显示函数}}。
mq传感器工作原理
mq传感器工作原理
MQ传感器是一种化学气体传感器,它可以检测大气中特定气
体的浓度。
MQ传感器的工作原理基于其内部的化学反应。
MQ传感器内部有一个感应元件,通常是由金属氧化物(通常
是锡氧化物或二氧化锌)制成的零件。
这些材料对特定气体有高度的选择性,当特定气体与感应元件接触时,会引起化学反应。
感应元件的电阻值会随着特定气体的浓度变化而变化。
通常情况下,当感应元件暴露在目标气体中时,其电阻值会降低。
这是因为特定气体会与感应元件上的氧分子反应,改变材料表面的电子结构,导致电导率增加。
MQ传感器通常与一个电路板连接,该电路板会测量感应元件
的电阻值变化,并将其转换为与气体浓度相关的电信号。
这个电信号可以被接收器或微控制器使用,以便进行进一步的处理,例如显示气体浓度或触发某些操作。
总之,MQ传感器利用内部的化学感应元件,通过测量其电阻
值变化来检测大气中特定气体的浓度。
这使得MQ传感器成
为广泛应用于空气质量监测、气体泄漏检测等领域的重要传感器。
气敏传感器mq-3
MQ-3 酒精检测用半导体气敏元件MQ-3气体传感器所使用的气敏材料是在清洁空气中电导率较低的二氧化锡(SnO2)。
当传感器所处环境中存在酒精蒸汽时,传感器的电导率随空气中酒精气体浓度的增加而增大。
使用简单的电路即可将电导率的变化转换为与该气体浓度相对应的输出信号。
MQ-3气体传感器对酒精的灵敏度高,可以抵抗汽油、烟雾、水蒸气的干扰。
这种传感器可检测多种浓度酒精气氛,是一款适合多种应用的低成本传感器。
MQ-3气体传感器特点* 对乙醇蒸汽有很高的灵敏度和良好的选择性* 快速的响应恢复特性* 长期的寿命和可靠的稳定性* 简单的驱动回路应用用于机动车驾驶人员及其他严禁酒后作业人员的现场检测;也用于其他场所乙醇蒸汽的检测。
测试电路气敏传感器的外观和相应的结构形式如图3所示,它由微型氧化铝陶瓷管、氧化锌敏感层,测量电极和加热器构成,敏感元件固定在塑料或不绣钢制成的腔体内,加热器为气敏元件提供了必要的工作条件。
封装好的气敏元件有6个管脚,其中4个用于信号取出,2个用于提供加热电流。
图3中①、②、③分别表示MQ-3乙醇传感器的引脚排布图、引脚功能图、使用接线图。
其中H-H表示加热极(如5V),A-A、B-B传感器表示敏感元件的2个极,图③中“V”为传感器的工作电压,同时也是加热电压。
MQ-3传感器的外观和相应的结构形式本设计主要是通过电阻分压电路测量酒精气体浓度变化的,而LM3914也是根据输入电压的大小决定点亮LED的数量的,因此可以先调试传感器之后的电路时是否正常。
使用5V稳MQ3 酒精传感器是气敏传感器,其具有很高的灵敏度、良好的选择性、长期的使用寿命和可靠的稳定性。
MQ3 型气敏传感器由微型Al2O3、陶瓷管和SnO2 敏感层、测量电极和加热器构成的敏感元件固定在塑料或者不锈钢的腔体内,加热器为气敏元件的工作提供了必要的工作条件。
传感器的标准回路有两部分组成:其一为加热回路;其二为信号输出回路,它可以准确反映传感器表面电阻的变化。
13 传感器实验-可燃性气体传感器
传感器实验1. 可燃性气体传感器(MQ-5)介绍 特点➢ 对液化气,天然气,城市煤气有较好的灵敏度 ➢ 对乙醇,烟雾几乎不响应 ➢ 快速的响应恢复特性➢ 长期的使用寿命和可靠的稳定性 ➢ 简单的测试电路 应用➢ 适用于家庭或工业上对液化气,天然气,煤气的监测装置。
优良的抗乙醇,烟雾干扰能力。
可燃性气体传感器知识准备1 以上知识点,可参阅<M Q -5.p d f >讯方公司 传感器实验通过本实验了解可燃性气体传感器的硬件电路和工作原理1.编写一个读取可燃性气体传感器信号的程序 2. 将状态做简单的处理显示1. 硬件部分(1) 采集节点一个(2) J-Link 仿真器一个 (3)显示终端一台(4) 可燃性气体传感器一个2. 软件部分Keil μVision4 开发环境,J-Link 驱动程序1. 可燃性气体传感器工作原理电路中用到,可燃性气体传感器电路、信号放大电路、单片机系统、状态显示系统构成。
其基本工作原理:经过信号放大电路,可燃性气体传感器电路将感受到的酒精浓度以模拟量形式输出至单片机系统, 经AD 转换由状态显示系统进行显示。
可燃性气体传感器工作框图如图5-1:图5-1 电路工作框图1.可燃性气体传感器的硬件电路图电路中,可燃性气体传感器电路如图5-2。
图5-2 可燃性气体传感器原理图6 实验步骤实验基本步骤如下:1.启动Keil μVision4,新建一个项目工程Bank,添加常用组,并添加相应库函数;2.在user文件中建立main.c,SystemInit.c,PublicFuc.c文件;3.新建一个组sensor,在sensor中编写读取可燃性气体传感器状态的代码;4.编译链接工程,并生成hex 文件,所有文件如下图6-1所示:图6-1 文件示意图讯方公司 传感器实验5. 将可燃性气体传感器接到传感器接口1;图 6-2 可燃性气体传感器6. 将J-Link 仿真器、ZigBee 路由器接入传感器采集节点,仿真器USB 接口连入PC机,插好电源,并打开开发实验箱上的电源开关,如图6-3:图6-3 硬件连接示意图7. 将ZigBee 协调器接入智能网关,插好电源,并打开电源启动智能网关系统,运行传感器实验显示程序;电源开关电源传感器接口1传感器接口2传感器接口3J-LINK 接口ZigBee_DEBUG复位 节点按键 拨码开关 ZigBee 按键 红外发射天线指示灯ZigBee 复位图6-4 传感器实验显示程序图6-5 智能网关连接示意图8. 选择【Debug 】->【Start/Stop Debug Session 】,启动J-Link 进行仿真调试; 9. 选择【Debug 】->【run 】或者按快捷键“F5”,运行程序; 10. 验证:改变可燃性气体的浓度,观察显示屏上状态的变化;11. 验证完毕后,退出J-Link 仿真界面,关闭Keil μVision4软件;关闭硬件电源,整理桌面; 12. 实验完毕。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
最小值大于2%
备注 适用范围: 100-1000ppm氢气。
敏感体功耗(Ps)值可用下式计算: Ps=Vc2×Rs/(Rs+RL)2
传感器电阻(Rs),可用下式计算: Rs=(Vc/VRL-1)×RL
D. 结构,外形 MQ-8 气敏元件的结构和外形如图 4 所示(结构 A 或 B), 由微型 Al2O3 陶瓷管、SnO2 敏感层,测量电极和 加热器构成的敏感元件固定在塑 料或不锈钢制成的腔体内,加热器 为气敏元件提供了必要的工作条 件。封装好的气敏元件有6只针状 管脚,其中4个用于信号取出,2 个用于提供加热电流。
氧气浓度会影响灵敏度特性
技术参数 2KΩ-20KΩ (1000ppm H2)
α (R1000ppm/ R500ppm H2) 标准工作条件
预热时间
浓度斜率
≤0.6
温度: 20℃±2℃ Vc:5.0V±0.1V
相对湿度: 65%±5% VH: 5.0V±0.1V 不少于48小时
备注 DC AC or DC 室温
MQ-8 氢气检测用
特点: 在较宽的浓度范围内对氢气有良好的灵敏度 长寿命、低成本 简单的驱动电路即可
MQ-8
应用: 家庭用气体泄漏报警器 工业用可燃气体报警器 便携式气体检测器
MQ-8气体传感器所使用的气敏材料是在清洁空气中电导率较低的二氧化锡(SnO2)。当传感器所处环境中 存在氢气时,传感器的电导率随空气中氢气浓度的增加而增大。使用简单的电路即可将电导率的变化转 换为与该气体浓度相对应的输出信号。 MQ-8传感器对氢气的灵敏度高,对其他含氢气体的监测也很理想。这种传感器可检测多种含氢气体,特 别是城市煤气,是一款适合多种应用的低成本传感器。 图1是传感器典型的灵敏度特性曲线。 图中纵坐标为传感器的电阻比(Rs/Ro),横坐标为气体浓度。 Rs 表示传感器在不同浓度气体中的电阻值 Ro 表示传感器在1000ppm 氢气中的电阻值 图中所有测试都是在标准试验条件下完成的。
灵敏度特性:
100
MQ-8
10
图1
图2为受温度、湿度影响的典型曲线。 图中纵坐标是传感器电阻比(Rs/Ro)。 Rs表示在含1000ppm 氢气、各种温/湿度下的电 阻值 Ro表示在含1000ppm 氢气、20℃/65%RH下的 电阻值
温/湿度的影响:
Rs/Ro Rs/R0
1
H2
1.9
0.1
0.01 100
部件 1 气体敏感层 2 电极 3 测量电极引线 4 加热器 5 陶瓷管 6 防爆网
7 卡环 8 基座 9 针状管脚
材料 二氧化锡 金(Au) 铂(Pt) 镍铬合金(Ni-Cr) 三氧化二铝 100目双层不锈钢 (SUB316) 镀镍铜材(Ni-Cu) 胶木或尼龙 镀镍铜材(Ni-Cu)
图4
传感器提供特定的工作温度。VC 则是用于测定与传感器
串联的负载电阻(RL)上的电压(VRL)。这种传感器具有
轻微的极性,VC 需用直流电源。在满足传感器电性能要
RL
求的前提下,VC 和VH 可以共用同一个电源电路。为更好
VH
利用传感器的性能,需要选择恰当的RL值。
GND
规格:
A. 标准工作条件
符号
LPG CH4 CO alcohol air
1000
1.7
1.5
1.3
ppm
1.1
10000
0.9
图2
60%RH 30%RH 85%RH
对烟雾的灵敏度是在8立方米的空间里燃10只香烟, 0.7
其输出相当于100ppm的氢气。
基本测试回路:
0.5
-20 -10
0
10
20
30
40
50 ℃
图3 Vc
图3是传感器的基本测试电路。该传感器需要施加2 个电 VRL 压:加热器电压(VH)和测试电压(VC)。其中VH用于为
参数名称
Vc
回路电压
VH
加热电压
RL
负载电阻
RH
加热电阻
PH
加热功耗
B. 环境条件
符号
参数名称
Tao
使用温度
Tas
储存温度
RH
相对湿度
O2
氧气浓度
C. 灵敏度特性
符号 Rs
参数名称 敏感体表面电阻
MQ-8
技术条件 ≤24V 5.0V±0.2V 可调 31Ω±3Ω ≤900mW
技术条件 -10℃-+50℃ -20℃-+70℃ 小于 95% RH 21%(标准条件)