高中数学建模研究论文

合集下载

优秀的数学建模论文范文(通用8篇)

优秀的数学建模论文范文(通用8篇)

优秀的数学建模论文范文第1篇摘要:将数学建模思想融入高等数学的教学中来,是目前大学数学教育的重要教学方式。

建模思想的有效应用,不仅显著提高了学生应用数学模式解决实际问题的能力,还在培养大学生发散思维能力和综合素质方面起到重要作用。

本文试从当前高等数学教学现状着手,分析在高等数学中融入建模思想的重要性,并从教学实践中给出相应的教学方法,以期能给同行教师们一些帮助。

关键词:数学建模;高等数学;教学研究一、引言建模思想使高等数学教育的基础与本质。

从目前情况来看,将数学建模思想融入高等教学中的趋势越来越明显。

但是在实际的教学过程中,大部分高校的数学教育仍处在传统的理论知识简单传授阶段。

其教学成果与社会实践还是有脱节的现象存在,难以让学生学以致用,感受到应用数学在现实生活中的魅力,这种教学方式需要亟待改善。

二、高等数学教学现状高等数学是现在大学数学教育中的基础课程,也是一门必修的课程。

他能为其他理工科专业的学生提供很多种解题方式与解题思路,是很多专业,如自动化工程、机械工程、计算机、电气化等必不可少的基础课程。

同时,现实生活中也有很多方面都涉及高数的运算,如,银行理财基金的使用问题、彩票的概率计算问题等,从这些方面都可以看出人们不能仅仅把高数看成是一门学科而已,它还与日常生活各个方面有重要的联系。

但现在很多学校仍以应试教育为主,采取填鸭式教学方式,加上高数的教材并没有与时俱进,将其与生活的关系融入教材内,使学生无法意识到高数的重要性以及高数在日常生活中的魅力,因此产生排斥甚至对抗的心理,只是在临考前突击而已。

因此,对高数进行教学改革是十分有必要的,而且怎么改,怎么让学生发现高数的魅力,并积极主动学习高数也是作为教师所面临的一个重大问题。

三、将数学建模思想融入高等数学的重要性第一,能够激发学生学习高数的兴趣。

建模思想实际上是使用数学语言来对生活中的实际现象进行描述的过程。

把建模思想应用到高等数学的学习中,能够让学生们在日常生活中理解数学的实际应用状况与解决日常生活问题的方便性,让学生们了解到高数并不只是一门课程,而是整个日常生活的基础。

高一数学建模研究报告范文

高一数学建模研究报告范文

高一数学建模研究报告范文高一数学建模研究报告范文标题:城市交通拥堵状况及疏导策略建模研究摘要:随着城市化进程的加快,城市交通拥堵问题日益突出,给人们的生活和工作带来了很多不便。

本研究通过对城市交通拥堵状况进行统计和分析,建立了数学模型,并提出了相应的疏导策略,以期提高城市交通的效率。

一、引言城市交通拥堵问题已经成为当今社会一个普遍存在的难题。

它不仅给人们的出行带来了困扰,也对城市的经济发展和环境造成了消极影响。

因此,研究城市交通拥堵状况及疏导策略具有重要意义。

二、问题陈述1. 研究城市交通拥堵状况的评价指标及其影响因素;2. 建立数学模型描述城市交通拥堵状况,并对数据进行分析;3. 提出相应的疏导策略,以提高城市交通的效率。

三、模型建立1. 建立城市交通拥堵评价指标体系,包括道路通行速度、车流量、平均等待时间等;2. 通过对城市交通数据进行分析,确定影响城市交通拥堵的因素,并建立数学模型描述其关系;3. 基于数学模型,对城市交通拥堵状况进行评估和预测,为制定疏导策略提供依据。

四、模型求解与分析1. 利用最小二乘法对建立的数学模型进行参数拟合;2. 通过模型求解得到城市交通拥堵的评估和预测结果;3. 分析不同城市交通拥堵状况的特点,并根据不同城市的实际情况,提出相应的疏导策略。

五、结果与讨论本研究基于实际数据和建立的数学模型,对城市交通拥堵状况进行了评估和预测,并提出了相应的疏导策略。

通过数据分析和模型求解,我们可以得到城市交通拥堵的程度及其变化趋势,并且针对不同城市的情况提出相应的疏导策略,如优化道路交通网络、推广公共交通工具等,以提高城市交通的效率。

六、结论本研究建立了城市交通拥堵状况评价和预测的数学模型,并提出了相应的疏导策略。

通过分析和求解模型,我们可以对城市交通拥堵状况进行评估和预测,从而为制定疏导策略提供依据。

希望本研究的成果能够对解决城市交通拥堵问题起到一定的指导作用。

中学数学建模论文精选范文赏析(共5篇)

中学数学建模论文精选范文赏析(共5篇)

中学数学建模论文精选范文赏析(共5篇)第1篇:新课程背景下中学数学建模教学的几点思考数学学习的观念正在发生转变,如何让数学回归生活、生产实际,如何让学生体验数学知识的形成过程,正是我们数学教师面临的重要问题。

因此笔者认为:在中学数学教学中落实数学建模教学迫在眉睫。

随着新课程的实施,新的《数学课程标准》中增设了“数学建模专题”,为我们中学数学建模教学搭建了一个很好的平台。

笔者在此借新课程实施的东风,来谈谈自已对数学建模教学的几点思考。

一、对中学数学建模教学的准确定位何为数学建模?一个比较准确的说法:数学建模是指通过对实际问题的抽象、简化,确定变量和参数,并应用某些规律建立起变量、参数间的确定的数学问题,求解该数学问题,从而确定能否用于解决问题的多次循环、不断深化的过程。

但是在中学阶段数学建模教学有它的特殊性,从数学应用角度分析,数学应用大致可分为以下四个层次:(1)直接套用公式计算;(2)利用现成的数学模型对问题进行定量分析;(3)对已经经过加工提炼的、忽略次要因素,保留下来的诸因素关系比较清楚的实际问题建立模型;(4)对原始的实际问题进行加工,提炼出数学模型,再分析数学模型求解。

其中第四个层次属于典型的数学建模问题。

中学数学建模,一般定位在数学应用的第三层次。

在中学阶段,学生建模能力的形成是基础知识基本技能、基本数学方法训练的一种综合效果,建模能力的培养主要是打基础,但是,过分强调基础会导致基础与实际应用的分裂。

因此,在新课程标准中明确提出:在中学阶段至少要让学生进行一次完整的数学建模过程。

从这个意义上讲我们可以适当进入第四层次,而这个分寸的把握是一个很值得探讨的问题,同时也是我们教学的一个难点。

准确地给中学数学建模教学定位,有利于指导数学教学以及更好地开展中学数学建模活动,而不至于陷入盲目及极端地处理数学应用。

二、中学数学建模教学在数学课堂教学中得以渗透由于数学建模问题源于现实的生活情境,历来教师都将它作为相对独立的学习活动或选修课来安排,或者为了应付高考,对数学建模问题不闻不问。

高中数学建模论文题材

高中数学建模论文题材

高中数学建模论文题材摘要:本文针对高中数学建模中的几种常见类型展开分析,从方程模型、不等式模型和数列模型三个类型入手,分析了以上三种类型高中数学建模教学过程中应该采取的教学路径,本文旨在通过有益的探索和讨论,为推进高中数学教学水平的提升做出应有的贡献。

关键词:高中数学;建模;常见类型1.高中数学与建模高中阶段是一个学生学习生涯中的关键阶段,在这一阶段开展卓有成效的数学教学,对于帮助学生养成良好的思维习惯和学习习惯而言十分重要。

从一个学生学习的整体发展上看来,在高中数学教学的过程中,帮助学生养成良好的学习习惯,帮助他们树立正确的数学思维方法显然十分重要。

建模的思想是高中数学教学过程中每一个阶段都非常强调的思想。

学生在学习的不同阶段,都能正确认识到自己需要掌握的建模思维路径,这对于学生正确理解和接受高中数学相关知识而言非常重要。

从宏观上看来,学生在高中学习阶段就掌握正确的建模思想,对于他们进入到大学之后从事高等数学的学习而言,也是非常有好处的。

在培养学生数学建模的有关思想的时候,高中数学老师应该占据主导地位。

应该从宏观入手,给学生卓有成效的指引。

为了达到这一目标,老师应该和学生密切配合,以让学生了解和领会数学建模相关知识和技能为目标,对学生开展卓有成效的数学教学。

2.高中数学建模中的几种常见类型2.1方程模型在整个高中阶段,方程的思想一以贯之的,而从高中数学建模的角度上看,方程模型也是一个重要的数学建模模型。

从方程本身的思维逻辑路径上来看,它是一种正向思维,就是利用本身题目描述的等量关系,将所需要求解的未知数当做一个等式中的已知情况进行考虑,这样做可以帮助学生跳过相对繁琐的逆向思维路径,尽量减轻解决问题过程中的思维负担,这种方式能够帮助学生用更加简便的方法来解决更加复杂的问题。

事实上,随着学生学习数学内容难度的提高,很多学生和老师都不约而同的发现,他们在进行有关数学问题的求解的时候,常常已经离不开方程的方法和思想了,用传统意义上的逆向思维求解已经不能满足有关需求了。

苏教版高中数学教材中对数学建模的处理优秀获奖科研论文

苏教版高中数学教材中对数学建模的处理优秀获奖科研论文

苏教版高中数学教材中对数学建模的处理优秀获奖科研论文高中时期的数学建模,只是一个基础理论的学习.通过这些基础理论的学习,能够为学生今后的发展奠定基础.所以,高中数学教材对数学建模的处理,就显得非常重要,它关系到学生对数学建模基础知识的掌握程度.下面结合自己的教学实践谈点体会.一、数学建模在高中数学课程中的意义数学课程的最大特点,是公式、定理和概念较多,虽然练习题非常多,但基本上都是对现实问题的抽象.因而,很多学生对数学不感兴趣.尽管如此,但数学的学习,对于每个学生来说都非常重要.特别是数学建模这一块的教学内容,是学生运用数学知识解决实际问题的一个良好平台,不仅要求学生能够对以前学过的数学知识灵活运用,还要求学生能够对现实问题进行分析,并采取有效的方式解决.所以,数学建模能够培养学生的逻辑思维能力、分析判断能力等,提高学生运用所学知识解决实际问题的能力.二、苏教版高中数学教材对数学建模的处理1.框架结构与习题、例题.在苏教版高中数学教材中,其函数模型部分被安排在函数部分的最后一节中.从这里可以看出,数学模型的建立是比较难的.苏教版主要是通过几个事例,结合人口模型和行星模型,对模型建立过程中的主要问题进行相关的阐述,再做出相关的归纳整理.与此同时,教材也安排了“钢琴与指数曲线”来帮助学生理解数学建模.不过,其例题数量偏少,而且问题的情境设置与学生的日常生活相距深远,不方便学生理解题意.2.细节方面的处理.苏教版的高中数学教材对技术的使用阐述的比较详细,强化学生对数学建模的操作过程的记忆,这对学生以后对数学建模的深入理解有较大益处.在例题的讲解方面,苏教版着墨较多,特别是对于如何解题部分,讲解得非常详细.三、关于高中数学教材对数学建模处理的一些思考1.循序渐进.由于数学建模需要学生具备一定的理论联系实际的能力,但是高中学生的理论联系实际能力整体来看不是很强.所以,教材对数学建模的处理,应采用循序渐进的方式.也就是说,尽量让学生从一些较为简单的建模知识开始学习,随着时间的推移,年级的增加,可增加数学建模内容的篇幅.这反而能使学生愿意学习数学,提高他们的抽象思维能力.教材的设置也应根据不同地区的学生知识状况,安排不同层次的学习顺序.2.取材于生活.选用学生比较熟悉的材料,作为例题的主要内容,让学生有一种解决实际问题的氛围,提高他们的学习兴趣.对于部分与实际生活联系密切的例题,教材可以通过情境设置、设问等方式,引起学生的注意.在具体的数学建模过程中,教材具体详细地阐述某一个实例.通过这种典型案例演示的方法,使学生掌握基本的数学建模的方法.就数学建模的一般步骤来看,主要分为审题、建模、解模和结论.3.处理方式多样化.考虑到高中学生的课业负担重,他们很难在较短的时间内,完成整个建模过程,教材中可以将模型的解答或处理分成多个小步骤.这样,既能缓解学生的课业负担,又能使学生的分析能力得到培养.另外,可以将处理过程中的重点事项和非重点事项区别开来,节省学生处理数学模型的时间.现举例分析.教学目标:使学生掌握基本的函数的定义域和值域的求法,并通过对实际问题的分析,锻炼他们的逻辑思维和数学建模的能力.教学方法:通过创设情境,使学生的注意力由课外转向课内.例题:一辆汽车的行驶速度为60km/h,汽车的行驶路程与行驶时间的关系式为:y=60x+20.(1)本题所涉及的变量有哪几种?这几种变量之间呈现什么样的关系(用平面图表示).(2)以上的关系式,初中学习阶段称之为什么?教师引导:(1)用集合的语言阐述上述两个问题的共同特点?它们涉及哪些集合?引出函数的定义,并提醒学生注意相关问题.例题演练:(1)x→y,y2=x,x,y属于整数.要求学生判断该等式是否为函数……教学评价:(1)集中解答学生的各种问题,提升学生的学习兴趣.(2)吸纳学生提出的各种建议,促进数学建模课程的有效开展.总之,本文对数学建模在高中数学课程中的意义作了相关的阐述,并分析了苏教版高中数学教材对数学建模的处理,主要分为两个方面:第一,框架结构与习题、例题;第二,细节方面的处理.之后,笔者关于高中数学教材对数学建模处理的进行了一些思考,提出了几点改进办法,第一,循序渐进;第二,取材于生活;第三,处理方式多样化.希望通过文章分析,有利于学生对数学建模知识的掌握,有利于促进学生运用知识解决实际问题能力的提升.。

高中数学建模的教学方法与策略研究

高中数学建模的教学方法与策略研究

高中数学建模的教学方法与策略研究一、本文概述《高中数学建模的教学方法与策略研究》这篇文章旨在探讨和研究高中数学建模的有效教学方法与策略。

数学建模,作为数学学科的一个重要分支,它要求学生能够将数学理论知识应用于实际问题中,通过构建数学模型来解决实际问题。

随着教育改革的深入和素质教育的推进,数学建模在高中数学教学中的地位日益凸显,对于培养学生的创新思维和实践能力具有重要作用。

本文将首先对数学建模的基本概念进行阐述,明确数学建模在高中数学教学中的地位和作用。

随后,文章将重点分析当前高中数学建模教学中存在的问题和挑战,如教学内容与方法单学生实践能力不足等。

在此基础上,文章将提出一系列针对性的教学策略和方法,包括案例教学、项目驱动、合作学习等,以激发学生的学习兴趣和积极性,提高学生的数学建模能力和实践操作能力。

文章还将对高中数学建模教学的评价体系进行探讨,以期建立一个科学、合理的评价标准,对教学效果进行客观、公正的评价。

文章将总结归纳高中数学建模教学的发展趋势和前景,为高中数学建模教学的改革与发展提供有益的参考和借鉴。

通过本文的研究和探讨,希望能够为高中数学建模教学的实践提供有益的指导和帮助,推动高中数学建模教学的创新与发展,为学生的全面发展提供有力支持。

二、数学建模的基本理论数学建模,作为数学与现实世界之间的桥梁,是数学科学与应用领域之间的重要纽带。

数学建模的基本理论涉及多个方面,包括数学模型的构建、模型的验证与应用,以及模型的优化与改进。

构建数学模型是数学建模过程的核心。

这一过程要求学生能够根据实际问题的特点,选取合适的数学工具和方法,将实际问题抽象化、量化,进而转化为数学问题。

在这一阶段,学生需要掌握基本的数学知识和方法,如代数、几何、概率统计等,并能够灵活运用这些知识和方法解决实际问题。

模型的验证与应用是数学建模过程中不可或缺的一环。

在构建完数学模型后,学生需要通过实验、观察、数据分析等手段,对模型进行验证,以检查模型是否能够真实反映实际问题的特点和规律。

数学建模论文(精选4篇)

数学建模论文(精选4篇)

数学建模论文(精选4篇)数学建模论文模板篇一1数学建模竞赛培训过程中存在的问题1.1学生数学、计算机基础薄弱,参赛学生人数少以我校理学院为例,数学专业是本校开设最早的专业,面向全国28个省、市、自治区招生,包括内地较发达地区的学生、贫困地区(包括民族地区)的学生,招收的学生数学基础水平参差不齐.内地较发达地区的学生由于所处地区的经济文化条件较好,教育水平较高,高考数学成绩普遍高于民族地区的学生.民族地区由于所处地区经济文化较落后,中小学师资力量严重不足,使得少数民族学生数学基础薄弱,对数学学习普遍抱有畏难情绪,从每年理学院新生入学申请转系的同学较多可以窥见一斑.虽然学校每年都组织学生参加全国大学生数学建模竞赛,但人数都不算多.从专业来看,参赛学生主要以数学系和计算机系的学生为主,间有化学、生科、医学等理工科学生,文科学生则相对更少.理工科类的学生基本功比较扎实,他们在参赛过程中起到了重要作用.文科学生数学和计算机功底大多薄弱,更多的只是一种参与.从年级来看,参赛学生以大二的学生居多;大一的学生已学的数学和计算机课程有限,基本功还有些欠缺;大三、大四的学生忙着考研和找工作,对数学建模竞赛兴趣不大.从参赛的目的来看,有20%左右的学生是非常希望通过数学建模提高自己的综合能力,他们一般能坚持到最后;还有50%的学生抱着试试看的态度参加培训,想锻炼但又怕学不懂,觉得可以坚持就坚持,不能则中途放弃;剩下的30%的学生则抱着好奇好玩的态度,他们大多早早就出局了.学生的参赛积极性不高,是制约数学建模教学及竞赛有效开展的不利因素.1.2无专职数学建模培训教师,培训教师水平有限,培训方法落后数学建模的培训教师主要由理学院选派数学老师临时组成,没有专职从事数学建模的教师.由于学校扩招,学生人数多,教师人数少,数学教师所承担的专业课和公共课课程多,授课任务重;备课、授课、批改作业占用了教师的大部分工作时间,并且还要完成相应的科研任务.而参加数学建模教学及竞赛培训等工作需要花费很多时间和精力,很多老师都没有时间和精力去认真从事数学建模的教学工作.培训教师队伍整体素质不够强、能力欠缺,指导起学生来也不是那么得心应手,且从事数学建模教学的老师每年都在调整,不利于经验的积累.另外,学校对参与数学建模教学及竞赛培训的教师的鼓励措施还不是十分到位和吸引人,培训教师对数学建模相关的工作热情不够,缺乏奉献精神.在2011年以前,数学建模培训主要采用教师授课的方式进行,但各位老师授课的内容互不联系.比如说上概率论的老师就讲概率论的内容,上常微分方程的老师就讲常微分的内容.学生学习了这些知识,不知道有什么用,怎么用,不能将这些知识联系起来转化为数学建模的能力.这中间缺少了很重要的一个环节,就是没有进行真题实训.结果就是学生既没有运用这些知识构建数学模型的能力,也谈不上数学建模论文写作的技巧.虽然学校年年都组织学生参加全国大学生数学建模竞赛,但结果却不尽如人意,获奖等次不高,获奖数量不多.1.3学校重视程度不够,相关配套措施还有待完善任何一项工作离开了学校的支持,都是不可能开展得好的,数学建模也不例外.在前些年,数学建模并没有引起足够的重视,学校盼望出成绩但是结果并不理想,对老师和学生的信心不足.由于经费紧张,并未专门对数学建模安排实验室,图书资料很少,学生用电脑和查资料不方便,没有学习氛围.每年数学建模竞赛主要由分管教学的副院长兼任组长,没有相应专职的负责人,培训教师去参加数学建模相关交流会议和学习的机会很少.学校和二级学院对参加数学建模教学、培训的老师奖励很少,学生则几乎没有.在课程的开设上也未引起重视,虽然理学院早在1997年就将数学实验和数学建模课列为专业必修课,但非数学专业只是近几年才开始列为公选课开设,且选修率低.2针对存在问题所采取的相应措施2.1扩大宣传,重视数学和计算机公选课开设,举办数学建模学习讨论班最近两年,学院组建了数学建模协会,负责数学建模的宣传和参赛队员的海选,通过各种方式扩大了对数学建模的宣传和影响,安排数学任课教师鼓励数学基础不错的学生参赛.同时邀请重点大学具有丰富培训经验的老师来做数学建模专题讲座,交流经验.学院重视数学专业的基础课程、核心课程的教学,选派经验丰富的老教师、青年骨干教师担任主讲,随时抽查教学质量,教学效果.严抓考风学风,对考试作弊学生绝不姑息;学生上课迟到、早退、旷课一律严肃处理.通过这些举措,学生学习态度明显好转,数学能力慢慢得到提高.学校有意识在大一新生中开设数学实验、数学建模和相关计算机公选课,让对数学有兴趣的学生能多接触这方面的知识,减少距离感.选用的教材内容浅显而有趣味,主要目的是让同学们感受到数学建模并非高不可攀,数学是有用的,增加学生学习数学的热情和参加数学建模竞赛的可能性.为了解决学生学习数学建模过程中的遇到的困难,学院组织老师、学生参加数学建模周末讨论班,老师就学生学习过程中遇到的普遍问题进行讲解,学生分小组相互讨论,尽量不让问题堆积,影响后续学习积极性.通过这些措施,参赛学生的人数比以往有了大的改观,参赛过程中退赛的学生越来越少,参赛过程中的主动性也越来越明显.2.2成立数学建模指导教师组,分批培养培训教师,改进培训方法近年来,学院开始重视对数学建模培训教师的梯队建设,成立了数学建模指导教师组.把培训教师分批送出去进修,参加交流会议,学习其它高校的经验,并安排老教师带新教师,培训教师队伍越来越稳定、壮大.从去年开始,理学院组织学生进行了为期一个月的暑期数学建模真题实训,从8月初到8月底,培训共分为7轮.学生首先进行三天封闭式真题训练———其次答辩———最后交流讨论.效果明显,学生的数学建模能力普遍得到了提高,学习积极性普遍高涨.9月份顺利参加了全国大学生数学建模竞赛.从竞赛结果来看,比以前有了比较大的进步,不管是获奖的等次还是获奖的人数上都取得了历史性突破.有了这些可喜的变化,教师和学生的积极性都得到了提高,对以后的数学建模教学和培训工作将起着极大的促进作用.除了这种集训,今后,数学建模还需要加强平时的教学和培训工作.2.3学校逐渐重视,加大了相关投入,完善了激励措施最近几年,学校加大了对数学建模教学和培训工作的相关投入和鼓励措施.安排了专门的数学建模实验室,配备了学院最先进的电脑、打印机等设备,购买了数学建模相关的书籍.划拨了数学建模教学和培训专项经费.虽然数学建模教学还没有计入教学工作量,但已经考虑计入职称评定的相关工作量中,对参加数学建模教学和培训的老师减少了基本的教学工作量,使他们有更多的时间和精力投入到数学建模的相关工作中去.对参加全国大学生数学建模竞赛获奖的老师和学生的奖励额度也比以前有了很大的提高,老师和学生的积极性得到了极大的提高.3结束语对我们这类院校而言,最重要的数学建模赛事就是一年一度的全国大学生数学建模竞赛了.竞赛结果大体可以衡量老师和学生的付出与收获,但不是绝对的,教育部组织这项赛事的初衷主要是为了促进各个院校数学建模教学的有效开展.如果过分的看重获奖等次和数量,对学校的数学建模教学和组织工作都是一种伤害.参赛的过程对学生而言,肯定是有益的,绝大多数参加过数学建模竞赛的学生都认为这个过程很重要.这个过程可能是四年的大学学习过程中体会最深的,它用枯燥的理论知识解决了活生生的现实中存在的问题,虽然这种解决还有部分的理想化.由于我校地处偏远山区,教育经费相对紧张,投入不可能跟重点院校的水平比,只能按照自身实际来.只要学校、老师、学生三方都重视并积极参与这一赛事,数学建模活动就能开展的更好.数学建模论文模板篇二培养应用型人才是我国高等教育从精英教育向大众教育发展的必然产物,也是知识经济飞速发展和市场对人才多元化需求的必然要求。

高中数学建模论文范文

高中数学建模论文范文

高中数学建模论文范文摘要本文以某高中数学建模竞赛题目为例,介绍了如何进行数学建模的过程。

首先,我们对题目进行了分析,确定了问题的目标和限制条件。

然后,我们选择了适当的数学模型,并进行了求解和分析。

最后,我们对模型的优缺点进行了评价,并提出了改进方案。

通过本文的介绍,读者可以了解到数学建模的基本流程和方法。

问题分析本次数学建模竞赛的题目为:某公司要在一定时间内完成一批订单,订单的数量和时间是已知的,公司需要确定每个订单的生产时间和生产数量,以最小化生产成本。

该问题涉及到生产计划和成本控制两个方面,需要综合考虑多个因素。

在分析问题时,我们首先需要确定问题的目标和限制条件。

问题的目标是最小化生产成本,限制条件包括订单数量、时间、生产数量和生产时间等。

我们需要对这些因素进行量化和分析,以便建立数学模型。

模型建立在建立数学模型时,我们需要选择适当的数学方法和工具。

本文采用了线性规划模型和Excel软件进行求解。

线性规划模型线性规划是一种常用的数学模型,适用于多种问题的求解。

在本文中,我们将订单的生产时间和生产数量作为决策变量,生产成本作为目标函数,订单数量、时间、生产数量和生产时间作为约束条件,建立了如下的线性规划模型:min∑c ini=1x i s.t.∑x ini=1=N∑t i ni=1x i≤Tx i≤q ix i≥0其中,x i表示第i个订单的生产数量,c i表示第i个订单的生产成本,N表示订单总数,t i表示第i个订单的生产时间,T表示总生产时间,q i表示第i个订单的最大生产数量。

Excel求解我们使用Excel软件对上述线性规划模型进行求解。

具体步骤如下:1.打开Excel软件,新建一个工作簿。

2.在工作簿中,创建一个名为“订单生产计划”的工作表。

3.在工作表中,设置订单数量、时间、生产数量和生产时间等参数。

4.在工作表中,使用Excel的线性规划求解工具对模型进行求解。

5.分析求解结果,得出最优的生产计划。

高中数学建模论文

高中数学建模论文

⾼中数学建模论⽂论⽂常⽤来指进⾏各个学术领域的研究和描述学术研究成果的⽂章,它既是探讨问题进⾏学术研究的⼀种⼿段,⼜是描述学术研究成果进⾏学术交流的⼀种⼯具。

论⽂⼀般由题名、作者、摘要、关键词、正⽂、参考⽂献和附录等部分组成。

论⽂在形式上是属于议论⽂的,但它与⼀般议论⽂不同,它必须是有⾃⼰的理论系统的,应对⼤量的事实、材料进⾏分析、研究,使感性认识上升到理性认识。

⾼中数学建模论⽂1 摘要:在提倡素质教育的今天,数学建模能⼒的培养显得尤为重要。

20xx年,数学建模作为⾼中数学的教学内容已经正式写⼊《普通⾼中数学课程标准(实验稿)》中,标准中明确要求⾼中阶段⾄少各应安排⼀次较完整的数学建模、数学探究活动。

本⽂通过收集⼤量资料,了解数学建模在国内外中学的教学研究现状,并对数学模型及数学建模相关问题进⾏了阐述。

关键词:数学建模数学模型数学应⽤ ⼀、国内中学数学建模的研究现状 随着时代的进步和科技的发展,⼈们越来越觉得数学素质是⼀个⼈的基本素质的重要⽅⾯之⼀,⽽掌握和运⽤数学模型⽅法是衡量⼀个⼈数学素质⾼低的⼀个重要标志。

受西⽅国家的影响,20世纪80年代初,数学建模课程引⼊到我国的⼀些⾼校,短短⼏⼗年来发展⾮常迅速,影响很⼤。

1989年,我国⾼校有4个队⾸次参加美国⼤学⽣数学建模竞赛。

现在这项竞赛已经成为⼀个世界性的竞赛。

在美国⼤学⽣数学建模竞赛的影响下,1992年11⽉底,中国⼯业与应⽤数学学会举⾏了我国⾸届⼤学⽣数学建模联赛。

从那以后,数学应⽤、数学建模⽅法、数学建模教学的热潮也迅速波及到中学,使得我国有关中学数学杂志中,讨论数学应⽤数学建模⽅法、数学建模教学的⽂章明显多了起来。

1996年9⽉北京市数学会组织了⼀部分中学⽣参加了“全国⼤学⽣数学建模⼤赛”,取得了意想不到的好成绩,赢得了评审⼈员、教师等有关⼈⼠的⼀致好评。

这些竞赛与常规的数学竞赛很不⼀样,题⽬内容与⽣产和⽣活实际紧密相连,可以使⽤参考书和计算⼯具,都是要通过建⽴数学模型来解决实际应⽤问题。

数学建模优秀论文的范文

数学建模优秀论文的范文

以下是一篇数学建模优秀论文的范文,供您参考:题目:基于支持向量机的分类模型研究引言:分类是数学建模中的一个重要问题,其在很多领域都有着广泛的应用。

支持向量机(SVM)是一种基于统计学习理论的分类算法,具有较好的泛化能力和鲁棒性,被广泛应用于图像分类、文本分类、生物信息学等领域。

本文旨在研究支持向量机在分类问题中的应用,并对其性能进行评估。

问题分析:分类问题的核心在于根据已知标签的数据集,训练出一个能够对未知数据进行分类的模型。

支持向量机是一种基于结构风险最小化原则的分类算法,其基本思想是将输入空间映射到高维特征空间,并在此空间中构建最大间隔分类器。

在支持向量机中,关键参数的选择和核函数的选取对模型的性能有着重要影响。

模型建立:支持向量机是一种基于统计学习理论的分类算法,其基本思想是在高维空间中构建一个超平面,将不同类别的数据分隔开。

该算法的核心在于寻找到一个能够将数据分隔开的最优超平面,使得分类间隔最大化。

在训练过程中,支持向量机会通过求解一个二次规划问题来寻找最优超平面。

模型求解:在模型训练过程中,我们采用了LIBSVM工具包来实现支持向量机。

LIBSVM是一种常用的支持向量机实现工具包,其提供了高效的求解算法和方便的接口。

在实验中,我们采用了交叉验证和网格搜索等方法来选择最优的参数组合,并对其进行评估。

结果分析:在实验中,我们采用了多种数据集来验证支持向量机的性能,包括图像分类、文本分类和生物信息学等领域的数据集。

实验结果表明,支持向量机在多个领域中都取得了较好的分类效果,其准确率、召回率和F1得分等指标均优于其他传统分类算法。

同时,我们还对其进行了误差分析,发现支持向量机具有较好的泛化性能和鲁棒性。

结论与展望:本文研究了支持向量机在分类问题中的应用,并对其性能进行了评估。

实验结果表明,支持向量机在多个领域中都取得了较好的分类效果,其准确率、召回率和F1得分等指标均优于其他传统分类算法。

同时,支持向量机还具有较好的泛化性能和鲁棒性。

数学建模论文模板(10篇)

数学建模论文模板(10篇)

数学建模论文模板(10篇)创新是知识经济的灵魂,创新能力培养是本科教育的根本目的之一、大学数学作为本科基础教学课程,在培养学生创新思维和创新能力方面具有举足轻重的作用,而数学建模能力的培养正是实现这一目的的最好途径。

2.数学教学中渗透数学建模思想是大学数学教学的必然要求。

目前,高校中高等数学教学普遍存在内容多、课时少的问题,教师在教学中往往只注重理论知识的教学,忽视了知识的应用;只注重数学学科本身知识的讲解,不注重学科之间的结合,这样使学生体会不到数学的真正用处。

为了克服这一教学中的不足,应将数学建模思想融入大学数学教学中去,使学生具备扎实的数学理论基本功和数学技能的同时,更具备运用数学思想解决实际问题的创新能力和应用能力。

3.数学建模有助于提高学生的多方面能力数学建模是将数学知识应用到实际问题中的一种创造性实践活动,它能增强学生将数学理论应用到实际问题中的社会实践意识。

数学建模具有思维的灵活性和结论的不确定性,在解决实际问题时可以从不同的角度,采用不同的数学方法建立数学模型,因此,可以激发学生的想象力、观察力和创造力。

另外,在建模时往往需要查阅相关文献资料,从中吸取有用的信息用于建模,这无形之中拓宽了学生的知识面,培养了学生的科研能力。

二、大学数学教学中渗透数学建模思想的主要措施在教学中渗入数学建模思想,必须改进原有的大学数学教学体制,从教学内容、教学方法、教学手段、教育观点、考核方式等各个方面做调整,以适应新体制下大学数学教学要求和人才培养目标。

1.从教学内容上改进以促进数学建模思想的普及和深入。

科学合理地修订教学大纲和调整教学内容,适当增加数学建模以及数学实验的教学环节势在必行。

为了让学生了解数学和数学建模的思想和理念,我校主要从课堂上和课外两方面采取了一些措施,并取得了一定的成效。

(1)在不改变现行课程主体结构下,教师从概念引入、定理证明、例题编排、课后练习各个教学环节都融入数学建模的思想和方法,这需要教师挖掘数学课程中能通过构建数学模型来解决的数学问题,合理地将数学建模的思想方法穿去,从而展示数学思想的形成过程。

数学建模论文六篇

数学建模论文六篇

数学建模论文六篇数学建模论文范文1那么当前我国高中同学的数学建模意识和建模力量如何呢?下面是节自有关人士对某次竞赛中的一道建模题目同学的作答状况所作的抽样调查。

题目内容如下:某市教育局组织了一项竞赛,聘请了来自不同学校的数名老师做评委组成评判组。

本次竞赛制定四条评分规章,内容如下:(1)评委对本校选手不打分。

(2)每位评委对每位参赛选手(除本校选手外)都必需打分,且所打分数不相同。

(3)评委打分方法为:倒数第一名记1分,倒数其次名记2分,依次类推。

(4)竞赛结束后,求出各选手的平均分,按平均分从高到低排序,依此确定本次竞赛的名次,以平均分最高者为第一名,依次类推。

本次竞赛中,选手甲所在学校有一名评委,这位评委将不参与对选手甲的评分,其他选手所在学校无人担当评委。

(Ⅰ)公布评分规章后,其他选手觉得这种评分规章对甲更有利,请问这种看法是否有道理?(请说明理由)(Ⅱ)能否给这次竞赛制定更公正的评分规章?若能,请你给出一个更公正的评分规章,并说明理由。

本题是一道开放性很强的好题,给同学留有很大的发挥空间,不少同学都有精彩的表现,例如关于评分规章的修正,就有下列几种方案:方案1:将选手甲所在学校评委的评分方法改为倒数第一名记1+分,倒数其次名记2+,…依次类推;(评分标准)方案2:将选手甲所在学校评委的评分方法改为在原来的基础上乘以;方案3:对甲评分时,用其他评委的平均分计做甲所在学校评委的打分;然而也有不少同学为空白,究其缘由可能除了时间因素,同学对于较长的文字表述产生畏惧心理、不能正确阅读是重要因素。

同时,一些同学由于不能正确理解规章(3),得出选手甲的平均得分为,其他选手的平均得分为,从而得出错误结论.不少同学消失“甲所在学校的评委会有意压低其他选手的分数,因而对甲有利”的解释,而没有意识到作出必要的假设是数学建模方法中的重要且必要的一环。

有些同学在正确理解题意的基础上,提出了“规章对甲有利”的理由,例如:排名在甲前的同学少得了1分;甲所在学校的评委不给其他选手最高分(n分),所以甲得最高分的概率比其他选手高;相当于甲所在学校的评委把最高分给了甲;甲少拿一个分数,若少拿最低分,则有利;若少拿最高分,则不利;等等。

数学建模论文范文免费(必备14篇)

数学建模论文范文免费(必备14篇)

数学建模论文范文免费(必备14篇)试论数学建模【摘要】本文以“减肥问题的研究”为例,介绍了数学建模基本方法和步骤,希望它能对初次参加数学建模的同学有所帮助。

【关键词】数学建模;基本方法;步骤数学建模就是应用建立数学模型来解决各种实际问题的方法,也就是通过对实际问题作抽象、简化、确定变量和参数并应用一些“规律”建立含变量和参数的数学问题,求解该数学问题并验证所得到的解,从而确定能否用于解决实际问题的这种多次循环,不断深化的过程。

数学建模可以培养学生下列能力:(1)洞察能力,许多提出的问题往往不是数学化的,这就是需要建模者善于从实际工作提供的原形中;抓住其数学本质,同时有些数学模型又可以有许多现实意义,这使得建模者不得不具有很强的洞察以及多种思维方式进行横向、纵向的研究;(2)数学语言翻译能力即把经过一定抽象和简化的实际用数学的语言表达出来,形成数学模型,并对数学的方法和理论推导或计算得到的结果,能用大众的语言表达出来,在此基础上提出解决其中一问题的方案或建议;(3)综合应用分析能力,用已学到的数学思想和方法进行综合应用分析,并能学习一些新的知识;(4)联想能力,对于不少的实际问题,看起来完全不同,但在一定的简化层次下它们的数学建模是相同的或相似的,这正是数学应用广泛性的体现,这就要培养学生有广泛的兴趣,多思考,勤奋踏实地学习,通过熟能生巧达到触类旁通地境界。

因此,目前有越来越多的高等院校自己组织或参加全国乃至国际大学生数学建模竟赛。

然而,有部分学生特别是初次参加数学建模的学生对数学建模感到很茫然,本人多次承担数学建模指导老师,撰写该论文,希望对初次参加数学建模的同学有所帮助。

1.建立数学模型的一般步骤使问题理想化在众多因素中孤立出所研究的问题是科学研究的经典方法。

按照辩证唯物主义观点,世界上一切事物都是相互依赖、相互依存的,要精细地研究一个问题常常无从下手,就是因为思考相关问题太多所致。

因此,对初学者最好的方法就是使问题简单化、理想化,在特殊或极端情况下进入课题,然后加入相关因素,修正结果,使问题深化。

数学建模优秀论文(精选范文10篇)2021

数学建模优秀论文(精选范文10篇)2021

数学建模优秀论文(精选范文10篇)2021一、基于数学建模的空气质量预测研究本文以某城市为研究对象,通过数学建模方法对空气质量进行预测。

通过收集历史空气质量数据,构建空气质量预测模型。

运用机器学习算法对模型进行训练和优化,提高预测精度。

通过对预测结果的分析,为城市环境管理部门提供决策支持,有助于改善城市空气质量。

二、数学建模在物流优化中的应用本文针对某物流公司配送路线优化问题,运用数学建模方法进行求解。

建立物流配送模型,考虑配送成本、时间、距离等因素。

运用线性规划、遗传算法等优化算法对模型进行求解。

通过对求解结果的分析,为物流公司提供优化配送路线的建议,降低物流成本,提高配送效率。

三、基于数学建模的金融风险管理研究本文以某银行为研究对象,通过数学建模方法对金融风险进行管理。

构建金融风险预测模型,考虑市场风险、信用风险、操作风险等因素。

运用风险度量方法对模型进行评估。

通过对预测结果的分析,为银行提供风险控制策略,降低金融风险,提高银行稳健性。

四、数学建模在能源消耗优化中的应用本文针对某工厂能源消耗优化问题,运用数学建模方法进行求解。

建立能源消耗模型,考虑设备运行、生产计划等因素。

运用优化算法对模型进行求解。

通过对求解结果的分析,为工厂提供能源消耗优化策略,降低能源消耗,提高生产效益。

五、基于数学建模的交通流量预测研究本文以某城市交通流量为研究对象,通过数学建模方法进行预测。

收集历史交通流量数据,构建交通流量预测模型。

运用时间序列分析方法对模型进行训练和优化。

通过对预测结果的分析,为城市交通管理部门提供决策支持,有助于缓解城市交通拥堵。

数学建模优秀论文(精选范文10篇)2021六、数学建模在医疗资源优化配置中的应用本文以某地区医疗资源优化配置问题为研究对象,通过数学建模方法进行求解。

建立医疗资源需求模型,考虑人口分布、疾病类型等因素。

运用线性规划、遗传算法等优化算法对模型进行求解。

通过对求解结果的分析,为政府部门提供医疗资源优化配置策略,提高医疗服务质量。

高中数学建模能力培养研究

高中数学建模能力培养研究

高中数学建模能力培养研究摘要:高中数学建模能力的培养是当前数学教育改革的重要任务之一。

本文从数学建模的定义与特点入手,分析了高中数学建模能力培养的必要性和现状,并提出了相关策略和建议,旨在促进高中数学建模能力的培养,为学生将来的学习和发展提供更好的支持。

一、引言数学建模是指利用数学理论、方法和技术解决实际问题的过程。

数学建模是现代应用数学的一种重要形式,不仅有助于提高学生的数学运用能力,还可以培养学生的创新思维和实践能力。

在高中数学教育中,培养学生的建模能力已经成为一个热门话题。

目前我国高中数学建模能力的培养还存在不少问题,需要进一步研究和探讨。

二、高中数学建模能力的定义与特点高中数学建模能力是指学生通过学习数学知识,运用数学方法,解决实际问题的能力。

它具有以下几个特点:1. 跨学科性:数学建模是一项综合性的工作,需要学生结合数学知识和其它学科知识,进行分析和解决问题。

2. 实践性:数学建模是围绕实际问题展开的,需要学生熟悉有关领域的基本情况,了解相关数据和信息,进行实地调查和收集。

3. 创新性:数学建模需要学生运用数学方法解决实际问题,因此需要学生具有创新思维和解决问题的能力。

1. 促进数学学习的深入和扩展:数学建模能力的培养需要学生掌握更多的数学知识和方法,可以促进学生对数学知识的深入理解和扩展应用。

目前我国高中数学建模能力的培养存在以下几个问题:1. 教材编写的不足:现有的高中数学教材对于数学建模的知识点覆盖不够全面,缺乏实际应用场景的案例和实例。

2. 老师教学水平不高:部分数学教师在数学建模方面的知识储备和教学能力有待提高,无法充分引导学生进行数学建模学习。

3. 学生学习兴趣不高:目前高中学生的学习压力较大,他们更关注应试教育,对于数学建模学习的兴趣不高。

4. 学校资源不足:部分学校在硬件设施和实践条件上存在不足,难以满足学生进行数学建模的需求。

五、高中数学建模能力培养的策略和建议3. 激发学生学习兴趣:组织数学建模比赛、展览和讲座等活动,激发学生对数学建模学习的兴趣。

精选五篇数学建模优秀论文

精选五篇数学建模优秀论文

精选五篇数学建模优秀论文一、基于深度学习的股票价格预测模型研究随着金融市场的发展,股票价格预测成为投资者关注的焦点。

本文提出了一种基于深度学习的股票价格预测模型,通过分析历史数据,预测未来股票价格走势。

实验结果表明,该模型具有较高的预测精度和鲁棒性,为投资者提供了一种有效的决策支持工具。

二、基于优化算法的智能交通信号控制策略研究随着城市化进程的加快,交通拥堵问题日益严重。

本文提出了一种基于优化算法的智能交通信号控制策略,通过优化信号灯的配时方案,实现交通流量的均衡分配,提高道路通行能力。

实验结果表明,该策略能够有效缓解交通拥堵,提高交通效率。

三、基于数据挖掘的电商平台用户行为分析电商平台在电子商务领域发挥着重要作用,用户行为分析对于电商平台的发展至关重要。

本文提出了一种基于数据挖掘的电商平台用户行为分析模型,通过分析用户购买行为、浏览行为等数据,挖掘用户偏好和需求。

实验结果表明,该模型能够有效识别用户行为特征,为电商平台提供个性化的推荐服务。

四、基于机器学习的疾病预测模型研究疾病预测对于公共卫生管理具有重要意义。

本文提出了一种基于机器学习的疾病预测模型,通过分析历史疾病数据,预测未来疾病的发生趋势。

实验结果表明,该模型具有较高的预测精度和可靠性,为疾病预防控制提供了一种有效的手段。

五、基于模糊数学的农业生产决策支持系统研究农业生产决策对于提高农业效益和农民收入具有重要意义。

本文提出了一种基于模糊数学的农业生产决策支持系统,通过分析农业环境、市场需求等因素,为农民提供合理的生产决策建议。

实验结果表明,该系统能够有效提高农业生产效益,促进农业可持续发展。

精选五篇数学建模优秀论文一、基于深度学习的股票价格预测模型研究随着金融市场的发展,股票价格预测成为投资者关注的焦点。

本文提出了一种基于深度学习的股票价格预测模型,通过分析历史数据,预测未来股票价格走势。

实验结果表明,该模型具有较高的预测精度和鲁棒性,为投资者提供了一种有效的决策支持工具。

高中数学建模论文范文

高中数学建模论文范文

高中数学建模论文范文近年来数学建模作为一项应用数学解决实际问题的活动,其教育上的价值在世界范围内引起了越来越多的关注和重视。

下面是店铺为大家整理的高中数学建模论文,供大家参考。

高中数学建模论文范文一:高中数学建模活动研究《新课程标准》对学生提出了新的教学要求,要求学生:(1)学会提出问题和明确探究方向;(2)体验数学活动的过程;(3)培养创新精神和应用能力。

其中,创新意识与实践能力是新课标中最突出的特点之一,数学学习不仅要在数学基础知识,基本技能和思维能力,运算能力,空间想象能力等方面得到训练和提高,而且在应用数学分析和解决实际问题的能力方面同样需要得到训练和提高,而培养学生的分析和解决实际问题的能力仅仅靠课堂教学是不够的,必须要有实践、培养学生的创新意识和实践能力是数学教学的一个重要目的和一条基本原则,要使学生学会提出问题并明确探究方向,能够运用已有的知识进行交流,并将实际问题抽象为数学问题,就必须建立数学模型,从而形成比较完整的数学知识结构。

数学模型是数学知识与数学应用的桥梁,研究和学习数学模型,能帮助学生探索数学的应用,产生对数学学习的兴趣,培养学生的创新意识和实践能力,加强数学建模教学与学习对学生的智力开发具有深远的意义。

数学建模活动是一种使学生在探究性活动中受到数学教育的学习方式,是应用已有的数学知识解决问题的教与学的双边活动,是学生围绕某个数学问题,自主探究、学习的过程。

新的高中数学课程标准要求把数学探究、数学建模的思想以不同的形式渗透在各模块和专题内容之中,突出强调建立科学探究的学习方式,让学生通过探究活动来学习数学知识和方法,增进对数学的理解,体验探究的乐趣。

但是《新课标》虽然提到了“数学模型”这个概念,但在操作层面上的指导意见并不多。

如何理解课标的上述理念?怎样开展高中数学建模活动?数学建模的教学本身是一个不断探索、不断创新、不断完善和提高的过程。

通过教学使学生了解利用数学理论和方法去分折和解决问题的全过程,提高他们分折问题和解决问题的能力;提高他们学习数学的兴趣和应用数学的意识与能力。

高中数学建模论文范文

高中数学建模论文范文

高中数学建模论文范文数学建模是一种将数学方法应用于实际问题求解的过程,其中包括模型的建立、求解、分析和结果的解释等步骤。

在高中阶段,数学建模作为一门重要的学科方向,不仅可以锻炼学生的数学素养和分析解决问题的能力,还可以培养他们的创新思维和团队合作能力。

因此,许多高中数学建模比赛已经成为学生展示自己综合能力的重要平台。

一、题目简介假设我们要研究一个有趣的问题,比如城市交通拥堵问题。

我们可以选择一个特定的城市,调查该城市的道路网和交通流量情况,然后建立数学模型来描述城市交通拥堵的影响因素、发展规律和解决方案。

二、模型建立1. 假设:我们可以假设城市的道路网是一个有向图,每条道路是一个边,每个路口是一个节点。

车辆可以在道路上自由行驶,每辆车都有一个出发点和目的地。

我们假设车辆在行驶过程中存在一定的速度限制和行驶规则。

2. 参数设置:为了建立数学模型,我们需要确定一些参数,比如车辆的平均速度、车流密度、道路长度、红绿灯时间等。

这些参数可以通过实地调查和数据分析获得。

3. 模型假设:在建立模型的过程中,我们还需要设定一些假设,比如车辆之间不存在碰撞、驾驶员没有疲劳驾驶等。

这些假设可以简化问题,使模型更易于求解。

三、模型求解1. 基本方程:根据我们的假设和参数设置,我们可以建立一些基本的数学方程,比如速度方程、加速度方程、车辆密度方程等。

这些方程可以描述车辆在道路上的运动状态。

2. 解析求解:通过数值计算或符号计算,我们可以求解这些方程,得到一些关键的结果,比如车辆的平均速度、交通流量、道路拥堵指数等。

这些结果可以帮助我们分析城市交通拥堵的原因和影响。

四、结果分析1. 数据分析:通过实际数据的采集和分析,我们可以验证模型的准确性和有效性。

比如我们可以用实际的交通流量数据来预测城市交通拥堵的情况,然后和实际观测结果进行对比。

2. 结果解释:最后,我们需要对模型的结果进行解释,说明城市交通拥堵的原因和影响,以及可能的解决方案。

高中数学人教版数学建模处理论文

高中数学人教版数学建模处理论文

高中数学人教版数学建模处理论文概要:数学建模经过大量、反复实践,已被证实可以对同学们的学习起到极其重要作用。

由此,更加需要教育工作者们在教学过程中对此项方法更多地加以运用,通过高中数学教学与建模方法的有机结合,培养学生们自觉、主动探索方法、学习知识的习惯,并以此促进学生综合素质能力的提高。

数学建模通过近些年的迅速发展,已经在众多科学领域得到了较为广泛的应用。

数学这门学科有着极具重要的性质,属于实践性科学内容,因此,使学生们具备应用数学的能力与创造性能力,也成为了高中数学教学所要达到的目标要求之一。

一、以人教版数学教材为例具体分析高中数学建模过程高中数学建模方法在实际教学中的运用是多方面的,本文以人教版《高中数学》必修五,第二章《数列》为例,对其进行具体分析。

此章节的教学目标在于使同学们了解“数列”包含的内容,以及对于等差、等比数列达到运算、掌握的实际运用能力和递推数列思维方式。

要对此章节内容展开学习,那么便可以按照以下步骤逐一实现:在教学活动开展前,老师应当预先对教学内容进行细致的设计。

在设计过程中可以由:情境创设→组织探究→深度研究→反思巩固→课外拓展→总结收获等环节依次进行。

接着便在教学实践中对以上程序一一实现。

第一步,引入老师设计好的实际问题,根据所创设的情境,激发学生主动探究的兴趣。

例如,小明因为生病而被医生要求每天要服用220mg的药物,规定是每8小时服药一次,药量为每次2粒,且连续服用的天数必须达到10天,现在已知每过8小时小明身体里的吸收药量为60%,那么请问小明在10天后身体中的含药量达到多少?第二步,建立起关于数学问题的递推方法与回推模型,并且注意要让师生共同参与到建模思考过程中。

从上述提问中,同学们可以将8小时设置为特定的时间段,当小明完成第一次的服药后,其身体含药量为440mg,而当小明再次服用时,体内所含的药量则由第一次服用药量存下的60%,再加上第二次的440mg新服药物。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学建模研究论文数学是研究现实世界数量关系和空间形式的科学,在它产生和发展的历史长河中,一直是和各种各样的应用问题紧密相关的。

数学的特点不仅在于概念的抽象性、逻辑的严密性,结论的明确性和体系的完整性,而且在于它应用的广泛性,自进入21世纪的知识经济时代以来,数学科学的地位发生了巨大的变化,它正在从国家经济和科技的后备走到了前沿。

经济发展的全球化、计算机的迅猛发展,数学理论与方法的不断扩充使得数学已成为当代高科技的一个重要组成部分,数学已成为一种能够普遍实施的技术。

培养学生应用数学的意识和能力也成为数学教学的一个重要方面。

目前国际数学界普遍赞同通过开展数学建模活动和在数学教学中推广使用现代化技术来推动数学教育改革。

美国、德国、日本等发达国家普遍都十分重视数学建模教学,把数学建模活动从大学生向中学生转移是近年国际数学教育发展的一种趋势。

“我国的数学教育在很长一段时间内对于数学与实际、数学与其它学科的联系未能给予充分的重视,因此,高中数学在数学应用和联系实际方面需要大力加强。

”我国普通高中新的数学教学大纲中也明确提出要切实培养学生解决实际问题的能力,要求增强应用数学的意识,能初步运用数学模型解决实际问题。

这些要求不仅符合数学本身发展的需要,也是社会发展的需要。

因此我们的数学教学不仅要使学生知道许多重要的数学概念、方法和结论,而且要提高学生的思维能力,培养学生自觉地运用数学知识去处理和解决日常生活中所遇到的问题,从而形成良好的思维品质。

而数学建模通过”从实际情境中抽象出数学问题,求解数学模型,回到现实中进行检验,必要时修改模型使之更切合实际”这一过程,促使学生围绕实际问题查阅资料、收集信息、整理加工、获取新知识,从而拓宽了学生的知识面和能力。

数学建模将各种知识综合应用于解决实际问题中,是培养和提高学生应用所学知识分析问题、解决问题的能力的必备手段之一,是改善学生学习方式的突破口。

因此有计划地开展数学建模活动,将有效地培养学生的能力,提高学生的综合素质。

数学建模可以提高学生的学习兴趣,培养学生不怕吃苦、敢于战胜困难的坚强意志,培养自律、团结的优秀品质,培养正确的数学观。

具体的调查表明,大部分学生对数学建模比较感兴趣,并不同程度地促进了他们对于数学及其他课程的学习.有许多学生认为:”数学源于生活,生活依靠数学,平时做的题都是理论性较强,实际性较弱的题,都是在理想化状态下进行讨论,而数学建模问题贴近生活,充满趣味性”;”数学建模使我更深切地感受到数学与实际的联系,感受到数学问题的广泛,使我们对于学习数学的重要性理解得更为深刻”。

数学建模能培养学生应用数学进行分析、推理、证明和计算的能力;用数学语言表达实际问题及用普通人能理解的语言表达数学结果的能力;应用计算机及相应数学软件的能力;独立查找文献,自学的能力,组织、协调、管理的能力;创造力、想象力、联想力和洞察力。

由此,在高中数学教学中渗透数学建模知识是很有必要的。

那么当前我国高中学生的数学建模意识和建模能力如何呢?下面是节自有关人士对某次竞赛中的一道建模题目学生的作答情况所作的抽样调查。

题目内容如下:某市教育局组织了一项竞赛,聘请了来自不同学校的数名教师做评委组成评判组。

本次竞赛制定四条评分规则,内容如下:(1)评委对本校选手不打分。

(2)每位评委对每位参赛选手(除本校选手外)都必须打分,且所打分数不相同。

(3)评委打分方法为:倒数第一名记1分,倒数第二名记2分,依次类推。

(4)比赛结束后,求出各选手的平均分,按平均分从高到低排序,依此确定本次竞赛的名次,以平均分最高者为第一名,依次类推。

本次比赛中,选手甲所在学校有一名评委,这位评委将不参加对选手甲的评分,其他选手所在学校无人担任评委。

(Ⅰ)公布评分规则后,其他选手觉得这种评分规则对甲更有利,请问这种看法是否有道理?(请说明理由)(Ⅱ)能否给这次比赛制定更公平的评分规则?若能,请你给出一个更公平的评分规则,并说明理由。

本题是一道开放性很强的好题,给学生留有很大的发挥空间,不少学生都有精彩的表现,例如关于评分规则的修正,就有下列几种方案:方案1:将选手甲所在学校评委的评分方法改为倒数第一名记1+分,倒数第二名记2+,…依次类推;(评分标准)方案2:将选手甲所在学校评委的评分方法改为在原来的基础上乘以;方案3:对甲评分时,用其他评委的平均分计做甲所在学校评委的打分;然而也有不少学生为空白,究其原因可能除了时间因素,学生对于较长的文字表述产生畏惧心理、不能正确阅读是重要因素。

同时,一些学生由于不能正确理解规则(3),得出选手甲的平均得分为,其他选手的平均得分为,从而得出错误结论.不少学生出现“甲所在学校的评委会故意压低其他选手的分数,因而对甲有利”的解释,而没有意识到作出必要的假设是数学建模方法中的重要且必要的一环。

有些学生在正确理解题意的基础上,提出了“规则对甲有利”的理由,例如:排名在甲前的同学少得了1分;甲所在学校的评委不给其他选手最高分(n 分),所以甲得最高分的概率比其他选手高;相当于甲所在学校的评委把最高分给了甲;甲少拿一个分数,若少拿最低分,则有利;若少拿最高分,则不利;等等。

以上各种想法都有道理,遗憾的是大部分学生仅仅停留在这些感性认识和文字说明上,没能进一步引进数学模型和数学符号去进行理性的分析。

如何衡量规则的公平性是本题的关键,也是建模的原则。

很少有学生能够明确提出这个原则,有些学生在第2问评分规则的修正中,提出“将甲所在学校的评委从评判组中剔除掉”,这种办法违背实际的要求。

有些学生被生活中一些现象误导,提出“去掉最高分和最低分”的评分规则修正方法,而不去从数学的角度分析和研究。

通过对这道高中数学知识应用竞赛题解答情况的分析,我们了解到学生数学建模意识和建模能力的现状不容乐观。

学生在数学应用能力上存在的一些问题:(1)数学阅读能力差,误解题意。

(2)数学建模方法需要提高。

(3)数学应用意识不尽人意数学建模意识很有待加强。

新课程标准给数学建模提出了更高的要求,也为中学数学建模的发展提供了很好的契机,相信随着新课程的实施,我们高中生的数学建模意识和建模能力会有大的提高!那么高中的数学建模教学应如何进行呢?数学建模的教学本身是一个不断探索、不断创新、不断完善和提高的过程。

不同于传统的教学模式,数学建模课程指导思想是:以实验室为基础、以学生为中心、以问题为主线、以培养能力为目标来组织教学工作。

通过教学使学生了解利用数学理论和方法去分折和解决问题的全过程,提高他们分折问题和解决问题的能力;提高他们学习数学的兴趣和应用数学的意识与能力。

数学建模以学生为主,教师利用一些事先设计好的问题,引导学生主动查阅文献资料和学习新知识,鼓励学生积极开展讨论和辩论,主动探索解决之法。

教学过程的重点是创造一个环境去诱导学生的学习欲望、培养他们的自学能力,增强他们的数学素质和创新能力,强调的是获取新知识的能力,是解决问题的过程,而不是知识与结果。

(一)在教学中传授学生初步的数学建模知识。

中学数学建模的目的旨在培养学生的数学应用意识,掌握数学建模的方法,为将来的学习、工作打下坚实的基础。

在教学时将数学建模中最基本的过程教给学生:利用现行的数学教材,向学生介绍一些常用的、典型的数学模型。

如函数模型、不等式模型、数列模型、几何模型、三角模型、方程模型等。

教师应研究在各个教学章节中可引入哪些数学基本模型问题,如储蓄问题、信用贷款问题可结合在数列教学中。

教师可以通过教材中一些不大复杂的应用问题,带着学生一起来完成数学化的过程,给学生一些数学应用和数学建模的初步体验。

例如在学习了二次函数的最值问题后,通过下面的应用题让学生懂得如何用数学建模的方法来解决实际问题。

例:客房的定价问题。

一个星级旅馆有150个客房,经过一段时间的经营实践,旅馆经理得到了一些数据:每间客房定价为160元时,住房率为55%,每间客房定价为140元时,住房率为65%,每间客房定价为120元时,住房率为75%,每间客房定价为100元时,住房率为85%。

欲使旅馆每天收入最高,每间客房应如何定价?[简化假设](1)每间客房最高定价为160元;(2)设随着房价的下降,住房率呈线性增长;(3)设旅馆每间客房定价相等。

[建立模型]设y表示旅馆一天的总收入,与160元相比每间客房降低的房价为x元。

由假设(2)可得,每降价1元,住房率就增加。

因此由可知于是问题转化为:当时,y的最大值是多少?[求解模型]利用二次函数求最值可得到当x=25即住房定价为135元时,y取最大值13668.75(元),[讨论与验证](1)容易验证此收入在各种已知定价对应的收入中是最大的。

如果为了便于管理,定价为140元也是可以的,因为此时它与最高收入只差18.75元。

(2)如果定价为180元,住房率应为45%,相应的收入只有12150元,因此假设(1)是合理的。

(二)培养学生的数学应用意识,增强数学建模意识。

首先,学生的应用意识体现在以下两个方面:一是面对实际问题,能主动尝试从数学的角度运用所学知识和方法寻求解决问题的策略,学习者在学习的过程中能够认识到数学是有用的。

二是认识到现实生活中蕴含着大量的数学信息,数学在现实世界中有着广泛的应用:生活中处处有数学,数学就在他的身边。

其次,关于如何培养学生的应用意识:在数学教学和对学生数学学习的指导中,介绍知识的来龙去脉时多与实际生活相联系。

例如,日常生活中存在着“不同形式的等量关系和不等量关系”以及“变量间的函数对应关系”、“变相间的非确切的相关关系”、“事物发生的可预测性,可能性大小”等,这些正是数学中引入“方程”、“不等式”、“函数”“变量间的线性相关”、“概率”的实际背景。

另外锻炼学生学会运用数学语言描述周围世界出现的数学现象。

数学是一种“世界通用语言”它能够准确、清楚、间接地刻画和描述日常生活中的许多现象。

应让学生养成运用数学语言进行交流的习惯。

例如,当学生乘坐出租车时,他应能意识到付费与行驶时间或路程之间具有一定的函数关系。

鼓励学生运用数学建模解决实际问题。

首先通过观察分析、提炼出实际问题的数学模型,然后再把数学模型纳入某知识系统去处理,当然这不但要求学生有一定的抽象能力,而且要有相当的观察、分析、综合、类比能力。

学生的这种能力的获得不是一朝一夕的事情,需要把数学建模意识贯穿在教学的始终,也就是要不断的引导学生用数学思维的观点去观察、分析和表示各种事物关系、空间关系和数学信息,从纷繁复杂的具体问题中抽象出我们熟悉的数学模型,进而达到用数学模型来解决实际问题,使数学建模意识成为学生思考问题的方法和习惯。

通过教师的潜移默化,经常渗透数学建模意识,学生可以从各类大量的建模问题中逐步领悟到数学建模的广泛应用,从而激发学生去研究数学建模的兴趣,提高他们运用数学知识进行建模的能力。

相关文档
最新文档