人工神经网络原理及实际应用
人工神经网络预测模型在能耗预测中的应用
人工神经网络预测模型在能耗预测中的应用随着能源消费量的不断增加,人们越来越关注如何合理利用能源和降低能源消耗。
在此背景下,如何准确预测能源消费量,成为了能源管理和优化的重要课题之一。
而人工神经网络预测模型,正是在这个领域中被广泛应用的一种技术。
一、人工神经网络基本原理人工神经网络是一种模仿生物神经网络的数学模型。
它由大量基本处理单元(人工神经元)和它们之间相互连接所组成。
神经元之间的连接权重及阈值值决定了神经元之间的信息传递及处理方式,从而形成特定的信息处理体系。
人工神经网络通过对数据的学习和调整,可以实现诸如分类、识别、预测等多种功能。
二、人工神经网络在能耗预测中的应用在能耗预测中,我们通常可以采集到历史能耗数据,以及影响能耗的相关因素如室内外温度、湿度、用电负荷等数据。
我们可以将这些数据作为输入,训练一个人工神经网络模型,从而实现对未来能耗的预测。
通常来说,能源设备的运行模式及能量消耗与环境温度、湿度等因素密切相关。
因此,我们可以将相关因素作为神经网络的输入层,能耗作为输出层。
通过对历史数据进行训练,神经网络可以自行调整神经元的权重和阈值值,从而得到一个预测模型。
三、人工神经网络预测模型的优点相对于其他方法,人工神经网络模型在能耗预测中具有以下优点:1、适用性广:能够正常工作并具有较好的预测效果,无论是在小规模的预测,还是大规模的预测中都有一定的优势。
2、预测精度高:通过神经元之间相互连接和相互作用进行数据的学习和训练,可以提高预测精度。
3、可迭代和在线更新:人工神经网络的优点之一是可以进行在线学习,及时更新数据,适应新的变化。
四、总结能耗的预测对于现代社会的能源管理和优化至关重要。
人工神经网络预测模型在此领域中被广泛应用,并已经发挥其预测精度高、可迭代和在线更新的优势。
同时,在实践过程中我们也需要注意数据的准备和模型的优化,以提高预测效果。
预测模型的应用还有很大的空间和发展,能源管理者需要对此保持敏锐的观察和前瞻性的思考。
人工神经网络的基本原理和应用
人工神经网络的基本原理和应用概述人工神经网络是一种受到人脑神经元启发的计算模型。
它由许多高度互连的处理单元(神经元)组成,这些神经元之间通过连接强度(权值)相互通信。
人工神经网络能够通过学习和训练,自动调整权值和拓扑结构,从而实现某种特定任务。
基本原理人工神经网络的基本原理是模拟生物神经元的工作方式。
每个神经元接收一组输入信号,并根据这些输入信号的权值和激活函数的输出,产生一个输出信号。
这个输出信号又可以作为其他神经元的输入信号,从而实现信息的传递和处理。
人工神经网络通常由多层神经元组成,包括输入层、隐藏层和输出层。
输入层接收外部输入信号,隐藏层和输出层对输入信号进行处理和转换。
隐藏层和输出层之间的连接强度(权值)通过训练过程进行学习和调整,以实现预期的输出结果。
应用领域人工神经网络在各个领域都有广泛的应用,包括但不限于以下几个方面:1.图像识别–人工神经网络可用于图像识别任务,如人脸识别、物体识别等。
通过训练大量图像数据,神经网络可以学习到图像中的特征,并通过对输入图像进行处理,达到准确分类和识别的目的。
2.自然语言处理–人工神经网络在自然语言处理方面也有着广泛的应用。
它可以用于语音识别、情感分析、机器翻译等任务。
通过训练大量文本数据,神经网络可以学习到单词和语义之间的关联,从而实现对自然语言的理解和处理。
3.预测和分类–人工神经网络可以通过训练历史数据,对未来事件进行预测。
例如,它可以用于股票市场预测、天气预报等领域。
此外,神经网络还可用于数据分类,如垃圾邮件过滤、疾病诊断等任务。
4.控制与优化–人工神经网络在控制与优化领域也有着广泛应用。
它可以用于自动驾驶车辆、工业生产优化、智能电网调度等控制系统中,通过学习和训练,实现自动控制和优化的目标。
优势与挑战人工神经网络相比传统的算法有一些明显的优势,但同时也面临一些挑战。
优势•并行处理能力:神经网络的并行处理能力可以加快训练和推理的速度。
•自适应学习:神经网络可以通过训练和反馈机制,自动学习和调整权值,适应输入数据的变化。
人工神经网络原理及仿真实例课程设计
人工神经网络原理及仿真实例课程设计一、引言人工神经网络是作为人类学习和复制神经系统功能的一种模型而被发明的。
它是由大量的处理单元相互连接而组成的计算模型,每个单元都可以接受输入和产生输出。
人工神经网络广泛应用于语音识别、图像识别、控制系统、自然语言处理等领域。
因此,对于计算机科学和人工智能领域的学习者来说,深入研究神经网络理论和实践非常重要。
本文旨在介绍人工神经网络的原理和设计过程,并提供一个基于MATLAB软件的仿真实例,帮助学习者深入了解神经网络的应用。
二、人工神经网络的原理1. 神经元模型神经元是神经网络的基本单元。
其模型通常由三个部分组成:输入部分、激励函数和输出部分。
在输入部分,神经元接收到来自其他神经元的信号,并将其加权后传递到下一层。
激励函数则用于计算加权后的信号是否达到神经元的阈值。
如果达到阈值,则该神经元会产生输出信号,否则则不产生。
2. 前馈神经网络模型前馈神经网络是一种基本的网络结构,其模型是一个多层前向结构,网络的每个神经元都与前一层的所有神经元相连,其输出被下一层的神经元作为输入。
3. 反馈神经网络模型反馈神经网络具有递归结构,其模型可以形成一个环路。
由于它们具有记忆功能,可以用于时间序列分析和控制问题中。
4. 感知器感知器是一种最简单的神经网络结构,主要由一个输出层和一个或多个输入层组成。
在感知器中,输入层的神经元接收外部信号并将它们转发到输出层的神经元,输出层产生此神经元的输出值。
5. 递归神经网络模型递归神经网络的输出层的输出值可以通过对前面时间步骤的结果进行回溯和反馈改进。
这使得递归神经网络在面对时间序列数据集时表现出更好的性能。
三、基于MATLAB的人工神经网络仿真实例1. 数据准备我们使用一个鸢尾花数据集进行实验。
首先,需要从网上下载数据集(下载链接不提供),并将其存储为.csv文件。
2. 数据预处理使用MATLAB工具箱对数据进行预处理,将每一列数据归一化到[0,1]的范围内。
神经网络的理论和应用
神经网络的理论和应用神经网络是一种建立在人工神经元上的计算机科学模型,它可以模拟人脑的思维方式,处理大量的复杂信息,逐渐成为人工智能的核心技术之一。
本文将从理论和应用两个方面阐述神经网络的基本原理和其在各领域中的应用。
一、神经网络的理论神经网络模型的建立是基于人类对生物神经系统的研究。
生物神经元之间的相互作用构成的网络,是生物智能的载体。
而将人类的生物神经网络转换到计算机中,就得到了人工神经网络,也就是神经网络的理论模型。
神经网络模型一般由三部分组成:输入层、隐含层和输出层。
输入层接收外界信息,经过一系列权重和偏置的计算,传递到隐含层,再由隐含层输出到输出层。
其中输入和输出层只有一层,而隐含层可以有多层,且每层之间互相连接。
在一个神经元中,输入信息会通过加权求和后进行非线性变换,得到该神经元的输出结果。
这种非线性变换可以是sigmoid函数或ReLU函数等。
随着神经网络的发展,出现了更多的模型,包括卷积神经网络(CNN)和循环神经网络(RNN)等。
卷积神经网络主要用于图像处理和计算机视觉等领域,而循环神经网络则常用于语音识别和自然语言处理等领域。
二、神经网络的应用神经网络作为一种人工智能的核心技术,在各个领域中都有广泛的应用。
1. 图像识别在计算机视觉领域,卷积神经网络被广泛应用于图像的分类、检测和分割等任务。
一般来说,神经网络的模型需要经过大量的训练才能够较好地完成这些任务。
例如,在ImageNet数据集上,使用深度卷积神经网络进行训练,可以得到非常好的识别效果。
2. 语音识别神经网络也被广泛应用于语音识别和语音合成等任务。
在语音识别任务中,循环神经网络常常被用来处理时间序列数据。
例如,在语音识别中,循环神经网络可以接收一个逐帧的音频信号,然后通过多次迭代来解码出语音中的单词和短语。
3. 自然语言处理在自然语言处理领域中,神经网络也被广泛应用于情感分析、文本分类和机器翻译等任务。
例如,使用长短时记忆网络(LSTM)构建的文本分类器可以准确地分类新闻文章和评论数据。
人工神经网络的原理和应用
人工神经网络的原理和应用简介人工神经网络(Artificial Neural Network,简称ANN)是一种基于生物神经网络结构和功能的计算模型,它通过模拟神经元之间的相互连接和信息传递来实现智能化的任务处理。
本文将介绍人工神经网络的原理,包括神经元、权重及激活函数的概念,并探讨其在各领域中的应用。
人工神经网络的原理人工神经网络由神经元(Neuron)、权重(Weight)和激活函数(Activation Function)三个核心组件构成。
神经元神经元是人工神经网络的基本单元,它模拟生物神经元的结构和功能。
神经元接受输入信号,通过加权求和和激活函数的运算,产生输出信号。
一个神经网络通常包含多个神经元组成的输入层、隐藏层和输出层。
权重权重表示神经元之间连接的强度,它决定了输入信号对输出信号的影响程度。
在训练过程中,神经网络通过调整权重来逐步优化模型的性能。
权重调整的方法有很多,常见的方法包括梯度下降法、反向传播算法等。
激活函数激活函数对神经元输出信号进行非线性变换,帮助神经网络学习和处理更复杂的数据。
常用的激活函数有sigmoid函数、ReLU函数等,它们可以将输入信号映射到一定的范围内,保证输出结果在合理的区间内。
人工神经网络的应用人工神经网络在各个领域中都有广泛的应用。
图像识别人工神经网络在图像识别领域中发挥重要作用。
通过训练神经网络模型,可以实现图像分类、目标检测、人脸识别等任务。
著名的卷积神经网络(Convolutional Neural Network,简称CNN)就是应用于图像识别领域的一种特殊类型的神经网络。
自然语言处理人工神经网络在自然语言处理领域也得到了广泛应用。
通过训练神经网络模型,可以实现文本分类、情感分析、机器翻译等任务。
循环神经网络(Recurrent Neural Network,简称RNN)和长短期记忆网络(Long Short-Term Memory,简称LSTM)是应用于自然语言处理的常见神经网络模型。
人工神经网络原理及其应用-人工智能导论
人工神经网络原理及其应用1.人工神经网络的概念:人工神经网络是对人脑或生物神经网络若干基本特性的抽象和模拟。
2.生物神经网络:由中枢神经系统(脑和脊髓)及周围神经系统(感觉神经、运动神经等)所构成的错综复杂的神经网络,其中最主要的是脑神经系统。
3.人工神经网络原理:因为人工神经网络是模拟人和动物的神经网络的某种结构和功能的模拟,所以要了解神经网络的工作原理,所以我们首先要了解生物神经元。
生物神经元它包括,细胞体:由细胞核、细胞质与细胞膜组成,轴突是从细胞体向外伸出的细长部分,也就是神经纤维。
轴突是神经细胞的输出端,通过它向外传出神经冲动;树突是细胞体向外伸出的许多较短的树枝状分支。
它们是细胞的输入端,接受来自其它神经元的冲动。
突触是神经元之间相互连接的地方,既是神经末梢与树突相接触的交界面。
对于从同一树突先后传入的神经冲动,以及同一时间从不同树突输入的神经冲动,神经细胞均可加以综合处理,处理的结果可使细胞膜电位升高,对于从同一树突先后传入的神经冲动,以及同一时间从不同树突输入的神经冲动,神经细胞均可加以综合处理,处理的结果可使细胞膜电位升高。
当输入的冲动减小,综合处理的结果使膜电位下降,当下降到阀值时。
细胞进入抑制状态,此时无神经冲动输出。
“兴奋”和“抑制”,神经细胞必呈其一。
人工神经网络的工作原理与生物神经网络原理类似,但却又不相同,其主要是通过建立一些数学模型,去模拟生物神经网络。
4.神经网络的结构:(1)前馈型:本层每个神经元只作用于下一层神经元的输入,不能直接作用于下下一层的神经元,且本层神经元之前不能互相租用。
(2)反馈型:即在前馈型的基础上,输出信号直接或间接地作用于输入信号。
5.神经网络的工作方式:(1)同步(并行)方式:任一时刻神经网络中所有神经元同时调整状态。
(2)异步(串行)方式:任一时刻只有一个神经元调整状态,而其它神经元的状态保持不变。
6.人工神经网络的应用:经过几十年的发展,神经网络理论在模式识别、自动控制、信号处理、辅助决策、人工智能等众多研究领域取得了广泛的成功。
人工神经网络在预测模型中的应用研究
人工神经网络在预测模型中的应用研究人工神经网络是由神经元组成的计算模型,可以通过学习和训练,模拟人类大脑的工作原理。
它是一种重要的机器学习方法,已经广泛应用于预测模型中。
本文将重点探讨人工神经网络在预测模型中的应用研究。
一、人工神经网络的基本原理人工神经网络模拟生物神经系统的处理过程,将输入信息通过许多神经元的处理,产生输出结果。
一个人工神经网络通常由三部分组成:输入层、中间层和输出层。
输入层接收输入数据,中间层处理数据并进行特征提取,输出层产生预测结果。
人工神经网络的学习过程通常需要两个阶段:训练和测试。
在训练阶段,神经网络通过反向传播算法更新各层之间的权重和偏置值,以减小预测误差。
在测试阶段,用未知的数据集来测试训练好的神经网络,评估其预测准确性。
二、人工神经网络在预测模型中的应用1. 股票价格预测基于历史数据,人工神经网络可以预测股票价格的走势,帮助投资者做出更好的决策。
使用多层感知器(MLP)模型在多个金融市场的实验结果表明,人工神经网络在股票价格预测方面具有较好的准确性。
2. 气候变化预测气候变化预测是基于历史气象数据和气候模型进行的。
人工神经网络可以帮助建立气候模型,预测未来气温、降雨量等气象变化趋势。
在气候变化预测领域,使用递归神经网络(RNN)模型和长短时记忆神经网络(LSTM)模型进行研究,取得了良好的结果。
3. 产品销售预测通过人工神经网络对历史销售数据进行分析,可以预测未来销售情况。
这种预测可以帮助企业制定正确的生产计划,并优化其供应链,从而节约成本。
在销售预测领域,使用循环神经网络(RNN)模型和卷积神经网络(CNN)模型也获得了不错的预测效果。
4. 肺癌患者生存期预测人工神经网络可以结合医学数据,预测肺癌患者的生存期。
使用灰色神经网络(GMNN)模型可以对肺癌患者进行生存预测,从而为医生制定更好的治疗计划提供参考。
三、人工神经网络的局限性尽管人工神经网络在许多预测模型中表现出了良好的预测能力,但是它也存在一些局限性。
人工智能算法及其应用
人工智能算法及其应用近年来,人工智能技术发展迅速,其应用场景也越来越广泛。
其中,人工智能算法是其核心,并且也是应用最为广泛的部分。
本文将介绍人工智能算法的种类、原理及其应用领域。
一、人工神经网络算法人工神经网络算法模拟了人类大脑的神经网络,具有良好的智能识别能力。
它由多个层次组成,每一层都包含一个或多个神经元,每个神经元接收上一层的输出,计算并传递到下一层。
通过反向传播算法训练神经网络,不断调整神经元之间的权值,使得神经网络能够拟合实际数据,从而实现数据分类、预测等功能。
人工神经网络算法广泛应用于图像识别、语音识别、自然语言处理等领域。
二、决策树算法决策树算法是一种通过不断划分数据集,构建树形结构来分类和预测的算法。
决策树的每个节点都代表一个属性,每个分支代表该属性的取值,叶子节点代表分类结果。
通过构建决策树,可以简单清晰地表达数据之间的关系与规律,并可用于分类、预测和数据挖掘等领域。
三、支持向量机算法支持向量机算法是一种基于最大间隔分离的线性分类算法。
它通过构建超平面将数据分隔到不同的类别中,使得超平面到最近样本点的距离最大,从而能够较好地解决非线性分类问题。
支持向量机算法具有较强的泛化能力,广泛应用于图像分类、文本分类和人脸识别等领域。
四、聚类分析算法聚类分析算法是一种将数据对象分为若干类或群体的无监督学习算法。
它通过对数据对象之间的相似性进行度量,将相似的数据对象分为一类,并与不相似的数据对象分开。
聚类分析算法可用于数据挖掘、图像识别、社交网络分析等领域。
人工智能算法广泛应用于医疗、金融、自动驾驶、智能家居等多个领域。
例如,在医疗领域,人工智能算法可以应用于医学影像识别、疾病诊断和治疗方案选择等方面。
在金融领域,人工智能算法可用于风险评估、资产管理和投资决策等方面。
在自动驾驶领域,人工智能算法可用于障碍物识别、路径规划和车辆控制等方面。
在智能家居领域,人工智能算法可用于智能家居控制、能源管理和安全保障等方面。
人工神经网络的原理和应用
人工神经网络的原理和应用人工神经网络(Artificial Neural Network,简称ANN),是一种模拟人脑神经元之间信息传递和处理方式的数学模型。
它由输入层、隐藏层和输出层组成,每一层都包含多个神经元节点。
通过训练和调整神经元之间的连接权重,人工神经网络可以学习和识别输入数据之间的模式和关联,从而实现分类、预测、识别等任务。
人工神经网络的原理是模拟了人脑神经元的工作方式。
每个神经元接收来自其他神经元的输入信号,并根据权重进行加权求和,然后通过一个激活函数进行非线性变换,最终产生输出。
神经网络的训练过程是通过调整连接权重,使网络输出与实际值的误差最小化。
人工神经网络有很多种类,其中最常见的是前馈神经网络(Feedforward Neural Network,简称FNN)。
前馈神经网络的信息流仅向前传播,没有反馈环路。
输入层接收外部输入,隐藏层负责特征提取和组合,输出层产生最终结果。
除了前馈神经网络,还有循环神经网络(Recurrent Neural Network,简称RNN)、卷积神经网络(Convolutional Neural Network,简称CNN)等。
在计算机视觉领域,人工神经网络可以用于图像分类、目标检测、人脸识别等任务。
例如,通过对大量图像进行训练,可以让神经网络学习到图像中的特征和模式,并实现自动识别图像中的物体或人脸。
在自然语言处理领域,人工神经网络可以用于语言模型、机器翻译、文本分类等任务。
例如,在机器翻译任务中,可以通过训练神经网络从源语言到目标语言的映射关系,实现自动翻译。
在金融领域,人工神经网络可以用于股票预测、风险评估等任务。
例如,通过对历史股票数据进行训练,可以让神经网络学习到股票价格之间的关联关系,并实现对未来股票价格的预测。
除了以上应用领域,人工神经网络还广泛应用于医疗诊断、语音识别、推荐系统等领域。
它在大数据时代具有较好的表达能力和适应能力,可以处理大量复杂的数据,并提取其中的规律和模式。
基于人工神经网络的预测模型在肝脏多发性瘤术后生存分析中的应用
基于人工神经网络的预测模型在肝脏多发性瘤术后生存分析中的应用肝脏多发性瘤是一种常见的恶性肿瘤,发病率呈现逐年上升的趋势,对于这一疾病的治疗及预测其生存情况一直是临床研究的热点之一。
近年来,人工神经网络技术的发展在肝脏多发性瘤预测模型中得到了广泛的应用,其作为一种强大的机器学习工具,能够处理大量的数据并生成高精度的预测结果,具有很好的应用前景。
那么,人工神经网络技术是如何实现这种高精度的预测的呢?一、人工神经网络技术的基本原理人工神经网络是一种通过模拟人脑神经元之间相互联接的方式而构建的网络结构,通过使用数学方法来模拟大脑神经系统的工作原理,从而实现具有学习能力的信息处理系统。
在人工神经网络中,神经元节点之间通过各种不同的连接方式来建立联系,从而进行信息的处理与传递,不同的神经元节点之间的连接的权值是通过网络训练得到的。
二、基于人工神经网络的预测模型在临床中的应用人工神经网络技术在肝脏多发性瘤术后生存分析中能够实现很高的准确率,从而为肝脏多发性瘤患者的治疗提供有力的帮助。
比如,将人工神经网络技术应用在肝脏多发性瘤术后生存预测模型的开发中,可以通过输入多个指标(如年龄、性别、癌灶大小、组织学分级等)来建立模型并进行训练,这样就能够根据输入的指标对患者的生存状况进行预测。
值得注意的是,为了使得模型的预测结果能够更加准确,一般需要增加模型的复杂度,使用更多的神经元和更多的层数,从而提高模型的拟合能力。
但同时,这样也会使得模型更加容易出现过拟合现象,这时候需要在训练过程中使用评估和控制方法,以确保模型的泛化能力和稳定性。
三、结语各种机器学习算法在肝脏多发性瘤术后生存分析中的应用各有特点,但相对于其他算法,人工神经网络技术具有较强的处理能力,能更加准确地刻画肝脏多发性瘤患者的临床特征,以便于临床医生进行更加精准的诊疗方案。
当然,人工神经网络技术在实际应用中也有许多限制,就像其他机器学习算法一样,它并不能取代人类医生的诊疗,而只能为医生做出进一步的参考和建议。
神经网络算法的原理和应用
神经网络算法的原理和应用神经网络算法是一种仿生学算法,它模仿人类的神经网络系统来建立数学模型,从而解决各种问题和预测未来的趋势。
神经网络算法已经广泛应用在图像识别、语音识别、自然语言处理、股票预测、机器人控制、智能交通系统等领域,并取得了非常显著的效果。
一、神经网络算法的原理神经网络算法的原理基于人类神经系统的工作机制建立。
在神经网络中,我们将一个庞大的网络分成许多小的单元,每个单元都有自己的输入和输出。
这个神经网络的输出结果是由不同神经元之间的连接来决定的,每个神经元的输出是由输入信号加上权重系数和偏置值后通过一个激活函数得出的。
神经网络模型的训练过程是根据数据来自动调整权重系数和偏置值,让神经网络模型的输出结果尽可能地接近真实值。
训练神经网络模型时,我们首先需要设置神经网络的结构,包括输入层、隐藏层、输出层的节点数以及连接方式、激活函数、损失函数等参数。
二、神经网络算法的应用神经网络算法已经广泛应用于机器学习、人工智能、自然语言处理、计算机视觉、智能控制、智能交通、股票预测等领域。
1. 图像识别图像识别是神经网络算法的主要应用之一。
在图像识别中,神经网络算法可以帮助我们解决许多问题,例如人脸识别、物体识别、车牌识别等。
2. 语音识别语音识别是神经网络算法的另一个重要应用。
语音信号是非常复杂的多维时间序列信号,因此我们需要一种特殊的神经网络模型来处理它。
这个模型通常称为循环神经网络(RNN),它可以处理任意长度的序列信号,并产生与输入相对应的输出。
3. 自然语言处理自然语言处理是人工智能领域的一个重要分支。
神经网络在自然语言处理中被广泛应用,例如语言翻译、文本分类、语音合成、情感分析等。
神经网络模型通过学习大量文本数据,可以识别出文本中的模式,并对新的文本数据做出相应的判断。
4. 股票预测神经网络算法还可以用于股票预测。
股票市场是一个典型的非线性系统,因此传统的数学模型并不能准确地预测行情趋势。
人工神经网络的工作原理及其应用研究
人工神经网络的工作原理及其应用研究人工神经网络被认为是计算机科学和人工智能领域中最受关注和研究的领域之一,它的应用范围非常广泛。
在现实生活中,我们可以看到人工神经网络的应用,例如手写识别、语音识别、图像分析、自然语言处理等等。
本文将会详细介绍人工神经网络的工作原理及其应用研究。
一、人工神经网络的定义人工神经网络是由神经元和它们之间的连接组成的计算模型,它可以模拟生物神经元的形式和功能,模拟人类大脑神经网络。
它通过学习经验并对其进行分析和组织,可以实现从复杂数据中提取规律和特点,进而实现分类、识别、预测等功能。
二、人工神经网络的工作原理人工神经网络是建立在数学和生物学的基础上的。
它的工作原理可以分为三个主要步骤,即信号的传递、加权计算和激励函数处理。
在人工神经网络的第一步中,它接收来自外部环境的输入信号,并将其传递到神经元。
在第二步中,神经元会对输入信号进行加权计算,将其与预设的阈值相比较,然后输出。
在第三步中,神经元的输出信号将会经过激励函数的处理,从而输出最终的结果。
三、人工神经网络的应用研究人工神经网络的应用范围非常广泛。
以下是它在不同领域中的一些应用:1、手写识别人工神经网络可以通过学习大量的手写字符,实现手写字符的识别和分类。
这种应用被广泛地应用于银行、邮局等行业。
2、语音识别语音识别也是人工神经网络的一个重要应用领域。
它可以通过训练一个神经网络来识别不同语音的声音,例如对话声音、病人的呼吸声等等。
3、图像分析人工神经网络也可以用于图像分析领域。
例如,可以通过训练一个神经网络来识别一张图片中的物体,并对其进行分类和识别。
4、自然语言处理自然语言处理是人工神经网络的一个非常重要的应用领域。
它可以帮助人们识别和理解不同语言中的意思和语法。
例如,可以通过训练一个神经网络来自动翻译一种语言到另一种语言。
四、总结人工神经网络通过模拟生物神经元的工作原理,实现了从复杂数据中提取规律和特点的功能。
它的应用范围广泛,可以用于手写识别、语音识别、图像分析、自然语言处理等领域。
人工神经网络的基本原理及其应用
人工神经网络的基本原理及其应用人工神经网络(Artificial Neural Network,ANN),是一种模仿生物神经网络的人工智能技术。
它由大量的节点(也被称为神经元)和连接线组成,能够模拟人脑的信息处理方式,具有学习、记忆、推理等功能,已广泛应用于图像识别、语音识别、自然语言处理、自动化控制等领域。
1. 基本原理人工神经网络的基本结构由输入层、隐藏层和输出层组成。
其中,输入层接收外部输入,隐藏层进行信息处理,输出层输出结果。
每个节点接受来自其他节点的输入,并对总输入进行加权处理,然后运用激活函数进行非线性变换,最终输出给后继节点。
加权系数和阈值是神经网络中的重要参数,它们的调整会影响神经元的输出。
神经网络的学习过程主要包括前向传播和反向传播。
前向传播是指输入数据从输入层传递到输出层的过程;反向传播是指根据输出误差对参数进行调整的过程。
通过不断迭代,神经网络的性能可以不断提高,实现更加准确的任务。
2. 应用领域2.1 图像识别图像识别是人工神经网络的常见应用之一。
通常,将图像中的每个像素作为输入,神经网络通过卷积层和池化层从原始图像中提取特征,然后通过全连接层进行分类。
例如,Google 在 2015 年发布的 ImageNet 大规模视觉识别竞赛(ImageNet Large Scale Visual Recognition Challenge,ILSVRC)中,使用了多层卷积神经网络(Convolutional Neural Network,CNN)架构,成功识别出一张图像中的物体,使得图像识别的准确率得到了显著提高。
2.2 语音识别自然语言处理业界对神经网络的应用也不断增多。
语音识别是其中的一个热点方向。
利用神经网络,可以将人类语言转化为计算机理解的信息。
语音识别的模型一般采用长短时记忆网络(Long Short-Term Memory,LSTM)结构。
LSTM 可以有效解决序列数据中存在的长距离依赖问题,提高语音的识别率。
人工神经网络的研究和应用
人工神经网络的研究和应用随着科技的不断发展,我们进入了一个智能化的时代,人工神经网络成为了人们讨论的重点。
人工神经网络是一种仿生学的技术手段,它能够模拟人类大脑的神经网络结构,实现像人类一样学习、决策和预测的功能。
本文将探讨人工神经网络的研究和应用。
一、人工神经网络的基本原理人工神经网络是由许多个“神经元”组成的,每个神经元接受多个输入信号,经过运算后输出一个结果。
简单的神经元通常由加权求和运算和一个阈值函数组成,它将输入信号与其对应的权重相乘并求和,再将结果输入到激活函数中,最后输出一个结果。
在人工神经网络中,我们将多组神经元组织成多层网络,每一层由若干个神经元组成。
每个神经元的输出将作为下一层神经元的输入,最终的输出结果将由输出层神经元组成。
二、人工神经网络的分类人工神经网络可以分为多种类型,如前馈神经网络、反馈神经网络、卷积神经网络等。
其中前馈神经网络是最为常见的一种,它没有反馈回路,信息只能从输入层到输出层流动。
反馈神经网络则允许信息沿着回路反向传播,这样神经网络就可以学习时间上的相关性,例如预测时间序列数据。
卷积神经网络是一种专门用来处理图像和视频数据的神经网络。
它通过卷积核对图像进行卷积运算,提取出图像中的特征,并经过多层池化操作后进行分类或识别。
三、人工神经网络的应用人工神经网络在各个领域都有广泛的应用,例如:1. 语音识别语言识别是人工智能领域的一个重要应用方向,人工神经网络在语音识别上也有广泛的应用。
通过学习音频输入和其对应的文字标注,神经网络可以准确地识别不同人的发音,并将其转化为文字。
2. 图像识别人工神经网络可以对图像进行分类、识别和分割等操作,例如在自动驾驶汽车、医疗图像识别、安防监控等领域中都有广泛的应用。
3. 自然语言处理自然语言处理技术是人工智能领域的另一个研究热点,它涉及到文字自动翻译、情感分析、问答系统等多个方向。
人工神经网络可以通过学习大量的语言数据,对自然语言信息进行自动处理和解析。
人工神经网络的发展及其应用
人工神经网络的发展及其应用随着科技的不断发展,人工神经网络成为一种越来越被广泛应用于各个领域的技术。
人工神经网络是一种基于生物神经网络原理的计算模型,其应用领域如机器学习、计算机视觉、自然语言处理、语音识别、控制系统等方面均有广泛应用。
一、人工神经网络的发展历史人工神经网络最早来源于1940年代末期的哈佛大学神经学家Warren McCulloch与Walter Pitts提出的“神经元模型”,其设计初衷是为了实现人类神经元结构与信息处理的模拟。
随后的几十年里,人工神经网络模型得到了不断改进和发展。
例如,1950年Rossenblatt博士提出了“感知器模型”,1980年代Hopfield等学者提出了“反馈神经网络模型”等。
20世纪80年代到90年代,人工神经网络进入了快速发展阶段。
1992年,Yann LeCun等人提出了用于图像识别的反向传播神经网络,实现了在MNIST数据集上的手写数字识别,开始了卷积神经网络(CNN)的时代。
20世纪90年代后期,支持向量机和其他新兴技术使得“智能”系统的应用迅猛发展。
二、人工神经网络的工作原理人工神经网络的工作原理仿照人类大脑神经元的工作原理,由神经元、突触和神经网络三个组成部分组成。
神经元是神经网络的基本单位,每个神经元接收到其他神经元传来的信息,并通过一个激活函数处理这些信息,以确定继续向下传递的信息是否被激活。
突触是连接不同神经元之间的通道。
人工神经网络的目的是通过训练模型对输入数据进行分类、预测、识别等操作。
训练模型的过程一般可分为前馈和反向传播两个过程。
前馈指将输入信号在神经网络中传递至输出端的过程,反向传播则是通过误差反向传递回神经网络中的每个神经元,并根据误差进行权重调整的过程。
三、人工神经网络在各领域中的应用1.机器学习人工神经网络是最为常见的机器学习算法之一。
在机器学习中,人工神经网络常被用于进行物体识别、分类和预测,这些任务包括模式识别、语音识别、手写文字识别等。
人工神经网络的原理及应用
人工神经网络的原理及应用1. 介绍人工神经网络(Artificial Neural Network,ANN)是一种受到生物神经系统启发的计算模型,通过模拟神经元之间的相互连接和信息传递,实现了一种基于权重的非线性数据处理方法。
近年来,随着计算能力的提高和数据量的增加,人工神经网络在各个领域的应用越来越广泛,取得了很多重大的突破。
2. 原理人工神经网络由多个神经元组成,每个神经元通过输入和输出连接在一起,形成一个网络结构。
神经元之间的连接权重决定了信息传递的强度和方向,使得神经网络能够学习和记忆输入数据的特征。
2.1 神经元模型神经元是人工神经网络的基本组成单位,模拟了生物神经元的功能。
每个神经元接收来自其他神经元的输入,并将这些输入进行加权求和,然后通过一个激活函数进行非线性变换,最后输出给下一个神经元。
2.2 网络结构人工神经网络的网络结构通常包括输入层、隐藏层和输出层。
输入层接收外部输入的数据,隐藏层负责进行中间特征的抽取和数据处理,输出层将最终的结果输出给用户或其他系统。
不同的网络结构可以应用于不同的问题,如前馈神经网络、循环神经网络和卷积神经网络等。
2.3 权重更新神经网络的学习过程是通过不断调整连接权重来实现的。
常用的方法是通过反向传播算法进行训练,即根据网络的输出和真实值之间的差距来更新权重。
反向传播算法使用梯度下降的思想,寻找使得损失函数最小化的权重值。
3. 应用人工神经网络在各个领域都有着广泛的应用,可以解决许多复杂的问题。
3.1 图像识别卷积神经网络是图像识别领域最常用的神经网络模型之一。
它可以通过学习大量的图像数据,自动提取图像中的特征,实现图像分类、目标检测和人脸识别等任务。
3.2 自然语言处理循环神经网络在自然语言处理领域有着广泛的应用。
通过对大量的文本数据进行学习,循环神经网络可以实现语言模型的建立、机器翻译和情感分析等任务。
3.3 金融预测人工神经网络在金融领域的应用也很广泛。
BP人工神经网络的基本原理模型与实例
w14
0.2+(0.9) (-0.0087)(1)=0.192
w15
-0.3+(0.9) (-0.0065)(1)=-0.306
w24
0.4+(0.9) (-0.0087)(0)=0.4
w25
0.1+(0.9) (-0.0065)(0)=0.1
w34
-0.5+(0.9) (-0.0087)(1)=-0.508
8.1人工神经网络旳基本概念
人工神经网络在本质上是由许多小旳非线性函数构成 旳大旳非线性函数,反应旳是输入变量到输出变量间旳复 杂映射关系。先给出单个人工神经网络旳一般模型描述:
8.1人工神经网络旳基本概念
先来看一种单一输入旳神经元模型 输入变量:x1 连接权重:w1 激活函数:f (·)
x1 w1
w1x1 f (·)
8.1人工神经网络旳基本概念
8.1人工神经网络旳基本概念
单极sigmoid函数
8.1人工神经网络旳基本概念
双曲函数
8.1人工神经网络旳基本概念
增长激活阈值后旳神经元模型 输入变量:x1 连接权重:w1 激活函数:f (·)
x1 w1
w1x1-θ f (·)
-1
小练习:请你算一算,当初始输入、权重和激活阈值为如下数值时,该神 经元旳净输入和输出分别是多少?
2.反向传播 反向传播时,把误差信号按原来正向传播旳通路反向
传回,并对每个隐层旳各个神经元旳权系数进行修改,以 望误差信号趋向最小。
8.2 误差反向传播(BP)神经网 络
8.2 误差反向传播(BP)神经网 络
x1 x2
x3
单元 j 6
1 w14
Err4=
人工神经网络的发展及应用
人工神经网络的发展及应用随着科技的快速发展,已经成为当今社会最为热门的话题之一。
作为的重要组成部分,人工神经网络也受到了广泛的。
本文将简要介绍人工神经网络的发展历程、技术特点、应用领域以及未来展望,探讨其重要性和应用前景。
人工神经网络的发展可以追溯到上世纪40年代,当时心理学家Warren McCulloch和数学家Walter Pitts提出了第一个基于生物神经网络的计算模型。
随后,在1957年,感知机模型被提出,这被认为是第一个真正的人工神经网络模型。
然而,受限于当时的技术和计算能力,这些早期的模型并未取得太大的突破。
直到上世纪80年代,随着计算机技术和算法的发展,人工神经网络才真正得到了发展。
BP(反向传播)算法的提出使得人工神经网络能够进行深层次的训练和学习。
然而,这个时期的网络结构相对简单,训练时间较长,且易陷入局部最小值。
人工神经网络是一种模拟人脑神经元网络的结构和功能的计算模型。
它由多个层次组成,每个层次包含多个神经元。
每个神经元接收输入信号,通过激活函数将其转化为输出信号,并将输出信号传递给下一层的神经元。
BP算法是人工神经网络中最常用的学习算法之一。
它通过反向传播误差梯度来更新网络权重,使得网络在经过训练后能够学习和模拟输入数据之间的关系。
深度学习技术也得到了广泛应用,它通过组合低层特征形成更加抽象的高层表示,从而提升网络的表示能力和性能。
人工神经网络的应用领域非常广泛,下面将介绍几个主要的应用领域。
医疗领域:人工神经网络在医疗领域的应用主要集中在疾病诊断、药物研发和医学影像分析等方面。
例如,通过训练人工神经网络来分析医学影像,可以帮助医生更准确地诊断肿瘤等疾病。
金融领域:人工神经网络在金融领域的应用主要包括风险评估、信用评分和股票预测等。
通过训练人工神经网络来分析大量数据,可以帮助银行和投资者更加准确地评估风险和预测市场走势。
自动驾驶:人工神经网络在自动驾驶汽车中的应用主要集中在感知和决策方面。
人工神经网络的原理及优化方法
人工神经网络的原理及优化方法随着计算机技术的不断发展,人工智能技术也得到了长足的发展。
人工神经网络作为人工智能技术的一个重要分支,广泛应用于语音识别、图像识别、机器翻译等领域。
本文将从人工神经网络的原理入手,介绍人工神经网络的优化方法。
一、人工神经网络的原理人工神经网络(Artificial Neural Network,ANN)是一种由神经元和之间联系组成的网络结构,其基本结构类似于生物神经元。
每个神经元接收来自其他神经元的信号,通过处理后输出信息到下一层神经元。
模拟了人脑神经元之间相互连接的模式。
在人工神经网络中,每个神经元都有权重和偏差值。
权重决定了该神经元的重要程度,而偏差值则可以对神经元的输出进行平移。
神经元的输入信号经过加权处理,并加上偏差值之后,再通过激活函数进行非线性变换。
人工神经网络最终的输出结果,就是所有神经元经过计算后的结果。
人工神经网络的训练过程,是利用已知数据集来调整神经网络中的权重和偏差值,以使得神经网络的输出结果尽可能接近于真实结果。
常用的神经网络训练算法包括反向传播算法、遗传算法、模拟退火等。
二、人工神经网络的优化方法人工神经网络的优化方法,旨在提高神经网络的准确性和泛化能力。
常用的优化方法包括以下几种:1. 权重初始化权重的初始化方案对神经网络的训练过程起着至关重要的作用。
一般来说,权重应该随机初始化,以避免过拟合和局部最优解。
常用的权重初始化方法包括高斯分布、均匀分布、正交初始化等,其中正交初始化是一种使用较少的初始化方式。
2. 优化函数优化函数是指在训练神经网络时,通过反向传播算法来更新权重和偏差值时所使用的损失函数。
常用的优化函数包括均方误差、交叉熵、KL散度等。
不同的优化函数对神经网络的训练效果有明显的影响。
3. DropoutDropout是一种随机性的正则化手段,它能够减少神经网络的过拟合现象。
这种方法在训练神经网络时,随机地将一些神经元的输出置为0,并将其忽略。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人工神经网络原理及实际应用摘要:本文就主要讲述一下神经网络的基本原理,特别是BP神经网络原理,以及它在实际工程中的应用。
关键词:神经网络、BP算法、鲁棒自适应控制、Smith —PID本世纪初,科学家们就一直探究大脑构筑函数和思维运行机理。
特别是近二十年来。
对大脑有关的感觉器官的仿生做了不少工作,人脑含有数亿个神经元,并以特殊的复杂形式组成在一起,它能够在“计算"某些问题(如难以用数学描述或非确定性问题等)时,比目前最快的计算机还要快许多倍。
大脑的信号传导速度要比电子元件的信号传导要慢百万倍,然而,大脑的信息处理速度比电子元件的处理速度快许多倍,因此科学家推测大脑的信息处理方式和思维方式是非常复杂的,是一个复杂并行信息处理系统。
1943年Macullocu和Pitts融合了生物物理学和数学提出了第一个神经元模型。
从这以后,人工神经网络经历了发展,停滞,再发展的过程,时至今日发展正走向成熟,在广泛领域得到了令人鼓舞的应用成果。
本文就主要讲述一下神经网络的原理,特别是BP神经网络原理,以及它在实际中的应用。
1. 神经网络的基本原理因为人工神经网络是模拟人和动物的神经网络的某种结构和功能的模拟,所以要了解神经网络的工作原理,所以我们首先要了解生物神经元。
其结构如下图所示:从上图可看出生物神经元它包括,细胞体:由细胞核、细胞质与细胞膜组成; 轴突:是从细胞体向外伸出的细长部分,也就是神经纤维。
轴突是神经细胞的输出端,通过它向外传出神经冲动;树突:是细胞体向外伸出的许多较短的树枝状分支。
它们是细胞的输入端,接受来自其它神经元的冲动;突触:神经元之间相互连接的地方,既是神经末梢与树突相接触的交界面。
对于从同一树突先后传入的神经冲动,以及同一时间从不同树突输入的神经冲动,神经细胞均可加以综合处理,处理的结果可使细胞膜电位升高;当膜电位升高到一阀值(约40mV ),细胞进入兴奋状态,产生神经冲动,并由轴突输出神经冲动;当输入的冲动减小,综合处理的结果使膜电位下降,当下降到阀值时。
细胞进入抑制状态,此时无神经冲动输出。
“兴奋”和“抑制”,神经细胞必呈其一。
突触界面具有脉冲/ 电位信号转换功能,即类似于D/A 转换功能。
沿轴突和树突传递的是等幅、恒宽、编码的离散电脉冲信号。
细胞中膜电位是连续的模拟量。
神经冲动信号的传导速度在1〜150m/s之间,随纤维的粗细,髓鞘的有无而不同。
神经细胞的重要特点是具有学习功能并有遗忘和疲劳效应。
总之,随着对生物神经元的深入研究,揭示出神经元不是简单的双稳逻辑元件而是微型生物信息处理机制和控制机。
而神经网络的基本原理也就是对生物神经元进行尽可能的模拟,当然,以目前的理论水平,制造水平,和应用水平,还与人脑神经网络的有着很大的差别,它只是对人脑神经网络有选择的,单一的,简化的构造和性能模拟,从而形成了不同功能的,多种类型的,不同层次的神经网络模型。
2. BP 神经网络目前,再这一基本原理上已发展了几十种神经网络,例如Hopficld 模型,Feldmann等的连接型网络模型,Hinton 等的玻尔茨曼机模型,以及Rumelhart 等的多层感知机模型和Kohonen 的自组织网络模型等等。
在这众多神经网络模型中,应用最广泛的是多层感知机神经网络。
这里我们重点的讲述一下BP 神经网络。
多层感知机神经网络的研究始于50 年代,但一直进展不大。
直到1985 年,Rumelhart 等人提出了误差反向传递学习算法(即BP算),实现了Minsky 的多层网络设想,其网络模型如下图所示。
它可以分为输入层,影层(也叫中间层),和输出层,其中中间层可以是一层,也可以多层,看实际情况而定。
图34-1 BP神经网络模型BP网络的原理是把一个输入矢量经过影层变换成输出矢量,实现从输入空间到输出空间的映射。
由权重实现正向映射,利用当前权重作用下网络的输出与希望实现的映射要求的期望输出进行比较来学习的。
为减少总误差,网络利用实际误差调整权重。
BP网络必须要求与输入相对应的希望输出构成训练模式队,因而需要指导学习,BP网络在结构上具有对称性,网络中的每个输出处理元件基本具有相同的传递函数。
大致的工作原理就如上段所述,但要深入了解我们就先要了解一下BP网络学习算法反传学习算法(即BP算法)。
BP算法不仅有输入层节点、输出层节点,还可有1个或多个隐含层节点。
对于输入信号,要先向前传播到隐含层节点,经作用函数后,再把隐节点的输出信号传播到输出节点,最后给出输出结果节点的作用的激励函数通常选取S型函数,如1f(X)x/Q1 e式中Q为调整激励函数形式的Sigmoid参数。
该算法的学习过程由正向传播和反向传播组成。
在正向传播过程中,输入信息从输入层经隐含层逐层处理,并传向输出层。
每一层神经元的状态只影响下一层神经元的状态。
如果输出层得不到期望的输出,则转入反向传播,将误差信号沿原来的连接通道返回,通过修改各层神经元的权值,使得误差信号最小。
社含有n个节点的任意网络,各节点之特性为Sigmoid型。
为简便起见,指定网络只有一个输出y,任一节点i的输出为O i,并设有N个样本(x k,y k)(k=1,2,3,…,N),对某一输入x k,网络输出为y k节点i的输出为O ik,节点j 的输入为y k )2其中y k为网络实际输出,定义E k =(y k -?k )2, ik=S jk O ikO)r9k )f (net jk )E k jkW ij n et jk W j当i 为输出节点时, jky k n et jknet jk,且 O jk = f(net jk ),于是 net jk(1)若j 不是输出节点, E kE k OjkE kf (net jk )net jkO jknet jkO jkE k _____ net mkn et mk O jkE k _O jk i则有Ek O jk jkE kO jknet mkE k net mkW mi O ik因此jkf (netjQW mjE k Wmk O ik第三步,修正权值,W ,1 W .1E W j卩>0,其中需ijE k W jnet jk = i并将误差函数定义为如果有M 层,而第M 层仅含输出节点,第一层为输入节点,则 BP 算法为:第一步,选取初始权值W 。
第二步,重复下述过程直至收敛:a. a. 对于k=1到Na) .计算O ik , net jk 和?的值(正向过程); b) .对各层从M 到2反向计算(反向过程);b. 对同一节点j € M,由式(1)和⑵计算冰;从上述BP算法可以看出,BP模型把一组样本的I/O问题变为一个非线性优化问题,它使用的是优化中最普通的梯度下降法。
如果把神经网络的看成输入到输出的映射,则这个映射是一个高度非线性映射。
设计一个神经网络专家系统重点在于模型的构成和学习算法的选择。
一般来说,结构是根据所研究领域及要解决的问题确定的。
通过对所研究问题的大量历史资料数据的分析及目前的神经网络理论发展水平,建立合适的模型,并针对所选的模型采用相应的学习算法,在网络学习过程中,不断地调整网络参数,直到输出结果满足要求。
3. 实际工程中的应用以上就是BP神经网络的的基本工作原理,下面我们就来看一下它在实际工程中的应用,在水电厂水质调节系统自适应控制中的应用。
随着我国火电厂高参数大容量机主的投产,对水汽品质和水质工况控制的要求越来越严格。
控制策略是决定水质调节效果的关键。
整个火电厂水质调节系统采用Smith -PID 自适应控制方案,具体控制模型我们就不予考虑,这里就具体BP神经网络在这一方案中的应用。
由于系统采用PID算法中由三种控制作用,即互相联系又互相制约,且并不是简单的线性组合,必须用非线性方法在线自适应调整PID参数,才能保证时变对象的控制效果。
所以在此系统采用BP神经网络在线整定PID参数。
所以整个系统结构如下图所示:基于BP神经网络的Smith-PID控制系统PID参数BP网络整定方法选择如下图所示4 —5 —3结构的BP网络,在线自学习整定系统Smith控制系统中控制器Gc(s)的PID参数,以给定值r(t)、系统响应值y (t)、偏差e ( t)和常数1作为BP网络的输入,网络的输出为需要整定的PID参数kp、ki和kd 。
(3)PID参数整定BP网络结构对于BP网络输入层第j个神经元的输入为(1)O j X j(7) 其中g(g)为输出层神经元激发函数w(3)(k) E(k)w^k)w<(k 1) (9)对于BP网络的隐层,第i个神经元的状态为MNet (k) W j (k)O j (k)j o对于第i个神经元的输出为(5)式(1)〜式(3)中,j = 1,2,…M; i = 1,2,…N 。
M、N分别为输入层和隐层神经元数;上角标⑴,(2) , (3)分别代表输入层、隐层和输出层。
w(2)为隐x x层权值,f(g)为隐层神经元的激发函数,文中取f(x) tanh(x) ,可以实e e现从输入到输出的任意非线性映射,且输出为连续量。
对于BP网络输出层第p个神经元的状态为NNet p(k) w(J(k)O i⑵(k) (6)i 0第p个神经元的输出为O P3)g(Net『(k)),p = 1,2 ,…,L。
L为输出层神经元数,文中L= 3 , O1⑶、O23)、O33)分别对应PID参数的k p、k i、k d,即。
1⑶(k) k p、O23)(k) k i、O33) (k) k d (8)e x由于PID参数k p、k i、k d取非负数,所以取g(x) ------------ gj max,其中U maxe e为S函数的饱和值,根据实际情况选定。
1 2性能指标取二次型函数E(k) -[r(k) y(k)],按E(k)对权值的负梯度方向2搜索调整,并附加使学习速度足够快且不易产生震荡的动量项,即得到按梯度法修改网络的权值上式中为按梯度搜索的步长,亦即学习速率。
为动量因子,它取决于过去权值的变化对目前权值变化的影响程度。
而E(k) E(k)g y(k)g u(k) g O p3)(k) g Net p3)(k) w P3)(k)o p3)(k)g Net『(k)g wj(k) 在式(8)E(k) y(k)1 2R(k) y(k)) ]「(k) y(k)咖诙由商差近似,即韻册畀3Net p(k)wphk)丽[i wp?(g(2)(k)] O2)(k)(14)o p3)(k)Net P3)(k) Net⑶(k)[g(Net p3)(k))] 9皿3)化)]同时,由系统结构原理和式(8),得u(k) O;3)(k) e(k) e(k 1)(11)(12)(13)u(k)O23)(k)e(k) (16)u(k)O33)(k)e(k) 2e(k 1) e(k 2)(17)从而得到BP网络输出层权值得学习算法为w P?(k) wj(k 1) P3)(k)O i(2)(k)(18)其中P3)(k) e(k)诜g 聆gg[Net p3)(k)] (p 二1,2…丄) (19 )u(k) O p (k)同理有隐层权值得学习算法w(2)(k) w(2)(k 1) i(2)(k)O1 (k) (20)其中(k)0.95 当E(k)<E(k-1)22)i ⑵(k) f(Net i ⑵(k))P 3)(k)w P 3)(k) (i=1,2 …,N ) (21 )p1 在这一系统中,BP 神经网络进行适当得改善。