绳模型和杆模型
习题课:轻绳和轻杆模型
课
归
纳
总
结
物体经过最高点的最大速度 vmax= gR,此时物体恰好离开桥面,做平抛运动.
杆(双轨,有支撑):对物体既可以有拉力,也可以有支持力,如图所示. ①过最高点的临界条件:v=0.
轻绳和轻杆模型
②在最高点,如果小球的重力恰好提供其做圆周运动的向心力,即 mg=mv2,v= gR, R
杆或轨道内壁对小球没有力的作用.
压力均为零 C.“水流星”通过最高点时,处于完全失重状态,不受力
的作用 D.“水流星”通过最高点时,绳子的拉力大小为5 N
训练巩固
2、(多选)如图所示,质量可以不计的细杆的一端固定着一个质量为 m的小球,另一端能绕光滑的水平轴O转动。让小球在竖直平面内绕轴O 做半径为l 的圆周运动,小球通过最高点时的线速度大小为v。下列说法 中正确的是( BCD )
当 0<v< gR时,小球受到重力和杆(或内 轨道)对球的支持力.
当 v> gR时,小球受到重力和杆向下的拉力(或外轨道对球向下的压力).
轻绳和轻杆模型
轻绳和轻杆模型
1、(多选)如图所示,细杆的一端与一小球相连,可绕过 O 点的水平轴自由转 动.现给小球一初速度,使它做圆周运动,图中 a、b 分别表示小球运动轨道的最 低点和最高点.则杆对球的作用力可能是( )
得 F+mg=mv2,解得 F=3mg L
由牛顿第三定律得绳受到的拉力 F′=F=3mg
轻绳和轻杆模型
(3)在轻杆的支持作用下,小球刚好到达最高点时的速度为零.
最高点的速度为1 2
gL时,小球所受杆的弹力和重力的合力等于向心力,设弹力向下,则
F
N+m
g=m
v2 L
解得 FN=-34mg,负号表示方向向上.
绳模型和杆模型
(二)轻杆模型 A)特点: 小球在竖直平面内做圆周运动时,物体能被支持 B)临界条件 (1)能否到达最高点的临界条件: V=0
(2)拉力还是支持力的临界条件: C)讨论: F
1)当 V> rg 时,杆对小 球施加拉力,且速度越大, 拉力越大(此时杆子相当于 绳子) 2)当 0<V< rg 时,杆对球施加支 持力,速度越大,支持里越小
表演“水流星” ,需要保证杯 子在圆周运动最高点的线速度不 得小于 gr v gr 即:
V rg
K
E G
例1.如图所示,质量为m的小球置于正方
体的光滑盒子中,盒子的边长略大于球的直径。 某同学拿着该盒子在竖直平面内做半径为R的 匀速圆周运动,已知重力加速度为g,问: 图5-7-6
要使盒子在最高点时盒子与小球之间恰好无作用力,
则该盒子做匀速圆周运动的周期为多少?
[思路点拨] 解答本题时应注意: 1小球在最高点的合力等于向心力。 2通过最高点的临界
[解析 ] 设此时盒子的运动周期为 T 0,因为在最高点时
盒子与小球之间恰好无作用力,因此小球仅受重力作用。 根据牛顿第二定律得
4 2 mg m 2 r T0
,
得
T0 2
r g
1)质量为m的小球在竖直平面内的圆轨道的内则运动, 经过最高点而不脱离轨道的临界速度为V,当小球以2V 的速度经过最高点时,对轨道的压力是多大? 解析: v m 由临界速度得:mg= r , 当小球的速度为2v时,
(2)当V2=4m/s时,杆受到的力大小,是拉力还 是压力?
A
B
3)如图:在A与B点,杆对球 的力是( AD ) A)A处可能为拉力,B处为拉力 B)A处可能为拉力,B处为压力 C)A处可能为支持力,B处为压力 D)A处可能为支持力,B处为拉力
《绳模型和杆模型》课件
绳模型
什么是绳模型?
绳模型是一种用于描述物体力学性质的理论模 型,将物体看作是柔软的绳索。
绳模型的应用
绳模型常用于弹性力学、建筑结构分析以及机 械工程等领域。
绳模型的基本假设
绳模型的基本假设是物体无穷小的体积、无穷 强度以及无限可分的形状。
绳模型的局限性
绳模型忽略了物体的刚性和其它非线性效应, 因此在某些情况下可能会产生误差。
2 知识拓展
可以深入学习杆模型的非线性版本,以及绳 模型和杆模型的多体动力学分析方法。
3 实际应用
绳模型可用于分析悬链线和桥梁等结构,杆 模型可应用于机器人运动学和动力学控制。
4 推荐阅读
《Mechanics of Materials》by Ferdinan d P. Beer and E. Russell Johnsto n Jr.
杆模型
什么是杆模型?
杆模型是一种物理模 型,将物体看作是无 质量、无弯曲的杆子, 用于描述刚体运动。
杆模型的基本假设
杆模型假设物体只存 在线性位移和角位移, 而忽略了物体弯曲、 扭转等非线性变形。
杆模型的应用
杆模型常用于机器人 学、动力学分析以及 空间刚体运动等领域。
杆模型的局限性
杆模型无法准确描述 弹性和非线性效应, 因此在某些情况下可 能会失去精确性。
Q& A
常见问题解答
在应用绳模型和杆模型时可能 遇到的常见问题和解决方法。
课程反馈
请提供宝贵的课程反馈,以帮 助我们改进教学质量。
课程结束
感谢您参与本课程,祝您日后 的学习和工作顺利!Biblioteka 《绳模型和杆模型》PPT 课件
The presentation explores the concepts of rope models and rod models, discussing their applications, limitations, and a comparison between the two. Get ready for an enlightening journey!
2022年高考物理模型专题突破-绳杆模型
真题模型(二)——竖直平面的圆周运动“绳、杆”模型来源图例考向模型核心归纳2014·新课标全国卷Ⅱ第17题受力分析、圆周运动、动能定理1.常考的模型(1)物体运动满足“绳”模型特征,竖直圆轨道光滑(2)物体运动满足“绳”模型特征,竖直圆轨道粗糙(3)物体运动满足“杆”模型特征,竖直圆轨道光滑(4)物体运动满足“杆”模型特征,竖直圆轨道粗糙(5)两个物体沿竖直圆轨道做圆周运动(6)同一物体在不同的竖直圆轨道做圆周运动(7)物体受弹簧弹力、电场力或洛伦兹力共同作用下的圆周运动2.模型解法2015·新课标全国卷Ⅰ第22题圆周运动、超重、失重2016·新课标全国卷Ⅱ第16题受力分析、牛顿第二定律、圆周运动、动能定理2016·课新标全国卷Ⅱ第25题受力分析、机械能守恒定律、圆周运动、牛顿第二定律2016·新课标全国卷Ⅲ第24题受力分析、圆周运动、机械能守恒定律、牛顿第二定律2017·全国卷Ⅱ第17题平抛运动、功能关系及极值的求解方法【预测1】 (多选)如图1所示,半径为R 的内壁光滑的圆轨道竖直固定在桌面上,一个可视为质点的质量为m 的小球静止在轨道底部A 点。
现用小锤沿水平方向快速击打小球,使小球在极短的时间内获得一个水平速度后沿轨道在竖直面内运动。
当小球回到A 点时,再次用小锤沿运动方向击打小球,通过两次击打,小球才能运动到圆轨道的最高点。
已知小球在运动过程中始终未脱离轨道,在第一次击打过程中小锤对小球做功W 1,第二次击打过程中小锤对小球做功W 2。
设先后两次击打过程中小锤对小球做功全部用来增加小球的动能,则W 1W 2的值可能是( )图1A.34B.13C.23D.1解析 第一次击打后球最多到达与球心O 等高位置,根据功能关系,有W 1≤mgR ,两次击打后球可以运动到轨道最高点,根据功能关系,有W 1+W 2-2mgR =12mv 2,在最高点有mg +N =m v 2R ≥mg ,由以上各式可解得W 1≤mgR ,W 2≥32mgR ,因此W 1W 2≤23,B 、C 正确。
微课:绳杆模型圆周运动最高点分析(罗新勇)
苏州园区二中
罗新勇
2014.4
a
1
模型一:绳模型
用长为L的细绳拴着质量为m的小球,使小球在竖 直平面内做圆周运动,小球在最高点的速度为v .
试分析:绳的张力与速度的关系怎样?
v
L mg
F
o
分析:小球受重力和拉力 v2
F mg m L
v2 F m mg
(1) mg m v2 时, 即:v gL
L
杆对球的作用力向下
a
5
v L mg
F
o
F
v L mg
o
mgF mv2 L
F
v2 m
mg
L
(2)
mg
m v2 L
时,
即:v
gL
重力恰好提供向心力,杆没有作用力;
v2 (3) mg m L
时, 即:v
gL
杆对球的作用力向上
mgF mv2 L
F mgmv2 L
L
绳子对小球的力只能向下,即:
F0
a
2
v
L mg
F
o
得:
v2 m mg 0
L
v gL
取 v0 gL 叫临界速度。
(1) v v0 时, F0
绳中拉力为零,重力提供向心力;
(2) v v0
时,
v2 F m mg0
L
重力和拉力的合力提供向心力;
(3) v v0 时,
物体离开圆轨道做曲线运动;
a
3
拓展: 若物体沿竖直轨道内侧运动,在
最高点的情况与绳模型一致。
v
a
4
模型二:杆模型:
绳模型和杆模型ppt课件
病原体侵入机体,消弱机体防御机能 ,破坏 机体内 环境的 相对稳 定性, 且在一 定部位 生长繁 殖,引 起不同 程度的 病理生 理过程
[思路点拨] 解答本题时应注意: 1小球在最高点的合力等于向心力。 2通过最高点的临界
病原体侵入机体,消弱机体防御机能 ,破坏 机体内 环境的 相对稳 定性, 且在一 定部位 生长繁 殖,引 起不同 程度的 病理生 理过程
考点4 圆周运动的两种重要模型 (轻绳模型和轻杆模型)
轻
细杆绳外来自轨双轨
病原体侵入机体,消弱机体防御机能 ,破坏 机体内 环境的 相对稳 定性, 且在一 定部位 生长繁 殖,引 起不同 程度的 病理生 理过程
B
病原体侵入机体,消弱机体防御机能 ,破坏 机体内 环境的 相对稳 定性, 且在一 定部位 生长繁 殖,引 起不同 程度的 病理生 理过程
4. 在“水流星”表演中,杯子在竖直平面做
圆周运动,在最高点时,杯口朝下,但杯中水
却不会流下来,为什么?
对杯中水:mg
FN
v2 m
r
FN
当v gr 时,FN = 0
(一)轻绳模型
A)特点:小球在竖直平面内做圆周运 v 动时,物体不能被支持就, 即不受竖直向上的支持力
思考:小球过最高点的最小速度是多少
?
v2
最高点: T mg m
r
临界状态:T=0 mg mV02
r
B)能否通过最高点的临界条件
V0 rg
mg
T
o
病原体侵入机体,消弱机体防御机能 ,破坏 机体内 环境的 相对稳 定性, 且在一 定部位 生长繁 殖,引 起不同 程度的 病理生 理过程
高中物理【绳球模型和杆球模型】
绳球模型和杆球模型
竖直平面内的圆周运动与临界问题
基本思路和方法:
以匀速圆周运动规律为基础,建立模型,根据物体做 匀速圆周运动时合力提供向心力,通过受力分析得到提供 的向心力,利用向心力公式得到需要的向心力,联立求解。
基本思路和方法:
合外力
受力分析
F提供
向心力公式
F需要
F提供 = F需要
关于两个模型需要注意两点:
v
绳球模型(最低点)
延伸 若细绳所能承受的最大张力为Fmax,试求小球通过最低点时,允许的最大速度 vmax。
绳球模型(最高点)
例 如图,长为l的细绳拉质量为m的小球在竖直面内做圆周运动,当小球以速度v通 过圆周最高点时,试求绳中张力F的大小。试求小球通过圆周最高点时所允许的最小速度vmin。
绳球模型 —— 圆环轨道、水流星
杆球模型(最低点)
例 如图,长为l的轻杆拉质量为m的小球在竖直面内做圆周运动,当小球以速度v通 过圆周最低点时,试求轻杆中弹力F的大小。
v
杆球模型(最高点)
例 如图,长为l的轻杆拉质量为m的小球在竖直面内做圆周运动,当小球以速度v通 过圆周最高点时,试求轻杆中拉力F的大小。
练习
例2 (多选)如图所示,质量可以不计的细杆的一端固定着一个质量为 m的小球,另一端能绕光滑的水平轴O转动.让小球在竖直平面内绕轴O做 半径为l的圆周运动,小球通过最高点时的线速度大小为v.下列说法中正确 的是( ) A. v不能小于 gl B. v= gl 时,小球与细杆之间无弹力作用 C. v大于 gl 时,小球与细杆之间的弹力随v增大而增大 D. v小于 gl 时,小球与细杆之间的弹力随v减小而增大
➢ 因为重力影响,模型中小球无法做匀速圆周运动, 但在最低点和最高点,受力符合匀速圆周运动的特点, 所以,我们只研究最低点和最高点。 ➢ 绳只能产生沿绳方向的拉力,杆可以产生任意方向 的弹力。
机械能守恒中的杆连接模型、绳连接模型和非质点类模型(学生版)
机械能守恒中的杆连接模型、绳连接模型和非质点类模型特训目标特训内容目标2杆连接模型(1T -5T )目标3绳连接模型(6T -10T )目标3非质点类模型(11T -15T )【特训典例】一、杆连接模型1如图,倾角为30°的足够长的光滑斜面体ABC 固定放置在水平地面上,在A 点的上方再固定一光滑的细杆,细杆与竖直方向的夹角为30°。
质量均为m 的小球甲、乙(均视为质点)用长为L 的轻质杆通过铰链连接(铰链的质量忽略不计),小球甲套在细杆上,小球乙放置在斜面上A 点,重力加速度大小为g 。
现让小球甲、小球乙由静止释放,小球乙一直沿着斜面向下运动,当小球甲刚要到达A 点还未与斜面接触时,小球甲的动能为()A.4(3+1)7mgLB.2(3+1)7mgLC.3(3+1)7mgLD.3(3+1)14mgL 2如图所示,倾角为53o 的光滑斜面与光滑的水平面在B 点连接,质量均为m 的小球甲、乙(视为质点)用轻质硬杆连接,现把乙放置在水平面上,甲从斜面上的A 点由静止释放,A 点与水平面的高度差为h ,甲在下落的过程中,乙始终在水平面上,sin53o =0.8、cos53o =0.6,重力加速度为g ,下列说法正确的是()A.甲在下落的过程中,甲重力势能的减小量等于乙动能的增加量B.甲在下落的过程中,轻质硬杆对乙先做正功后做负功C.甲刚到达B 点还未与地面接触时,甲、乙的速度之比为5:4D.甲刚到达B 点还未与地面接触时,甲的动能为2534mgh 3如图所示,半径为R 的光滑半圆弧状细轨道ABC 竖直固定在水平面上,下端与光滑的水平面平滑相接于C 点,AC 是竖直直径,圆弧上B 点距离光滑水平面的高度为R ,质量均为m 的小球甲、乙(均视为质点)用轻质细杆连接,小球甲套在半圆弧状细轨道上的A 点,小球乙放置在C 点。
甲、乙两小球均处于静止状态,现让小球甲受到轻微的扰动,小球甲沿半圆弧状细轨道向下运动,小球乙沿着水平面向右运动,重力加速度大小为g ,则在小球甲从A 点运动到B 点的过程中,下列说法正确的是()A.小球甲的重力势能全部转化为小球乙的动能B.当小球甲刚运动到B 点时,小球甲和小球乙的速度大小之比为3:1C.当小球甲刚运动到B 点时,小球乙的动能为12mgRD.当小球甲刚运动到B 点时,小球甲的机械能能减少14mgR 4如图所示,质量均为m 的A 、B 两个可视为质点的小球,用长为L 的轻杆和轻质铰链相连,固定在地面上的可视为质点的支架C 和小球A 也用长为L 的轻杆和轻质铰链相连,开始时ABC 构成正三角形,由静止释放A 、B 两球,A 球的运动始终在竖直面内,重力加速度大小为g ,不计一切摩擦,则()A.释放瞬间,A 球的加速度为0B.B 球速度最大时,A 球的机械能最小C.B 球的速度最大时,A 球的速度也最大D.A 球到达地面时的速度大小为3gL5如图所示,长度为L 的轻直杆上等距离固定质量均为m 的N 个小球(相邻球距为L N,N =1时只在杆的另一端固定一个小球),从左至右分别标记为第1、2、3⋯N 号,杆可绕固定转动轴O 在竖直平面内转动,现将轻杆拨动至与转动轴O 相水平的位置由静止自由释放,所有小球随杆作竖直平面内的圆周运动,重办加速度为g ,忽略一切阻力,从起点运动至杆竖直位置的过程中,下列说法正确的是()A.若N =1,轻杆向下摆动至竖直位置的过程中对小球不做功B.若N =2,轻杆向下摆动至竖直位置的过程中对2号小球做的功为25mgL C.若N =2,轻杆运动至竖直位置时对1号小球的作用力大小为115mg D.若N =20,轻杆向下摆动至竖直位置的过程中对15号小球做的功为341mgL 二、绳连接模型6运动员为了锻炼腰部力量,在腰部拴上轻绳然后沿着斜面下滑,运动的简化模型如图所示,与水平方向成37°角的光滑斜面固定放置,质量均为m 的运动员与重物用跨过光滑定滑轮的轻质细绳连接。
活结与死结绳模型、动杆和定杆模型和受力分析(解析版)
2024年高考物理一轮复习导学练活结与死结绳模型、动杆和定杆模型和受力分析导练目标导练内容目标1活结与死结绳模型目标2动杆和定杆模型目标3受力分析【知识导学与典例导练】一、活结与死结绳模型1.“活结”模型模型结构模型解读模型特点“活结”把绳子分为两段,且可沿绳移动,“活结”一般由绳跨过滑轮或绳上挂一光滑挂钩而形成,绳子因“活结”而弯曲,但实际为同一根绳“活结”绳子上的张力大小处处相等常见模型力学关系和几何关系端点A上下移动挡板MN左右移动①T1=T2=G2sinθ②l1cosθ+l2cosθ=d(l1+l2)cosθ=dcosθ=dl因为d和l都不变,所以根据cosθ=dl可知θ也不变,则T1和T2也不变。
因为MN左右移动时,d变化,而l不变,根据cosθ=dl可知θ将变化,则T1和T2也变。
常见模型力学关系和几何关系端点A左右移动两物体质量比变①角度:θ4=2θ3=2θ2=4θ1②拉力:T=M Q g③2M Q cosθ2=M P 两物体质量比不变,左右移动轻绳端点,角度都不变。
角度变,但让保持原有倍数关系。
1如图所示,一根不可伸长的光滑轻质细绳通过轻滑轮挂一重物,细绳一端系在竖直墙壁的A点,另一端系在倾斜墙壁的B点,现将细绳右端从B点沿倾斜墙壁缓慢向下移动到与A点等高的B′点。
在移动过程中,关于细绳拉力大小变化情况正确的是()A.先变小后变大B.变大C.变小D.不变【答案】B【详解】如下图,设绳子总长度为L ,BD 垂直于AB ′,最开始时AO 与竖直方向的夹角为θ,根据对称性有AO sin θ+BO sin θ=L sin θ=AD绳子右端从B 点移动到B ′点后,滑轮从O 点移动到O ′点,B ′O ′与竖直方向夹角为α,根据对称性有AO ′sin α+BO ′sin α=L sin α=AB ′因为AB ′>AD 所以α>θ则绳子移动后,绳子之间的夹角变大,而两段绳子的拉力大小相同,合力大小始终等于重物的重力大小,根据力的平行四边形定则,两段绳子的拉力大小变大。
2024年高考物理一轮复习热点重点难点:绳的活结与死结模型、动杆和定杆模型(解析版)
绳的活结与死结模型、动杆和定杆模型特训目标特训内容目标1绳子类的“死结”问题(1T -4T )目标2绳子类的“活结”问题(5T -8T )目标3有关滑轮组的“活结”问题(9T -12T )目标4定杆和动杆问题(13T -16T )【特训典例】一、绳子类的“死结”问题1如图所示,质量为m =2.4kg 的物体用细线悬挂处于静止状态。
细线AO 与天花板之间的夹角为53°,细线BO 水平,若三根细线能承受最大拉力均为100N ,重力加速度g 取10m/s 2,不计所有细线的重力,sin37°=0.6,cos37°=0.8。
下列说法正确的是()A.细线BO 上的拉力大小30NB.细线AO 上的拉力大小18NC.要使三根细线均不断裂,则细线下端所能悬挂重物的最大质量为8kgD.若保持O 点位置不动,沿顺时针方向缓慢转动B 端,则OB 绳上拉力的最小值为19.2N 【答案】C【详解】AB .以结点O 为研究对象,受到重力、OB 细线的拉力和OA 细线的拉力,如图所示根据平衡条件结合图中几何关系可得细线BO 上的拉力大小为F BO =mg tan37°=18N 同理,可解得细线AO 上的拉力大小F AO =mgcos37°=30N 故AB 错误;C .若三根细线能承受的最大拉力均为100N ,根据图中力的大小关系可得,只要OA 不拉断,其它两根细线都不会拉断,故有m max g =F max cos37°解得m max =F max cos37°g =100×0.810kg =8kg ,故C 正确;D .当OB 与OA 垂直时,OB 细线的拉力最小,根据几何关系结合平衡条件可得F min =mg sin37°=2.4×10×0.6N =14.4N 故D 错误。
故选C 。
2如图所示,两个质量均为m 的小球a 和b 套在竖直固定的光滑圆环上,圆环半径为R ,一不可伸长的细线两端各系在一个小球上,细线长为23R 。
轻绳轻杆模型研究
轻绳、轻杆模型研究制作人:肖华琴轻杆、轻绳都是忽略质量的理想模型,这两个模型既有相同又有相异,由于不同模型呈现的物理情景不同,因而具有不同的性质与规律。
此类问题在高中物理中占有相当重要的地位,且涉及到的问题情景综合性较强、物理过程复杂,从受力的角度看,这类弹力可能是变力;从能量的角度看,可以通过弹力做功实现能量的转移、转化。
通过分析这两种模型的特点,明确它们的相同之处与不同之处,以分析类似的问题。
这两种模型的特点如下:(1)轻绳模型:不能伸长,质量与重力可以视为零;同一根绳的两端与中间各点的张力相等;只能产生压力,与其他物体相互作用时总是沿绳子方向;在瞬间问题中轻绳的拉力发生突变,不需要形变恢复时间;(2)轻杆模型:不能伸长与压缩,质量与重力可以视为零;同一根轻杆的两端与中间各点的张力相等;能承受拉力、压力与侧向力,力的方向不一定沿杆的方向。
一、力的方向有异1、轻绳产生的弹力只能沿绳并指向绳收缩的方向;2、轻杆产生的弹力不一定沿杆的方向,可以是任意方向。
例1.如图1所示,固定在小车上的支架的斜杆与竖直杆的夹角为θ,在斜杆下端固定有质量为m的小球,是分析小车在静止、水平向右以加速度a运动时杆对小球的作用力Fn的大小与方向。
解:(1)当小车静止时,小球也静止,小球处于平衡状态所受合外力为零。
小球受竖直向下的重力,因此所受杆对小球的支持力竖直向上,大小是Fn=mg;(2)当小车水平向左以加速度a 运动时,小球同时也向左以加速度a 运动,因此小球所受合外力F 合=ma ,F 合为小球所受重力与杆对小球的支持力合成的结果。
如图1(b ),根据平行四边形定则,杆对小球的支持力22)()(ma mg F N +=,方向是斜向左上方,且与水平方向夹角为arctan(g/a);当a=g/tan 时,Fn 的方向是沿垂直于斜杆的左上方;(3)当小车水平向右以加速度a 运动时,分析同上,不同之处是小球的支持力Fn 方向是斜向右上方,且与水平方向夹角θ为arctan(g/a);当a=g*tan θ时,Fn 的方向是沿斜杆的方向。
绳的活结与死结模型、动杆和定杆模型(解析版)--2024年高考物理一轮复习热点重点难点
绳的活结与死结模型、动杆和定杆模型特训目标特训内容目标1绳子类的“死结”问题(1T -4T )目标2绳子类的“活结”问题(5T -8T )目标3有关滑轮组的“活结”问题(9T -12T )目标4定杆和动杆问题(13T -16T )【特训典例】一、绳子类的“死结”问题1如图所示,质量为m =2.4kg 的物体用细线悬挂处于静止状态。
细线AO 与天花板之间的夹角为53°,细线BO 水平,若三根细线能承受最大拉力均为100N ,重力加速度g 取10m/s 2,不计所有细线的重力,sin37°=0.6,cos37°=0.8。
下列说法正确的是()A.细线BO 上的拉力大小30NB.细线AO 上的拉力大小18NC.要使三根细线均不断裂,则细线下端所能悬挂重物的最大质量为8kgD.若保持O 点位置不动,沿顺时针方向缓慢转动B 端,则OB 绳上拉力的最小值为19.2N 【答案】C【详解】AB .以结点O 为研究对象,受到重力、OB 细线的拉力和OA 细线的拉力,如图所示根据平衡条件结合图中几何关系可得细线BO 上的拉力大小为F BO =mg tan37°=18N 同理,可解得细线AO 上的拉力大小F AO =mgcos37°=30N 故AB 错误;C .若三根细线能承受的最大拉力均为100N ,根据图中力的大小关系可得,只要OA 不拉断,其它两根细线都不会拉断,故有m max g =F max cos37°解得m max =F max cos37°g =100×0.810kg =8kg ,故C 正确;D .当OB 与OA 垂直时,OB 细线的拉力最小,根据几何关系结合平衡条件可得F min =mg sin37°=2.4×10×0.6N =14.4N 故D 错误。
故选C 。
2如图所示,两个质量均为m 的小球a 和b 套在竖直固定的光滑圆环上,圆环半径为R ,一不可伸长的细线两端各系在一个小球上,细线长为23R 。
整合 轻绳、轻杆、轻弹簧
轻绳、轻杆、轻弹簧三种模型的特点及其应用在中学物理中,经常会遇到绳、杆、弹簧三种典型的模型,在这里将它们的特点归类,供同学们学习时参考。
一.三种模型的特点1.轻绳(或细绳)中学物理中的绳和线,是理想化的模型,具有以下几个特征:①轻:即绳(或线)的质量或重力可以视为等于零。
由此特点可知,同一根绳(或线)的两端及其中间各点的张力大小相等;②软:即绳(或线)只能受拉力,不能承受压力。
由此特点可知:绳(或线)与其他物体的相互间作用力的方向总是沿着绳子;③不可伸长:即无论绳(或线)所受拉力多大,绳子(或线)的长度不变。
由此特点可知:绳(或线)中的张力可以突变。
2.轻杆具有以下几个特征:①轻:即轻杆的质量和重力可以视为等于零。
由此特点可知,同一轻杆的两端及其中间各点的张力大小相等;②硬:轻杆既能承受拉力也能承受压力,但其力的方向不一定沿着杆的方向;③轻杆不能伸长或压缩。
3.轻弹簧中学物理中的轻弹簧,也是理想化的模型。
具有以下几个特征:①轻:即弹簧的质量和重力可以视为等于零。
由此特点可知,向一轻弹簧的两端及其中间各点的张力大小相等;②弹簧既能承受拉力也能承受压力,其方向与弹簧的形变的方向相反;③由于弹簧受力时,要发生形变需要一段时间,所以弹簧的弹力不能发生突变,但当弹簧被剪断时,它所受的弹力立即消失。
二.三种模型的应用例1.如图1所示,质量相等的两个物体之间用一轻弹簧相连,再用一细线悬挂在天花板上静止,当剪断细线的瞬间两物体的加速度各为多大?解析:分析物体在某一时刻的瞬时加速度,关键是分析瞬时前后的受力情况及运动状态,再由牛顿第二定律求出瞬时加速度。
此类问题应注意两种模型的建立。
先分析剪断细线前两个物体的受力如图2,据平衡条件求出绳或弹簧上的弹力。
可知,F mg 2=,F F mg mg 122=+='。
剪断细线后再分析两个物体的受力示意图,如图2,绳中的弹力F 1立即消失,而弹簧的弹力不变,找出合外力据牛顿第二定律求出瞬时加速度,则图2剪断后m 1的加速度大小为2g ,方向向下,而m 2的加速度为零。
专题2绳关联模型和杆关联模型课件高一下学期物理人教版
C.当θ=60°时,P、Q的速度大小之比是 ∶3 2 D.在θ向90°增大的过程中,P一直处于失重状态
当θ=90°时,即为Q到达O点正下方时,此时Q 的速度最大,P的速度最小为零,故A错误,B 正确; 由题可知,P、Q用同一根细线连接,则Q沿细线 方向的速度与P的速度相等,则当θ=60°时,vQcos 60°=vP,解得vP∶vQ= 1∶2,故C错误; P从开始运动到到达最低点的过程中,先向下做加速运动,加速度向下,处于 失重状态,然后又减速向下运动,加速度向上,处于超重状态,故D错误.
如图,汽车甲用绳以速度v1拉着汽车乙前进,乙的速度为v2,甲、 乙都在水平面上运动 (1)在相等的时间内,甲和乙运动的位 移相等吗? 不相等.甲的位移x甲大于车的位移x乙
(2)小车甲和小车乙某一时刻的速度大小相等吗?如果不相等,哪 个速度大?
不相等,相等时间内甲的位移x甲大于车的位移x乙. 甲的速度大于乙的速度.
2.如图所示,一轻杆两端分别固定质量为mA和mB的小球A和B(A、B均 可视为质点).将其放在一个光滑球形容器中从位置1开始下滑,当轻杆到
达位置2时球A与球形容器球心等高,其速度大小为v1,已知此时轻杆与
水平面成θ=30°角,球B的速度大小为v2,则
A.v2=12v1
B.v2=2v1
√C.v2=v1
体A和B,它们通过一根绕过光滑轻质定滑轮O的不可伸长的轻绳相连接,
物体A以速率vA=10 m/s匀速运动,在绳与轨道成30°角时,物体B的速度 大小vB为
A.5 m/s
53 B. 3 m/s
C.20 m/s
√D.203 3 m/s
物体B的速度可分解为如图所示的两个分速度 ,由图可知vB∥=
轻绳-轻杆-轻弹簧三种模型的特点及其应用
轻绳、轻杆、轻弹簧三种模型的特点及其应用在中学物理中,经常会遇到绳、杆、弹簧三种典型的模型,在这里将它们的特点归类,供同学们学习时参考。
一. 三种模型的特点1. 轻绳(或细绳)中学物理中的绳和线,是理想化的模型,具有以下几个特征:①轻:即绳(或线)的质量或重力可以视为等于零。
由此特点可知,同一根绳(或线)的两端及其中间各点的张力大小相等;②软:即绳(或线)只能受拉力,不能承受压力。
由此特点可知:绳(或线)与其他物体的相互间作用力的方向总是沿着绳子;③不可伸长:即无论绳(或线)所受拉力多大,绳子(或线)的长度不变。
由此特点可知:绳(或线)中的张力可以突变。
2. 轻杆具有以下几个特征:①轻:即轻杆的质量和重力可以视为等于零。
由此特点可知,同一轻杆的两端及其中间各点的张力大小相等;②硬:轻杆既能承受拉力也能承受压力,但其力的方向不一定沿着杆的方向;③轻杆不能伸长或压缩。
3. 轻弹簧中学物理中的轻弹簧,也是理想化的模型。
具有以下几个特征:①轻:即弹簧的质量和重力可以视为等于零。
由此特点可知,向一轻弹簧的两端及其中间各点的张力大小相等;②弹簧既能承受拉力也能承受压力,其方向与弹簧的形变的方向相反;③由于弹簧受力时,要发生形变需要一段时间,所以弹簧的弹力不能发生突变,但当弹簧被剪断时,它所受的弹力立即消失。
二. 三种模型的应用例1. 如图1所示,质量相等的两个物体之间用一轻弹簧相连,再用一细线悬挂在天花板上静止,当剪断细线的瞬间两物体的加速度各为多大解析:分析物体在某一时刻的瞬时加速度,关键是分析瞬时前后的受力情况及运动状态,再由牛顿第二定律求出瞬时加速度。
此类问题应注意两种模型的建立。
先分析剪断细线前两个物体的受力如图2,据平衡条件求出绳或弹簧上的弹力。
可知,F mg 2=,F F mg mg 122=+='。
剪断细线后再分析两个物体的受力示意图,如图2,绳中的弹力F 1立即消失,而弹簧的弹力不变,找出合外力据牛顿第二定律求出瞬时加速度,则图2剪断后m 1的加速度大小为2g ,方向向下,而m 2的加速度为零。
高考物理第19讲 竖直面内圆周运动之绳”模型和“杆”模型及其临界问题(解析版)
第19讲竖直面内圆周运动之绳”模型和“杆”模型及其临界问题1.(2022·江苏)在轨空间站中物体处于完全失重状态,对空间站的影响可忽略.空间站上操控货物的机械臂可简化为两根相连的等长轻质臂杆,每根臂杆长为L.如图1所示,机械臂一端固定在空间站上的O点,另一端抓住质量为m的货物.在机械臂的操控下,货物先绕O点做半径为2L、角速度为ω的匀速圆周运动,运动到A点停下.然后在机械臂操控下,货物从A点由静止开始做匀加速直线运动,经时间t到达B点,A、B间的距离为L。
(1)求货物做匀速圆周运动时受到的向心力大小F n。
(2)求货物运动到B点时机械臂对其做功的瞬时功率P。
(3)在机械臂作用下,货物、空间站和地球的位置如图2所示,它们在同一直线上.货物与空间站同步做匀速圆周运动.已知空间站轨道半径为r,货物与空间站中心的距离为d,忽略空间站对货物的引力,求货物所受的机械臂作用力与所受的地球引力之比F1:F2。
【解答】解:(1)货物做匀速圆周运动,向心力F n=m⋅2Lω2=2mLω2(2)设货物到达B点的速度为v,根据匀变速规律L=v2t,得v=2L t货物的加速度a=vt=2Ltt=2Lt2根据牛顿第二定律,机械臂对货物的作用力F=ma=2mL t2机械臂对货物做功的瞬时功率P=Fv=2mLt2×2L t=4mL2t3(3)设地球质量为M,空间站的质量为m0,地球对空间站的万有引力为F,根据万有引力定律F=GMm 0r 2① 地球对货物的万有引力F 2=G Mm (r−d)2②联立①②得m 0m=Fr 2F 2(r−d)2③设空间站做匀速圆周运动的角速度为ω0,根据牛顿第二定律对空间站F =m 0rω02④ 对货物F 2−F 1=m(r −d)ω02⑤联立③④⑤解得F 1F 2=r 3−(r−d)3r 3答:(1)货物做匀速圆周运动时受到的向心力大小为2m ω2L ; (2)货物运动到B 点时机械臂对其做功的瞬时功率为4mL 2t 3;(3)货物所受的机械臂作用力与所受的地球引力之比为r 3−(r−d)3r 3。
(完整word版)圆周运动绳杆模型
圆周运动中的临界问题一.两种模型:(1)轻绳模型:一轻绳系一小球在竖直平面内做圆周运动.小球能到达最高点(刚好做圆周运动)的条件是小球的重力恰好提供向心力,即mg =m rv 2,这时的速度是做圆周运动的最小速度v min = . (绳只能提供拉力不能提供支持力). 类此模型:竖直平面内的内轨道(2)轻杆模型:一轻杆系一小球在竖直平面内做圆周运动,小球能到达最高点(刚好做圆周运动)的条件是在最高点的速度 . (杆既可以提供拉力,也可提供支持力或侧向力.) ①当v =0 时,杆对小球的支持力 小球的重力; ②当0<v <gr 时,杆对小球的支持力于小球的重力;③当v=gr 时,杆对小球的支持力 于零; ④当v >gr 时,杆对小球提供 力. 类此模型:竖直平面内的管轨道.1、圆周运动中绳模型的应用 【例题1】长L =0.5m 的细绳拴着小水桶绕固定轴在竖直平面内转动,筒中有质量m =0.5Kg 的水,问:(1)在最高点时,水不流出的最小速度是多少?(2)在最高点时,若速度v =3m/s ,水对筒底的压力多大?【训练1】游乐园里过山车原理的示意图如图所示。
设过山车的总质量为m ,由静止从高为h 的斜轨顶端A 点开始下滑,到半径为r 的圆形轨道最高点B 时恰好对轨道无压力。
求在圆形轨道最高点B 时的速度大小。
【训练2】.杂技演员在做水流星表演时,用绳系着装有水的水桶,在竖直平面内做圆周运动,若水的质量m =0.5 kg ,绳长l=60cm ,求:(1)最高点水不流出的最小速率。
(2)水在最高点速率v =3 m /s 时,水对桶底的压力.2、圆周运动中的杆模型的应用【例题2】一根长l =0.625 m 的细杆,一端拴一质量m=0.4 kg 的小球,使其在竖直平面内绕绳的另一端做圆周运动,求:(1)小球通过最高点时的最小速度;(2)若小球以速度v 1=3.0m /s 通过圆周最高点时,杆对小球的作用力拉力多大?方向如何?vR 【训练3】如图所示,长为L 的轻杆一端有一个质量为m 的小球,另一端有光滑的固定轴O ,现给球一初速度,使球和杆一起绕O 轴在竖直平面内转动,不计空气阻力,则( ) A.小球到达最高点的速度必须大于gLB .小球到达最高点的速度可能为0 C.小球到达最高点受杆的作用力一定为拉力 D.小球到达最高点受杆的作用力一定为支持力【训练4】如图所示,在竖直平面内有一内径为d 的光滑圆管弯曲而成的环形轨道,环形轨道半径R 远远大于d ,有一质量为m 的小球,直径略小于d ,可在圆管中做圆周运动。
核心素养微专题 二 轻绳与轻杆模型问题
(3)轻杆既可以提供拉力,也可以提供支持力。
3.针对两种模型的三点提醒: (1)这两种模型均可以发生突变。 (2)轻绳和轻杆都是理想化模型。 (3)分析轻杆上的弹力时可结合物体的运动状态利用牛 顿第二定律或共点力平衡分析弹力方向。
【典例突破】 【典例1】粗铁丝弯成如图所示半圆环的形状, 圆心为O,半圆环最高点B处固定一个小滑轮, 小圆环A用细绳吊着一个质量为m2的物块并套在半圆环 上。一根一端拴着质量为m1的物块的细绳,跨过小滑轮
A.水平向左 B.斜向右下方,与竖直方向夹角增大 C.斜向左上方,与竖直方向夹角减小 D.斜向左上方,与竖直方向夹角增大
【解析】选D。对球受力分析,受重力、 拉力和杆的弹力,根据平衡条件,杆的 弹力与拉力、重力的合力等值、反向、共线;拉力方向 不变、大小变大,重力大小和方向都不变,根据平行四 边形定则,两个力的合力大小逐渐增大,方向向右下方,
答案:(1)100 N (2)100 N 方向与水平方向成30°角斜向右上方
【解析】选B。对小环进行受力分析,如图所示,小环受 上面绳子的拉力m1g,下面绳子的拉力m2g,以及圆环对 它沿着OA向外的支持力,将两个绳子的拉力进行正交分 解,它们在切线方向的分力应该相等:
m1gsin 180 =m2gcos (α-90°)
2 即:m1cos =m2sin α 2 m1cos =2m2sin cos 2 2 2 m1 得: =2sin m2 2
【解析】物体M处于平衡状态,根据平衡条件可判断,与 物体相连的轻绳拉力大小等于物体的重力,取C点为研 究对象,进行受力分析,如图所示。
(1)图中轻绳AD跨过定滑轮拉住质量为M的物体,物体处 于平衡状态,绳AC段的拉力大小为: FAC=FCD=Mg=10×10 N=100 N (2)由几何关系得:FC=FAC=Mg=100 N 方向和水平方向成30°角斜向右上方。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
V=0
V rg
K
G
5
例1.如图所示,质量为m的小球置于正方 体的光滑盒子中,盒子的边长略大于球的直径。 某同学拿着该盒子在竖直平面内做半径为R的 匀速圆周运动,已知重力加速度为g,问: 图5-7-6
要使盒子在最高点时盒子与小球之间恰好无作用力, 则该盒子做匀速圆周运动的周期为多少?
B
6
[思路点拨] 解答本题时应注意: 1小球在最高点的合力等于向心力。 2通过最高点的临界
解析: 由临界速度得:mg=m v 2
r
,当小球的速度为2v时,
则mg由+以Fn上=两m (式2rv)2联立解得 :Fn=3 mg.
对轨道的压力为Fn=3 mg.
B
mg Fn
A
8
2)长L=0.5m,质量不计的杆,其下端固定在O点 ,上端连有质量m=2Kg的小球,它绕O点在竖直平 面内做圆周运动,当通过最高点时,求:
A
D
B
C
B
4
(二)轻杆模型
A)特点:小球在竖直平面内做圆周运动时,物体能被支持
B)临界条件
(1)能否到达最高点的临界条件 :
C)讨论(2:)拉力还是支持力的临界条件: F 1)当 V> rg 时,杆对小 球施加拉力,且速度越大,拉 力越大(此时杆子相当于绳子)
E
2)当 0<V< rg 时,杆对球施加支 持力,速度越大,支持里越小
复习回顾
匀速圆周运动条件 离心运动条件 向(近)心运动条件
F合m2r
F合<m2r F合>m2r
B
1
考点4 圆周运动的两种重要模型 (轻绳模型和轻杆模型)
轻
细
杆
绳
外
轨
双
轨
B
2
(一)轻绳模型
A)特点:小球在竖直平面内做圆周运 v 动时,物体不能被支持就, 即不受竖直向上的支持力
思考:小球过最高点的最小速度是多少
B
B
10
4. 在“水流星”表演中,杯子在竖直平面做
圆周运动,在最高点时,杯口朝下,但杯中水
却不会流下来,为什么?
对杯中水:mg
FN
v2 m
r
FN
当v gr 时,FN = 0
G
水恰好不流出
表演“水流星” ,需要保证杯
子在圆周运动最高点的线速度不
得小于 gr
即:v gr
B
11
?
v2
最高点: T mgm
r
临界状态:T=0
mg
mV
2 0
rHale Waihona Puke B)能否通过最高点的临界条件 V0 rg
mg
T
o
B
3
C) 讨论
(1)当 V rg 时,物体恰能做完整的圆周运动
(2)当 V> rg 时,物体能做完整的圆周运动
(3)当 V< rg 时,物体不能做完整的圆周运动 ,
即还未到达最高点就已经脱离了轨道而落下来。
[解析] 设此时盒子的运动周期为 T0,因为在最高点时 盒子与小球之间恰好无作用力,因此小球仅受重力作用。
根据牛顿第二定律得 ,
mg
m
4 2
T0 2
r
得T0 2
r g
B
7
1)质量为m的小球在竖直平面内的圆轨道的内则运动, 经过最高点而不脱离轨道的临界速度为V,当小球以2V 的速度经过最高点时,对轨道的压力是多大?
(1)当V1=1m/s时,杆受到的力大小,是拉力还 是压力?
(2)当V2=4m/s时,杆受到的力大小,是拉力还 是压力?
A
B
B
9
3)如图:在A与B点,杆对球 的力是( AD )
A
A)A处可能为拉力,B处为拉力
B)A处可能为拉力,B处为压力
C)A处可能为支持力,B处为压力
D)A处可能为支持力,B处为拉力